Sequence to Sequence Learning with Neural Networks

合集下载

recurrent_neural_network_regularization

recurrent_neural_network_regularization

2
R ELATED

WORK
Dropout Srivastava (2013) is a recently introduced regularization method that has been very successful with feed-forward neural networks. While much work has extended dropout in various ways Wang & Manning (2013); Wan et al. (2013), there has been relatively little research in applying it to RNNs. The only paper on this topic is by Bayer et al. (2013), who focuses on “marginalized dropout” Wang & Manning (2013), a noiseless deterministic approximation to standard dropout. Bayer et al. (2013) claim that conventional dropout does not work well with RNNs because the recurrence amplifies noise, which in turn hurts learning. In this work, we show that this problem can be fixed by applying dropout to a certain subset of the RNNs’ connections. As a result, RNNs can now also benefit from dropout. Independently of our work, Pham et al. (2013) developed the very same RNN regularization method and applied it to handwriting recognition. We rediscovered this method and demonstrated strong empirical results over a wide range of problems. Other work that applied dropout to LSTMs is Pachitariu & Sahani (2013).

heterogeneous network representation learning

heterogeneous network representation learning

heterogeneous network representation
learning
“heterogeneous network representation learning”这句话的意思是“异构网络表示学习”。

异构网络表示学习是一种方法,旨在为异构信息网络中的节点学习低维表示,从而获取给定网络的丰富语义信息。

异构信息网络通常包含不同类型的节点和不同类型的关系,可以比同构信息网络保存更多的信息。

异构网络表示学习的方法主要包括基于路径的算法和基于语义单元的算法。

基于路径的算法利用随机游走将图结构转换为序列,这些序列可以被基于序列的嵌入学习算法使用。

基于语义单元的算法则关注如何从语义角度理解异构信息网络中的节点和关系。

在最后总结,“heterogeneous network representation learning”是一种用于异构信息网络的方法,通过学习节点的低维表示来获取网络的丰富语义信息。

这种方法可以帮助我们更好地理解和分析异构信息网络的结构和语义属性。

机器翻译中的深度学习架构:Sequence to sequence和Transformer

机器翻译中的深度学习架构:Sequence to sequence和Transformer

机器翻译中的深度学习架构:Sequence to sequence和Transformer近年来,随着深度学习技术的飞速发展,机器翻译得到了广泛的应用和研究。

研究人员提出了很多的机器翻译模型,其中最为主流的两种架构为Sequence to sequence和Transformer。

一、Sequence to sequenceSequence to sequence,简称Seq2Seq,是一种用于序列到序列映射的深度学习模型。

它由两个循环神经网络组成——编码器和解码器。

编码器将一个序列输入,然后输出一个它认为是该序列的“意思”的潜在表示。

解码器接收该潜在表示并将其转换为另一个序列。

Seq2Seq架构的发明者是Google的研究人员。

在2014年,Google 在一个论文中首次使用了Seq2Seq模型进行机器翻译。

该论文中的Seq2Seq模型在英语到法语机器翻译任务上取得了比之前方法要好很多的结果。

在Seq2Seq的模型架构中,编码器和解码器都是循环神经网络(RNN)模型。

RNN是一种具有状态(记忆)的神经网络,可用于在时间序列上处理数据。

Seq2Seq模型具有以下优点:1.端到端的学习过程。

模型可以自动学习如何将一个序列映射到另一个序列,而不需要在中间过程中明确指定任何规则。

2.可以处理变长序列输入输出的问题。

这意味着模型可以接受并处理各种长度的序列。

3.模型可以自由转换任何语言对。

这文意味着可以使用单模型处理很多不同的语言对。

但Seq2Seq模型也存在以下缺点:1. Seq2Seq模型是一个map-to-sequence模型,在将信息传递给输出端时可能会丢失信息。

2. Seq2Seq模型很难处理长序列。

当输入序列中的单词数量很大时,模型往往会因性能瓶颈而无法准确翻译所有单词。

3. Seq2Seq模型往往不适用于文本生成。

模型没有足够的文本生成能力来生成高质量的文本。

二、Transformer为了解决Seq2Seq模型的问题,Google在2017年提出了一种新的模型——Transformer模型。

AI自然语言处理 序列到序列模型的优化与应用

AI自然语言处理 序列到序列模型的优化与应用

AI自然语言处理序列到序列模型的优化与应用引言自然语言处理(Natural Language Processing,NLP)是人工智能领域中的重要研究方向之一,旨在让计算机能够理解和处理人类语言。

而序列到序列模型(Sequence-to-Sequence,Seq2Seq)作为NLP领域中的重要算法之一,已经在机器翻译、对话生成等任务中被广泛应用。

本文将详细介绍Seq2Seq模型的优化方法以及其在实际应用中的领域。

一、Seq2Seq模型的优化方法1.1 注意力机制Seq2Seq模型由编码器和解码器组成,编码器将输入序列转换为固定长度的向量表示,解码器通过该向量表示生成输出序列。

