2015贵大概率论与统计A卷

合集下载

(完整word版)2014-2015概率论与数理统计A卷答案 (1)

(完整word版)2014-2015概率论与数理统计A卷答案 (1)

系部 专业班级 学号 姓名 密封线 答题留空不够时,可写到纸的背面 注意保持装订完整,试卷折开无效 装订线二.填空题(每题2分,共10分)1.已知().P A =06, ()|.P B A =03, 则()P A B ⋂= ___0.18_______;2.甲、乙、丙3人独立地译出一种密码,他们能译出的概率分别为1/5,1/3,1/4,则能译出这种密码的概率为35; 3.一种动物的体重X 是一随机变量,设()(),E X D X ==334,10个这种动物的平均体重记作Y ,则()D Y =__ 0.4 _;4. 已知,36)(,25)(==Y D X D X 与Y 的相关系数为4.0=XY ρ,则)(Y X D -= 37 ;5. 设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从2()n χ分布.三.计算下列各题(共80分)1.(10分)例 1.某电子设备制造厂所用的元件是由三家元件制造厂提供的,根据以往的记录三家厂的次品率分别为0.02,0.01,0.03,三家厂所提供的份额分别为0.15,0.80,0.05。

设这三家厂的产品在仓库中是均匀混合的,且无区别的标志.(1)在仓库中随机取一只元件,求它是次品的概率;(2)在仓库中随机取一只元件,若已知取到的是次品,求出此次品由第一家工厂生产的概率是多少?解:设A 表示“取到的是一只次品”,(i=1,2,3)表示“所取到的产品是由第i 家工厂提供的”,则P()=0.15 P()=0.80 P()=0.05P(=0.02 P(=0.01 P(=0.03 (3分)1>.由全概率公式()112233(|)()(|)()(|) ?()A B B A B B B A A B =++P P P P P P P 0.0125= (5分) 2>.由贝叶斯公式P() = = = 0.24 (10分)桂林理工大学考试试卷 (2014--2015 学年度第 一 学期)课 程 名 称:概率统计 A 卷 命 题:基础数学教研室 题 号 一二三总 分得 分一. 单项选择题(每小题2分,共10分)1.如果 1)()(>+B P A P ,则 事件A 与B 必定( C ))(A 独立 )(B 不独立 )(C 相容 )(D 不相容2.设随机变量X 服从二项分布(,)B n p ,且()()2.1 1.47==E X D X ,则二项分布的参数,n p 的值为( A ) ()70.3==A n p ()30.7==B n p ()210.1==C n p ()40.6==D n p3.设随机变量X 服从)1,0(N 分布,12+=X Y ,则~Y ( B ) ()(0,1)()(1,4)()(1,2)()(0,4)A N B N C N D N4. 已知X 服从泊松分布,则()D X 与()E X 的关系为( C ) )(A ()()D X E X > )(B ()()D X E X < )(C ()()D X E X = )(D 以上都不是5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( D ))(A 32112110351ˆX X X ++=μ)(B 3212949231ˆX X X ++=μ)(C 3213216131ˆX X X ++=μ)(D 32141254131ˆX X X ++=μX-1-1 0.12将联合分布表每行相加得-10.6将联合分布表每列相加得-10.30,1,;0θ<<!!n e X , (4分)()1ln !!!n X X θ- n ,令ln 0,d d θ=得1n θ= (10000,0.005b49.75, ()2.84Φ-Φ。

贵州大学07概率统计(A-含答案)

贵州大学07概率统计(A-含答案)

贵州大学2006-2007学年第二学期考试试卷(A)《概率论与数理统计》一、选择题(10个小题,每小题2分,共20分)1. 设A 、B 为两个事件,P(A)=0.6,P(B)=0.7。

假定A ∪B=S ,则P(AB)= ______ 。

① 0.6 ② 0.7 ③ 0.42 ④ 0.32. 设有m 个球,随机地放在n 个盒子中(m ≤n),则某指定的m 个盒子中各有一球的概率为 。

①!m m n ② !m n m m C n ③ !nn m④ !n m n n C m 3.设随机变量X 的概率密度为||()()x f x ce x -=-∞<<+∞,则c = 。

① -21 ② 0 ③ 21④ 1 4.设()x Φ为标准正态分布函数,则(1)(1)Φ-+Φ=_______。

① 2(1)Φ- ② 1 ③ 0 ④ 2(1)Φ5.设连续型随机变量X 、Y 独立,其概率密度函数分别为f X (x )和f Y (y ),则随机变量 Z =X +Y 的概率密度函数f Z (z )= 。

① )()(y f x f Y X + ② f X (x )f Y (y ) ③ )()(2y f x f Y X -- ④⎰∞∞--dt t z f t f Y X )()(6.设随机变量X 、Y 独立,均服从正态分布,其中211(,)X N μσ ,222(,)Y N μσ ,则Z =X -Y服从正态分布 。

① 221212(,)N μμσσ-- ② 221212(,)N μμσσ-+ ③ 221212(,)N μμσσ+- ④ 1212(,)N μμσσ-+ 7.设随机变量X 服从泊松分布,即()(0)X πλλ> ,(),()E X D λ分别表示X 的数学期望和方差,则 。

① ()2()E X D λ= ② ()E X ③ ()()E X D λ= ④ 12()()E X D λ= 8.设随机变量X 服从标准正态分布,即(0,1)X N ,则4()E X = 。

2015全国高考数学(文科)分类汇编概率统计.docx

2015全国高考数学(文科)分类汇编概率统计.docx

22.【2015 高考福建,文 18】全网传播的融合指数是衡量电视媒体在中国网民中影响了
的综合指标.根据相关报道提供的全网传播 2015 年某全国性大型活动的“省级卫视新
闻台”融合指数的数据,对名列前 20 名的“省级卫视新闻台”的融合指数进行分组统
计,结果如表所示.
组号
分组
频数
1
2
[4, 5)
试卷第 5 页,总 9 页
绩在区间[139,151]上的运动员人数为( )
A、3
B、4
C、5
D、6
6.【2015 高考山东,文 6】为比较甲、乙两地某月 14 时的气温状况,随机选取该月中
的 5 天,将这 5 天中 14 时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下
结论:
①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温;
试卷第 4 页,总 9 页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
访问 50 名职工,根据这 50 名职工对该部门的评分,绘制频率分布直方图(如图所示),
其中样本数据分组区间为[40,50],[50,60], ,[80,90],[90,100]
(Ⅰ)求频率分布图中 a 的值;
(Ⅱ)估计该企业的职工对该部门评分不低于 80 的概率;
(Ⅲ)从评分在[40, 60] 的受访职工中,随机抽取 2 人,求此 2 人评分都在[40,50] 的

