高二数学古典概型2

合集下载

2013宿迁市剑桥国际学校高二数学必修班教案:3.2《古典概型(2)》

2013宿迁市剑桥国际学校高二数学必修班教案:3.2《古典概型(2)》

3.2古典概型(2)
教学目标:
1.进一步理解古典概型的两大特点:有限性、等可能性;
2.了解实际问题中基本事件的含义;
3.能运用古典概型的知识解决一些实际问题.
教学重点:
能用古典概型计算比较复杂的背景问题.
教学难点:
能用古典概型计算比较复杂的背景问题.
教学方法:
问题教学;合作学习;讲解法;多媒体辅助教学.
教学过程:
一、问题情境
如何判断一个试验是否为古典概型?古典概型的解题步骤是什么?
二、学生活动
一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性;
古典概型的解题步骤是:
(1)判断概率模型是否为古典概型;
(2)找出随机事件A中包含的基本事件的个数m和试验中基本事件的总数n;
(3)计算P(A).
三、数学运用
1.例题.
例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投郑这两颗正四面体玩具的试验,试写出:(1)试验的基本事件的总数;
(2)事件“出现点数之和大于3”的概率;
(3)事件出现点数相同的概率.
(3)从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为_________.
(4)口袋中有形状、大小都相同的一只白球和一只黑球,现依次有放回地随机摸取3次,每次摸取一个球.一共有多少种不同的结果?请列出所有可能的结果.
四、要点归纳与方法小结
本节课学习了以下内容:
1.进一步理解古典概型的概念和特点;
2.进一步掌握古典概型的计算公式;
3.能运用古典概型的知识解决一些实际问题.。

古典概型2课时

古典概型2课时
(1)头两位数码都是8的概率;
(2) 头两位数码至少有一个不超过8的概率;
(3)头两位数码不相同的概率
8.在10000张有奖储蓄的奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中买1张奖券,求:
⑴分别获得一等奖、二等奖、三等奖的概率;
⑵中奖的概率.
高二数学必修3第三章第二节
§3.2.1 古典概型(二)
(预习教材P125-P128,找出疑惑之处)
四、教学过程
1.导入
探究1:考察两个试验,完成下面填空:
试验一:抛掷一枚质地均匀的硬币;
试验二:抛掷一枚质地均匀的骰子。
(1)在试验一中,每次试验可能的结果有_______个,即_____________或________________;在试验二中,每次试验可能的结果有____个,即出现______、______、______、______、______、_______;它们都是随机事件,我们把这些随机事件叫做________,它们是试验的每一个结果。
小结:对于古典概型,任何事件A发生的概率计算公式为:
(1)对于古典概型,其中n表示试验的所有可能结果(基本事件)数,m表示事件A包含的结果(基本事件)数,则事件A发生的概率P(A)=_____________。
五、典型例题
例1单选题是标准考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
A 0.5 B 0.25 C 0.75 D 0
2.从分别写有ABCDE的5张卡片中任取两张,两字母恰好相连的概率( )
A 0.2 B 0.4 C 0.3 D 0.7

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

山东省高二数学内容目录

山东省高二数学内容目录

山东省高二数学内容目录高二数学目录主要包括了高二数学必修三以及高二数学选修2-1、选修2-2、选修2-3的课程目录。

涵盖了高二整个数学的课程,供高二的学生参考使用。

必修三目录第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例阅读与思考割圆术小结复习参考题第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型选修2-1目录第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2目录第一章导数及其应用1.1变化率与导数و1.2导数的计算探究与发现牛顿法--用导数方法求方程的近似解1.3导数在研究函数中的应用信息技术应用图形技术与函数性质1.4生活中的优化问题举例1.5定积分的概念信息技术应用曲边梯形的面积1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理阅读与思考平面与空间中的余弦定理。

2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引人3.1数系的扩充和复数的概念3.2复数代数形式的四则运算阅读与思考代数基本定理小结选修2-3目录第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密小结。

第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用p.e对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用。