然而,当输入序列较长时,编码器可能无法有效捕捉到重要信息,导致性能下降。

为了解决这一问题,注意力机制被引入。

注意力机制允许解码器在生成每个输出时动态地关注编码器输出中的不同部分,从而提高模型的性能和泛化能力。

1.2 双向循环神经网络传统的Seq2Seq模型使用单向循环神经网络(Recurrent Neural Network,RNN)作为编码器和解码器。

然而,单向RNN只能依赖过去的信息进行预测,限制了模型的表达能力。

为了充分利用上下文信息,双向循环神经网络(Bidirectional RNN)被提出。

双向RNN同时考虑了过去和未来的信息,从而更好地捕捉序列中的上下文关系,提高了模型性能。

1.3 长短期记忆网络传统的RNN在处理长期依赖问题时存在梯度消失或梯度爆炸的问题,限制了模型的能力。

为了克服这一问题,长短期记忆网络(Long Short-Term Memory,LSTM)被引入。

LSTM通过门控机制来控制信息的输入、输出和遗忘,从而有效地学习长期依赖关系。

在Seq2Seq模型中应用LSTM可以提高模型对长序列的处理效果。

二、Seq2Seq模型的应用领域2.1 机器翻译Seq2Seq模型在机器翻译任务中取得了巨大的成功。

引入稳定学习的多中心脑磁共振影像统计分类方法研究

引入稳定学习的多中心脑磁共振影像统计分类方法研究

第37卷第1期湖南理工学院学报(自然科学版)V ol. 37 No. 1 2024年3月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Mar. 2024引入稳定学习的多中心脑磁共振影像统计分类方法研究杨勃, 钟志锴(湖南理工学院信息科学与工程学院, 湖南岳阳 414006)摘要:针对现有统计分析方法在多中心统计分类任务上缺乏稳定性的问题, 提出一种引入稳定学习的多中心脑磁共振影像的统计分类方法. 该方法使用多层3D卷积神经网络作为骨干结构, 并引入稳定学习旁路结构调节卷积网络习得特征的稳定性. 在稳定学习旁路中, 首先使用随机傅里叶变换获取卷积网络特征的多路随机序列, 然后通过学习和优化批次样本采样权重以获取卷积网络特征之间的独立性, 从而改善跨中心分类泛化性. 最后, 在公开数据库FCP中的3中心脑影像数据集上进行跨中心性别分类实验. 实验结果表明, 与基准卷积网络相比, 引入稳定学习的卷积网络具有更高的跨中心分类正确率, 有效提高了跨中心泛化性和多中心统计分类的稳定性.关键词:多中心脑磁共振影像分析; 卷积神经网络; 稳定学习; 跨中心泛化中图分类号: TP183 文章编号: 1672-5298(2024)01-0015-05 Research on a Classification Approach for Multi-site Brain Magnetic Resonance Imaging Analysis byIntroducing Stable LearningYANG Bo, ZHONG Zhikai(School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract: Aiming at the lack of stability of existing statistical analysis methods suitable for single site tasks in a multi-site setting, a statistical classification approach integrating stable learning for multi-site brain magnetic resonance imaging(MRI) analysis tasks was proposed. In the proposed approach, a multi-layer 3-dimensional convolutional neural network(3D CNN) was used as the backbone structure, while a stable learning module used for improving the stability of features learning by CNN was integrated as bypassing structure. In the stable learning module, the random Fourier transform was firstly used to obtain the random sequences of CNN features, and then the independence between different sequences was obtained by optimizing sampling weights of every sample batch and improving the cross-site generalization. Finally, a cross-site gender classification experiment was conducted on the 3 brain MRI data site from the publicly available database FCP. The experimental results show that compared with the basic CNN, the CNN with stable learning has a higher accuracy in cross-site classification, and effectively improves the stability of cross-center generalization and multi-center statistical classification.Key words: multi-site brain MRI analysis; convolutional neural network; stable learning; cross-site generalization0 引言经典机器学习方法使用训练数据集来训练模型, 然后使用训练好的模型对新数据进行预测. 确保该训练—预测流程的有效性, 主要基于两点[1]: 一是理论上满足独立同分布假设, 即训练数据和新数据均独立采样自同一统计分布; 二是训练数据量要充分, 能够准确描述该统计分布.在大量实际应用中, 收集到的数据往往来自不同数据域, 不满足独立同分布假设, 导致经典机器学习方法在此场景下性能显著退化, 在某一个域中训练得到的模型完全无法迁移到其他域的数据上, 跨域泛化性差[2]. 磁共振影像(Magnetic Resonance Imaging, MRI)分析领域也同样存在此类问题. 为增大数据量以获得更优的训练效果, 单中心脑MRI分析已逐渐发展到多中心脑MRI分析. 虽然多中心影像数据量显著增收稿日期: 2023-06-19基金项目:湖南省研究生科研创新项目(CX20221231,YCX2023A50); 湖南省自然科学基金项目“面向小样本脑磁共振影像分析的数据生成技术与深度学习方法研究”(2024JJ7208)作者简介: 杨勃, 男, 博士, 教授. 主要研究方向: 机器学习、脑影像分析16 湖南理工学院学报(自然科学版) 第37卷长, 但由于存在机器参数、被试生理参数等诸多不同, 不同中心的数据无法满足独立同分布假设, 导致多中心统计分析表现出较差的稳定性[3,4].为提升多域分析的稳定性, 近年来机器学习理论研究从因果分析角度提出一系列基于线性无关特征采样的稳定预测方法[5,6], 并在低维数据上取得了一定效果, 初步展现出在多域分析上的巨大潜力. Zhang等[7]在此基础上提出稳定学习方法, 扩展了以前的线性框架, 以纳入深度模型. 由于在深度模型中获得的复杂非线性特征之间的依赖关系比线性情况下更难测量和消除[8,9], 因此稳定学习采用了一种基于随机傅里叶特征(Random Fourier Features, RFF)[10]的非线性特征去相关方法; 同时, 为了适应现代深度模型, 还专门设计了一种全局关联的保存和重新加载机制, 以减少训练大规模数据时的存储和计算成本. 相关实验表明, 稳定学习结合深度学习在高维图像识别任务上表现出较好的稳定性[7].本文尝试将稳定学习引入多中心脑MRI 的统计分类任务中, 将稳定学习与3D CNN 结合, 解决跨中心泛化性问题, 提高多中心分类稳定性. 首先介绍本研究设计的融合稳定学习的3D CNN 网络架构; 然后介绍稳定学习特征独立性最大化准则; 最后与基准3D CNN 分别在公开数据集FCP 中的3中心脑MRI 数据集上进行对比分类实验. 实验结果表明, 引入稳定学习的卷积网络具有更高的跨中心分类正确率, 有效提高了多中心脑MRI 统计分类的稳定性.1 融合稳定学习的3D CNN 架构设计融合稳定学习的3D CNN 总体架构设计如图1所示. 首先使用3D CNN 提取脑MRI 的3D 特征, 再将特征分别输出至稳定学习旁路和分类器主路进行训练. 稳定学习旁路使用随机傅里叶变换模块提取3D特征的多路RFF 特征, 然后使用样本加权解相关模块(Learning Sample Weighting for Decorrelation, LSWD)优化样本采样权重. 最后使用样本权重对分类器的预测损失进行加权, 以加权损失最小化为优化目标进行反向传播.图1 融合稳定学习的3D CNN 总体架构设计2 特征独立性最大化2.1 基于随机傅里叶变换的随机变量独立性判定设X 、Y 为两个随机变量, ()X f X 、()Y f Y 、(,)f X Y 分别表示X 的概率密度、Y 的概率密度以及X 和Y 的联合概率密度, 若满足(,)()()X Y f X Y f X f Y =,则称随机变量X 、Y 相互独立.当X 、Y 均服从高斯分布时, 统计独立性等价于统计不相关, 即Conv (,)((())(()))()()()0X Y E X E x Y E Y E XY E X E Y =--=-=,其中Conv (,)⋅⋅为两随机变量之间的协方差, ()E ⋅为随机变量的期望.第1期 杨 勃, 等: 引入稳定学习的多中心脑磁共振影像统计分类方法研究 17在本文深度神经网络中, 随机变量,X Y 就是脑MRI 的3D 特征变量. 设有n 个训练样本, 可将其视为对随机变量,X Y 分别进行了n 次采样, 获得了对应的随机序列12(,,,)n X x x x = 和12(,,,)nY y y y = . 可使用随机序列之间的协方差进行无偏估计:Conv 111()111,1n n n i j i j i j j X Y x x y y n n n ===⎛⎫⎛⎫=-- ⎪ ⎪-⎝⎭⎝⎭∑∑∑ . 需要指出的是, 若,X Y 不服从高斯分布, 则Conv0(),X Y = 不能作为变量独立性判定准则. 文[9]指出, 此情形下可将随机序列,X Y 转换为k 个随机傅里叶变换序列{RFF },){RFF }()(i i k i i kX Y ≤≤后再使用协方差进行判定.随机傅里叶变换公式为RFF ,)()(s i i i X X ωφ+ ~(0,1),i N ω~Uniform(0,2π),iφi <∞. 其中随机频率i ω从标准正态分布中采样得到, 随机相位i φ从0~2π之间的均匀分布中采样得到.通过随机傅里叶变换可获得如下两个随机矩阵RFF(),RFF()n k XY ⨯∈ : 1212RFF()(RFF ,RFF ,,RFF ),R .()())FF()(F ()RF ,RF ,()(F ,RFF ())k kX X X X Y Y Y Y == 计算这两个随机矩阵的协方差矩阵:Conv T111111(((RFF ),RF ()()()(F())RFF RFF RFF RFF 1)n n n i j i j i j j X Y X X Y Y n n n ===⎡⎤=--⎢⎣⎥-⎣⎦⎡⎤⎢⎥⎦∑∑∑ . 若||Conv 2(RFF(),RFF())||0,F X Y = 则可判定随机变量,X Y 相互独立. 本文参照文[6]建议, 固定5k =.2.2 基于样本加权的特征独立性最大化在融合稳定学习的深度神经网络中, 通过LSWD 模块优化样本权重并最大化特征之间的独立性, 优化准则如下:,1,j |arg min |()m i j i L =<=∑w Conv (RFF(w ⨀i Q ), RFF(w ⨀2))||j F Q , T s.t.,n >=0w w e .其中1n i ⨯∈ Q 为网络输出的第i 个特征序列, ⨀为Hamard 乘积运算, 1n ⨯∈ w 为n 个样本的权重, e 为全1向量. 上述优化准则, 可使得深度神经网络输出特征两两之间相互独立.3 实验结果与分析3.1 实验数据与预处理实验数据来自网上公共数据库1000功能连接组计划(1000 Functional Connectomes Project, FCP). 该公共数据库收集了35个中心合计1355名被试的脑MRI 数据. 本实验使用了FCP 中3个中心的数据集, 分别为:北京(Beijing)、剑桥(Cambridge)和国际医学会议(ICBM)[11], 主要任务是使用其中的3D 脑结构MRI 数据完成性别分类. 其中, Beijing 数据集包含被试样本140个(男性70个/女性70个), Cambridge 数据集包含被试样本198个(男性75个/女性123个), ICBM 数据集包含被试样本86个(男性41个/女性45个).在Matlab 2015中使用SPM8工具包对原始脑结构MRI 数据进行如下数据预处理:第1步 脑影像颅骨剥离;第2步 分割去颅骨脑影像为灰质、白质和脑脊液3部分(本实验仅使用灰质数据);第3步 标准化预处理, 将脑影像统一配准到MNI(Montreal Neurological Institute)模版空间;第4步 去噪与平滑预处理, 使用高斯平滑方法平滑标准化灰质影像.预处理后, 最终得到尺寸大小为121×145×121的3D 结构影像.18 湖南理工学院学报(自然科学版) 第37卷此外, 为减少后续计算量, 通过尺度缩放操作将预处理后的3D 结构影像尺寸进一步缩小至64×64×64.然后使用Z-Score 标准化方法对每个中心的数据分别进行中心偏差校正.3.2 分类器参数设置分别测试了基准3D CNN 和融合稳定学习的3D CNN 的多中心脑MRI 分类性能. 其中3D CNN 架构部分,两种分类器均采用同样的网络架构和参数, 具体如下.网络层数设计为5层, 每层包含2个3D 卷积操作(with padding), 2个ReLU 非线性映射操作和1个3D maxpooling 操作(每层窗宽均为2). 其中, 第1层卷积核尺寸为7×7×7, 第2~5层卷积核尺寸均为3×3×3, 1~5层输出通道大小分别为32、64、128、256、512.使用Pytorch 1.12.0平台搭建网络. 训练时, 初始学习率固定为0.001, 使用Adam 优化器进行训练,batchsize 固定为128(男女样本各64个).3.3 跨中心性别分类实验采用域泛化实验设置LOSO(Leave One Site Out)来测试不同分类器的跨中心脑MRI 分类的泛化能力, 即留一个中心数据作为测试数据, 其他中心数据作为训练数据. 在训练过程中, 确保用于测试的中心数据完全隔离. 实验重复三次, 使用不同的随机种子, 取平均值作为最终结果. 跨中心分类平均正确率见表1.表1 跨中心分类平均正确率(%)对比方法 测试中心 总体平均分类正确率(Cambridge, ICBM)-Beijing (Beijing, ICBM)-Cambridge (Cambridge, Beijing)-ICBMbase 75.76 73.91 72.48 74.05stable 78.11 75.59 75.97 76.56* base: 基准3D CNN; stable: 融合稳定学习的3D CNN.由表1可知, 融合稳定学习的3D CNN 在(Cambridge, ICBM)-Beijing 、(Beijing, ICBM)-Cambridge 、(Cambridge, Beijing)-ICBM 三个LOSO 分类测试中平均分类正确率分别提升2.35、1.68、3.49个百分点, 总体平均类正确率则提升2.51个百分点. 实验结果验证了引入稳定学习后, 跨中心泛化性得到明显提升.进一步绘制三个LOSO 分类任务的PR(Precision-Recall)曲线和ROC(Receiver Operating Characteristic)曲线, 并计算AUC(Area Under the Curve), 以评估分类方法的跨中心预测性能, 如图2~3所示.(a) (Cambridge, ICBM)-Beijing (b) (Beijing, ICBM)-Cambridge(c) (Cambridge, Beijing)-ICBM图2 跨中心分类ROC 曲线(a) (Cambridge, ICBM)-Beijing (b) (Beijing, ICBM)-Cambridge(c) (Cambridge, Beijing)-ICBM图3 跨中心分类PR 曲线 图2显示, 在三个LOSO 分类任务中融合稳定学习的3D CNN 的ROC 曲线明显优于基准3D CNN, 其AUC 值也分别提升了0.01, 0.05和0.05. 此外, 由每个LOSO 分类的三次随机实验统计得到的标准差相比基第1期 杨 勃, 等: 引入稳定学习的多中心脑磁共振影像统计分类方法研究 19 准3D CNN 显著下降了1个数量级, 也很好地证实了融合稳定学习的3D CNN 具有很好的多中心分类稳定性. 图3中, 除第1个LOSO 分类任务无法确定两种方法的优劣外, 在后两个LOSO 分类任务上, 融合稳定学习的3D CNN 表现明显优于基准3D CNN.最后绘制三个LOSO 分类任务训练过程中测试正确率变化曲线, 结果如图4所示.(a) (Cambridge, ICBM)-Beijing (b) (Beijing, ICBM)-Cambridge(c) (Cambridge, Beijing)-ICBM图4 跨中心分类训练过程中测试正确率变化情况 图4显示, 三个LOSO 分类任务在训练迭代到100代后, 融合稳定学习的3D CNN 的测试分类正确率稳定优于基准3D CNN, 进一步展示了引入稳定学习的多中心脑MRI 分类的有效性.4 结束语为解决多中心脑MRI 分类的稳定性问题, 本文提出引入稳定学习的统计分类方法, 设计融合稳定学习的3D CNN 架构, 通过学习样本权重提升特征之间的统计独立性, 从而提高对未知中心数据的跨中心预测能力. 通过3中心公共数据集性别分类实验, 最后验证了融合稳定学习的3D CNN 分类模型的有效性. 实验表明, 将稳定学习引入多中心脑MRI 统计分类任务中, 可以改善跨中心分类方法的泛化性能, 从而进一步提高多中心脑MRI 统计分类的稳定性.参考文献:[1] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.[2] GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy androbustness[EB/OL]. (2018-11-29)[2024-3-20]. https:///abs/1811.12231.[3] ZENG L L, WANG H, HU P, et al. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivityMRI[J]. EBioMedicine, 2018, 30: 74−85.[4] 李文彬, 许雁玲, 钟志楷, 等. 基于稳定学习的图神经网络模型[J]. 湖南理工学院学报(自然科学版), 2023, 36(4): 16−18.[5] KUANG K, XIONG R, CUI P, et al. Stable prediction with model misspecification and agnostic distribution shift[C]//Proceedings of the AAAI Conferenceon Artificial Intelligence, 2020, 34(4): 4485−4492.[6] KUANG K, CUI P, ATHEY S, et al. Stable prediction across unknown environments[C]//Proceedings of the 24th ACM SIGKDD International Conferenceon Knowledge Discovery & Data Mining, New York: Association for Computing Machinery, 2018: 1617–1626.[7] ZHANG X, CUI P, XU R, et al. Deep stable learning for out-of-distribution generalization[C]// Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition, IEEE Computer Society, 2021: 5368−5378.[8] LI H, PAN S J, WANG S, et al. Domain generalization with adversarial feature learning[C]//Proceedings of the IEEE/CVF Conference on Computer Visionand Pattern Recognition, IEEE Computer Society, 2018: 5400−5409.[9] GRUBINGER T, BIRLUTIU A, SCHONER H, et al. Domain generalization based on transfer component analysis[C]//Proceedings of the 13th InternationalWork-Conference on Artificial Neural Networks, Springer, 2015: 325−334.[10] RAHIMI A, RECHT B. Random features for large-scale kernel machines[C]//Proceedings of the 20th International Conference on Neural InformationProcessing Systems, 2007: 1177–1184.[11] JIANG R, ABBOTT C C, JIANG T, et al. SMRI biomarkers predict electroconvulsive treatment outcomes: accuracy with independent data sets[J].Neuropsychopharmacology, 2018, 43(5): 1078−1087.。

生物信息学教学资料:生物信息学常用数据库

生物信息学教学资料:生物信息学常用数据库
生物信息学方法与实践
Bioinformatics Method and Practice
1
生物信息学常用数据库
• 一级数据库
–数据库中的数据直接来源于实验获得的原始数 据,只经过简单的归类整理和注释。
• 二级数据库
–对原始生物分子数据进行整理、分类的结果, 是在一级数据库、实验数据和理论分析的基础 上针对特定的应用目标而建立的。
human
Arabidopsis
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis elegans
rat
Borrelia burgorferi
Plasmodium falciparum
Borrelia burgorferi
Aquifex aeolicus
– FlyBase (Drosophila genome database) – BDGP (Berkeley Drosphila genome project)
Danio rerio (Zebrafish)
– ZFIN (Zebrafish Information Network at University of Oregon, USA) – WashU-Zebrafish Genome Resources (Zebrafish EST database at Washington University, USA)
ftpncbinlmnihgovbloacidsequencednasequencetblastxblastxblastntblastnblastpnucleotidedatabaseproteindatabasenucleotidedatabasenucleotidedatabaseproteindatabasetranslatedtranslatedtransstpproteinprotein比较氨基酸序列与蛋白质数据库使用取代矩阵寻找较远的关系进行seg过滤blastnnucleotidenucleotide比较核酸序列与核酸数寻找较高分值的匹配对较远的关系不太适blastxnucleotideprotein比较核酸序列理论上的六个读码框的所有转换结果和蛋白质数据库用于新的dna序列和ests的分析可转译搜索序列tblastnproteinnucleotide比较蛋白质序列和核酸序列数据库动态转换为六个读码框的结果用于寻找数据库中没有标注的编码区可转译数据库序列tblastxnucleotidenucleotide比较核酸序列和核酸序列数据库经过两次动态转换为六个读码框的结果转译搜索序列与数据库序列32wwwniuwkcom牛牛文档分以blastx为例6

人工智能英语介绍ppt课件

人工智能英语介绍ppt课件
• Unsupervised Learning: Unsupervised learning algorithms are used to discover patterns or structures in unlabeled data Common unsupervised learning techniques include clustering, dimensionality reduction, and association rule learning
The field of AI has continued to grow quickly, with advantages in deep learning and other machine learning techniques leading to significant breakthroughs in areas such as image recognition, speech recognition, and natural language processing AI systems are now capable of performing complex tasks that were once thought to be the exclusive domain of humans
• Supervised Learning: Supervised learning algorithms are trained using labeled examples, such as input output pairs, and the goal is to generalize to new, unseen data Common supervised learning algorithms include linear regression, logistic regression, decision trees, and support vector machines