04183概率论与数理统计(经管类)2015年真题2套及标准答案

04183概率论与数理统计(经管类)2015年真题2套及标准答案

全国高等教育自学考试概率论与数理统计(经管类)2015年10月真题(课程代码:04183)一、单项选择题(本大题共10小题,每小题2分,共20分)1.设事件A 与B 互不相容,且P(A)=0.4,P(B)=0.2,则P(A∪B)=( )A.0B.0.2C.0.4D.0.62.设随机变量X ~B(3,0.3),则p={X-2}=( ) A.0.189 B.0.21 C.0.441 D.0.73.设随机变量X 的概率密度为( )=⎩⎨⎧≤≤=a x ax x f ,则常数其他,,0,10,)(2 A.0 B.31 C. D.3214.设随机变量X 的分布律为( ){}==-12.06.02.01012X P P X ,则 A.0.2 B.0.4C.0.6D.0.85.设二维随机变量(x,y)的分布律为( ){}==11.02.01.013.02.01.00210\X P YX 则 A.0.1 B.0.2C.0.3D.0.46.设随机变量X ~N(3,),则E(2X+2)=( )22 A.3 B.6 C.9 D.157.设随机变量X 服从参数为3的泊松分布,Y 服从参数为的指数分布,且X,Y51互相独立,则D(X-2Y+1)=( ) A.23 B.28C.103D.1048.已知X 与Y 的协方差Cov (X,Y )=,则Cov (-2X,Y )=( )21- A. B.021- C. D.1219.设为总体X 的一个样本,且为样本均值,)2(,...,,21>n x x x n ,未知)()(μμ=X E x 则的无偏估计为( )μ A. B.x n xC. D.x n )1(-x n )1(1-10.设a 是假设检验中犯第一类错误的概率,为原假设,以下概率为a 的是( )0H A. B.{}不真接受00|H H P {}真拒绝00|H H P C. D.{}不真拒绝00|H H P {}真接受00|H H P 二、填空题(本大题共15小题,每小题2分,共30分)11.袋中有编号为0,1,2,3,4的5个球,从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_____.12.设A,B 为随机事件,则事件“A,B 至少有一个发生”可由A,B 表示为_____.13.设事件A,B 相互独立,且P(A)=0.3,P(B)=0.4,则=_____.)(B A P 14.设X 表示某射手在一次射击命中目标的次数,该射手的命中率为0.9,则P{x=0}=_____.15.设随机变量X 服从参数为1的指数分布,则P{X >2}=_____.16.设二维随机变量(X,Y)的分布律为则c=_____.cYX 2561256259010\17.设二维随机变量(X,Y)的分布函数为F(x,y),则P{X≤0,Y≤0}用F(x,y)表示为_____.18.设二维随机变量(X,Y)服从区域D:-1≤x≤2,0≤y≤2的均匀分布,则(X,Y)概率密度f(x,y)在D 上的表达式为_____.19.设X 在区间[1,4]上服从均匀分布,则E(X)_____.20.设,则D(X)=_____.⎪⎭⎫⎝⎛515~B ,X 21.设随机变量X 与Y 的协方差Cov(X,Y)=,E(X)=E(Y)=1,则E(XY)=_____.21-22.设二维随机变量(X,Y)服从区域D:0≤x≤4,0≤y≤4上的分布,则____.=+)(22Y X E 23.设总体X ~N(0,1),为来自总体X 的一个样本,且123x x x ,,,则n=______.2222123~()x x x n χ++24.设X ~N(0,1),Y ~(10),且X 与Y 互相独立,则_____.2X =10/Y X25.设某总体X 的样本为_____.=⎪⎭⎫⎝⎛=∑-n i l n x n D X D x x x 12211,)(,,...,,则σ三、计算题(本大题共2小题,每小题8分,共16分)26.已知甲袋中有3个白球、2个红球;乙袋中有1个白球、2个白球,现从甲袋中任取一球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。

2013-2015概率统计试题及解答

2013-2015概率统计试题及解答

(2) 设 Y 为 150h 内烧坏的电子管数,则 Y ~ B(3, p) , p = P{X < 150} = F (150) = 1 。(3 分)
3
所求为 P{Y ≥ 2} = C32 (1 3)2 (2 3) + (1 3)3 = 7 27 。(2 分)
∫ ∫ ∫ ∫ ∫ 三、1. (1) 由
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
题号
一 二 三 四 总分
标准分 24 16 30 30
得分
注 请填写清楚左侧装订线内的所有信息,并在交卷时保持三页试卷装订完好。
A 一、填空题和选择题 (每题 3 分,共 24 分)
1. 已知 P(A) = 0.5 , P(B) = 0.6 , P ( B A) = 0.8 ,则 P ( A ∪ B) =
⎪⎩ 0,
其它.
cov( X ,Y ), ρXY , D( X − Y ) 。
姓名:
学号: 线
专业班级: 订
专业班级: 全校工科、经管、理科各专业 [该项由出卷人填写]

第( 2 )页共( 3 )页
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
A 四、计算下列各题 (共 30 分) 1. (7 分) 某单位设置一电话总机,共有 100 架电话分机。设每个电话分机是否使用外线通话 是相互独立的,且每时刻每个分机有 10%的概率要使用外线通话。问总机需要多少外线才能
36
6
36
∫ ∫ ∫ ∫ E(XY ) =
+∞
+∞
xyf (x, y)dxdy =