高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册

高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册

第1课时 古典概型的概率计算公式及其应用A级必备知识基础练1.下列事件属于古典概型的是( )A.任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B.篮球运动员投篮,观察他是否投中C.测量一杯水分子的个数D.在4个完全相同的小球中任取1个2.(2021浙江杭州期中)从一副52张的扑克牌中任抽一张,“抽到K或Q”的概率是( )A.1 26B.113C.326D.2133.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为( )A.1 12B.19C.136D.1184.(多选题)以下对各事件发生的概率判断正确的是( )A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是125.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是 ,抽到高二学生的概率是 ,抽到高三学生的概率是 .6.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为 .7.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 .8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同).(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.9.为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.B级关键能力提升练10.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为( )A.5 8B.18C.38D.1411.若集合A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是( )A.2 9B.13C.89D.112.(多选题)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( )A.任取2件,则取出的2件中恰有1件次品的概率是12B.每次抽取1件,不放回抽取两次,样本点总数为16C.每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D.每次抽取1件,有放回抽取两次,样本点总数为1613.天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数.依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组.得到的10组随机数如下:613,265,114,236,561,435,443,251,154,353.则在此次随机模拟试验中,每天下雨的概率的近似值是 ,三天中有两天下雨的概率的近似值为 .14.有6根细木棒,长度分别为1,2,3,4,5,6,从中任取3根首尾相接,能搭成三角形的概率是 .15.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.16.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60), [60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层随机抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.C级学科素养创新练17.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x/℃101113128发芽数y/颗2325302616 (1)求这5天发芽数的中位数;(2)求这5天的平均发芽数;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,的概率.用(m,n)的形式列出所有基本事件,并求满足{25≤m≤30,25≤n≤3018.从某商场随机抽取了2 000件商品,按商品价格(单位:元)进行统计,所得频率分布直方图如图所示.记价格在[800,1 000),[1 000,1 200),[1 200,1 400]对应的小矩形的面积分别为S1,S2,S3,且S1=3S2=6S3.(1)按分层随机抽样从价格在[200,400),[1 200,1 400]的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;(2)在节日期间,该商场制定了两种不同的促销方案:方案一:全场商品打八折;方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)商品价格[200,400)[400,600)[600,800)[800,1 000)[1 000,1 200)[1 200,1 400]优惠/元3050140160280320第1课时 古典概型的概率计算公式及其应用1.D 判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性. A选项,任意抛掷两颗均匀的正方体骰子,所得点数之和对应的概率不全相等,如点数之和为2与点数之和为3发生的可能性显然不相等,不属于古典概型,故A排除;B选项,“投中”与“未投中”发生的可能性不一定相等,不属于古典概型,故B排除;C选项,杯中水分子有无数多个,不属于古典概型,故C排除;D选项,在4个完全相同的小球中任取1个,每个球被抽到的机会均等,且包含的基本事件共有4个,符合古典概型,故D正确.故选D.2.D 设“抽到K或Q”为事件A,∵基本事件总数为52,事件A包含的基本事件数为8,∴P(A)=8 52=2 13.3.D 样本点总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两种:b=2,c=1;b=4,c=4,故所求概率为236=1 18.4.BCD 对于A,如图所示:由图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P(甲获胜)=13,P(乙获胜)=1 3,故玩一局甲不输的概率是23,故A错误;对于B,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有(2,3),(2,5),(2,7), (2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,15),共有15种样本点,其中和等于14的只有(3,11)一组,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B正确;对于C,基本事件总共有6×6=36(种)情况,其中点数之和是6的有(1,5),(2,4),(3,3),(4,2),(5,1),共5种情况,则所求概率是536,故C正确;对于D,记三件正品为A1,A2,A3,一件次品为B,任取两件产品的所有可能为A1A2,A1A3,A1B,A2A3,A2B,A3B,共6种,其中两件都是正品的有A1A2,A1A3,A2A3,共3种,则所求概率为P=36=12,故D正确.故选BCD.5.4 151325 任意抽取一名学生是等可能事件,样本点总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的样本点的个数分别为20,25和30.故P(A)=2075=415,P(B)=2575=13,P(C)=3075=25.6.15 “从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8), (2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10个样本点,又“它们的长度恰好相差0.3m”包括(2.5,2.8),(2.6,2.9),共2个样本点,由古典概型的概率计算公式可得所求事件的概率为210= 1 5.7.23 甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙), (丙,乙,甲),共6种样本点,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种样本点.所以甲、乙两人相邻而站的概率为46= 2 3.8.解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2), (B,a1),(B,a2),(B,b1),(B,b2).(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13.故这种说法不正确.9.解根据题意可知其样本空间Ω={(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲)},共6个样本点.(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的样本点有:(甲,乙,丙),(乙,甲,丙),共2个,所以P(A)=26=13.所以甲、乙两支队伍恰好排在前两位的概率为13.(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的样本点有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4个,所以P(B)=46= 2 3.所以甲、乙两支队伍出场顺序相邻的概率为23.10.A 甲、乙所猜数字的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2), (3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为1016= 5 8.11.C 随着a,b的取值变化,集合B有32=9(种)可能,如表.经过验证很容易知道其中有8种满足A∩B=B,所以概率是89.故选C.12.ACD 记4件产品分别为1,2,3,a,其中a表示次品.A选项,样本空间Ω={(1,2),(1,3),(1,a),(2,3),(2,a),(3,a)},“恰有一件次品”的样本点为(1,a),(2,a),(3,a),因此其概率P=36=12,A正确;B选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a),(2,1),(2,3),(2,a),(3,1), (3,2),(3,a),(a,1),(a,2),(a,3)},共12种样本点,B错误;C选项,“取出的两件中恰有一件次品”的样本点数为6,其概率为12,C正确;D选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2), (1,3),(1,a),(2,1),(2,2),(2,3),(2,a),(3,1),(3,2),(3,3),(3,a),(a,1),(a,2),(a,3),(a,a)},共16种样本点,D正确.故选ACD.13.1315 每个骰子有6个点数,出现1或2为下雨天,共有6种,则每天下雨的概率的近似值为13,10组数据中,114,251,表示3天中有2天下雨,所以从得到的10组随机数来看,3天中有2天下雨的有2组,则3天中有2天下雨的概率近似值为210= 1 5.14.720 从这6根细木棒中任取3根首尾相接,有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4), (1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6), (3,4,5),(3,4,6),(3,5,6),(4,5,6),共20个样本点,能构成三角形的取法有(2,3,4),(2,4,5),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6),共7个样本点,所以由古典概型概率公式可得所求概率为P=720.15.解用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以样本点总数n=16.(1)记“xy≤3”为事件A,则事件A包含的样本点共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的样本点共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的样本点共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.16.解(1)由(0.005+0.010+0.030+0.025+0.010+x)×10=1,解得x=0.020.(2)设中位数为m,则0.05+0.1+0.2+(m-70)×0.03=0.5,解得m=75.(3)可得满意度评分值在[60,70)内有20人,抽得样本为2人,记为a1,a2,满意度评分值在[70,80)内有30人,抽得样本为3人,记为b1,b2,b3,样本空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1), (a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)},共10个样本点,记“5人中随机抽取2人作主题发言,抽出的2人恰在同一组”为事件A,A包含的样本点个数为4,利用古典概型概率公式可知P(A)=0.4. 17.解(1)因为16<23<25<26<30,所以这5天发芽数的中位数是25.(2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(m,n)表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26), (25,16),(30,26),(30,16),(26,16),共10个基本事件.记满足{25≤m≤30,25≤n≤30为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P(A)=310,即事件{25≤m≤30,25≤n≤30的概率为310.18.解(1)根据频率和为1的性质知0.00050×200+0.00100×200+0.00125×200+S1+S2+S3=1,又S1=3S2=6S3,得到S1=0.30,S2=0.10,S3=0.05.价格在[200,400)的频率为0.00050×200=0.10,价格在[1200,1400]的频率为S3=0.05.按分层随机抽样的方法从价格在[200,400),[1200,1400]的商品中抽取6件,则在[200,400)上抽取4件,记为a1,a2,a3,a4,在[1200,1400]上抽取2件,记为b1,b2.现从中抽出2件,所有可能情况为:a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2,共计15个样本点,其中符合题意的有a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a4b1,a4b2共8个样本点,因此抽到的两件商品价格差超过800元的概率为P=815.(2)对于方案一,优惠的价钱的平均值为:(300×0.10+500×0.20+700×0.25+900×0.30+1100×0.10+1300×0.05)×20%=150;对于方案二,优惠的价钱的平均值为:30×0.10+50×0.20+140×0.25+160×0.30+280×0.10+320×0.05=140.因为150>140,所以选择方案一更好.。