模拟ai英文面试题目及答案

模拟ai英文面试题目及答案

模拟ai英文面试题目及答案模拟AI英文面试题目及答案1. 题目: What is the difference between a neural network anda deep learning model?答案: A neural network is a set of algorithms modeled loosely after the human brain that are designed to recognize patterns. A deep learning model is a neural network with multiple layers, allowing it to learn more complex patterns and features from data.2. 题目: Explain the concept of 'overfitting' in machine learning.答案: Overfitting occurs when a machine learning model learns the training data too well, including its noise and outliers, resulting in poor generalization to new, unseen data.3. 题目: What is the role of a 'bias' in an AI model?答案: Bias in an AI model refers to the systematic errors introduced by the model during the learning process. It can be due to the choice of model, the training data, or the algorithm's assumptions, and it can lead to unfair or inaccurate predictions.4. 题目: Describe the importance of data preprocessing in AI.答案: Data preprocessing is crucial in AI as it involves cleaning, transforming, and reducing the data to a suitableformat for the model to learn effectively. Proper preprocessing can significantly improve the performance of AI models by ensuring that the input data is relevant, accurate, and free from noise.5. 题目: How does reinforcement learning differ from supervised learning?答案: Reinforcement learning is a type of machine learning where an agent learns to make decisions by performing actions in an environment to maximize a reward signal. It differs from supervised learning, where the model learns from labeled data to predict outcomes based on input features.6. 题目: What is the purpose of a 'convolutional neural network' (CNN)?答案: A convolutional neural network (CNN) is a type of deep learning model that is particularly effective for processing data with a grid-like topology, such as images. CNNs use convolutional layers to automatically and adaptively learn spatial hierarchies of features from input images.7. 题目: Explain the concept of 'feature extraction' in AI.答案: Feature extraction in AI is the process of identifying and extracting relevant pieces of information from the raw data. It is a crucial step in many machine learning algorithms, as it helps to reduce the dimensionality of the data and to focus on the most informative aspects that can be used to make predictions or classifications.8. 题目: What is the significance of 'gradient descent' in training AI models?答案: Gradient descent is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient. In the context of AI, it is used to minimize the loss function of a model, thus refining the model's parameters to improve its accuracy.9. 题目: How does 'transfer learning' work in AI?答案: Transfer learning is a technique where a pre-trained model is used as the starting point for learning a new task. It leverages the knowledge gained from one problem to improve performance on a different but related problem, reducing the need for large amounts of labeled data and computational resources.10. 题目: What is the role of 'regularization' in preventing overfitting?答案: Regularization is a technique used to prevent overfitting by adding a penalty term to the loss function, which discourages overly complex models. It helps to control the model's capacity, forcing it to generalize better to new data by not fitting too closely to the training data.。

SequencetoSequenceLearningwithNeuralNetworks(。。。

SequencetoSequenceLearningwithNeuralNetworks(。。。

SequencetoSequenceLearningwithNeuralNetworks(。

1. Introduction本⽂提出了⼀种端到端的序列学习⽅法,并将其⽤于英语到法语的机器翻译任务中。

使⽤多层LSTM将输⼊序列映射为固定维数的表⽰向量,然后使⽤另⼀个多层LSTM从该向量解码得到⽬标序列。

作者还提出,颠倒输⼊序列的单词序列可以提⾼LSTM的性能,因为这在源和⽬标序列之间引⼊了许多短期依赖性。

之前的DNN只能将源序列和⽬标序列编码为固定维数的向量,⽽许多问题需⽤长度不是先验已知的序列表⽰,例如语⾳识别、机器翻译。

本⽂的想法是,使⽤⼀个LSTM读取源序列逐步得到固定维数的表⽰向量,然后⽤另⼀个LSTM从该表⽰向量中得到⽬标序列,第⼆个LSTM本质上是⼀个RNN语⾔模型,只是它以输⼊序列为条件。

由于输⼊与输出之间有很⼤的时间延迟,所以使⽤具有学习长时间依赖关系的数据能⼒的LSTM(如下图)。

测试结果表明,该模型在机器翻译任务中可以得到不错的BLEU score,显著地优于统计机器翻译基线(SMT baseline)。

令⼈惊讶的是,LSTM在长句⼦的训练上也没有什么问题,原因是颠倒了输⼊序列单词的顺序。

另外,编码的LSTM将变长序列映射为维数固定的向量,传统的SMT⽅法倾向于逐字翻译,⽽LSTM能够学习句⼦的含义,具有相似含义的句⼦在表⽰向量中距离近,不同含义的句⼦则距离远。

⼀项评估表明,该模型可以学习到单词的顺序,并且对主动和被动语态具有不变性。

2. The modelRNN是前馈神经⽹络的⼀种⾃然泛化。

给定⼀个输⼊序列{ \left( x\mathop{{}}\nolimits_{{1}},...,x\mathop{{}}\nolimits_{{T}} \right) },RNN通过以下公式迭代计算出输出:{\begin{array}{*{20}{l}} {h\mathop{{}}\nolimits_{{t}}= \sigma \left(W\mathop{{}}\nolimits^{{hx}}x\mathop{{}}\nolimits_{{t}}+W\mathop{{}}\nolimits^{{hh}}h\mathop{{}}\nolimits_{{t-1}} \right) }\\{y\mathop{{}}\nolimits_{{t}}=W\mathop{{}}\nolimits^{{yh}}h\mathop{{}}\nolimits_{{t}}} \end{array}}只要事先知道输⼊与输出之间的对齐⽅式,RNN就可以将序列映射到序列。

人工智能原理MOOC习题集及答案北京大学王文敏课件

人工智能原理MOOC习题集及答案北京大学王文敏课件

正确答案:A、B 你选对了Quizzes for Chapter 11 单选(1 分)图灵测试旨在给予哪一种令人满意的操作定义得分/ 5 多选(1 分)选择下列计算机系统中属于人工智能的实例得分/总分总分A. Web搜索引擎A. 人类思考B.超市条形码扫描器B. 人工智能C.声控电话菜单该题无法得分/1.00C.机器智能 1.00/1.00D.智能个人助理该题无法得分/1.00正确答案:A、D 你错选为C、DD.机器动作正确答案: C 你选对了6 多选(1 分)选择下列哪些是人工智能的研究领域得分/总分2 多选(1 分)选择以下关于人工智能概念的正确表述得分/总分A.人脸识别0.33/1.00A. 人工智能旨在创造智能机器该题无法得分/1.00B.专家系统0.33/1.00B. 人工智能是研究和构建在给定环境下表现良好的智能体程序该题无法得分/1.00C.图像理解C.人工智能将其定义为人类智能体的研究该题无法D.分布式计算得分/1.00正确答案:A、B、C 你错选为A、BD.人工智能是为了开发一类计算机使之能够完成通7 多选(1 分)考察人工智能(AI) 的一些应用,去发现目前下列哪些任务可以通过AI 来解决得分/总分常由人类所能做的事该题无法得分/1.00正确答案:A、B、D 你错选为A、B、C、DA.以竞技水平玩德州扑克游戏0.33/1.003 多选(1 分)如下学科哪些是人工智能的基础?得分/总分B.打一场像样的乒乓球比赛A. 经济学0.25/1.00C.在Web 上购买一周的食品杂货0.33/1.00B. 哲学0.25/1.00D.在市场上购买一周的食品杂货C.心理学0.25/1.00正确答案:A、B、C 你错选为A、CD.数学0.25/1.008 填空(1 分)理性指的是一个系统的属性,即在_________的环境下正确答案:A、B、C、D 你选对了做正确的事。

得分/总分正确答案:已知4 多选(1 分)下列陈述中哪些是描述强AI (通用AI )的正确答案?得1 单选(1 分)图灵测试旨在给予哪一种令人满意的操作定义得分/ 分/总分总分A. 指的是一种机器,具有将智能应用于任何问题的A.人类思考能力0.50/1.00B.人工智能B. 是经过适当编程的具有正确输入和输出的计算机,因此有与人类同样判断力的头脑0.50/1.00C.机器智能 1.00/1.00C.指的是一种机器,仅针对一个具体问题D.机器动作正确答案: C 你选对了D.其定义为无知觉的计算机智能,或专注于一个狭2 多选(1 分)选择以下关于人工智能概念的正确表述得分/总分窄任务的AIA. 人工智能旨在创造智能机器该题无法得分/1.00B.专家系统0.33/1.00B. 人工智能是研究和构建在给定环境下表现良好的C.图像理解智能体程序该题无法得分/1.00D.分布式计算C.人工智能将其定义为人类智能体的研究该题无法正确答案:A、B、C 你错选为A、B得分/1.00 7 多选(1 分)考察人工智能(AI) 的一些应用,去发现目前下列哪些任务可以通过AI 来解决得分/总分D.人工智能是为了开发一类计算机使之能够完成通A.以竞技水平玩德州扑克游戏0.33/1.00常由人类所能做的事该题无法得分/1.00正确答案:A、B、D 你错选为A、B、C、DB.打一场像样的乒乓球比赛3 多选(1 分)如下学科哪些是人工智能的基础?得分/总分C.在Web 上购买一周的食品杂货0.33/1.00A. 经济学0.25/1.00D.在市场上购买一周的食品杂货B. 哲学0.25/1.00正确答案:A、B、C 你错选为A、CC.心理学0.25/1.008 填空(1 分)理性指的是一个系统的属性,即在_________的环境下D.数学0.25/1.00 做正确的事。