2015年高考数学 概率统计专题试卷 12

2015年高考数学 概率统计专题试卷 12

2015年高考数学概率统计专题试卷1.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的概率分布估计,大于或等于31.5的数据约占( )A.211B.13C.12D.232.为了了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图所示.据此可估计上学期该校400名教师中,使用多媒体进行教学次数在[16,30)内的人数为( )A.100 B.160 C.200 D.2803.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A.18 B.36 C.54 D.724.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.众数 B.平均数 C.中位数 D.标准差5.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,则以上两组数据的方差中较小的一个为s2,则s2=( )A.25B.725C.35D.26.已知一组正数x1,x2,x3,x4的方差s2=14(x12+x22+x32+x42-16),则数据x1+2,x2+2,x3+2,x4+2的平均数为( )A.2 B.3 C.4 D.67.某中学从高三甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+y的值为________.8.为了调查学生每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.某市抽取1000名年龄在[2,22](单位:岁)内的学生每天的零花钱,样本的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为________.9.某班有48名学生,在一次考试中统计出平均分为70,方差为75,后来发现有2名同学的分数登记错了,甲实际得80分却记成了50分,乙实际得70分却记成了100分,更正后平均分为________,方差为________.10.下图1是某县参加2011年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A n(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个程序框图.现要统计身高在160 cm~180 cm(含160 cm,不含180 cm)内的学生人数,那么在程序框图中的判断框内应填写的条件是________.图1图211.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.12.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.13.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99;乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间的产品较稳定.14.某果农选取一片山地种植沙糖桔,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间[40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的43倍.(1)求a,b的值;(2)从样本中产量在区间(50,60]上的果树中随机抽取2株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.15.已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.四、新添加的题型参考答案1.B【解析】大于或等于31.5的数据是最后的3组,故大于或等于31.5的数据约占127366++=13. 2.B【解析】由茎叶图,可知在20名教师中,上学期使用多媒体进行教学的次数在[16,30)内的人数为8,据此可以估计400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为400×820=160. 3.B【解析】本题考查了频率分布直方图的有关知识.设样本数据落在区间[10,12)内的频率与组距的比为x ,则(0.02+0.05+x +0.15+0.19)×2=1,得x =0.09,故样本数据落在区间[10,12)内的频数为0.09×2×200=36.4.D【解析】本题考查众数、平均数、中位数及标准差的概念,考查推理论证能力.当每个样本数据加上2后,众数、平均数、中位数都会发生变化,不变的是数据的波动情况,即标准差不变.5.A 【解析】x 甲=7,s 甲2=15 [(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)2]=25, x 乙=7,s 乙2=15 [(6-7)2+(7-7)2+(6-7)2+(7-7)2+(9-7)2]=65, 两组数据的方差中较小的一个为s 甲2,即s 2=25. 6.C【解析】∵s 2=14 (x 12+x 12+x 32+x 42-16)=14[(x 1-x )2+(x 2-x )2+(x 3-x )2+(x 4-x )2],∴2x (x 1+x 2+x 3+x 4)-4x 2=16,∴8x 2-4x 2=16,x =2,即x 1+x 2+x 3+x 4=8,∴123422224x x x x +++++++=4,故选C . 7.8【解析】因为甲班学生成绩的众数是85,所以由茎叶图可知,x =5.乙班学生成绩的中位数是83,所以y =3,x +y =8.8.680【解析】由频率分布直方图的意义知4×(0.02+0.03+0.03+0.08+x)=1,解得x =0.09,所以样本数据落在[6,14)内的频数为1000×4×(0.08+0.09)=680.9.70 50【解析】因甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s 2,则由题意可得s 2=148[(x 1-70)2+(x 2-70)2+…+(80-70)2+(70-70)2+…+(x 48-70)2],而更正前有75=148 [(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2],化简整理得s 2=50.10.i≤7【解析】由题意可知,本题是统计身高在160 cm ~180 cm(含160 cm ,不含180 cm)内的学生人数,即求A 4+A 5+A 6+A 7,故程序框图中的判断框内应填写的条件是“i≤7”.11.(1)0.04 (2)440【解析】(1)设[25,30)年龄组对应小矩形的高度为h ,则5(0.01+h +0.07+0.06+0.02)=1,h =0.04.志愿者年龄在[25,35)的频率为5(0.04+0.07)=0.55,故志愿者年龄在[25,35)的人数约为0.55×800=440.12.(1)0.08 25(2)0.016【解析】(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为20.08=25. (2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016. 13.(1)系统抽样 (2)见解析 (3)甲车间的产品较稳定【解析】(1)因为间隔时间相同,所以是系统抽样.(2)茎叶图如下:(3)甲车间:平均值:x 1=17 (102+101+99+98+103+98+99)=100, 方差:s 12=17 [(102-100)2+(101-100)2+…+(99-100)2]=247. 乙车间:平均值:x 2=17 (110+115+90+85+75+115+110)=100, 方差:s 22=17 [(110-100)2+(115-100)2+…+(110-100)2]=16007. ∵x 1=x 2,s 12<s 22,∴甲车间的产品较稳定.14.(1)a =0.08,b =0.04(2)35【解析】(1)样本中产量在区间(45,50]上的果树有a×5×20=100a(株),样本中产量在区间(50,60]上的果树有(b+0.02)×5×20=100(b+0.02)(株),依题意,有100a=43×100(b+0.02),即a=43(b+0.02).①根据频率分布直方图可知(0.02+b+0.06+a)×5=1,②由①②得:a=0.08,b=0.04.(2)样本中产量在区间(50,55]上的果树有0.04×5×20=4(株),分别记为A1,A2,A3,A4,产量在区间(55,60]上的果树有0.02×5×20=2(株),分别记为B1,B2.从这6株果树中随机抽取2株共有15种情况:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2).其中产量在(55,60]上的果树至少有一株被抽中共有9种情况:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2).记“从样本中产量在区间(50,60]上的果树中随机抽取2株,产量在区间(55,60]上的果树至少有一株被抽中”为事件M,则P(M)=915=35.15.(1)2,7,12,17,22,27,32,37,42,47.(2)52(3)2 5【解析】(1)由题意,第5组抽出的号码为22.因为k+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.(2)因为10名职工的平均体重为x=110(81+70+73+76+78+79+62+65+67+59)=71,所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).记“体重为76公斤的职工被抽取”为事件A,它包括的事件有(73,76),(76,78),(76,79),(76,81)共4个.故所求概率为P(A)=410=25.。

14-15I 概率论与数理统计试卷(A)48学时参考答案与评分标准

14-15I 概率论与数理统计试卷(A)48学时参考答案与评分标准

| | | | | | | |装|| | | |订| | | | | |线|| | | | | | |防灾科技学院2014~2015年 第一学期期末考试概率论与数理统计试卷(A )考试形式 闭卷 使用班级本科48学时班 答题时间120分钟(请将答案写在答题纸上)一 、填空题(本大题共7小题,每题3分,共21分)1、若以事件i A 表示“一个工人生产的第i 个零件是合格品”(n i ≤≤1),则事件“没有一个零件是不合格品”用i A 表示为 12n A A A ;2、已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P 0.62 .3、假设某潜在震源区年地震发生数X 服从参数为2=λ的泊松分布,则未来一年该震源区发生至少一次地震的概率为21--e ;4、10张彩票中有5张是有奖彩票。

每人依次抽取一张彩票,第2个人抽中奖的概率为 1/2 ;5、假设英语四级考试有60个选择题,每题有四个选项,其中只有一个为正确选项。

小明没有复习而选择 “裸考”,答案全是随便“蒙”的,则Ta “蒙”对题数的期望是 15 ;6、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,6.011,4.01,0)(,则X 的分布律是1130.40.20.4X-⎛⎫ ⎪⎝⎭,=≤<-)31(X P 0.6 ;二、单项选择题(本大题共7小题,每题3分,共21分)7、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β(A )11-=αβ (B )1+=αβ (C )11+=αβ (D )不能确定 ( C ) 8、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则)2(>X P 的值为(A ))]2(1[2Φ-. (B )1)2(2-Φ.(C ))2(2Φ-. (D ))2(21Φ-. ( A )9、某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数 学期望与方差分别为 ( D ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 10、设随机变量X 和Y 不相关,则下列结论中正确的是( B ) (A )X 与Y 独立. (B ))()()(Y D X D Y X D +=-. (C ))()()(Y D X D Y X D -=-. (D ))()()(Y D X D XY D =.11、设离散型随机变量X 和Y 的联合概率分布为若Y X ,独立,则βα,的值为(A )91,92==βα. (B )92,91==βα.(C ) 61,61==βα (D )181,185==βα. ( A ) 12、设样本4321,,,X X X X 为来自总体)1,0(N 的样本,243221)(X X X C X Y +++=,若Y 服从自由度为2的2χ分布,则=C ( B )(A) 3; (B) 1/3; (C) 0; (D) -3 . 13、设随机变量与相互独立,其概率分布分别为则有(A ) (B )(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβX Y 010.40.6X P 010.40.6Y P ()0.P X Y ==()0.5.P X Y ==(C ) (D ) ( C ) 14、设总体)4,2(~2N X ,n X X X ,,,21 为来自X 的样本,则下列结论中正确的是 (A ))1,0(~42N X -. (B ))1,0(~162N X -. (C ))1,0(~22N X -. (D ))1,0(~/42N nX -. ( D ) 三、解答题(本大题共5小题,每题10分,共50分)15、计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。