高二数学古典概型试题

高二数学古典概型试题

高二数学古典概型试题1.某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是则在这段时间内吊灯能照明的概率是()A.B.C.D.【答案】C【解析】这段时间内吊灯不能照明的概率,因此这段时间内吊灯能照明的概率【考点】独立事件的概率.2.若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.【答案】D【解析】设“甲或乙被录用”为事件A,则其对立事件表示“甲乙两人都没有被录取”,则P()= ,因此P(A)1-P()=故选D.【考点】古典概型及其概率计算公式.3.某家电专卖店在五一期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:奖次一等奖二等奖三等奖商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.(1)在以上模拟的20组数中,随机抽取3组数,至少有1组获奖的概率;(2)根据以上模拟试验的结果,将频率视为概率:(ⅰ)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;(ⅱ)若本次活动平均每台电视的奖金不超过260元,求m的最大值.【答案】(1);(2)(ⅰ),(ⅱ)400.【解析】解题思路:(1)利用对立事件的概率与古典概型的概率公式求解即可;(2)(ⅰ)根据二项分布的概率公式求解;(ⅱ)平均奖金即随机奖金的数学期望.规律总结:1.遇到“至少”、“至多”,且正面情况较多时,可以考虑对立事件的概率;2.利用概率或随机变量的分布列以及期望、方差解决应用题时,要注意随机变量的实际意义.试题解析:(1)在20组数中,获奖的数组有8组,记“至少有1组获奖”为事件A,则.(2)(ⅰ)购买一台电视机获奖的概率为,则购买的四台电视恰好有两台获奖的概率.(ⅱ)记每台电视的奖金为随机变量,则0,m,2m,5m.由题;;;.则,由于平均每台电视的奖金不超过260元,所以,解得,故本次活动平均每台电视的奖金不超过260元时,m的最大值是400元.【考点】1.古典概型;2.二项分布;3.随机变量的数学期望.4.集合,,点P的坐标为(,),,,则点P在直线下方的概率为 .[【答案】【解析】这是一个古典概型,基本事件总数为个,点P在直线下方这个事件包括共10个基本事件,故该事件的概率为。

高中高三数学古典概型教案

高中高三数学古典概型教案

高中高三数学古典概型教案教学目标:
1. 理解古典概型的基本概念和应用。

2. 解决实际问题中的概率计算。

3. 提高学生的数学思维和应用能力。

教学重点:
1. 古典概型的定义和特点。

2. 古典概型在实际问题中的应用。

3. 概率计算和概率分布。

教学难点:
1. 复杂问题的古典概型解题方法。

2. 概率计算过程中的逻辑性。

教学准备:
1. 教师准备课件和教学素材。

2. 学生准备相关教材和笔记。

教学过程:
一、导入(5分钟)
教师简要介绍古典概型的概念和应用,并提出学习目标。

二、知识讲解(20分钟)
1. 古典概型的定义和特点。

2. 古典概型的应用举例。

3. 概率计算公式和概率分布。

三、示范演练(15分钟)
教师通过几个案例演示古典概型的解题方法和计算过程。

四、分组讨论(15分钟)
学生分组讨论并解决几个古典概型的实际问题。

五、小结(5分钟)
教师复习本节课的重点内容,并总结学习收获。

六、作业布置(5分钟)
布置相关练习和作业,巩固学生对古典概型的理解和运用能力。

教学反思:
本节课通过理论讲解、示范演练和实际问题解决的方式,帮助学生深入理解古典概型的概念和应用,提高了他们的数学思维和实际问题解决能力。

在教学中要注重培养学生的逻辑推理能力和分析问题的能力,引导他们灵活运用数学知识解决实际问题。

高二数学古典概型试题

高二数学古典概型试题

高二数学古典概型试题1.在正方体中任取两条棱,则这两条棱为异面直线的概率为()A.B.C.D.【答案】B.【解析】从正方体的12条棱中,任取两条棱,有种不同的方法,因为与已知棱成异面直线的有4条,所以共有对异面直线,则这两条棱为异面直线的概率.【考点】古典概型.2.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件,“第2次拿出的是白球”为事件,则事件与同时发生的概率是()A.B.C.D.【答案】D【解析】从装有大小相同的5个白球和3个红球共8个球的袋中先后不放回的各取出一个球的方法共有种,事件与同时发生的即两次中第1次取出的是白球,第2次取出的还是白球,这样的取法有种,由古典概型的概率计算公式得事件与同时发生的概率是,故选择D.【考点】古典概型的概率计算.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是A.B.C.D.【答案】C【解析】由已知及古典概率得:,;且知事件A,B相互独立,则也相互独立,则事件A,B中一个都没有发生的概率为:,又因为“事件A,B中一个都没有发生”与“事件A,B中至少有一件发生”是对立事件,所以事件A,B中至少有一件发生的概率为:;故选C.【考点】事件的概率.4.袋中装有大小相同的总数为5的黑球、白球,若从袋中任意摸出2个球,得到的都是白球的概率是,则至少得到1个白球的概率是 .【答案】【解析】设白球有个,则从袋中任意摸出2个球,得到的都是白球的概率是解得先求从袋中任意摸出2个球,得到的都是黑球的概率是因此至少得到1个白球的概率是【考点】古典概型概率5.在一次考试中,某班语文、数学、外语平均分在80分以上的概率分别为、、,则该班的三科平均分都在80分以上的概率是________.【答案】【解析】由于语文、数学、外语平均分在80分以上这三个事件是相互独立的,所以所求事件的概率为××=.6.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为________.【答案】【解析】能获奖有以下两种情况:①5袋食品中三种卡片数分别为1,1,3,此时共有×A33=60(种)不同的方法,其概率为P1==;②5袋食品中三种卡片数分别为2,2,1,共有×A33=90(种)不同的装法,其概率为P2==,所以所求概率P=P1+P2=.7.某市准备从5名报名者(其中男3人,女2人)中选2人参加两个副局长职务竞选。

高二数学上册古典概型知识点总结知识点总结

高二数学上册古典概型知识点总结知识点总结

高二数学上册古典概型知识点总结知识点总结
在中国古代把数学叫算术,又称算学,最后才改为数学。

数学分为两部分,一部分是几何,另一部分是代数。

以下是为大家整理的高二数学上册古典概型知识点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。

1、古典概型
(1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。

(2)特点:①试验结果的有限性②所有结果的等可能性
(3)古典概型的解题步骤;
①求出试验的总的基本事件数 ;
②求出事件A所包含的基本事件数 ;
2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。