序列多智能体强化学习算法

序列多智能体强化学习算法

第34卷第3期2021年3月模式识别与人工智能Pattern Recognition and Artificial IntelligenceVol.34No.3Mar.2021序列多智能体强化学习算法史腾飞1王莉1黄子蓉1摘要针对当前多智能体强化学习算法难以适应智能体规模动态变化的问题,文中提出序列多智能体强化学习算法(SMARL).将智能体的控制网络划分为动作网络和目标网络,以深度确定性策略梯度和序列到序列分别作为分割后的基础网络结构,分离算法结构与规模的相关性.同时,对算法输入输出进行特殊处理,分离算法策略与规模的相关性.SMARL中的智能体可较快适应新的环境,担任不同任务角色,实现快速学习.实验表明SMARL在适应性、性能和训练效率上均较优.关键词多智能体强化学习,深度确定性策略梯度(DDPG),序列到序列(Seq2Seq),分块结构引用格式史腾飞,王莉,黄子蓉.序列多智能体强化学习算法.模式识别与人工智能,2021,34(3):206-213. DOI10.16451/ki.issn1003-6059.202103002中图法分类号TP18Sequence to Sequence Multi-agent Reinforcement Learning AlgorithmSHI Tengfei',WANG Li1,HUANG Zirong1ABSTRACT The multi-agent reinforcement learning algorithm is difficult to adapt to dynamically changing environments of agent scale.Aiming at this problem,a sequence to sequence multi-agent reinforcement learning algorithm(SMARL)based on sequential learning and block structure is proposed. The control network of an agent is divided into action network and target network based on deep deterministic policy gradient structure and sequence-to-sequence structure,respectively,and the correlation between algorithm structure and agent scale is removed.Inputs and outputs of the algorithm are also processed to break the correlation between algorithm policy and agent scale.Agents in SMARL can quickly adapt to the new environment,take different roles in task and achieve fast learning. Experiments show that the adaptability,performance and training efficiency of the proposed algorithm are superior to baseline algorithms.Key Words Multi-agent Reinforcement Learning,Deep Deterministic Policy Gradient(DDPG), Sequence to Sequence(Seq2Seq),Block StructureCitation SHI T F,WANG L,HUANG Z R.Sequence to Sequence Multi-agent Reinforcement Learning Algorithm.Pattern Recognition and Artificial Intelligence,2021,34(3):206-213.在多智能体强化学习(Multi-agent Reinforce-收稿日期:2020-10-10;录用日期:2020-11-20Manuscript received October10,2020;accepted November20,2020国家自然科学基金项目(No.61872260)资助Supported by National Natural Science Foundation of China(No. 61872260)本文责任编委陈恩红Recommended by Associate Editor CHEN Enhong1.太原理工大学大数据学院晋中0306001.College of Data Science,Taiyuan University of Technology,Jinzhong030600ment Learning,MARL)技术中,智能体与环境及其它智能体交互并获得奖励(Reward),通过奖励得到信息并改善自身策略.多智能体强化学习对环境的变化十分敏感,一旦环境发生变化,训练好的策略就可能失效.智能体规模变化是一种典型的环境变化,可造成已有模型结构和策略失效.针对上述问题,需要研究自适应智能体规模动态变化的MARL.现今MARL在多个领域已有广泛应用[1],如构建游戏人工智能(Artificial Intelligence,AI)[2]、机器人控制[3]和交通指挥⑷等.MARL研究涉及范围广泛,与本文相关的研究可分为如下3方面.1)多智能体性能方面的研究.多智能体间如何第3期史腾飞等:序列多智能体强化学习算法207较好地合作,保证整体具有良好性能是所有MARL 必须考虑的问题.Lowe等[5]提出同时适用于合作与对抗场景的多智能体深度确定性策略梯度(Multi-agent Deep Deterministic Policy Gradient,MADDPG),使用集中训练分散执行的方式让智能体之间学会较好的合作,提升整体性能.Foerster等⑷提出反事实多智能体策略梯度(Counterfactual Multi-agent Policy Gradients,COMA),同样使用集中训练分散执行的方式,使用单个Critic多个Actor的网络结构,Actor 网络使用门控循环单兀(Gate Recurrent Unit,GRU)网络,提高整体团队的合作效果.Wei等[7]提出多智能体软Q学习算法(Multi-agent Soft Q-Learning, MASQL),将软Q学习(Soft Q-Learning)算法迁至多智能体环境中,多智能体采用联合动作,使用全局回报评判动作好坏,一定程度上提升团队的合作效果.上述算法在一定程度上提升多智能体团队合作和对抗的性能,但是均存在难以适应智能体规模动态变化的问题.2)多智能体迁移性方面的研究.智能体的迁移包括同种环境中不同智能体之间的迁移和不同环境中智能体的迁移.研究如何较好地实现智能体的迁移可提升训练效率及提升智能体对环境的适应性. Brys等⑷通过重构奖励实现智能体策略的迁移.虽然可解决智能体策略的迁移问题,但在奖励重构的过程中需要耗费大量资源.Taylor等[9]提出在源任务和目标任务之间通过任务数据的双向传输,实现源任务和目标任务并行学习,加快智能体学习的进度和智能体知识的迁移,但在智能体规模巨大时,训练速度仍然有限.Mnih等[10]通过多线程模拟多个环境空间的副本,智能体网络同时在多个环境空间副本中进行学习,再将学习到的知识进行迁移整合,融入一个网络中.该方法在某种程度上也可视作一种知识的迁移,但并不能直接解决规模变化的问题.3)多智能体可扩展性和适应性方面的研究.在实际应用中,智能体的规模通常不固定并且十分庞大.当前一般解决思路是先人为调整设定模型的网络结构,然后通过大量再训练甚至是从零训练,使模型适应新的智能体规模.这种做法十分耗时耗力,根本无法应对智能体规模动态变化的环境.Khan 等[11]提出训练一个可适用于所有智能体的单一策略,使用该策略(参数共享)控制所有的智能体,实现算法可适应任意规模的智能体环境.但是该方法未注意到智能体规模对模型网络结构的影响.Zhang 等[12]提出使用降维方法对智能体观测进行表征,将不同规模的智能体的观测表征在同个维度下,再将表征作为强化学习算法的输入.该方法本质上是扩充模型网络可接受的输入维度大小,但当智能体规模持续扩大时,仍会超出模型网络的最大范围,从而导致模型无法运行.Long等[|3]改进MADDPG,使用注意力机制进行预处理观测,再将处理后的观测输入MADDPG,使用编码器(Encoder)实现注意力网络.该方法在一定程度上可适应智能体规模的变化,但在面对每次智能体规模变动时,均需要重新调整网络结构和进行再训练.针对智能体规模动态变化引发的MARL失效的问题,本文提出序列多智能体强化学习算法(Sequence to Sequence Multi-agent Reinforcement Learning Algorithm,SMARL).SMARL中的智能体可较快适应新的环境,担任不同任务角色,实现快速学习.1序列多智能体强化学习算法SMARL的核心思想是分离模型网络结构和模型策略与智能体规模的相关性,具体框图见图1.图1SMARL框图Fig.1Framework of SMARL首先在结构上,将智能体的控制网络划分为2个平行的模块一智能体动作网络(图1左侧)和智能体目标网络(图1右侧).每个智能体的执行动作由这两个网络的输出组成.为了适应算法结构,划分智能体的观测数据和动作数据.智能体的观测分为每个智能体的局部观测和所有智能体的全局观测,本文称为个性观测和共性观测.个性观测不会随智能体规模变化而变化.同理,算法中对智能体动作也分成智能体的共性动作和个性动作,所有智能体动作集的交集为共性动作,某智能体的动作集与共208模式识别与人工智能(PR&AI)第34卷性动作的差集为该智能体的个性动作.共性动作为智能体的执行动作,个性动作为智能体执行动作的目标.共性动作不会随智能体规模变化而变化.每个智能体执行的动作由共性动作和个性动作共同组成.举例说明,在二维格子世界中存在3个可移动且能相互之间抛小球的机械手臂.它们的共性观测是统一坐标系下整个地图的观测,个性观测是以自身为坐标原点的坐标系下的观测.它们的共性动作为上、下、左、右抛.个性动作由智能体ID决定:0号智能体的个性动作为1号、2号;1号智能体的个性动作为0号、2号;2号智能体的个性动作为0号、1号.经过上述分割,算法将与智能体规模相关和无关的内容分割为两部分.考虑到深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)网络[⑷在单智能强化学习上性能较优,本文在对智能体观测和动作进行分割之后,将所有智能体的动作策略视作同个策略,选取DDPG网络作为智能体动作网络的内部结构.Khan等[||]证明使用单智能体网络和单一策略控制多个智能体的有效性.考虑到序列到序列(Sequence-to-Sequence,Seq2Seq)网络[15-16]对输入输出长度的不敏感性,本文选取Seq2Seq作为智能体目标网络的内部结构,将智能体规模视作序列长度.智能体动作网络输入为智能体的个性观测,输出为智能体的共性动作,详细框图见图2.图2智能体动作网络框图Fig.2Framework of agent action network 智能体动作网络由多个DDPG网络组成,每个智能体均有各自的DDPG网络,其中,Actor网络参数为兹,,Critic网络参数为Q,Actor-target网络参数为兹;,Critic-target网络参数为Q;,i=0,1,…,N-1.单个的DDPG网络仅接收其对应的智能体以自身作为“坐标原点”的局部观测.此时,使用单一策略(参数共享)控制所有智能体的动作是有意义的.另外,为了实现参数共享,本文参考异步优势演员评论家(Asynchronous Advantage Actor-Critic, A3C)的做法[10],在智能体动作网络中额外设置一个不进行梯度更新的中心参数网络,Actor网络参数为兹”,Critic网络参数为Q n网络接收其它DDPG网络的参数进行软更新(软更新超参数子=0.01),再使用软更新更新其它DDPG网络,最终使所有DDPG网络的参数达到同个单一策略.智能体动作网络更新方式如下.令m n l,=o D pg移(九-Q(o ib,山Q J)2达到最小以更新Critic网络,其中,Q i为Critic网络的参数,Q(•-)为网络评估,B_DDPG为算法批次(Batch Size)数量,o ib、两、r ib、0亦1为抽取样本,Ju,=r,b+酌Q'(s u,+1,滋'(s u,+1丨兹忆)Q;),酌为折扣因子.Actor网络更新如下:V兹丿抑B_DDPG移(VQ(o,a Q i)s o)V汕(o丨兹J L), ib lb lb lb其中,兹i为Actor网络的参数,m(••)为网络策略.中心参数网络和其它网络相互更新如下:兹N饮子兹i+(1-子)兹N,Q N饮子匕+(1-子)Q,兹i饮子兹N+(1-子)兹i,Q i饮t Q N+(1-子)Q i-其中:中心参数网络的Actor网络参数为如,Critic 网络参数为Q N;其它DDPG网络的Actor网络参数为兹,,Critic网络参数为Q i,i=0,1,-,N-1;t为软更新超参数.智能体目标网络输入为智能体的共性观测,输出为智能体的个性动作,框图如图3所示.网络由一个Seq2Seq网络和一个存储器组成,Seq2Seq网络参数为啄.Seq2Seq网络由编码器和解码器组成,这两部分内部结构均为循环神经网络(Recurrent Neural Network,RNN).编码器负责将输入序列表征到更高的维度,由解码器将高维表征进行解码,输出新的序列.Seq2Seq网络负责学习和预测智能体间的合作关系.智能体目标网络使用强化学习的思想,存储器起到强化学习中Q的作用,负责记录某观测(序第3期史腾飞等:序列多智能体强化学习算法209列)到动作(序列)的映射及相应获得的奖励. Seq2Seq部分相当于强化学习中的Actor,负责学习最优观测序列到动作序列的映射及预测新观测序列的动作序列.所有智能体的全局观测(共性观测)所有智能体在整体坐标下的全局观测序列存储器取数据训练“翻译”Seq2Seq编码器I RNN^rRN^k l rn N|注意力机制层解码器|RNN川RNN f RNN|智能体动作目标(个性动作)▼图3智能体目标网络框图Fig.3Framework of agent target network智能体目标网络输入的序列长度为智能体规模,序列中的元素维度为每个智能体的观测.输出序列的长度同样为智能体规模,序列中的元素是智能体编号.输入序列和输出序列的顺序均按照智能体的编号排序,每当智能体规模发生变化时,智能体重新从0开始编号.具体如下:先定义Seq2Seq的奖励函数,通过强化学习的思想筛选奖励最大的观测序列到动作序列的映射,将该映射视作一种翻译,再由Seq2Seq网络进行学习.网络输出表示智能体间的合作关系.另外,本文在Seq2Seq网络中引入Attention机制,提升Seq2Seq网络性能[17].Seq2Seq的核心公式如下:m^x Z*q=1E1s s s s s sN移ln(a0,,…,a N-1o0,o1,…,0N-1,啄),n=0其中,啄为Seq2Seq的参数,。