2015级《概率论与数理统计》A卷及解答

2015级《概率论与数理统计》A卷及解答

上海立信会计金融学院2016 ~2017学年第二学期《高等数学-概率论与数理统计》课程 代码:06169040 本试卷系A 卷集中考试 考试形式:闭卷 考试用时: 90分钟考试时能使用计算工具__________专业 _________班 姓名 __________学号 ____________ 序号题号 一 二 三 四 总分 应得分 10 20 40 30 100 实得分一、单项选择题(本大题共5小题,每小题2分,共10分)1.某种动物活到25岁以上的概率为0.8,活到30岁以上的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是 ( D ) (A) 0.76 (B) 0.4 (C)0.32 (D)0.52.下列函数中可作为随机变量分布函数的是 ( C )(A)⎩⎨⎧≤≤=.,0;10,1)(1其他x x F (B)⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x F(C)⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F (D)⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;00,0)(4x x x x F3.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x则P{0<X <1,0<Y <1}= (A ) (A)41 (B)21 (C)43(D)14.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是 (B ) (A))()()(Y E X E XY E ⋅= (B))()(Cov Y D X D (X,Y)XY ⋅⋅=ρ(C))()()(Y D X D Y X D +=+ (D)),(Cov 2)2,2(Cov Y X Y X =5.设随机变量X 和Y 相互独立且同服从正态分布N (0,4)。

2015概率论与数理统计(A)参考答案

2015概率论与数理统计(A)参考答案

2014上学期概率论与数理统计(A)参考答案一、填空题(每小题3 分,共15分) 1. 0.18 2.8273. 54. 17(0.68)255. 0.106 二、单项选择题(每小题3 分,共15分)1. A2. B3. C4. D5. D 三、(12分)解:(1) 设{}{}2A B ==从甲盒中取得一个白球,从乙盒中取得个黑球,41(),(),55P A P A == 1分22322266417()()()()()0.093.5575C C P B P A P B A P A P B A C C =+=⨯+⨯==3分 5分 6分(2) 222644()()5475()()77575C P A P B A C P A B P B ⨯====,9分 11分 12分四、(12分) 解:(1) ()()xF x f x dx -∞=⎰ 1分当1x <时, ()0,F x = 2分 当2x >时, ()1,F x = 3分 当02x ≤≤时, 2112()2(1)24,xF x dx x x x=-=+-⎰ 4分 综上所述, 0,1,2()24,12,1, 2.x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩(2) (法一) 3221.51.512(1.53)()2(1).3P X f x dx dx x <<==-=⎰⎰ 5分 7分 8分或 ( 法二) 22(1.53)(3)(1.5)1(2 1.54).1.53P X F F <<=-=-⨯+-= 6分 7分 8分(3) 2211()()2(1)32l n 2,E X x f x d xx d x x+∞-∞==-=-⎰⎰ 9分22222118()()2(1),3E X x f x dx x dx x +∞-∞==-=⎰⎰ 10分 2222819()()[()](32ln 2)12ln 24(ln 2).33D X E X E X =-=--=-- 12分五、(12分) 解:(1)2分4分(2) 因为1155(0,0)(0)(0)33618P X YP X P Y ===≠=⋅==⨯= 6分所以 ,X Y 不独立. 8分 (3)10分 12分六、(10分) 解: (法一) 设随机变量Z 的分布函数为()Z F z ,000,0,()()(,)6,01,1, 1.zz x Z x y zz F z P X Y z f x y dxdy dx xdy z z -+≤<⎧⎪⎪=+≤==≤≤⎨⎪>⎪⎩⎰⎰⎰⎰3分 7分30,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩8分 故 23,01,()0,.Z z z f z ⎧≤≤=⎨⎩其他 10分 或(法二) ()(,)Z f z f x z x dx +∞-∞=-⎰, 4分当0z < 或 1z > 时,()0,Z f z = 6分 当 01z ≤≤ 时,20()63.zZ f z xdx z ==⎰ 10分七、(12分)解: (1) 因为 (),E X λ= 2分 由 ()X E X λ== 5分得参数λ的矩估计为 ˆ;X λ= 6分 (2) 似然函数为 11=1e ()niii x x nnni i ii e L x x λλλλλ=--=∑==!!∏∏ 8+1分取对数 11ln ()()ln ln n ni i i i L x n x λλλ===--!∑∑ 10分两边对λ求导, 并令其为零1l n ()0nii x d L n d λλλ==-=∑ 11分 解得参数λ的极大似然估计为 ˆ.X λ= 12分 八、(12分)解: (1) 总体均值μ的置信区间为:22((1),(1))x n x n αα-- 3分20.226(1)14.95 2.3114.776,3x n α-=-⨯= 4分20.226(1)14.95 2.3115.124,3x n α-=+⨯= 5分总体均值μ在置信概率为0.95时的置信区间为: (14.776,15.124). 6分 (2) 提出假设 01:0.2,:0.2.H H σσ≤> 8分取检验统计量 2220(1)n S χσ-=, 9分拒绝域为 {}{}22220.05(1)(8)V n αχχχχ=>-=> 10分220.05280.05110.2(8)15.50.2χχ⨯==<= 11分 故接受原假设0H . 12分。