常见考法
本节在段考中,一般以选择题、填空题和解答题的形式考查古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。

在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。

误区提醒
在求试验的基本事件时,有时容易计算出错。

基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。

最后,希望小编整理的高二数学上册古典概型知识点对您有所帮助,祝同学们学习进步。

高二数学《321古典概型》课件

高二数学《321古典概型》课件

2
1 2 3 4 5 6 8 5 1 9 4 6 7 2 3 10
P(B)=6/10
记 B={摸到红球}
P(B)=6/10
静态 动态

这里实际上是从“比例” 转化为“概率”
当我们要求“摸到红 球”的概率时,只要找出 它在静态时相应的比例.
8 5 1 9 4 6 7 2 3 10
定义2 设试验E是古典概型, 其所有可能 结果S由n个基本事件组成 , 事件A由k个基 本事件组成 . 则定义事件A的概率为: A包含的基本事件数 P(A)=k/n= S中的基本事件总数 称此概率为古典概率. 这种确定概率的方法 称为古典方法 . 这样就把求概率问题转化为计数问题 . 排列组合是计算古典概率的重要工具 .
3.2.1 古典概型
我们首先引入的计算概率的数学模型, 是在概率论的发展过程中最早出现的研究 对象,通常称为 古典概型
一、古典概型
假定某个试验有有限个可能的结果 e1, e2, …,eN , 假定从该试验的条件及实施方法上去分 析,我们找不到任何理由认为其中某一结果 例如ei,比任一其它结果,例如ej,更有优势, 则我们只好认为所有结果在试验中有同等可 能的出现机会,即1/N的出现机会.
因为抽取时这些球是 完全平等的,我们没有理 由认为10个球中的某一个 会比另一个更容易取得 . 也就是说,10个球中的任 一个被取出的机会是相等 的,均为1/10.
10个球中的任一个被取 出的机会都是1/10
8 5 1 9 4 6 7 2 3 10
我们用 i 表示取到 i号球, i =1,2,…,10 . 则该试验的所有可能结果 S={1,2,…,10} , 且每个基本事件(或者 说所有可能结果)出现 的可能性相同 . 称这样一类随机试验 为古典概型.

高二数学第三章知识点:古典概型

高二数学第三章知识点:古典概型

高二数学第三章学问点:古典概型
高二数学第三章学问点:古典概型
古典概型也叫传统概率、其定义是由法国数学家拉普拉斯(Laplace ) 提出的。

以下是为大家共享的高二数学第三章学问点:古典概型,供大家参考借鉴,欢迎阅读!
1.基本领件:
试验结果中不能再分的最简洁的随机事务称为基本领件.
基本领件的特点:
(1)每个基本领件的发生都是等可能的.
(2)因为试验结果是有限个,所以基本领件也只有有限个.
(3)随意两个基本领件都是互斥的,一次试验只能出现一个结果,即产生一个基本领件.
(4)基本领件是试验中不能再分的最简洁的随机事务,其他事务都可以用基本领件的和的形式来表示.
2.古典概型的.定义:
(1)有限性:试验中全部可能出现的基本领件只有有限
个;
(2)等可能性:每个基本领件出现的可能性相等.
我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.
3.计算古典概型的概率的基本步骤为:
(1)计算所求事务A所包含的基本领件个数m;
(2)计算基本领件的总数n;
(3)应用公式P(A)?m计算概率. n
4.古典概型的概率公式:
P(A)?A包含的基本领件的个数
基本领件的总数.应用公式的关键在于精确计算事务A所包含的基本领件的个数和
基本领件的总数.
要点诠释:
古典概型的推断:假如一个概率模型是古典概型,则其必需满意以上两个条件,有一条不满意则必不是古典概型.如“掷匀称的骰子和硬币”问题满意以上两个条件,所以是古典概型问题;若骰子或硬币不匀称,则每个基本领件出现的可能性不同,从而不是古典概型问题;“在线段AB 上任取一点C,求ACBC的概率”问题,因为基本领件为无限个,所以也不是古典概型问题.。