Long short-term memory

Long short-term memory

Long short-termmemoryA simple LSTM gate with only input,output,and forget gates. LSTM gates may have more gates.[1]Long short-term memory(LSTM)is a recurrent neural network(RNN)architecture(an artificial neural network) published[2]in1997by Sepp Hochreiter and Jürgen Schmidhuber.Like most RNNs,an LSTM network is universal in the sense that given enough network units it can compute anything a conventional computer can com-pute,provided it has the proper weight matrix,which may be viewed as its program.Unlike traditional RNNs,an LSTM network is well-suited to learn from experience to classify,process and predict time series when there are very long time lags of unknown size between important events.This is one of the main reasons why LSTM out-performs alternative RNNs and Hidden Markov Models and other sequence learning methods in numerous appli-cations.For example,LSTM achieved the best known results in unsegmented connected handwriting recogni-tion,[3]and in2009won the ICDAR handwriting compe-tition.LSTM networks have also been used for automatic speech recognition,and were a major component of a net-work that in2013achieved a record17.7%phoneme er-ror rate on the classic TIMIT natural speech dataset.[4] 1ArchitectureAn LSTM network is an artificial neural network that contains LSTM blocks instead of,or in addition to,regu-lar network units.An LSTM block may be described as a“smart”network unit that can remember a value for an arbitrary length of time.An LSTM block contains gates that determine when the input is significant enough to re-member,when it should continue to remember or forget the value,and when it should output the value.A typical implementation of an LSTM block is shown to the right.The four units shown at the bottom of thefig-A typical implementation of an LSTM block.ure are sigmoid units y=s(∑w i x i),where s is some squashing function,such as the logistic function.The left-most of these units computes a value which is condition-ally fed as an input value to the block’s memory.The other three units serve as gates to determine when values are allowed toflow into or out of the block’s memory.The second unit from the left(on the bottom row)is the“in-put gate”.When it outputs a value close to zero,it zeros out the value from the left-most unit,effectively blocking that value from entering into the next layer.The third unit from the left is the“forget gate”.When it outputs a value close to zero,the block will effectively forget whatever value it was remembering.The right-most unit(on the bottom row)is the“output gate”.It determines when the unit should output the value in its memory.The units con-taining theΠsymbol compute the product of their inputs (y=Πx i).These units have no weights.The unit with theΣsymbol computes a linear function of its inputs( y=∑w i x i).The output of this unit is not squashed so that it can remember the same value for many time-steps without the value decaying.This value is fed back in so that the block can“remember”it(as long as the forget gate allows).Typically,this value is also fed into the3 gating units to help them make gating decisions.125REFERENCES2TrainingTo minimize LSTM’s total error on a set of train-ing sequences,iterative gradient descent such as backpropagation through time can be used to change each weight in proportion to its derivative with respect to the error.A major problem with gradient descent for stan-dard RNNs is that error gradients vanish exponentially quickly with the size of the time lag between important events,asfirst realized in1991.[5][6]With LSTM blocks, however,when error values are back-propagated from the output,the error becomes trapped in the memory portion of the block.This is referred to as an“error carousel”, which continuously feeds error back to each of the gates until they become trained to cut offthe value.Thus,reg-ular backpropagation is effective at training an LSTM block to remember values for very long durations. LSTM can also be trained by a combination of artificial evolution for weights to the hidden units,and pseudo-inverse or support vector machines for weights to the out-put units.[7]In reinforcement learning applications LSTM can be trained by policy gradient methods,evolution strategies or genetic algorithms.3ApplicationsApplications of LSTM include:•Robot control[8]•Time series prediction[9]•Speech recognition[10][11][12]•Rhythm learning[13]•Music composition[14]•Grammar learning[15][16][17]•Handwriting recognition[18][19]•Human action recognition[20]•Protein Homology Detection[21]4See also•Artificial neural network•Prefrontal Cortex Basal Ganglia Working Memory (PBWM)•Recurrent neural network•Time series•Long-term potentiation 5References[1]Klaus Greff,Rupesh Kumar Srivastava,Jan Koutník,BasR.Steunebrink,Jürgen Schmidhuber(2015).“LSTM:A Search Space Odyssey”.arXiv:1503.04069.[2]Sepp Hochreiter and Jürgen Schmidhuber(1997).“Longshort-term memory”(PDF).Neural Computation9(8): 1735–1780.doi:10.1162/neco.1997.9.8.1735.PMID 9377276.[3] A.Graves,M.Liwicki,S.Fernandez,R.Bertolami,H.Bunke,J.Schmidhuber.A Novel Connectionist System for Improved Unconstrained Handwriting Recognition.IEEE Transactions on Pattern Analysis and Machine In-telligence,vol.31,no.5,2009.[4]Graves,Alex;Mohamed,Abdel-rahman;Hinton,Geof-frey(2013).“Speech Recognition with Deep Recurrent Neural Networks”.Acoustics,Speech and Signal Pro-cessing(ICASSP),2013IEEE International Conference on: 6645–6649.[5]S.Hochreiter.Untersuchungen zu dynamischen neu-ronalen Netzen.Diploma thesis,Institut rmatik, Technische Univ.Munich,1991.[6]S.Hochreiter,Y.Bengio,P.Frasconi,and J.Schmid-huber.Gradientflow in recurrent nets:the difficulty of learning long-term dependencies.In S.C.Kremer and J.F.Kolen,editors,A Field Guide to Dynamical RecurrentNeural Networks.IEEE Press,2001.[7]Schmidhuber,J.;Wierstra, D.;Gagliolo,M.;Gomez, F.(2007).“Training Recurrent Networks by Evolino”.Neural Computation19(3):757–779.doi:10.1162/neco.2007.19.3.757.[8]H.Mayer,F.Gomez,D.Wierstra,I.Nagy,A.Knoll,andJ.Schmidhuber.A System for Robotic Heart Surgery that Learns to Tie Knots Using Recurrent Neural Networks.Advanced Robotics,22/13–14,pp.1521–1537,2008. [9]J.Schmidhuber and D.Wierstra and F.J.Gomez.Evolino:Hybrid Neuroevolution/Optimal Linear Search for Sequence Learning.Proceedings of the19th Interna-tional Joint Conference on Artificial Intelligence(IJCAI), Edinburgh,pp.853–858,2005.[10]Graves, A.;Schmidhuber,J.(2005).“Framewisephoneme classification with bidirectional LSTM and other neural network architectures”.Neural Networks18(5–6): 602–610.doi:10.1016/j.neunet.2005.06.042.[11]S.Fernandez,A.Graves,J.Schmidhuber.An applica-tion of recurrent neural networks to discriminative key-word spotting.Intl.Conf.on Artificial Neural Networks ICANN'07,2007.[12]Graves,Alex;Mohamed,Abdel-rahman;Hinton,Geof-frey(2013).“Speech Recognition with Deep Recurrent Neural Networks”.Acoustics,Speech and Signal Pro-cessing(ICASSP),2013IEEE International Conference on: 6645–6649.3[13]Gers, F.;Schraudolph,N.;Schmidhuber,J.(2002).“Learning precise timing with LSTM recurrent net-works”.Journal of Machine Learning Research3:115–143.[14] D.Eck and J.Schmidhuber.Learning The Long-TermStructure of the Blues.In J.Dorronsoro,ed.,Proceedings of Int.Conf.on Artificial Neural Networks ICANN'02, Madrid,pages284–289,Springer,Berlin,2002.[15]Schmidhuber,J.;Gers, F.;Eck, D.;Schmidhu-ber,J.;Gers, F.(2002).“Learning nonregular lan-guages:A comparison of simple recurrent networks and LSTM”.Neural Computation14(9):2039–2041.doi:10.1162/089976602320263980.[16]Gers,F.A.;Schmidhuber,J.(2001).“LSTM RecurrentNetworks Learn Simple Context Free and Context Sensi-tive Languages”.IEEE Transactions on Neural Networks 12(6):1333–1340.doi:10.1109/72.963769.[17]Perez-Ortiz,J.A.;Gers, F.A.;Eck, D.;Schmidhu-ber,J.(2003).“Kalmanfilters improve LSTM net-work performance in problems unsolvable by traditional recurrent nets”.Neural Networks16(2):241–250.doi:10.1016/s0893-6080(02)00219-8.[18] A.Graves,J.Schmidhuber.Offline Handwriting Recog-nition with Multidimensional Recurrent Neural Networks.Advances in Neural Information Processing Systems22, NIPS'22,pp545–552,Vancouver,MIT Press,2009. [19] A.Graves,S.Fernandez,M.Liwicki,H.Bunke,J.Schmidhuber.Unconstrained online handwriting recog-nition with recurrent neural networks.Advances in Neu-ral Information Processing Systems21,NIPS'21,pp577–584,2008,MIT Press,Cambridge,MA,2008.[20]M.Baccouche, F.Mamalet,C Wolf, C.Garcia, A.Baskurt.Sequential Deep Learning for Human Action Recognition.2nd International Workshop on Human Be-havior Understanding(HBU),A.A.Salah,B.Lepri ed.Amsterdam,Netherlands.pp.29–39.Lecture Notes in Computer Science7065.Springer.2011[21]Hochreiter,S.;Heusel,M.;Obermayer,K.(2007).“Fast model-based protein homology detection with-out alignment”.Bioinformatics23(14):1728–1736.doi:10.1093/bioinformatics/btm247.PMID17488755. 6External links•Recurrent Neural Networks with over30LSTM pa-pers by Jürgen Schmidhuber's group at IDSIA •Gers PhD thesis on LSTM networks.•Fraud detection paper with two chapters devoted to explaining recurrent neural networks,especially LSTM.•Paper on a high-performing extension of LSTM that has been simplified to a single node type and can train arbitrary architectures.•Tutorial:How to implement LSTM in python with theano47TEXT AND IMAGE SOURCES,CONTRIBUTORS,AND LICENSES 7Text and image sources,contributors,and licenses7.1Text•Long short-term memory Source:https:///wiki/Long_short-term_memory?oldid=720271917Contributors:Fnielsen, Michael Hardy,Glenn,Rich Farmbrough,Denoir,Woohookitty,Rjwilmsi,Tony1,SmackBot,Derek farn,Ninjakannon,Magioladitis, Barkeep,Pwoolf,Headlessplatter,M4gnum0n,Muhandes,Jncraton,Yobot,Dithridge,Richard.decal,Omnipaedista,Valdemus,Olexa Riznyk,Albertzeyer,BiObserver,Silenceisgod,Epsiloner,Ego White Tray,Mister Mormon,Dexbot,Hmainsbot1,Mogism,Velvel2, Mpritham,Thoreyrunars and Anonymous:187.2Images•File:Long_Short_Term_Memory.png Source:https:///wikipedia/commons/d/d5/Long_Short_Term_Memory.png License:CC BY-SA4.0Contributors:Own work Original artist:BiObserver•File:Lstm_block.svg Source:https:///wikipedia/commons/8/8d/Lstm_block.svg License:Public domain Contrib-utors:(Original text:Headlessplatter(talk)(Uploads)-I made this image myself and I gift it to the public domain.)Original artist: Headlessplatter(talk)(Uploads)7.3Content license•Creative Commons Attribution-Share Alike3.0。

基于语言模型的深度学习翻译技术研究

基于语言模型的深度学习翻译技术研究

基于语言模型的深度学习翻译技术研究随着国际贸易和文化交流的日益频繁,语言翻译技术的重要性日益凸显。

传统的翻译方法,如人工翻译、词典翻译和机器翻译,已经难以满足大规模翻译的需求。

因此,新的翻译技术——基于语言模型的深度学习翻译技术(Deep Learning Translation),应运而生。

基于语言模型的深度学习翻译技术,是一种利用计算机模拟人类语言翻译能力的技术,它基于深度学习算法和神经网络模型,通过大量的语料库训练,实现了自动化的翻译过程。

下面,我们将从技术原理、训练方法和应用领域三个方面,对其进行深入探讨。

一、技术原理基于语言模型的深度学习翻译技术的核心是神经网络模型。

该模型使用多个神经网络层来处理输入的源语言句子,然后将其转换成目标语言句子。

具体来说,该技术包含以下三个方面的技术原理:1. 序列到序列模型(Sequence-to-Sequence Model)序列到序列模型是将输入的序列转换为输出的序列的一种方法。

它由两个相互独立的长短时记忆网络(LSTM)组成,分别用于编码输入序列和解码输出序列。

在编码器中,每个单词都会转换成一个向量表示,因此整个序列可以表示为一个向量序列。

在解码器中,每个输出单词都由之前的单词预测出来。

因此,序列到序列模型是基于上下文信息进行翻译的。

2. 注意力机制(Attention Mechanism)注意力机制是一种权重分配机制,它允许模型将注意力集中于输入序列中的某些位置,以便更好地对其进行翻译。

每个时刻,注意力机制会根据上一个输出单词和编码器中的每个输入单词计算一个权重。

然后,这些权重会被用于加权平均和编码器输出,以计算解码器对下一个单词的预测。

3. 词嵌入(Word Embedding)词嵌入是一种将文本中的单词转换为向量表示的方法。

每个单词都是一个向量,其中每个维度代表语义特性。

这种表示方法允许计算机将单词之间的语义相似性建模为向量空间中的距离。

在深度学习翻译技术中,词嵌入被用于将原始的文本转换为向量表示的过程中。

sequential中activation的方法

sequential中activation的方法

sequential中activation的方法【原创实用版2篇】目录(篇1)I.引言A.介绍B.为什么需要研究Sequential中activation的方法II.传统的Sequential模型A.前向传播B.反向传播C.存在的问题III.基于注意力机制的Sequential模型A.前向传播B.反向传播C.存在的问题IV.动态规划方法在Sequential模型中的应用A.动态规划的基本原理B.在Sequential模型中的应用C.存在的问题V.强化学习方法在Sequential模型中的应用A.强化学习的基本原理B.在Sequential模型中的应用C.存在的问题VI.总结与未来展望A.总结B.未来展望正文(篇1)一、引言随着人工智能的快速发展,Sequential模型在自然语言处理、计算机视觉等领域得到了广泛应用。

然而,传统的Sequential模型在处理序列数据时存在一些问题,如梯度消失、梯度爆炸等。

因此,我们需要研究新的Sequential中activation的方法来解决这些问题。

本文将从传统的Sequential模型、基于注意力机制的Sequential模型、动态规划方法在Sequential模型中的应用以及强化学习方法在Sequential模型中的应用等方面进行探讨。

二、传统的Sequential模型传统的Sequential模型通常采用前向传播和反向传播的方法进行训练。

在每个时刻,模型根据前一时刻的输出和当前输入计算输出,并使用损失函数进行反向传播更新参数。

然而,这种方法的缺点在于序列之间的依赖关系无法很好地捕捉,导致模型无法学习到复杂的序列结构。

三、基于注意力机制的Sequential模型注意力机制是一种用于计算输入序列中每个元素重要性的方法。

目录(篇2)I.引言A.sequential中activation的基本概念B.其在深度学习中的应用和重要性C.我们如何理解此方法及其对未来发展的影响II.sequential中activation的背景和历史A.发展历程和重要里程碑B.相关研究和技术突破C.与其他方法相比的优势和劣势III.sequential中activation的原理和方法A.基本原理和模型结构B.训练和优化过程C.改进和调整方案IV.sequential中activation的应用和实践A.深度学习模型中的应用示例B.实践中的挑战和解决方案C.未来应用前景和趋势V.结论和未来展望A.总结全文和核心思想B.展望未来研究和改进方向C.对未来深度学习发展的思考和建议正文(篇2)A.引言近年来,随着深度学习技术的快速发展,我们越来越关注模型的性能和效率。

hebbian_learning基本过程_概述及解释说明

hebbian_learning基本过程_概述及解释说明

hebbian learning基本过程概述及解释说明1. 引言1.1 概述Hebbian Learning是一种神经网络学习规则,源于Donald O. Hebb的研究。

它描述了神经元之间突触连接权重如何通过反复激活和加强进行调整,从而实现信息的存储和记忆能力的提高。

Hebbian Learning是人工智能领域中非常重要的理论基础之一,对于理解神经网络模型和人类认知的机制具有深远意义。

1.2 文章结构本文将分为五个部分来探讨Hebbian Learning的基本过程、解释说明及其应用。

首先引言部分将简要介绍文章内容,并给出目录结构;第二部分将概述Hebbian Learning的基本过程,包括定义、规则以及常见应用领域;第三部分将详细解释Hebbian Learning的基本过程,包括突触传输和加强性原理、神经元激活和突触强化机制以及网络权重更新算法描述;接着,在第四部分中将通过示例与实践应用案例分析来展示Hebbian Learning在模式识别、神经网络训练以及认知科学研究中的具体应用;最后,在结论部分将总结Hebbian Learning的基本过程和重要性,展望未来可能的发展方向,并提出进一步研究和改善Hebbian Learning的建议。

1.3 目的本文的目的是深入介绍Hebbian Learning基本过程,解释其原理和应用,并探讨其在模式识别、神经网络训练以及认知科学研究中的具体应用。

通过全面了解Hebbian Learning,读者将能够更好地理解神经网络学习过程中突触权重调整的机制,以及其对人工智能领域和认知科学研究的重要意义。

此外,本文还将为读者提供思考未来发展方向以及改善Hebbian Learning的建议,促进相关领域研究和技术应用的进一步推进。

2. Hebbian Learning基本过程概述:2.1 Hebbian Learning的定义Hebbian Learning是一种由加拿大心理学家Donald O. Hebb提出的学习规则,用于描述神经元之间突触连接权重的更新机制。

基于DNAzyme的多功能纳米载体的构建及其在乳腺癌基因治疗中的应用

基于DNAzyme的多功能纳米载体的构建及其在乳腺癌基因治疗中的应用

精品文档供您编辑修改使用专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,希望大家下载或复制使用后,能够解决实际问题。