2014-2015 概率论与数理统计试卷 A参考答案

2014-2015 概率论与数理统计试卷 A参考答案

东莞理工学院(本科)试卷(A 卷)2014 --2015 学年第一学期《概率论与数理统计》评分标准开课单位:计算机学院数学教研室 ,考试形式:闭卷,允许带 计算器 入场题序 一 二 三 四 总 分 得分 评卷人一、选择题(每小题2分,共30分)1.设,A B 为两个相互独立的随机事件,且()0.6,()0.5P A P B ==,则必有()P AB =【 B 】;(A) 0.6 (B) 0.3 (C)0.2 (D) 0.12.袋中共有6只球,其中4只白球,2只红球.从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为【 B 】;(A) 7/15 (B) 8/15 (C) 5/9 (D) 4/93.在区间[0,1]上任取三个数,则这三个数之和小于1的概率为【 C 】;(A) 1/2 (B) 1/3 (C) 1/6 (D) 1/244.某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p <1), 则此人3次射击恰好1次命中目标的概率为【 A 】(A) 2)1(3p p -. (B) 2)1(6p p -.(C) 22)1(3p p -. (D) 22)1(6p p -. 5. 设随机变量X 服从参数为2的泊松分布,则E X 2()=【 C 】;(A) 2 (B) 4 (C) 6 (D) 86.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的点数之和(Z=X+Y)为6的概率为【 B 】; (A) 4/36 (B) 5/36 (C) 6/36 (D) 7/36 7.随机变量X 的期望和方差分别表示X 取值的【 A 】;A .平均值,离散程度B .平均值,平均程度C .绝对值,离散程度D .相对值,平均程度姓名: 学号: 系别: 年级专业:( 密 封 线 内 不 答 题 ) …………………………密………………………………………………封………………………………………线……………………………………8. 设随机变量X 的概率密度为()2(),010, 其它⎧-<<=⎨⎩k x x x f x ,则常数k = 【 D 】(A) 3; (B) 4; (C) 5; (D) 6. 9. 设随机变量X 的概率密度函数为)(x f ,分布函数为)(x F ,对于任意实数x 有【 C 】()0()1<<A F x ; (B )0()1<<f x ; ()0()1≤≤C F x ; ()0()1≤≤D f x10. 设X Y 与为任意二个随机变量,若已知0,=XY ρ则必有【 D 】 () A X Y 与相互独立; () B X Y 与不独立; () C X Y 与相关; (D) X Y 与不相关.11.设相互独立的随机变量X 和Y 的方差都是1,则随机变量52X Y -的方差是【 D 】A .3B .7C .21D .2912.已知随机变量X 与Y 相互独立,且2~(10)X χ,2~(20)Y χ,则Y X /2服从分布【 D 】; (A)(9,29)F (B) (19,9)F (C) (20,10)F(D)(10,20)F13.设总体2(,),XN μσ参数2σ已知, μ未知,12,,,n X X X 是来自总体X 的样本,则μ的极大似然估计量为【 B 】; (A)1ˆ2X μ= (B) ˆX μ= (C)3ˆ2X μ= (D)ˆ2X μ= 14. 设4321,,,X X X X 是来自均值为θ的指数分布总体的样本,其中θ未知,则下列估计量中最有效的θ的无偏估计的为【 D 】;A. 11T X =B. 2121()4T X X =+ C. 31231()3T X X X =++ D. 412341()4T X X X X =+++15.单个正态总体的方差未知时,均值的假设检验中选择的检验统计量为【 B 】. (A)/X Z nμσ-=(B) 0/X t S nμ-=(C)222(1)n S χσ-=(D)2122S F S =二、填空题(每空2分,共30分)1. 设,A B 为两个随机事件,且()0,()()P A P A B P B >=,则必有(|)P B A = 1 .2. 掷两颗骰子,则两颗骰子点数不同的概率为_5/6__.3. 在一次试验中,事件A 发生的概率为0.5,现进行3次独立重复试验,则A 不发生的概率为 0.125 .4. 已知随机变量(100,0XB ,且随机变量21Y X =+,则()E Y = ______21____,()D Y = ______72__.5. 设随机变量X 的密度函数为()23,010,x x f x ⎧≤≤=⎨⎩其它,则12P X ⎧⎫≤=⎨⎬⎩⎭ 1/8 ;又设用Y 表示对X 的2次独立重复观察中事件12X ⎧⎫≤⎨⎬⎩⎭出现的次数,则{}1P Y == 732.6. 设二维随机变量()Y X ,的分布列为Y X 0 1 0 0.3 0.21a 0.1则a = 0.4 ,()E Y = 0.3 .7. 设1210,,,X X X 是取自总体)1,0(N 的样本,则统计量222125Y X X X =+++服从_____2(5)χ__分布, 2221252226710X X X T X X X +++=+++服从_____(5,5)F __分布. 8. 设110,...,X X 及120,...,Y Y 分别是总体(10,10)N 的容量为10,20的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差.则:~X N(10,1) ,~Y X - N(0,3/2) ,{}5.12>-Y X p = 0.0456 ,2219~10S 2(19)χ. 此题中9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ姓名: 学号: 系别: 年级专业:( 密 封 线 内 不 答 题 ) …………………密………………………………………………封………………………………………线……………………………………三、计算题(共18分)1.(10分)设随机向量(,)X Y 的密度函数为:2,01,01,(,)0,x x y f x y ≤≤≤≤⎧=⎨⎩其它.(1)求分量X 和Y 的密度函数()X f x 及()Y f y ;(4分)(2)求概率{}1P X Y +≤;(2分) (3)求(),().E X D X (4分)解 令{(,)|01,01},D x y x y =≤≤≤≤{(,)|01,01}.G x y x y x =≤≤≤≤-(1)当01x x <>或时,()(,)0,X f x f x y dy +∞-∞==⎰当01x ≤≤时,1()(,)22.X f x f x y dy xdy x +∞-∞===⎰⎰因此, 2,01,()0,X x x f x ≤≤⎧=⎨⎩其它. (2分)当01y y <>或时,()(,)0,Y f y f x y dx +∞-∞==⎰当01y ≤≤时,10()(,)2 1.Y f y f x y dx xdx +∞-∞===⎰⎰因此, 1,01,()0,Y y f y ≤≤⎧=⎨⎩其它.(2分)(2){}11120011(,)22();3xGP X Y f x y dxdy xdx dx x x dy -+≤===-=⎰⎰⎰⎰⎰ (2分)(3)2()(,)3DE X xf x y dxdy ==⎰⎰ 或 1202()()2;3X E X xf x dx x dx +∞-∞===⎰⎰ (2分)11223001()(,)2.2R E X x f x y dxdy x dx dy ===⎰⎰⎰⎰或 12231()()2;2X E X x f x dx x dx +∞-∞===⎰⎰ ( 1分) 22141()()[()]2918D XE X E X =-=-=. (1分)2.(8分)设总体X 的密度函数为()1, 01;;0, .x x f x θθθ-⎧<<=⎨⎩其它其中()0θθ>为待估参数,设12,,,n X X X 是取自X 的一个样本,求θ的矩估计量与最大似然估计量.解 总体X 的一阶原点矩为()11101E X x x dx θθμθθ-===+⎰,(2分)令11A μ=,可求得参数θ的矩估计量为1111A XA Xθ==--.(2分) 设12,,,n x x x 是一个样本值,则似然函数为()1111nnnii i i L xx θθθθθ--====∏∏ ,对数似然函数为()1ln ln (1)ln nii L n xθθθ==+-∑,(2分)对参数θ求导()ln L θ'⎡⎤⎣⎦,并令()ln 0L θ'=⎡⎤⎣⎦得1ln 0ni i nx θ=+=∑,解此方程得1ln nii nx θ==-∑.所以,参数θ的最大似然估计量为1ln nii nXθ==-∑. (2分)四、应用题(共22分)1.(8分)已知一批产品中有95%是合格品,检验产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.01,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率. 解:(1)设A 表示抽得的产品的合格品, B 表示抽得的产品被判为合格品,则()0.95P A =,(|)0.02P B A =,(|)0.01P B A =.(1分)由全概率公式,得()()(|)()(|)(1)0.95(10.02)(10.95)0.010.9315;(2)P B P A P B A P A P B A =+=⨯-+-⨯=分分(2)()()(|)0.931(|)0.9995.()()0.9315P AB P A P B A P A B P B P B ==== (4分)2.(14分)由经验知道某零件重量2(,)XN μσ,其中2,μσ均未知,抽查25个样品,测量其重量,得样本均值的观察值18x =(单位:g),样本标准差的观察值0.8s =. 1)求零件重量的置信度为0.95的置信区间;(6分)2)在显著性水平为0.05α=时,试问重量的方差2σ是否为0.3.(8分)( ()()0.050.0250.050.0251.645, 1.96, 24 1.7109, 24 2.0639 z z t t ====220.9750.95(24)12.401,(24)13.848χχ==,220.0250.05(24)39.364,(24)36.415χχ==)解 1)查表0.025 (24) 2.0639 t =,得μ的置信度为0.95的置信区间为22(24),(24)2525s sx t x t αα⎛⎫-+ ⎪⎝⎭(3分) 0.80.818 2.0639,18 2.0639(17.67,18.33).55⎛⎫=-⨯+⨯= ⎪⎝⎭即元件寿命的置信度为0.95的置信区间为(17.67,18.33).(3分)2) 这是双边检验,检验假设为:2201:0.3, :0.3H H σσ=≠,(2分)因μ未知,故采用2χ检验,检验统计量为22(1)0.3n S χ-=,(2分)已知25, 0.05n α==,查2χ分布表确定临界值,22120.975(1)(24)12.401n αχχ--==,2220.025(1)(24)39.364n αχχ-==,故拒绝域为:{}{}2212.40139.364χχ<⋃>.(2分)计算可得20.07s =,计算可得统计量2χ的观测值为:222(1)240.851.20.30.3n S χ-⨯===,观测值落入拒绝域,故拒绝0H ,认为重量的方差2σ不为0.3.(2分)。