高中数学第十章概率 古典概型课后提能训练新人教A版必修第二册

高中数学第十章概率 古典概型课后提能训练新人教A版必修第二册

第十章 10.1 10.1.3A 级——基础过关练1.(多选)下列是古典概型的是( )A .从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小B .同时掷两颗骰子,点数和为7的概率C .近三天中有一天降雨的概率D .10个人站成一排,其中甲、乙相邻的概率【答案】ABD【解析】A,B,D 为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而C 不适合等可能性,故不为古典概型.故选ABD .2.(2021年郑州模拟)一部三册的小说,任意排放在书架的同一层上,则第一册和第二册相邻的概率为( )A .13B .12C .23D .34 【答案】C【解析】设一部三册的小说为1,2,3,所以试验的样本空间Ω={(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)},共6个样本点,事件“第一册和第二册相邻”包含4个样本点,故第一册和第二册相邻的概率为p =46=23. 3.从甲、乙、丙、丁、戊五个人中选取三人参加演讲比赛,则甲、乙都当选的概率为( ) A .25B .15C .310D .35【答案】C【解析】从五个人中选取三人有10种不同结果:(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),而甲、乙都当选的结果有3种,故所求的概率为310.故选C . 4.(2021年河南模拟)(多选)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )A .两件都是一等品的概率是13B .两件中有1件是次品的概率是12C .两件都是正品的概率是13D .两件中至少有1件是一等品的概率是56 【答案】BD【解析】由题意设一等品编号为a ,b ,二等品编号为c ,次品编号为d ,从中任取2件的基本情况有(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共6种.对于A,两件都是一等品的基本情况有(a ,b ),共1种,故两件都是一等品的概率P 1=16,故A 错误;对于B,两件中有1件是次品的基本情况有(a ,d ),(b ,d )(c ,d ),共3种,故两件中有1件是次品的概率P 2=36=12,故B 正确; 对于C,两件都是正品的基本情况有(a ,b ),(a ,c ),(b ,c ),共3种,故两件都是正品的概率P 3=36=12,故C 错误;对于D,两件中至少有1件是一等品的基本情况有(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),共5种,故两件中至少有1件是一等品的概率P 4=56,故D 正确. 5.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A .16B .13C .12D .23 【答案】B【解析】所有样本点为(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1).其中从左到右或从右到左恰好为第1,2,3册包含2个样本点,所以p =26=13.故选B . 6.(2021年南充模拟)《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(——表示一根阳线, 表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为( )A .18B .14C .38D .12【答案】C 【解析】从八卦中任取一卦,基本事件总数n =8,这一卦的三根线中恰有2根阳线和1根阴线包含的基本事件个数m =3,∴所求概率为P =38.故选C . 7.(2021年太原月考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是________.【答案】15【解析】设所取的数中b >a 为事件A ,如果把选出的数a ,b 写成一数对(a ,b )的形式,则试验的样本空间Ω={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)},共15个,事件A 包含的样本点有(1,2),(1,3),(2,3),共3个,因此所求的概率P (A )=315=15.8.在某学校图书馆的书架上随意放着编号为1,2,3,4,5的五本书,若某同学从中任意选出2本书,则选出的2本书编号相连的概率为__________.【答案】25【解析】从五本书中任意选出2本书的所有可能情况为(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5)共10种,满足2本书编号相连的所有可能情况为(1,2)、(2,3)、(3,4)、(4,5)共4种,故选出的2本书编号相连的概率为410=25. 9.将一颗质地均匀的骰子先后抛掷2次,观察向上的点数,并分别记为x ,y .(1)若记“x +y =5”为事件A ,求事件A 发生的概率;(2)若记“x 2+y 2≤10”为事件B ,求事件B 发生的概率.解:将一颗质地均匀的骰子抛掷1次,它的点数有1、2、3、4、5、6这6种结果,抛掷第2次,它的点数有1、2、3、4、5、6这6种结果,因为骰子共抛掷2次,所以共有36种结果.(1)事件A 发生的样本点有(1,4)、(2,3)、(3,2)、(4,1)共4种结果,所以事件A 发生的概率为P (A )=436=19. (2)事件B 发生的样本点有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)共6种结果,所以事件B 发生的概率为P (B )=636=16. 10.(2021年安庆期末)某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层随机抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.(1)求应从初级教师、中级教师、高级教师中分别抽取的人数;(2)若从分层随机抽样抽取的6名教师中随机抽取2名教师做进一步数据分析,求抽取的2名教师均为初级教师的概率.解:(1)由分层随机抽样知识得应从初级教师、中级教师、高级教师中抽取的人数分别为3,2,1.(2)在分层随机抽样抽取的6名教师中,3名初级教师分别记为A 1,A 2,A 3,2名中级教师分别记为A 4,A 5,高级教师记为A 6,则从中抽取2名教师的样本空间为Ω={(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6)},即样本点的总数为15.抽取的2名教师均为初级教师(记为事件B )的样本点为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种.所以P (B )=315=15. B 级——能力提升练11.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14C .13D .12【答案】D【解析】设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.故选D . 12.从1,2,3,4中任取两个不同的数,则取出两个数之差的绝对值为2的概率是( ) A .12B .13C .14D .16 【答案】B【解析】从1,2,3,4中任取两个不同的数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)共2种结果,故取出两个数之差的绝对值为2的概率p =26=13.故选B . 13.(2021年哈尔滨月考)在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合再任意排成一行,则得到的数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8 【答案】C【解析】一个五位数能否被2或5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,个位数是1,2,3,4,5是等可能的,“被2或5整除”这一事件等价于个位数字为2,4,5,∴所求概率为35=0.6.故选C . 14.(2021年聊城期末)在国庆阅兵中,某兵种A ,B ,C 三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B 先于A ,C 通过的概率为________.【答案】13【解析】用(A ,B ,C )表示A ,B ,C 通过主席台的次序,则试验的样本空间Ω={(A ,B ,C ),(A ,C ,B ),(B ,A ,C ),(B ,C ,A ),(C ,A ,B ),(C ,B ,A )},共6个样本点,其中事件B 先于A ,C 通过的有(B ,C ,A )和(B ,A ,C ),共2个样本点,故所求概率P =26=13.15.设a 是从集合{1,2,3,4}中随机取出的一个数,b 是从集合{1,2,3}中随机取出的一个数,构成一个样本点(a ,b ).记“这些样本点中,满足log b a ≥1”为事件E ,则E 发生的概率是________.【答案】512【解析】事件E 发生包含的样本点是分别从两个集合中取一个数字,共有12种结果,满足条件的样本点是满足log b a ≥1,可以列举出所有的样本点,当b =2时,a =2,3,4;当b =3时,a =3,4.所以根据古典概型的概率公式得到概率是3+212=512. 16.某校从高二甲、乙两班各选出3名学生参加书画比赛,其中从高二甲班选出了2名男同学、1名女同学,从高二乙班选出了1名男同学、2名女同学.(1)若从这6名同学中抽出2名进行活动发言,写出所有可能的结果,并求高二甲班女同学、高二乙班男同学至少有一人被选中的概率;(2)若从高二甲班和乙班各选1名同学现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率.解:(1)设选出的3名高二甲班同学为A ,B ,C ,其中A 为女同学,B ,C 为男同学,选出的3名高二乙班同学为D ,E ,F ,其中D 为男同学,E ,F 为女同学.从这6名同学中抽出2人的所有可能结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.其中高二甲班女同学、高二乙班男同学至少有一人被选中的可能结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,D ),(C ,D ),(D ,E ),(D ,F ),共9种,故高二甲班女同学、高二乙班男同学至少有一人被选中的概率p =915=35. (2)高二甲班和乙班各选1名的所有可能结果为(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种,选出的2名同学性别相同的有(A ,E ),(A ,F ),(B ,D ),(C ,D ),共4种,所以选出的2名同学性别相同的概率为49. C 级——探索创新练17.(2020年江西月考)某学校有40名高中生参加足球特长生初选,第一轮测身高和体重,第二轮足球基础知识问答,测试员把成绩(单位:分)分组如下:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到频率分布直方图如图所示.(1)根据频率分布直方图估计成绩的平均值(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从成绩在第3,4,5组的高中生中抽6名组成一个小组,若从6人中随机选2人担任小组负责人,求这2人来自第3,4组各1人的概率.解:(1)因为(0.01+0.07+0.06+x +0.02)×5=1,所以x =0.04.所以成绩的平均值为0.05×75+802+0.35×80+852+0.30×85+902+0.20×90+952+0.10×95+1002=87.25. (2)第3组学生人数为0.30×40=12,第4组学生人数为0.20×40=8,第5组学生人数为0.10×40=4,所以抽取的6人中第3,4,5组的人数分别为3,2,1.第3组的3人分别记为A 1,A 2,A 3,第4组的2人分别记为B 1,B 2,第5组的1人记为C ,则从中选出2人的基本事件为共15个,记“从这6人中随机选出2人担任小组负责人,这2人来自第3,4组各1人”为事件M , 则事件M 包含的基本事件为(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),共6个,所以P (M )=615=25.。