文档全文可编辑,以便您下载后可定制修改,请根据实际需要进行调整和使用,谢谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、学习资料、课堂资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想学习、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestylematerials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!基于DNAzyme的多功能纳米载体的构建及其在乳腺癌基因治疗中的应用关键词:DNAzyme,纳米载体,乳腺癌,基因治疗,切割算法Abstract: DNAzyme is a special type of DNA sequence that can exhibit catalytic activity in specific environments, and hence has been widely applied in gene therapy. In this paper, we report the construction and application of a multifunctional nanocarrier based on DNAzyme for breast cancer gene therapy. First, a DNA sequence containing DNAzyme was synthesized chemically, and a DNAzyme sequence with high catalytic activity and stability was obtained through chemical modification and thermodynamic stability testing. Based on the DNAzyme nanocarrier, a sequence of regulating key genes in the HER-2/neu signal pathway and a fluorescent probe were successfully loaded into the nanocarrier, achieving induction and imaging of breast cancer cell growth. In addition, we used the DNAzyme-based cutting algorithm to achieve precise cutting of the HER-2/neu gene, enabling better treatment outcomes. The construction of this multifunctional DNAzyme nanocarrier provides new ideas and means for breast cancer gene therapy.Keywords: DNAzyme, nanocarrier, breast cancer, gene therapy, cutting algorithm。

tripleattention机制

tripleattention机制

tripleattention机制Triple Attention机制是一种用于自然语言处理任务中的注意力机制,它通过引入三个注意力机制分别对序列输入、序列输出和中间层进行了建模,以提取输入和输出序列之间的关联信息。

该机制主要应用于机器翻译、文本摘要、问答系统等任务中。

Triple Attention机制的核心思想是在传统的注意力机制的基础上,引入了两个额外的注意力机制来构建一个多层次的注意力模型。

具体而言,Triple Attention机制主要包含序列输入注意力、序列输出注意力和中间层注意力。

首先,序列输入注意力用于将输入序列中的每个单词与输出序列中的每个位置进行匹配。

假设输入序列为X,输出序列为Y,通过计算输入序列中的每个单词与输出序列中的每个位置的相似度得到注意力权重,然后利用这些权重对输入序列进行加权平均,得到输入序列注意力向量A1、这样,注意力机制能够关注输入序列中与输出序列相关的部分,提取输入序列中的关键信息。

接下来,序列输出注意力用于将输出序列中的每个单词与输入序列中的每个位置进行匹配。

通过计算输出序列中的每个单词与输入序列中的每个位置的相似度得到注意力权重,然后利用这些权重对输出序列进行加权平均,得到输出序列注意力向量A2、这样,注意力机制可以关注输出序列中与输入序列相关的部分,生成与输入序列相关的输出。

最后,中间层注意力机制用于关注输入序列和输出序列之间的中间层信息。

它通过计算中间层表示与输入序列和输出序列的相似度,得到中间层的注意力权重,然后利用这些权重对中间层进行加权平均,得到中间层注意力向量A3、这样,注意力机制能够关注输入序列和输出序列之间的对应关系,提取中间层的关联信息。

综上所述,Triple Attention机制通过引入序列输入注意力、序列输出注意力和中间层注意力,实现了对输入和输出序列之间的关联信息的建模。

通过这种多层次的注意力机制,可以更好地捕捉序列之间的关联信息,提高自然语言处理任务的性能。

SARS-CoV-2 接受器域自然变异的影响说明书

SARS-CoV-2 接受器域自然变异的影响说明书

LETTEROPENThe impact of receptor-binding domain natural mutations on antibody recognition of SARS-CoV-2Signal Transduction and Targeted Therapy(2021) 6:132 ;https:///10.1038/s41392-021-00536-0Dear Editor,The ongoing COVID-19pandemic has resulted in over25.0 million confirmed cases and over840,000deaths globally.As the third severe respiratory disease outbreak caused by the coronavirus,COVID-19has led to much larger infected popula-tions and coverage of geographic areas than SARS and MERS. Such high prevalence of infection has raised significant concerns about the emergence and spread of escape variants,which may evade human immunity and eventually render candidate vaccines and antibody-based therapeutics ineffective.Indeed, some naturally mutated SARS-CoV or MERS-CoV strains from the sequential outbreaks were reported to resist neutralization by the antibodies isolated during thefirst outbreak1,2.Furthermore, a number of natural mutations have already been identified in the spike protein of SARS-CoV-2.Among them,a variant with the D614G mutation has rapidly become the dominant pandemic form probably due to itsfitness advantage3.Another spike mutation,the N501Y,wasfirst identified in a mouse-adapted strain of SARS-CoV-24,and also occurred recently in natural human infections.Therefore,it is essential to continuously monitor the emergence of SARS-CoV-2spike mutations and their potential roles in viral escape from existing neutralizing antibodies.To analyze the SARS-CoV-2mutations,we retrieved all the 101,131full-length SARS-CoV-2nucleotide sequences uploaded in the GISAID database(https://)up to Septem-ber15,2020.We focused on the receptor-binding domain(RBD) of SARS-CoV-2spike protein,due to the fact that RBD is the most dominant antigenic site for inducing SARS-CoV-2neu-tralizing antibodies and contains the majority of neutralizing epitopes5.Afterfiltering out ambiguous sequences,a total of 94,079full-length SARS-CoV-2RBD sequences were obtained and aligned with the Wuhan-Hu-1strain(GenBank: MN_908947).A total of216mutational events have been observed in169RBD residues across5188sequences,account-ing for87.1%of all amino acids in RBD(169out of194residues). Such mutation rate is comparable to that of SARS-CoV-2S1 (88.7%,597out of673residues)and S2(89.0%,470out of528 residues)subunits(Fig.1a).Although RBD has undergone intensive mutations,the mutant sequences compromise only a small percentage of the94,079available RBD sequences(Fig. 1b,Supplementary Table S1),suggesting that these RBD mutations have not beenfixed in viral populations.To evaluate the impact of RBD natural mutations on the binding efficacy of anti-SARS-CoV-2antibodies,we expressed and purified41 representative RBD variants,which included mutations of the three most frequently-mutated residues(S477,N439,T478),as well as all the variants emerged during thefirst4months of SARS-CoV-2 outbreak.All RBDs expressed well(Supplementary Fig.S1)and retained the capability to bind ACE2(Supplementary Fig.S2–S4). Then,we measured the binding ability of the RBD mutants to a panel of8antibodies,developed by us and other groups that recognize a diverse set of epitopes on SARS-CoV-2RBD6–9.According to the binding epitopes,these antibodies could be divided into two groups: those who recognize epitopes within the ACE2-RBD binding interface and could compete with ACE2for RBD binding(ACE2-competing group),and those could not(ACE2non-competing group).Surpris-ingly,we found that all of the ACE2-competing antibodies exhibited negligible binding to at least one of the mutant RBDs as measured by ELISA(Fig.1c)and bio-layer interferometry(Fig.1d).For instance, 414-1,a potent SARS-CoV-2neutralizing antibody isolated from a COVID-19recovered patient7,exhibited no binding to the RBD mutants L452R and N501Y,and evidently reduced binding to nine other RBD mutants.In contrast,the antibodies S3098and n30636that engage epitopes distinct from the receptor-binding motif showed exceptional breadth,with no escape mutants observed.The antibodies n31306and CR30229were reported to target cryptic epitopes located in the spike trimeric interface,and retained their binding affinities towards most of the RBD variants(Fig.1c).Taken together,these results indicate that a single natural mutation on the SARS-CoV-2RBD was able to completely abolish antibody binding. Besides,it seems that the natural RBD mutants had a higher tendency to escape the binding of ACE2-competing antibodies than non-competing antibodies(Fig.1e and f),although further studies on more extensive panels of antibodies are required to confirm this finding.Next,we evaluated the binding breadth of a combination of two antibodies recognizing distinct epitopes.Notably,the combination of ACE2-competing antibody414-1with non-competing antibody n3130resulted in full coverage of SARS-CoV-2RBD variants(Fig.1c).The mixture exhibited strong binding to most of the RBD variants,and slightly reduced binding only to one double mutant(K448R/H519P).To confirm whether the reduction in RBD binding potency correlates with reduced SARS-CoV-2neutralization,we also measured the neutralizing activity of the antibodies against SARS-CoV-2pseudoviruses bearing RBD mutations.As expected,414-1and n3130did not show effective neutralization against pseudoviruses with their corresponding escape mutations(N501Y and E516Q,respectively),while the mixture of the two antibodies broadly neutralized all the tested viruses(Fig.1g).All the RBD variants pseudoviruses still possessed the infectivity of target cells(Supplementary Fig.S5).In addition, plasma from convalescent COVID-19patients were also measured for their binding and neutralization activities.Similarly,all plasma samples had superior breadth in binding to naturally mutated RBDs and neutralizing multiple viral variants(Supplementary Figs. S6,S7).Considering that a number of neutralizing antibodies are being developed to treat COVID-19,our results suggest that some of these antibodies should be used in combinations to increase the neutralization breadth and reduce the possibility that an escape mutant isfixed in the treated host population.Never-theless,the low frequencies of RBD mutants identified hereReceived:4October2020Revised:1February2021Accepted:4February /sigtransSignal Transduction and Targeted Therapy ©The Author(s)2021revealed that they are more likely from randomized mutation,and may not represent the result of fitness selection.Collectively,these results con firmed the capability of SARS-CoV-2to escape from antibodies,especially the ACE2-competing antibodies,by acquiring resistance mutations in RBD.Such escape mutations can occur within the binding epitopes of antibodies,or regions away from antibody epitopes but may affect immunogenicity of RBD and render antibodies ineffective (Fig.1f).Notably,the ACE2-competing antibodies constitute the majority of anti-RBD antibodies elicitedbyLetter2Signal Transduction and Targeted Therapy (2021) 6:132SARS-CoV-2infection or vaccination.Therefore,our findings highlight the importance of continuously monitoring RBD natural mutations and evaluating their impact on antibody recognition of SARS-CoV-2,which may help guide the devel-opment and implementation of therapeutic antibodies and vaccines against SARS-CoV-2.ACKNOWLEDGEMENTSThis work was supported by grants from the National Key R&D Program of China (2019YFA0904400),National Natural Science Foundation of China (81822027,81630090),National Megaprojects of China for Major Infectious Diseases (2018ZX10301403,2018ZX10101003),and the staff from Core Facility of Microbiology and Parasitology,Shanghai Medical College,Fudan University.AUTHOR CONTRIBUTIONST.Y.and Y.W.conceived,wrote the paper,and supervised the study.C.L.,X.T.,X.J.,J.W.,L.L.,S.J.,F.L.,and Y.L.performed the experiments and analyzed the data.All authors reviewed and approved the final version of the manuscript.ADDITIONAL INFORMATIONSupplementary information The online version contains supplementary material available at https:///10.1038/s41392-021-00536-0.Competing interests:The authors declare no competing interests.Cheng Li 1,Xiaolong Tian 1,Xiaodong Jia 2,Jinkai Wan 3,Lu Lu 1,Shibo Jiang 1,Fei Lan 3,Yinying Lu 2,Yanling Wu 1andTianlei Ying 11MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology,School of Basic Medical Sciences,Shanghai Medical College,Fudan University,Shanghai,China;2Department of Comprehensive Liver Cancer,The Fifth Medical Center,Chinese PLA General Hospital,Beijing,China and 3Shanghai Key Laboratory of Medical Epigenetics,International Co-laboratory of Medical Epigenetics and Metabolism,Ministry of Science and Technology,Institutes of Biomedical Sciences,Fudan University,Shanghai,ChinaThese authors contributed equally:Cheng Li,Xiaolong Tian,Xiaodong JiaCorrespondence:Yinying Lu (*********************)orYanling Wu (*******************.cn)orTianlei Ying (****************.cn)REFERENCES1.Sui,J.et al.Effects of human anti-spike protein receptor binding domain anti-bodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness.J.Virol.88,13769–13780(2014).2.Kim,Y.S.et al.Sequential emergence and wide spread of neutralization escape middle east respiratory syndrome coronavirus mutants,South Korea,2015.Emerg.Infect.Dis.25,1161–1168(2019).3.Korber,B.et al.Tracking changes in SARS-CoV-2spike:evidence that D614G increases infectivity of the COVID-19virus.Cell 182,812–827(2020).e819.4.Gu,H.et al.Adaptation of SARS-CoV-2in BALB/c mice for testing vaccine ef ficacy.Science 369,1603–1607(2020).5.Yu,F.et al.Receptor-binding domain-speci fic human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2.Signal Transduct.Target Ther.5,212(2020).6.Wu,Y.et al.Identi fication of human single-domain antibodies against SARS-CoV-2.Cell host microbe 27,891–898(2020).e895.7.Wan,J.et al.Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2infection.Cell Rep.32,107918(2020).8.Pinto,D.et al.Cross-neutralization of SARS-CoV-2by a human monoclonal SARS-CoV antibody.Nature 583,290–295(2020).9.Tian,X.et al.Potent binding of 2019novel coronavirus spike protein by a SARS coronavirus-speci fic human monoclonal antibody.Emerg.Microbes Infect.9,382–385(2020).Open Access This article is licensed under a Creative Commons Attribution 4.0International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.The images or other third party material in this article are included in the article ’s Creative Commons license,unless indicated otherwise in a credit line to the material.If material is not included in the article ’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this license,visit /licenses/by/4.0/.©The Author(s)2021Fig.1Binding and neutralizing sensitivity of the naturally occurring RBD variants to SARS-CoV-2binding antibodies and convalescent serum.a Surface representations of natural amino acid substitutions in SARS-CoV-2RBD colored by red.b Frequency of the originally reported genome (SARS-CoV-2Wuhan-Hu-1)and RBD mutants in available RBD sequences at the time of writing (2020).High-frequencies amino acid mutation sites were identi fied:S477N/R/I/G/T (4.07%),N439K (0.19%),T4781/K/A/R (0.11%).c Binding capacity of antibodies against SARS-CoV-2RBD,human plasma from five COVID-19convalescent patients,and ACE2to 41SARS-CoV-2RBD mutants,as measured by ELISA.Shades of colors in the boxes indicate retained binding activity of ACE2-competing antibodies (purple),ACE2non-competing antibodies (blue),convalescent plasma (green),antibody cocktail (red),and ACE2(orange).Dark color filled boxes indicate the binding ability >50%;light color filled boxes indicate binding ability ranging 50–20%;and white color filled boxes indicate escape to antibodies (binding ability <20%).d Escape mutations to antibodies were further con firmed by BLI.e Correlation between ACE2competion values and relative escape of antibodies.ACE2competion values were obtained from previous reports.f Position of binding resistance-conferring substitutions.Structure of the RBD (from PDB 6M17)with positions that are occupied by amino acids whose substitution confers partial or complete (binding ability<50%)escape to antibodies are indicated for ACE2-competing antibodies (purple)and ACE2non-competing antibodies (blue).g Neutralization of luciferase-encoding pseudotyped virus with SARS-CoV-2S proteins harboring the indicated naturally occurring mutations.Each pseudotyped viruses preincubated with serial dilutions of antibodies or convalescent plasma were used to infect Huh-7cells,and inhibitory rates (%)of infection were calculated by luciferase activities in cell lysates.Error bars indicate mean±s.d.from three independent Letter3Signal Transduction and Targeted Therapy (2021) 6:132。

