高中物理电磁感应综合问题
电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
电磁感应专题-高中物理试题解析版
电磁感应专题(4)1.轻质细线吊着一质量为m =0.32kg 、边长为L =0.8m 、匝数n =10的正方形线圈,总电阻为r =1Ω.边长为L2的正方形磁场区域对称分布在线圈下边的两侧,如图12甲所示,磁场方向垂直纸面向里,大小随时间变化如图12乙所示,从t =0开始经t 0时间细线开始松弛,取g =10m/s 2.求:(1)在前t 0时间内线圈中产生的电动势;(2)在前t 0时间内线圈的电功率;(3)t 0的值.解析(1)由法拉第电磁感应定律得E =nΔΦΔt =n ×12×(L 2)2ΔB Δt =10×12×(0.82)2×0.5V =0.4V.(2)I =Er=0.4A ,P =I 2r =0.16W.(3)分析线圈受力可知,当细线松弛时有:F 安=nBt 0I L 2=mg ,I =E r ,Bt 0=2mgrnEL =2T由图象知:Bt 0=1+0.5t 0(T),解得t 0=2s.答案(1)0.4V(2)0.16W(3)2s2.小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右盘挂有矩形线圈,两臂平衡.线圈的水平连长L =0.1m,竖直连长H =0.3m,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0T,方向垂直线圈平面抽里.线圈中通有可在0-2.0A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g =10m/s 2)(1)为使电磁天平的是量程达到0.5kg,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10Ω,不接外电流,两臂平衡.如图2所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1m.当挂盘中放质量为0.01kg 的物体时,天平平衡,求此时磁感应强度的变化率tB∆∆.3.如图所示,足够长的U 形导体框架的宽度L=0.5m ,电阻可忽略不计,其所在平面与水平面成θ=37°角.有一磁感应强度B=0.8T 的匀强磁场,方向垂直于导体框平面.一根质量m=0.2kg 、电阻为R=2Ω的导体棒MN 垂直跨放在U 形框架上,某时刻起将导体棒由静止释放.已知导体棒与框架间的动摩擦因数μ=0.5.(已知sin37°=0.6,cos37°=0.8,g=10m/s 2),求:(1)导体棒运动过程中的最大速度;(2)从导体棒开始下滑到速度刚达到最大的过程中,通过导体棒横截面的电量Q=2C ,导体棒在此过程中消耗的电能.B 0I 图1图24.如图所示,两根竖直放置在绝缘地面上的金属导轨的上端,接有一个电容为C 的电容器,框架上有一质量为m、长为L 的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h,磁感强度为B 的匀强磁场与框架平面垂直.开始时,电容器不带电.将金属棒由静止释放,问:棒落地时的速度为多大?(整个电路电阻不计)2,因为Q=CUc,所以△Q=C△Uc 电源路端电压U==B l v,而U=Uc,所以△Uc=B l △v.I Qt C U tC Bl v t CBla====∆∆∆∆∆∆①mg-B·I·l=ma②从③式知a=恒量,所以金属棒做匀加速运动.v ah mghm CB l 12222==+5.如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。
高中物理选修21第三章电磁感应(含解析)
高中物理选修2-1第三章电磁感应(含解析)一、单选题1.下列现象中,属于电磁感应现象的是()A.小磁针在通电导线附近发生偏转B.通电线圈在磁场中转动C.闭合线圈在磁场中运动而产生电流D.磁铁吸引小磁针2.下列家用电器中,利用电磁感应原理进行工作的是()A.电吹风B.电冰箱C.电饭煲D.电话机3.下列设备中,利用电磁感应原理工作的是()A.电动机B.白炽灯泡C.发电机D.电风扇4.电磁感应现象在生活及生产中的应用非常普遍,下列不属于电磁感应现象及其应用的是()A.发电机B.电动机C.变压器D.日光灯镇流器5.如图所示,把一条长直导线平行地放在小磁针的上方附近,当导线中有电流通过时,小磁针会发生偏转。