概率的基本性质 课件-高二上学期数学人教A版必修 第二册

概率的基本性质 课件-高二上学期数学人教A版必修 第二册

例8:在学校运动会开幕式上,100 名学生组成一个方阵进行表演,他
们按照性别(M (男)、F (女) )及年级(G1 (高一)、G2(高二)、G3(高三)) 分类统计的人数如下表:
G1
G2
G3
M
18
20
14
F
17
24
7
若从这100名学生中随机选一名学生, 求下列概率:
P(M) =_0__.5__2_,P(F) =_0_._4_8__,
(1)C=“抽到红花色”,求P(C);
(2)D=“抽到黑花色”,求P(D).
解:(1)因为C=A∪B,A与B是互斥事件.
根据互斥事件的概率加法公式,得
11 1
P(C)=P(A)+P(B)= 4 4 2
(2)因为C与D互斥,又因为C∪D是必然
事件,所以C与D互为对立事件.因此
P(D)=1-P(C)=
(1)互斥事件的概率的加法公式P(A∪B)=P(A)+P(B).
(2)对于一个较复杂的事件,一般将其分解成几个简单的事件, 当这些事件彼此互斥时,原事件的概率就是这些简单事件的概率的和.
(3)当求解的问题中有“至多”“至少”“最少”等关键词语时, 常常考虑其反面,通过求其反面,然后转化为所求问题.
【注意】有限个彼此互斥事件的ห้องสมุดไป่ตู้的概率,等于这些事件的概
P(M∪F) =_1_____, P(MF) =_0_____,
P(G1) = _0__.3__5_, P(M∪G2) =_0__.7__6__, P(FG3) =_0__.0__7_.
练习1:从不包含大小王牌的52张扑克牌中随机抽取一张,设事件 A=“抽到红心”,事件B=“抽到方片”,P(A)=41P(B)= ,那么

高二数学教学教案人教版上册必修《古典概型》

高二数学教学教案人教版上册必修《古典概型》

榕树因为扎根于深厚的土壤,生命的绿荫才会越长越茂盛。

稗子享受着禾苗一样的待遇,结出的却不是谷穗。

下面是为您推荐高二数学教学教案人教版上册必修《古典概型》。

一、教学目标:(1)理解古典概型及其概率计算公式,(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2.过程与方法根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。

教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

二、教学过程:例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?变式:连续抛掷3枚质地均匀的硬币,观察落地后这3枚硬币出现正面还是反面,写出这个试验的所有基本事件,并计算基本事件的总数。

例2 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?变式:同时掷两个骰子,计算:(1)出现点数相同的概率;(2)出现点数之和为奇数的概率;(3)出现点数之积为偶数的概率。

1.甲乙丙3人在3天节日中值班,每人值班1天.,所有可能的基本事件为() A. 3个B. 6个C. 10个D 12个2.选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。

如果考生掌握了考查的内容,他可以选择惟一正确的答案。

假设考生不会做,他随机的选择一个答案,他答对的概率是()A. 1/2 B. 1/3 C. 1/4 D. 1 3.出拳游戏(锤子、剪刀、布)。

新疆喀什地区巴楚县第二中学高二数学 几何概型课件 新

新疆喀什地区巴楚县第二中学高二数学 几何概型课件 新

几何概型 (3)辨真假?
古典概型与几何概型的相同点与不同点? 相同点:所有基本事件的发生是等可能的. 不同点:古典概型中的基本事件是有限个,
几何概型中的基本事件是无限个.
几何概型 (3)辨真假?
判断下列哪些是几何概型?如果是,求其概率. (1)随机地向边长为2的正方形内放一粒豆子,
豆子恰好落在正方形的内切圆内; (2)掷两颗均匀的骰子,出现点数和为3; (3)在300毫升水样中有一只小虫,从中随机取出
2毫升水样放在显微镜下观察,发现小虫; (4)11月13日上午9:00,巴楚县城区会下雨; (5)等待整点报时的时间不多于10分钟。
类型1—与长度有关的几何概型
1.取一根长为3米的绳子,拉直后在任意位置剪断, 那么剪得两段绳长都不少于1米的概率有多大?
都不小于1m”为事件A,把绳子 三等分,当剪断位置处在中间一段时,事件A发生。 故事件A发生的概率P(A)=1/3。
构成事件A的区域长度 (面积或体积) 试验的全部结果所构成 的区域长度(面积或体积)
几何概型 (2)怎么求?
(1)在区间[-1,2]上任取一个实数x ,记事件A 为 “实数x在[0,1]内”,求概率P(A);
(2)下面是射箭比赛的靶面,靶面直径 为122cm,靶心直径为12.2cm.现一 人随机射箭 ,若每箭都能中靶,且射 中靶面内任一点都是等可能的, 求射 中黄心的概率?
复习—古典概型
古典概型的两个特点? (1) 有限性:所有的基本事件只有有限个;
(2) 等可能性:每个基本事件发生可能性相等.
计算公式?P( A)
A包含的基本事件个数 基本事件的总数
m n
问题:从1,2,……,9共九个数字中任取一个数字,
求取出的数字为偶数的概率. P(“取出的数字为偶数”)= 4 9