2015年高考-概率与统计试题(有详细答案)详解

2015年高考-概率与统计试题(有详细答案)详解

2015年高考-概率与统计试题1.(15北京理科)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;(Ⅱ) 如果25a=,求甲的康复时间比乙的康复时间长的概率;(Ⅲ) 当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)【答案】(1)37,(2)1049,(3)11a=或182.(15北京文科)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()A.90 B.100 C.180 D.300类别人数老年教师900中年教师1800青年教师1600合计4300【答案】C【解析】试题分析:由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x=,解得180x=.考点:分层抽样.3.(15北京文科)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程“指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升D.12升【答案】B【解析】试题分析:因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V=升. 而这段时间内行驶的里程数3560035000600S=-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B.考点:平均耗油量.4.(15北京文科)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 【答案】乙、数学 【解析】试题分析:①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学. 考点:散点图.5.(15北京文科)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √ × √ √ 217 × √ × √ 200√ √ √ × 300√ × √ × 85√ × × × 98×√××(Ⅰ)估计顾客同时购买乙和丙的概率;(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? 【答案】(1)0.2;(2)0.3;(3)同时购买丙的可能性最大.商品 顾 客 人 数【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由统计表读出顾客同时购买乙和丙的人数200,计算出概率;第二问,先由统计表读出顾客在甲、乙、丙、丁中同时购买3中商品的人数100+200,再计算概率;第三问,由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100+200+300,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点:统计表、概率.6.(15年广东理科)已知随机变量X 服从二项分布(),n p B ,若()30E X =,()D 20X =,则p = . 【答案】13. 【解析】依题可得()30E X np ==且()()120D X np p =-=,解得13p =,故应填入13.【考点定位】本题考查二项分布的性质,属于容易题. 7.(15年广东理科)某工厂36名工人的年龄数据如下表。

统计学2015A(有答案)

统计学2015A(有答案)

2015- 2016学年度第二学期试卷 A (闭卷)课程 统计学 二级学院(部) 金融学院 专业 金融数学 年级、班级 15(1,2) 学号 姓名题号 一 二 三 四 总分 阅卷人 得分一、简答题:( 2小题,共10分)1.(本题5分)什么是统计学? 2.(本题5分)一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。

因此,他们开始检查供货商的集装箱,有问题的将其退回。

最近的一个集装箱装的是2 440加仑的油漆罐。

这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。

装满的油漆罐应为4.536 kg 。

要求: (1)描述总体; (2)描述研究变量;(3)描述样本;(4)描述推断。

二、简答题:(每小题2分,共10分)1.下列回归方程中,肯定错误的是 (A) 88.0,32ˆ=+=r x y i i (B) 88.0,32ˆ=+-=r x y i i(C)88.0,32ˆ-=+-=r x y i i (D) 88.0,32ˆ-=-=r x y i i ( )2.相关系数是。

(A) 适用于线性相关 (B) 适用于复相关(C) 既适用于单相关也适用于复相关 (D) 上述都不适用 ( ) 3.样本是指(A)任何一个总体 (B)任何一个被抽中的调查单位(C)抽样单元 (D)由被抽中的调查单位所形成的总体 ( ) 4.若对我国居民家庭收支情况进行调查,合适的调查方式为。

(A)普查 (B)重点调查 (C)典型调查 ( D)抽样调查 ( ) 5.表述不正确的是。

(A)国内生产总值是一个连续变量 ( B)总体和总体单位的关系总是固定不变的 (C)全国普通高等学校在校学生数是一个离散变量 (D)职工平均工资是个质量指标 ( ) 三、作图题:(2小题,共30分) 1.(本题15分)为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取500只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668710693697674658698666696698 706 692 691 747 699 682 698 700 710 722(1)利用计算机对上面的数据进行排序;(2)以组距为10进行等距分组,整理成频数分布表,并绘制直方图; (3)绘制茎叶图,并与直方图作比较。

重庆大学2015概率论与数理统计试题及解答

重庆大学2015概率论与数理统计试题及解答

《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________.4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:1.3.0)(=+B A B A P即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P . 2.λλλλλ---==+==+==≤e X P e e X P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22即 0122=--λλ 解得 1=λ,故161)3(-==e X P . 3.设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y X y f y F y f <<'===⎩其它另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以04,()0,.Y X y f y f <<==⎩其它4.2(1)1(1)P X P X e e λ-->=-≤==,故 2λ={min(,)1}1{min(,)1}P X Y P X Y ≤=->1(1)(1)P X P Y =->>41e -=-. 5.似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n xθθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为 1111ln ni i x n θ==-∑.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ) 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( ) 5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ). 3.由不相关的等价条件知应选(B ). 4.若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+ ∴29α=, 19β= 故应选(A ).5.1EX μ=,所以1X 是μ的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差. 解:X 的概率分布为 3323()()()0,1,2,3.55kkkP X k C k -=== 即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 263,55EX =⨯=231835525DX =⨯⨯=.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.(1)(,)X Y 的概率密度为 2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx +∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 0z <或1z >时()0Z f z = 01z ≤≤时 00()222z zZ f z dx x z ===⎰故Z 的概率密度为2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.Z 的分布函数为200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.1){,)}(,)DP X Y D f x y dxdy ∈=⎰⎰2222288111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰2221122888211()8r r red ee e ------=-=-⎰;(2)22818x y EZ E e dxdy π+-+∞-∞-∞==⎰⎰2222881184r r rerdrd e r dr πθπ--+∞+∞==⎰⎰⎰2228882r r r reedr dr +∞---+∞+∞-∞=-+==⎰⎰七、(11分)设某机器生产的零件长度(单位:cm )2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)μ的置信度为1α-下的置信区间为 /2/2(((X t n X t n αα--+-0.02510,0.4,16,0.05,(15) 2.132X s n t α===== 所以μ的置信度为0.95的置信区间为(9.7868,10.2132)(2)20:0.1H σ≤的拒绝域为22(1)n αχχ≥-.221515 1.6240.1S χ==⨯=,20.05(15)24.996χ= 因为 220.052424.996(15)χχ=<=,所以接受0H .《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. (3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它, 现对X 进行四次独立重复观察,用Y 表示观察值不大于的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y Pa b若0.8EXY =,则Cov(,)X Y =____________.(5) 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=)解:(1)()()()P ABC ABC P ABC P ABC +=+因为 A 与C 不相容,B 与C 不相容,所以,A C B C ⊃⊃,故ABC C = 同理 ABC AB =.()()()0.20.50.50.45P ABC ABC P C P AB +=+=+⨯=. (2)设A =‘四个球是同一颜色的’,1B =‘四个球都是白球’,2B =‘四个球都是黑球’ 则 12A B B =+. 所求概率为 22212()()(|)()()()P AB P B P B A P A P B P B ==+ 22223322122222555533(),()100100C C C C P B P B C C C C =⋅==⋅=所以 21(|)2P B A =.(3)~(4,),Y B p其中 10.52201(0.5)24p P X xdx x=≤===⎰, 113341,44444EY DY =⨯==⨯⨯=, 2215()144EY DY EY =+=+=.(4)(,)X Y 的分布为这是因为 0.4a b +=,由0.8EXY = 得 0.220.8b += 0.1,0.3a b ∴==0.620.4 1.4EX =+⨯=,0.5EY =故 cov(,)0.80.70.1X Y EXY EXEY =-=-=.(5)2216(){4}0.014S P S a P a >=>= 即 20.01(16)4a χ=,亦即 432a = 8a ∴=.二、单项选择题(每小题3分,共15分)(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤(C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥ ( )(2)设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取(A )1/2, 1.a b == (B )2,a b ==(C )1/2,1a b ==-. (D )2,a b == ( )(3)设随机变量X 与Y 相互独立,其概率分布分别为010.40.6XP010.40.6Y P则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) (5)设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为(A)/2/2(x u x u αα-+ (B)1/2/2(x u x u αα--+ (C)(x u x u αα-+ (D)/2/2(x u x u αα-+ ( ) 解 (1)由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-应选C. (2)22(2)4()x f x +-==即~(2,)X N -故当a b ===时 ~(0,1)Y aX b N =+ 应选B.(3)()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.(4)[()]E E EX EX = 应选C.(5)因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D.三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品,求丢失的也是一等品的概率。