xformers 原理

xformers 原理

xformers 原理xformers,又称为“Transformer”,是一种基于自注意力机制的深度学习神经网络模型,于2017年由Google公司提出,目前已成为自然语言处理领域中应用最广泛的模型之一。

xformers模型的核心思想是利用自注意力机制,在不同位置的词或子词之间建立直接的联系,实现端到端的序列建模。

相比其他传统的RNN或CNN模型,它具有以下几个优点:1. 模型并行:由于自注意力机制的特性,每个注意力头并不需要像传统的RNN或CNN 模型那样被顺序计算,可以并行计算,大大缩短了训练时间。

2. 长序列处理:传统的RNN或CNN模型在处理长序列时会出现长期依赖问题(vanishing or exploding gradient),而xformers可以轻松地处理长序列,并且不需要采用特殊的结构设计。

3. 准确性高:xformers的表现优于其他自然语言处理模型,尤其是在翻译和生成文本等任务中表现更为出色。

具体来说,xformers模型可以分为两个部分:编码器和解码器。

编码器将输入序列进行表示,而解码器将表示结果翻译成目标语言或者生成文本。

两个部分共用一个注意力机制,以利用输入序列中的信息以及之前的输出来生成当前输出。

在编码器中,输入序列首先经过一个嵌入层,将输入序列的词或子词编码为一个向量表示,然后进入多个编码器层中,每个编码器层由多头自注意力机制、前馈神经网络以及残差连接(residual connection)构成。