3.2.3古典概型

3.2.3古典概型

班级: 小组: 号: 姓名: 出题人:高二数学组必修三 第三章 概率3.2.1 古典概型(9月22日)一、选择题1、下列说法不正确的是( )A 、不可能事件的概率是0,必然事件的概率是1B 、某人射击10次,击中靶心8次,则他击中靶心的概率是0,8C 、“直线y =k(x+1)过点(-1,0)”是必然事件D 、先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是312、将8个参赛队伍通过抽签分成A 、B 两组,每组4队,其中甲、乙两队恰好不在同组的概率为( )A 、74 B 、21 C 、72 D 、533、袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( )A 、111 B 、332 C 、334D 、3354、将4名队员随机分入3个队中,对于每个队来说,所分进的队员数k 满足0≤k≤4,假设各种方法是等可能的,则第一个队恰有3个队员分入的概率是( )A 、8116 B 、8121 C 、818D 、8124二、填空题5、接连三次掷一硬币,正反面轮流出现的概率等于____________6、在100个产品中,有10个是次品,若从这100个产品中任取5个,其中恰有2个次品的概率等于____________7、甲队a 1,a 2,a 3,a 4四人与乙队b 1,b 2,b 3,b 4抽签进行4场乒乓球单打对抗赛,抽到a i 对b i (i =1,2,3,4)对打的概率为____________8、有10件产品,其中有2件次品,从中随机抽取3件,求其中恰有1件次品的概率是________________,至少有一件次品的概率是______________。

9、任意投掷两枚骰子,出现点数相同的概率是_________,出现点数和为奇数的概率是______________三、解答题10、在第1,3,5,8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有1位乘客等候第1路或第3路汽车、假定当时各路汽车首先到站的可能性相等,求首先到站正好是这位乘客所要乘的汽车的概率、11、在某地区有2000个家庭,每个家庭有4个孩子,假定男孩出生率是21(1)求在一个家庭中至少有一个男孩的概率;(2)求在一个家庭中至少有一个男孩且至少有一个女孩的概率;12.柜子里有4双不同的鞋,随机地取出4只,试求下列事件的概率: (1)取出的鞋都不成对;(2)取出的鞋恰好有两只是成对的; (3)取出的鞋至少有两只成对;13、分别以集合A ={2,4,6,8,11,12,13}中任意两个元素为分子,分母构成分数,求这种分数是可约分数的概率、。

高二数学选修二知识点归纳

高二数学选修二知识点归纳

高二数学选修二知识点归纳1.高二数学选修二知识点归纳篇一不等式对于含有参数的一元二次不等式解的讨论1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

2.高二数学选修二知识点归纳篇二(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率。

3.高二数学选修二知识点归纳篇三(1)总体和样本:①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、概率的性质: 0≤P(A)≤1;
P(Ω)=1,P(φ)=0.
考察下列现象,判断那些是随机现象,如果是随 机试验,则写出所有可能的结果:
概 率 初 步
1、抛一铁块,下落。 2、在摄氏20度,水结冰。 3、掷一颗均匀的骰子,其中可能出现的点数为1,2, 3,4,5,6.
4、连续掷两枚硬币,两枚硬币可能出现的正反面的
古 典 概 率
3、概率的性质
概 率 初 步
(1) 随机事件A的概率满足 0≤P(A)≤1 (2)必然事件的概率是1,不可能的事件的概率是0, 即 P(Ω) =1 , P(Φ) =0.
如: 1、抛一铁块,下落。 是必然事件,其概率是1 2、在摄氏20度,水结冰。是不可能事件,其概率是0
例 题 分 析
∴n=10 用A来表示“两数都是奇数”这一事件, 则 A={(13),(15),(3,5)}
∴m=3
3 ∴P(A)= 10
巩 固 练 习
3、同时抛掷1角与1元的两枚硬币,计算: 0.25 (1)两枚硬币都出现正面的概率是 (2)一枚出现正面,一枚出现反面的概率是 0.5 4、在一次问题抢答的游戏,要求答题者在问题所列出的 4个答案中找出唯一正确答案。某抢答者不知道正确答案 便随意说出其中的一个答案,则这个答案恰好是正确答 案的概率是 0.25
考察两个试验 (1)掷一枚质地均匀的硬币的试验 正面向上 反面向上
概 率 初 步
(2)掷一枚质地均匀的骰子的试验 基本事件
特点
六种随机事件
(1)中有两个基本事件 (2)中有6个基本事件
(1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本 事件的和.