2015年全国各地高考模拟数学试题汇编统计与统计案例(理卷A)

2015年全国各地高考模拟数学试题汇编统计与统计案例(理卷A)

专题7 概率与统计第3讲统计与统计案例(A卷)一、选择题(每题5分,共35分)1. (2015·青岛市高三自主诊断试题·3)高三(3)班共有学生56人,座号分别为1,2,3,,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是()A.30B.31C.32D.332.(2015·开封市高三数学(理)冲刺模拟考试·4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm的概率是( )A.B.25C.38D.353.(2015·大连市高三第二次模拟考试·3)对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()(A)变量x与y正相关,u与v正相关(B)变量x与y正相关,u与v负相关(C)变量x与y负相关,u与v正相关(D)变量x与y负相关,u与v负相关4.(2015·日照市高三校际联合5月检测·3)采用系统抽样方法从1000人中抽取50人做问卷调查,为此第3题图7 83 5 5 72 38 9 4 5 5 6 1 2 9 7 8 乙甲将他们随机编号1,,…,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8,抽到的50人中,编号落入区间[]1400,的人做问卷A ,编号落入区间[]401750,的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( )A .12B .13C .14D .155.(2015·北京市东城区综合练习二·4)甲、乙两名同学8次数学测验成绩如茎叶图所示,12,x x 分别表示甲、乙两名同学8次数学测验成绩的平均数,12,s s 分别表示甲、乙两名同学8次数学测验成绩的标准差,则有( )(A )12x x >,12s s < (B )12x x =,12s s <(C )12x x =,12s s = (D )12x x <,12s s >6.(2015·汕头市普通高考第二次模拟考试试题·7)7.·3)给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距; ②线性回归直线一定经过样本中心点(,)x y ; ③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=12; ④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( )A .1B .2C .3D .4二、非选择题(65分)8.(2015·山东省济宁市兖州第一中学高三数学考试·12)根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80 mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2009年8月15日至8 月28日,全国查处酒后驾车和醉酒驾车共28800人,如图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为人.9.10.(2015·合肥市高三第三次教学质量检测·11)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60),由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的教师有人11. (2015·济南市高三教学质量调研考试·11)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是________.12.(2015·肇庆市高中毕业班第三次统一检测题·9)如右图是某高三学生进入高中三年来第1次至14次的数学考试成绩茎叶图,根据茎叶图计算数据的中位数是 .13. (2015·哈尔滨市第六中学高三第三次模拟考试·16)给出下列四个结论: (1)如图Rt ABC ∆中,2,90,30.AC B C =∠=︒∠=︒D 是斜边AC 上的点,CB CD =. 以B 为起点任作一条射线BE 交AC 于E 点,则E 点落在线段CD 上的概率是32; (2)设某大学的女生体重()kg y 与身高()cm x 具有线性相关关系,根据一组样本数据()()n i y x ii ,,2,1,=,用最小二乘法建立的线性回归方程为71,8585.0ˆ-=x y ,则若该大学某女生身高增加cm 1,则其体重约增加kg 85.0;(3)若()f x 是定义在R 上的奇函数,且满足()()x f x f -=+2,则函数()f x 的图像关于1=x 对称; (4)已知随机变量ξ服从正态分布()()21,,40.79,N P σξ≤=则()21.02=-≤ξP .其中正确结论的序号为14.(2015·山东省潍坊市高三第二次模拟考试·11)某校对高三年级1600名男女学生的视力状况进行调798 6 3 89 3 9 8 8 4 1 510 3 1114ABCDE查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是;15.(2015·苏锡常镇四市高三数学调研(二模)·3)某工厂生产某种产品5000件,它们来自甲、乙、丙3条不同的生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.若从甲、乙、丙122,则乙生产线生产了件产品.3条生产线抽取的件数之比为::16.(2015·赣州市高三适用性考试·18)17.·18) (本题满分12分)对某校高二年级学生暑期参加社会实践次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社会实践的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M,p及图中a的值;(2)在所取样本中,从参加社会实践的次数不少于20次的学生中任选3人,记参加社会实践次数在区间[25,30)内的人数为X,求X的分布列和期望.18.(2015·武清区高三年级第三次模拟高考·16)(本小题满分13分)以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.(1)试比较甲、乙两名运动员射击水平的稳定性;(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为ξ,求ξ的数学期望.专题7 概率与统计第3讲统计与统计案例(A卷)参考答案与解析1.【答案】B【命题立意】本题考查了系统抽样及其应用.【解析】56144k==,则样本中4名同学的座号依次构成以4为首项,14为公差的等差数列,故样本中还有一个同学的座号是31.2.【答案】A【命题立意】本题旨在考查频率分布直方图及其概率.【解析】根据频率分布直方图可知棉花纤维的长度小于20mm的概率为P=(0.01+0.01+0.04)×5=0.3.3.【答案】C【命题立意】本题重点考查了散点图、相关关系等知识。

概率论与数理统计大作业

概率论与数理统计大作业

学习中心/函授站_姓 名 学 号西安电子科技大学网络与继续教育学院2015学年下学期《概率论与数理统计》期末考试试题考试说明:1、大作业于2015年10月16日下发,2015年11月7日交回;2、考试必须独立完成,如发现抄袭、雷同均按零分计;3、答案须手写完成,要求字迹工整、卷面干净。