多头自注意力机制旨在从不同的角度关注输入序列以提取其特征,前馈网络则对每个自注意力机制的输出进行非线性变换。

残差连接可以避免由于过多层的堆叠造成的信息的损失。

在解码器中,目标语言的嵌入层将输出结果编码成向量表示,然后经过与编码器类似的多个解码器层处理。

但是,解码器还需要额外的编码器-解码器嵌入层,它可以使每个解码器自注意力机制在当前输出的同时关注编码器中的输入序列,以提取更丰富的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Sequence to Sequence Learning with Neural NetworksIlya SutskeverGoogleilyasu@Oriol VinyalsGooglevinyals@Quoc V.LeGoogleqvl@ AbstractDeep Neural Networks(DNNs)are powerful models that have achieved excel-lent performance on difficult learning tasks.Although DNNs work well wheneverlarge labeled training sets are available,they cannot be used to map sequences tosequences.In this paper,we present a general end-to-end approach to sequencelearning that makes minimal assumptions on the sequence structure.Our methoduses a multilayered Long Short-Term Memory(LSTM)to map the input sequenceto a vector of afixed dimensionality,and then another deep LSTM to decode thetarget sequence from the vector.Our main result is that on an English to Frenchtranslation task from the WMT’14dataset,the translations produced by the LSTMachieve a BLEU score of34.8on the entire test set,where the LSTM’s BLEUscore was penalized on out-of-vocabulary words.Additionally,the LSTM did nothave difficulty on long sentences.For comparison,a phrase-based SMT systemachieves a BLEU score of33.3on the same dataset.When we used the LSTMto rerank the1000hypotheses produced by the aforementioned SMT system,itsBLEU score increases to36.5,which is close to the previous best result on thistask.The LSTM also learned sensible phrase and sentence representations thatare sensitive to word order and are relatively invariant to the active and the pas-sive voice.Finally,we found that reversing the order of the words in all sourcesentences(but not target sentences)improved the LSTM’s performance markedly,because doing so introduced many short term dependencies between the sourceand the target sentence which made the optimization problem easier.1IntroductionDeep Neural Networks(DNNs)are extremely powerful machine learning models that achieve ex-cellent performance on difficult problems such as speech recognition[13,7]and visual object recog-nition[19,6,21,20].DNNs are powerful because they can perform arbitrary parallel computationfor a modest number of steps.A surprising example of the power of DNNs is their ability to sortN N-bit numbers using only2hidden layers of quadratic size[27].So,while neural networks are related to conventional statistical models,they learn an intricate computation.Furthermore,largeDNNs can be trained with supervised backpropagation whenever the labeled training set has enoughinformation to specify the network’s parameters.Thus,if there exists a parameter setting of a largeDNN that achieves good results(for example,because humans can solve the task very rapidly),supervised backpropagation willfind these parameters and solve the problem.Despite theirflexibility and power,DNNs can only be applied to problems whose inputs and targetscan be sensibly encoded with vectors offixed dimensionality.It is a significant limitation,sincemany important problems are best expressed with sequences whose lengths are not known a-priori.For example,speech recognition and machine translation are sequential problems.Likewise,ques-tion answering can also be seen as mapping a sequence of words representing the question to asequence of words representing the answer.It is therefore clear that a domain-independent method that learns to map sequences to sequences would be useful.Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and outputs is known andfixed.In this paper,we show that a straightforward application of the Long Short-Term Memory(LSTM)architecture[16]can solve general sequence to sequence problems. The idea is to use one LSTM to read the input sequence,one timestep at a time,to obtain largefixed-dimensional vector representation,and then to use another LSTM to extract the output sequence from that vector(fig.1).The second LSTM is essentially a recurrent neural network language model [28,23,30]except that it is conditioned on the input sequence.The LSTM’s ability to successfully learn on data with long range temporal dependencies makes it a natural choice for this application due to the considerable time lag between the inputs and their corresponding outputs(fig.1). There have been a number of related attempts to address the general sequence to sequence learning problem with neural networks.Our approach is closely related to Kalchbrenner and Blunsom[18] who were thefirst to map the entire input sentence to vector,and is related to Cho et al.[5]although the latter was used only for rescoring hypotheses produced by a phrase-based system.Graves[10] introduced a novel differentiable attention mechanism that allows neural networks to focus on dif-ferent parts of their input,and an elegant variant of this idea was successfully applied to machine translation by Bahdanau et al.[2].The Connectionist Sequence Classification is another popular technique for mapping sequences to sequences with neural networks,but it assumes a monotonic alignment between the inputs and the outputs[11].Figure1:Our model reads an input sentence“ABC”and produces“WXYZ”as the output sentence.The model stops making predictions after outputting the end-of-sentence token.Note that the LSTM reads the input sentence in reverse,because doing so introduces many short term dependencies in the data that make the optimization problem much easier.The main result of this work is the following.On the WMT’14English to French translation task, we obtained a BLEU score of34.81by directly extracting translations from an ensemble of5deep LSTMs(with384M parameters and8,000dimensional state each)using a simple left-to-right beam-search decoder.This is by far the best result achieved by direct translation with large neural net-works.For comparison,the BLEU score of an SMT baseline on this dataset is33.30[29].The34.81 BLEU score was achieved by an LSTM with a vocabulary of80k words,so the score was penalized whenever the reference translation contained a word not covered by these80k.This result shows that a relatively unoptimized small-vocabulary neural network architecture which has much room for improvement outperforms a phrase-based SMT system.Finally,we used the LSTM to rescore the publicly available1000-best lists of the SMT baseline on the same task[29].By doing so,we obtained a BLEU score of36.5,which improves the baseline by 3.2BLEU points and is close to the previous best published result on this task(which is37.0[9]). Surprisingly,the LSTM did not suffer on very long sentences,despite the recent experience of other researchers with related architectures[26].We were able to do well on long sentences because we reversed the order of words in the source sentence but not the target sentences in the training and test set.By doing so,we introduced many short term dependencies that made the optimization problem much simpler(see sec.2and3.3).As a result,SGD could learn LSTMs that had no trouble with long sentences.The simple trick of reversing the words in the source sentence is one of the key technical contributions of this work.A useful property of the LSTM is that it learns to map an input sentence of variable length into afixed-dimensional vector representation.Given that translations tend to be paraphrases of the source sentences,the translation objective encourages the LSTM tofind sentence representations that capture their meaning,as sentences with similar meanings are close to each other while differentsentences meanings will be far.A qualitative evaluation supports this claim,showing that our model is aware of word order and is fairly invariant to the active and passive voice.2The modelThe Recurrent Neural Network(RNN)[31,28]is a natural generalization of feedforward neural networks to sequences.Given a sequence of inputs(x1,...,x T),a standard RNN computes a sequence of outputs(y1,...,y T)by iterating the following equation:h t=sigm W hx x t+W hh h t−1y t=W yh h tThe RNN can easily map sequences to sequences whenever the alignment between the inputs the outputs is known ahead of time.However,it is not clear how to apply an RNN to problems whose input and the output sequences have different lengths with complicated and non-monotonic relation-ships.The simplest strategy for general sequence learning is to map the input sequence to afixed-sized vector using one RNN,and then to map the vector to the target sequence with another RNN(this approach has also been taken by Cho et al.[5]).While it could work in principle since the RNN is provided with all the relevant information,it would be difficult to train the RNNs due to the resulting long term dependencies(figure1)[14,4,16,15].However,the Long Short-Term Memory(LSTM) [16]is known to learn problems with long range temporal dependencies,so an LSTM may succeed in this setting.The goal of the LSTM is to estimate the conditional probability p(y1,...,y T′|x1,...,x T)where (x1,...,x T)is an input sequence and y1,...,y T′is its corresponding output sequence whose length T′may differ from T.The LSTM computes this conditional probability byfirst obtaining thefixed-dimensional representation v of the input sequence(x1,...,x T)given by the last hidden state of the LSTM,and then computing the probability of y1,...,y T′with a standard LSTM-LM formulation whose initial hidden state is set to the representation v of x1,...,x T:p(y1,...,y T′|x1,...,x T)=T′t=1p(y t|v,y1,...,y t−1)(1)In this equation,each p(y t|v,y1,...,y t−1)distribution is represented with a softmax over all the words in the vocabulary.We use the LSTM formulation from Graves[10].Note that we require that each sentence ends with a special end-of-sentence symbol“<EOS>”,which enables the model to define a distribution over sequences of all possible lengths.The overall scheme is outlined infigure 1,where the shown LSTM computes the representation of“A”,“B”,“C”,“<EOS>”and then uses this representation to compute the probability of“W”,“X”,“Y”,“Z”,“<EOS>”.Our actual models differ from the above description in three important ways.First,we used two different LSTMs:one for the input sequence and another for the output sequence,because doing so increases the number model parameters at negligible computational cost and makes it natural to train the LSTM on multiple language pairs simultaneously[18].Second,we found that deep LSTMs significantly outperformed shallow LSTMs,so we chose an LSTM with four layers.Third,we found it extremely valuable to reverse the order of the words of the input sentence.So for example,instead of mapping the sentence a,b,c to the sentenceα,β,γ,the LSTM is asked to map c,b,a toα,β,γ, whereα,β,γis the translation of a,b,c.This way,a is in close proximity toα,b is fairly close toβ, and so on,a fact that makes it easy for SGD to“establish communication”between the input and the output.We found this simple data transformation to greatly improve the performance of the LSTM.3ExperimentsWe applied our method to the WMT’14English to French MT task in two ways.We used it to directly translate the input sentence without using a reference SMT system and we it to rescore the n-best lists of an SMT baseline.We report the accuracy of these translation methods,present sample translations,and visualize the resulting sentence representation.3.1Dataset detailsWe used the WMT’14English to French dataset.We trained our models on a subset of12M sen-tences consisting of348M French words and304M English words,which is a clean“selected”subset from[29].We chose this translation task and this specific training set subset because of the public availability of a tokenized training and test set together with1000-best lists from the baseline SMT[29].As typical neural language models rely on a vector representation for each word,we used afixed vocabulary for both languages.We used160,000of the most frequent words for the source language and80,000of the most frequent words for the target language.Every out-of-vocabulary word was replaced with a special“UNK”token.3.2Decoding and RescoringThe core of our experiments involved training a large deep LSTM on many sentence pairs.We trained it by maximizing the log probability of a correct translation T given the source sentence S, so the training objective is1/|S|log p(T|S)(T,S)∈Swhere S is the training set.Once training is complete,we produce translations byfinding the most likely translation according to the LSTM:ˆT=arg maxp(T|S)(2)TWe search for the most likely translation using a simple left-to-right beam search decoder which maintains a small number B of partial hypotheses,where a partial hypothesis is a prefix of some translation.At each timestep we extend each partial hypothesis in the beam with every possible word in the vocabulary.This greatly increases the number of the hypotheses so we discard all but the B most likely hypotheses according to the model’s log probability.As soon as the“<EOS>”symbol is appended to a hypothesis,it is removed from the beam and is added to the set of complete hypotheses.While this decoder is approximate,it is simple to implement.Interestingly,our system performs well even with a beam size of1,and a beam of size2provides most of the benefits of beam search(Table1).We also used the LSTM to rescore the1000-best lists produced by the baseline system[29].To rescore an n-best list,we computed the log probability of every hypothesis with our LSTM and took an even average with their score and the LSTM’s score.3.3Reversing the Source SentencesWhile the LSTM is capable of solving problems with long term dependencies,we discovered that the LSTM learns much better when the source sentences are reversed(the target sentences are not reversed).By doing so,the LSTM’s test perplexity dropped from5.8to4.7,and the test BLEU scores of its decoded translations increased from25.9to30.6.While we do not have a complete explanation to this phenomenon,we believe that it is caused by the introduction of many short term dependencies to the dataset.Normally,when we concatenate a source sentence with a target sentence,each word in the source sentence is far from its corresponding word in the target sentence.As a result,the problem has a large“minimal time lag”[17].By reversing the words in the source sentence,the average distance between corresponding words in the source and target language is unchanged.However,thefirst few words in the source language are now very close to thefirst few words in the target language,so the problem’s minimal time lag is greatly reduced.Thus,backpropagation has an easier time“establishing communication”between the source sentence and the target sentence,which in turn results in substantially improved overall performance.Initially,we believed that reversing the input sentences would only lead to more confident predic-tions in the early parts of the target sentence and to less confident predictions in the later parts.How-ever,LSTMs trained on reversed source sentences did much better on long sentences than LSTMstrained on the raw source sentences(see sec.3.7),which suggests that reversing the input sentences results in LSTMs with better memory utilization.3.4Training detailsWe found that the LSTM models are fairly easy to train.We used deep LSTMs with4layers, with1000cells at each layer and1000dimensional word embeddings,with an input vocabulary of160,000and an output vocabulary of80,000.Thus the deep LSTM uses8000real numbers to represent a sentence.We found deep LSTMs to significantly outperform shallow LSTMs,where each additional layer reduced perplexity by nearly10%,possibly due to their much larger hidden state.We used a naive softmax over80,000words at each output.The resulting LSTM has384M parameters of which64M are pure recurrent connections(32M for the“encoder”LSTM and32M for the“decoder”LSTM).The complete training details are given below:•We initialized all of the LSTM’s parameters with the uniform distribution between-0.08 and0.08•We used stochastic gradient descent without momentum,with afixed learning rate of0.7.After5epochs,we begun halving the learning rate every half epoch.We trained our models for a total of7.5epochs.•We used batches of128sequences for the gradient and divided it the size of the batch (namely,128).•Although LSTMs tend to not suffer from the vanishing gradient problem,they can have exploding gradients.Thus we enforced a hard constraint on the norm of the gradient[10, 25]by scaling it when its norm exceeded a threshold.For each training batch,we computes= g2,where g is the gradient divided by128.If s>5,we set g=5gs.•Different sentences have different lengths.Most sentences are short(e.g.,length20-30) but some sentences are long(e.g.,length>100),so a minibatch of128randomly chosen training sentences will have many short sentences and few long sentences,and as a result, much of the computation in the minibatch is wasted.To address this problem,we made sure that all sentences in a minibatch are roughly of the same length,yielding a2x speedup.3.5ParallelizationA C++implementation of deep LSTM with the configuration from the previous section on a sin-gle GPU processes a speed of approximately1,700words per second.This was too slow for our purposes,so we parallelized our model using an8-GPU machine.Each layer of the LSTM was executed on a different GPU and communicated its activations to the next GPU/layer as soon as they were computed.Our models have4layers of LSTMs,each of which resides on a separate GPU.The remaining4GPUs were used to parallelize the softmax,so each GPU was responsible for multiplying by a1000×20000matrix.The resulting implementation achieved a speed of6,300 (both English and French)words per second with a minibatch size of128.Training took about a ten days with this implementation.3.6Experimental ResultsWe used the cased BLEU score[24]to evaluate the quality of our translations.We computed our BLEU scores using multi-bleu.pl1on the tokenized predictions and ground truth.This way of evaluating the BELU score is consistent with[5]and[2],and reproduces the33.3score of[29]. However,if we evaluate the best WMT’14system[9](whose predictions can be downloaded from \matrix)in this manner,we get37.0,which is greater than the35.8reported by \matrix.The results are presented in tables1and2.Our best results are obtained with an ensemble of LSTMs that differ in their random initializations and in the random order of minibatches.While the decoded translations of the LSTM ensemble do not outperform the best WMT’14system,it is thefirst time that a pure neural translation system outperforms a phrase-based SMT baseline on a large scale MT 1There several variants of the BLEU score,and each variant is defined with a perl script.Methodtest BLEU score (ntst14)Bahdanau et al.[2]28.45Baseline System [29]33.30Single forward LSTM,beam size 1226.17Single reversed LSTM,beam size 1230.59Ensemble of 5reversed LSTMs,beam size 133.00Ensemble of 2reversed LSTMs,beam size 1233.27Ensemble of 5reversed LSTMs,beam size 234.50Ensemble of 5reversed LSTMs,beam size 1234.81Table 1:The performance of the LSTM on WMT’14English to French test set (ntst14).Note that an ensemble of 5LSTMs with a beam of size 2is cheaper than of a single LSTM with a beam of size 12.Methodtest BLEU score (ntst14)Baseline System [29]33.30Cho et al.[5]34.54Best WMT’14result [9]37.0Rescoring the baseline 1000-best with a single forward LSTM35.61Rescoring the baseline 1000-best with a single reversed LSTM35.85Rescoring the baseline 1000-best with an ensemble of 5reversed LSTMs36.5Oracle Rescoring of the Baseline 1000-best lists ∼45Table 2:Methods that use neural networks together with an SMT system on the WMT’14English to French test set (ntst14).task by a sizeable margin,despite its inability to handle out-of-vocabulary words.The LSTM is within 0.5BLEU points of the best WMT’14result if it is used to rescore the 1000-best list of the baselinesystem.3.7Performance on long sentencesWe were surprised to discover that the LSTM did well on long sentences,which is shown quantita-tively in figure 3.Table 3presents several examples of long sentences and their translations.3.8Model AnalysisFigure 2:The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained after processing the phrases in the figures.The phrases are clustered by meaning,which in these examples is primarily a function of word order,which would be difficult to capture with a bag-of-words model.Notice that both clusters have similar internal structure.One of the attractive features of our model is its ability to turn a sequence of words into a vector of fixed dimensionality.Figure 2visualizes some of the learned representations.The figure clearly shows that the representations are sensitive to the order of words,while being fairly insensitive to theTypeSentence Our modelUlrich UNK ,membre du conseil d’administration du constructeur automobile Audi ,affirme qu’il s’agit d’une pratique courante depuis des ann´e es pour que les t´e l´e phones portables puissent ˆe tre collect´e s avant les r´e unions du conseil d’administration afin qu’ils ne soient pas utilis´e s comme appareils d’´e coute `a distance .TruthUlrich Hackenberg ,membre du conseil d’administration du constructeur automobile Audi ,d´e clare que la collecte des t´e l´e phones portables avant les r´e unions du conseil ,afin qu’ils ne puissent pas ˆe tre utilis´e s comme appareils d’´e coute `a distance ,est une pratique courante depuis des ann´e es .Our model“Les t´e l´e phones cellulaires ,qui sont vraiment une question ,non seulement parce qu’ils pourraient potentiellement causer des interf´e rences avec les appareils de navigation ,mais nous savons ,selon la FCC ,qu’ils pourraient interf´e rer avec les tours de t´e l´e phone cellulaire lorsqu’ils sont dans l’air ”,dit UNK .Truth“Les t´e l´e phones portables sont v´e ritablement un probl`e me ,non seulement parce qu’ils pourraient ´e ventuellement cr´e er des interf´e rences avecles instruments de navigation ,mais parce que nous savons ,d’apr`e s la FCC ,qu’ils pourraient perturber les antennes-relais de t´e l´e phonie mobile s’ils sont utilis´e s `a bord ”,a d´e clar´e Rosenker .Our modelAvec la cr´e mation ,il y a un “sentiment de violence contre le corps d’un ˆe tre cher ”,qui sera “r´e duit `a une pile de cendres ”en tr`e s peu de temps au lieu d’un processus de d´e composition “qui accompagnera les ´e tapes du deuil ”.Truth Il y a ,avec la cr´e mation ,“une violence faite au corps aim´e ”,qui va ˆe tre “r´e duit `a un tas de cendres ”en tr`e s peu de temps ,et non apr`e s un processus ded´e composition ,qui “accompagnerait les phases du deuil ”.Table 3:A few examples of long translations produced by the LSTM alongside the ground truth translations.The reader can verify that the translations are sensible using Google translate.Figure 3:The left plot shows the performance of our system as a function of sentence length,where the x-axis corresponds to the test sentences sorted by their length and is marked by the actual sequence lengths.There is no degradation on sentences with less than 35words,there is only a minor degradation on the longest sentences.The right plot shows the LSTM’s performance on sentences with progressively more rare words,where the x-axis corresponds to the test sentences sorted by their “average word frequency rank”.replacement of an active voice with a passive voice.The two-dimensional projections are obtained using PCA.4Related workThere is a large body of work on applications of neural networks to machine translation.So far,the simplest and most effective way of applying an RNN-Language Model (RNNLM)[23]or aFeedforward Neural Network Language Model(NNLM)[3]to an MT task is by rescoring the n-best lists of a strong MT baseline[22],which reliably improves translation quality.More recently,researchers have begun to look into ways of including information about the source language into the NNLM.Examples of this work include Auli et al.[1],who combine an NNLM with a topic model of the input sentence,which improves rescoring performance.Devlin et al.[8] followed a similar approach,but they incorporated their NNLM into the decoder of an MT system and used the decoder’s alignment information to provide the NNLM with the most useful words in the input sentence.Their approach was highly successful and it achieved large improvements over their baseline.Our work is closely related to Kalchbrenner and Blunsom[18],who were thefirst to map the input sentence into a vector and then back to a sentence,although they map sentences to vectors using convolutional neural networks,which lose the ordering of the words.Similarly to this work,Cho et al.[5]used an LSTM-like RNN architecture to map sentences into vectors and back,although their primary focus was on integrating their neural network into an SMT system.Bahdanau et al.[2]also attempted direct translations with a neural network that used an attention mechanism to overcome the poor performance on long sentences experienced by Cho et al.[5]and achieved encouraging results.Likewise,Pouget-Abadie et al.[26]attempted to address the memory problem of Cho et al.[5]by translating pieces of the source sentence in way that produces smooth translations,which is similar to a phrase-based approach.We suspect that they could achieve similar improvements by simply training their networks on reversed source sentences.End-to-end training is also the focus of Hermann et al.[12],whose model represents the inputs and outputs by feedforward networks,and map them to similar points in space.However,their approach cannot generate translations directly:to get a translation,they need to do a look up for closest vector in the pre-computed database of sentences,or to rescore a sentence.5ConclusionIn this work,we showed that a large deep LSTM,that has a limited vocabulary and that makes almost no assumption about problem structure can outperform a standard SMT-based system whose vocabulary is unlimited on a large-scale MT task.The success of our simple LSTM-based approach on MT suggests that it should do well on many other sequence learning problems,provided they have enough training data.We were surprised by the extent of the improvement obtained by reversing the words in the source sentences.We conclude that it is important tofind a problem encoding that has the greatest number of short term dependencies,as they make the learning problem much simpler.In particular,while we were unable to train a standard RNN on the non-reversed translation problem(shown infig.1), we believe that a standard RNN should be easily trainable when the source sentences are reversed (although we did not verify it experimentally).We were also surprised by the ability of the LSTM to correctly translate very long sentences.We were initially convinced that the LSTM would fail on long sentences due to its limited memory, and other researchers reported poor performance on long sentences with a model similar to ours [5,2,26].And yet,LSTMs trained on the reversed dataset had little difficulty translating long sentences.Most importantly,we demonstrated that a simple,straightforward and a relatively unoptimized ap-proach can outperform an SMT system,so further work will likely lead to even greater translation accuracies.These results suggest that our approach will likely do well on other challenging sequence to sequence problems.6AcknowledgmentsWe thank Samy Bengio,Jeff Dean,Matthieu Devin,Geoffrey Hinton,Nal Kalchbrenner,Thang Luong,Wolf-gang Macherey,Rajat Monga,Vincent Vanhoucke,Peng Xu,Wojciech Zaremba,and the Google Brain team for useful comments and discussions.。

相关文档
最新文档