概 率 初 步
概 率 初 步
解:试验的样本空间为 Ω={ab,ac,bc} ∴n = 3 用A表示“取出的两件中恰好有一件次品” 这一事件,则 A={ac,bc}
∴m=2
2 ∴P(A)= 3
巩 固 练 习
2、从1,2, 3,4, 5五个数字中,任取两数,求两数 都是奇数的概率.
概 率 初 步
解:试验的样本空间是 Ω={(12) , (13), (14) ,(15) ,(23), (24), (25), (34) ,(35) ,(45)}
5、作投掷二颗骰子试验,用(x,y)表示结果,其中x表示第一
概 率 初 步
颗骰子出现的点数,y表示第二颗骰子出现的点数,求:
(1)事件“出现点数之和大于8”的概率是 (2)事件“出现点数相等”的概率是
1 6
5 18
巩 固 练 习
6、 在掷一颗均匀骰子的实验中,则事件 1 Q={4,6}的概率是
概 率 初 步
例 题 分 析
2、从含有两件正品a,b和一件次品c的三件产品中 每次任取1件,每次取出后不放回,连续取两次, 求取出的两件中恰好有一件次品的概率。
分析:样本空间
p ( A)
概 率 初 步
事件A
m n
它们的元素个数n,m
公式 解:每次取一个,取后不放回连续取两次,其样本空间是 Ω={ (a,b), (a,c), (b,a),(b,c),(c,a), (c,b) }
温故而知新:
1.从事件发生与否的角度可将事件分为哪几类?
概 率 初 步
必然事件、不可能事件、随机事件
2.概率是怎样定义的?
一般地,如果随机事件A在n次试验中发生了m次,当试
验的次数n很大时,我们可以将事件A发生的频率
事件A发生的概率的近似值, 即
作为
m P ( A) n
,(其中P(A)为事件A发生的概率)
(2)等可能性:每个基本事件发生的机会是均等的.
3、古典概率
随机事件A包含的基本事件的个数 m p( A) 样本空间包含的基本事 件的个数 n
课后作业:
课本 P97 习题3.2 No.1、2、3、4、5.
深圳是中国改革开放建立的第一个经济特区,是中国改革开放的窗口,已发展为有一定影响力的国际化城市,创造了举世瞩目的“深圳 速度”,同时享有“设计之都”、“钢琴之城”、“创客之城”等美誉。[5-6] 深圳市域边界设有中国最多的出入境口岸。深圳也是 重要的边境口岸城市,皇岗口岸实施24小时通关。 ; / 深圳摄影培训 jyh28kae 深圳是热门的旅游城市,每年接待的海内外游客人数居国内前列[7] ,深圳市内著名的景点有:世界之窗、欢乐谷、鹤湖新居 [8] 、 大鹏所城、中英街、大梅沙、杨梅坑、西冲、深圳湾公园、深圳鹿嘴山庄度假村等 。 不上了,何况明柯宝音。唐静轩忽然觉得,蝶宵华这样的尤物存在,也有好处,至少色狼都奔他那儿去,兔崽子们就都安全了。“其实 在下也会吹手笛子„„”色狼食指大动,意欲自荐管弦,谱一段人间佳话。澹台以面色玄如锅底,起身,从明柯手中抢过笛子,走了。 “他——”唐静轩急着要替澹台以说句话,“他就这么古怪,您别跟他一般见识。”“„„呵呵,”七王爷不是不生气,但刘晨寂望了 他一眼,他似冰棱子着阳光一沃,失了锋芒,怒不起来了,只好很有风度的挥挥衣袖:“算了。”有眼睛的都看出来了:这位京中黄公 子的身份,比唐静轩还高!高多少?他们脑海中演绎得各有千秋。“诸位„„诸位继续罢,别在意我们。”唐静轩是老实人,被形形色 色的目光闹得脸发烫。七王爷并不给唐静轩好过,继续惹事,兴致勃勃扬声道:“纸笔有多么?我也参与一份?”这句话本身没什么, 可他还很炫耀的对蝶宵华和刘晨寂道:“你们的卷子,我替你们一起交吧?我交得了!”反正澹台以都走了,他自认写出的大作不怕谁 来比了。一室寂静。唐静轩满头大汗。他这辈子没跟这么失礼、狂妄又欠扁的家伙走在一起过!这家伙、这家伙,也太不把自己当外人 了!话说回来,七王爷很快就能经朝廷公报,把食邑指在这儿了。他真不是外人,而将是锦城的主人„„那他直接亮出身份不行吗?又 要玩儿情调、微服出访,又要屁颠屁颠摆主人的架子,这不找抽呢吗!唐静轩哀伤的跟令主求恳:“那„„还有下一题吗?继续?加我 们几份?”黄公子身份比太守长孙高很多!太守长孙对黄公子,像奴才似的听话!——但凡有点儿脑子的人,都立刻达成这条共识。令 主顿时有点儿惶恐,好歹是见过世面的人,定下神来,陪笑道:“是还有一题!小可准备的是——”“不如先以写意画结交吧!”先前 在蝶宵华面前丢了个脸的轻狂书生,这会儿又冲口而出。他倒是真没想到黄公子有几斤几两,只看出黄公子来头不小、还对蝶宵华有意 思。他想称称黄公子有几斤几两。七王爷对他的提议颇感兴趣,问他是什么意思,轻狂书生一五一十道来,解释得倒也清爽,原来是锦 城前几个月方始流行起来的席上游戏法儿,若是些素不相识的人乍遇一起,彼此不熟,自我介绍身家来历什么的又嫌太俗、再说也不能 充分表达志趣,便每人即席说出在脑海中出现的一幅画面,考虑到很多人不善丹青,故不要求落纸笔,只用语言描述即可,但必须是当 时脑海中浮现的画面,故称“写意画”。听着一个人选择什么画,对此人的精神面貌,就有谱了,再听他的遣词造句,对他的文化底子, 也有数了,实在是认识一个人的最快途径。令主看黄公子颇喜欢此提议,灵机一动,拍个马屁,让贵人再喜欢喜欢:“小可准备的第二
Ω={ (a,a),(a,b),(a,c), (b,a), (b,b),(b,c),(c,a), (c,b),(c,c) }
概 率 初 步
∴n=9 用B表示“恰有一件次品”这一事件,则
B={ (a,c), (b,c), (c,a), (c,b) }
∴m=4
4 ∴P(B) = 9
Hale Waihona Puke 巩 固 练 习1、从含有两件正品a,b和一件次品c的三件产品中任取 2件,求取出的两件中恰好有一件次品的概率。
件为n,随机事件A所包含的基本事件数为m,我们 就用 m 来描述事件A出现的可能性大小,称它为 事件A的概率,记作P(A),即有 p ( A) m
n
n
.
我们把可以作古典概型计算的概率称为古典概率. 注: A即是一次随机试验的样本空间的一个子集, 而m是这个子集里面的元素个数;n即是一次随机 试验的样本空间的元素个数.
3
7、一次发行10000张社会福利奖券,其中有1张 特等奖,2张一等奖,10张二等奖,100张三 等奖,其余的不得奖,则购买1张奖券能中奖 的概率 113
10000
课 堂 小 结
1、基本事件
概 率 初 步
2、古典概型 (1)有限性:在随机试验中,其可能出现的结果有
有限个,即只有有限个不同的基本事件;
结果。 5、从装有红、黄、蓝三个大小形状完全相同的球的 袋中,任取两个球,其中可能出现不同色的两个 球的结果。
问题引入:
有红心1,2,3和黑桃4,5这5张扑克牌,将其牌 点向下置于桌上,现从中任意抽取一张,那么抽到的 牌为红心的概率有多大?
江苏如东马塘中学 张伟锋
知识新授: 古 典 概 率
1、基本事件 在一个试验可能发生的所有结果中,那些不能 再分的最简单的随机事件称为基本事件。 什么是基本事件?它有什么特点? (其他事 件都可由基本事件的和来描述)
1、掷一颗均匀的骰子,求掷得偶数点的概率。
分析:先确定掷一颗均匀的骰子试验的样本空间Ω和掷得 偶数点事件A,再确定样本空间元素的个数n,和事件A的 元素个数m.最后利用公式即可。
概 率 初 步
解:掷一颗均匀的骰子,它的样本空间是 Ω={1, 2,3, 4,5,6} ∴n=6
而掷得偶数点事件A={2, 4,6} ∴m=3 3 1 ∴P(A) = 6 2
2、古典概型 我们会发现,以上试验有两个共同特征: (1)有限性:在随机试验中,其可能出现的结果有 有限个,即只有有限个不同的基本事件; (2)等可能性:每个基本事件发生的机会是均等的. 我们称这样的随机试验为古典概型.
古 典 概 率
3、古典概率
概 率 初 步
一般地,对于古典概型,如果试验的基本事
用A表示“取出的两件中恰好有一件次品”这一事件,则 A={ (a,c), (b,c), (c,a), (c,b) }
相关文档
最新文档