一、选择题(每题3分,共30分)1、设,,A B C 是随机事件,且AB C ⊂,则( )。

A .C AB ⊂ B .AC ⊂且B C ⊂ C .C AB ⊂D .A C ⊂或B C ⊂2、若两个事件,A B 同时出现的概率()0P AB =,则( )。

A .,AB 不相容 B .AB 是不可能事件C .,A B 未必是不可能事件D .()0P A =或()0P B =3、设一盒子中有5件产品,其中3件正品,2件次品,从盒子中任取两件,则取出的两件产品中至少有1件次品的概率为( )。

A .310B .510C .710D .154、下面四个函数中可以作为随机变量分布函数的是( )。

A .0, 21(),1022, 0x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩ B .0, 0()sin ,01, x F x x x x ππ<⎧⎪=≤<⎨⎪≥⎩C .0, 0()sin ,021, 2x F x x x x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩D .0, 011(),03211, 2x F x x x x ⎧⎪<⎪⎪=+≤≤⎨⎪⎪>⎪⎩ 5、设随机变量X 的概率密度为2(),x f x ce x -=-∞<<+∞,则c =( )。

A. B. C .1π D .12π 6、设随机变量~(0,1)X N ,则方程2240t Xt ++=没有实根的概率为( )。

A .2(2)1Φ-B .(4)(2)ΦΦ-C .(4)(2)ΦΦ---D .(2)(4)ΦΦ-7、设1()f x 为标准正态分布的概率密度,2()f x 为[1,3]-上均匀分布的概率密度,若12(),0()(0,0)(),0af x x f x a b bf x x ≤⎧=>>⎨>⎩ 为概率密度,则,a b 应满足( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 ( 0.05 , 0 .05 (9) 3.325 )
2.现有 P( A ) 0.3, P( B) 0.4, P( AB ) 0.5 ,则 P(B | (A
B )).
3.设某种仪器的使用寿命服从正态分布 N ( , 2 ) ,从中随机抽取 25 个仪器 进行检验 2未知 ,得平均使用寿命 x =3125 小时, s =475 ,求 的置信水平为 ( =0.05, t 0.025 24 2.0639 ) 1 的置信区间。
(
)2.已知随机变量 X 的分布律为 P{ X k} a 常数,则常数 a 。 A. 1 B. 2 C.
1 , k 1,2, , 0 为 2k
D. 1
n
1 2
(
)3.设 X ~ N (0,1) ,简单随机抽取样本 X 1 ,, X n ,令 Y X i2 ,有统计量
五、证明题(10 分)
证明 对于任何常数 c ,随机变量 X 有
D(X ) E(X c )2 (E(X ) c )2
第4 页
共6页
i 1 m
5.两人约定于 8 点至 9 点在某地会面. 先到者等候 15 分钟, 过时就离去. 求 这两人能见面的概率?
第3 页
共6页
四、计算题(3 个小题,每小题 10 分,共 30 分)
1、一个混杂的小麦品种,其株高的标准差为 0 14cm ,经提纯后随机地抽出 10 株,它们的株高(单位:cm)分别为 90 , 105 , 101 , 95 , 100 , 100 , 101 , 105 , 93 , 97 其样本方差 S 2 21.81 ,试检验提纯后的群体是否比原来的群体较为整齐 ?
i 1
Z X1
Y ,则统计量 Z 的分布为。 n
A. Z ~ 2 (n) (
B. Z ~ F (m, n)
C.
Z ~ t ( n)
D.
Z ~ N (0, 1)

n
服从分布。
)4.若总体 X ~ N ( , 2 ) ,随机抽取样本 X 1 ,, X n 则
X
A. (
N ( , 2 )
kx a , 0 x 1 3 )7. 设随机变量 X 的概率密度为 f ( x) ,且 EX ,则 4 0 , 其它
下列各式中正确的是
3 A. DX 4
( A. ( (
3 B. DX 4
2
C. k 3, a 2
D. k 2, a 3
)8. 已知 X ~ N (2,4) ,其均值与标准差分别为 2, 4 B. 2,4 C.
2. 计算下列密度函数的数学期望
1 x, 1 x 0 f ( x) 1 x, 0 x 1 0 else
3.叙述辛钦大数定律 4.设 X 1 , X 2 ,, X n 是来自正态总体 N (0,1) 的一个样本, 1 m n , 求 X i 服从的分布
卷(A)
一、选择题(10 个小题,每小题 2 分,共 20 分)

)1.若随机事件 A 与随机事件 B 是相互独立的,则以下式子不对的是:
A. P(A | B ) P(A) C. P(AB ) P(A ) P(B ) B. P(B | A) P(B ) D. P(AB ) P(A ) P(B )
B.
N (1, 2 )
C.
N (0,1)
D.
N ( ,1)
)5.设 X 1 , X 2 是取自总体 N ( ,1) 的样本, 未知参数 有以下无偏估计,则 最有效的估计是 A. C.
ˆ1 X 1
1 2 X2 3 3 1 1 ˆ3 X1 X 2 2 2
B. D.
2, 4
D.
2,2
)9.设随机变量 X 与 Y 独立且 EX a, E ( XY ) 3 ,则 EY A. 3/a B. a/3 C. 3a D. 3-a )10. P ( AB ) P( A B ), P( 1-a D. 1+a
二、填空题(10 小题,每小题 2 分,共 20 分)
1.设 A 、 B 、 C 为三个事件,试用 A 、 B 、 C 表示事件: A 、 B 、 C 都不发生 ; 2.一袋中装有 2 个伍分、3 个贰分、5 个壹分的硬币.问任意取其中 5 个,其总 值不少于壹角的概率 ; 3.设离散型随机变量 X 服从泊松分布,则其分布律为 4.设连续型随机变量 X 服从指数分布,则其方差 DX ; ;
置信水平为 95%的置信下限是 ; 。


ˆ 10. 设 X ~ B(1, p) ,其样本: X 1 , X 2 ,, X n ,其参数 p 的矩估计为 p
三、简答题(5 个小题,每小题 4 分,共 20 分) 1. 某批产品共 10 个,其中 2 个是次品.试用有放回抽样方法随机抽取 5 个, 求其中次品数不多于 1 个的概率.
1 3 X1 X 2 4 4 2 3 ˆ4 X1 X 2 5 5 ˆ2
(
)6. 在假设检验中,记 H 0 为原假设,则犯第二类错误是指。 A. H 0 为真,接受 H 0 B. H 0 为假,拒绝 H 0
第1 页
共6页
C. H 0 为真,拒绝 H 0 (
D. H 0 为假,接受 H 0
第2 页
共6页
8. 设有随机变量 X 与随机变量序列 X 1 ,X 2 , ,X n , ,若对于任意 0 ,有
lim P X n X 1 ,则称随机变量序列 X n
n


于X ;
~ ~ 9. 设 是一个统计量,如果对于随机变量 X 均有 P 0.95 ,则该随机变量
5 .设连续型随机变量总体 X ~ N (0,1) ,简单随机抽取样本 X 1 ,, X n ,则统计量
Y X i2 服从
i 1
n
; ; ;
6.若 X ~ U (0,1) ,则其概率密度函数为 7.设总体 X ~ N (1,4) ,样本容量为 16,则 P{ X 0.5 1} (已知 (1) 0.8413, (3) 0.9987 )
相关文档
最新文档