首先观察到这个实验现象的物理学家是()A.奥斯特B.法拉第C.洛伦兹D.楞次6.金属探测器已经广泛应用于安检场所,关于金属探测器的论述正确的是()A.金属探测器可用于食品生产,防止细小的砂石颗粒混入食品中B.金属探测器探测地雷时,探测器的线圈中产生涡流C.金属探测器探测金属时,被测金属中感应出涡流D.探测过程中金属探测器与被测物体相对静止与相对运动探测效果相同7.在物理学中许多规律是通过实验发现的,下列说法正确的是()A.麦克斯韦通过实验首次证明了电磁波的存在B.牛顿通过理想斜面实验发现了物体的运动不需要力来维持C.奥斯特通过实验发现了电流的热效应D.法拉第通过实验发现了电磁感应现象8.关于感应电流,下列说法中正确的是()A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生D.只要闭合电路的导体做切割磁感线运动,电路中就一定有感应电流产生9.奥斯特发现电流的磁效应的这个实验中,小磁针应该放在()A.南北放置的通电直导线的上方B.东西放置的通电直导线的上方C.南北放置的通电直导线同一水平面内的左侧D.东西放置的通电直导线同一水平面内的右侧10.图所示的磁场中,有三个面积相同且相互平行的线圈S1、S2和S3,穿过S1、S2和S3的磁通量分别为Φ1、Φ2和Φ3,下列判断正确的是()A.Φ1最大B.Φ2最大C.Φ3最大D.Φ1=Φ2=Φ3二、多选题11.如图所示,直导线MN竖直放置并通以向上的电流I ,矩形金属线框abcd与MN处在同一平面,边ab与MN平行,则()A.线框向左平移时,线框中有感应电流B.线框竖直向上平移时,线框中有感应电流C.线框以MN为轴转动时,线框中有感应电流D.MN中电流突然变化时,线框中有感应电流12.我国已经制订了登月计划,假如航天员登月后想探测一下月球表面是否有磁场,他手边有一只灵敏电流计和一个小线圈,则下列推断中正确的是()A.直接将电流计放于月球表面,看是否有示数来判断磁场有无B.将电流计与线圈组成闭合回路,使线圈沿某一方向运动,如电流计无示数,则判断月球表面无磁场C.将电流计与线圈组成闭合回路,使线圈沿某一方向运动,如电流计有示数,则判断月球表面有磁场D.将电流计与线圈组成闭合回路,使线圈分别绕两个互相垂直的轴转动,月球表面若有磁场,则电流计至少有一次示数不为零13.于感应电流,下列说法中正确的是()A.只要闭合电路里有磁通量,闭合电路里就有感应电流B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流D.只要闭合电路的一部分导体切割磁感线运动电路中就一定有感应电流14.电磁感应现象揭示了电与磁之间的内在联系,根据这一发现,发明了许多电器设备.以下电器中,哪些利用了电磁感应原理()A.变压器B.白炽灯泡C.电磁灶D.电吹风15.发现电磁感应规律是人类在电磁学研究中的伟大成就。
高中物理模块复习典型题分类-电磁感应(含详细答案)
高中物理模块复习典型题分类-电磁感应(含详细答案)一、单选题1.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W2.如图所示,水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断中正确的是()A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大3.如图所示,A为水平放置的胶木圆盘,在其侧面带有负电荷,在A的正上方用丝线悬挂一个金属圆环B,使B的环面在水平面上且与圆盘面平行,其轴线与胶木盘A的轴线重合。
现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大4.如图所示,AB、CD是一个圆的两条直径且AB、CD夹角为60°,该圆处于匀强电场中,电场强度方向平行该圆所在平面.其中φB=φC=φ,U BA=φ,保持该电场的场强大小和方向不变,让电场以B点为轴在其所在平面内逆时针转过60°.则下列判断中不正确的是()A.转动前U BD=φB.转动后U BD=C.转动后D.转动后5.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。
高考物理电磁感应现象压轴题综合题附答案
高考物理电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R==线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
高中物理电磁感应测试题及参考答案
高中物理电磁感应测试题及参考答案一、单项选择题:(每题3分,共计18分)1、下列说法中正确的有:()A、只要闭合电路内有磁通量,闭合电路中就有感应电流产生B、穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流和感应电动势D、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流,但有感应电动势2、根据楞次定律可知感应电流的磁场一定是:()A、阻碍引起感应电流的磁通量;B、与引起感应电流的磁场反向;C、阻碍引起感应电流的磁通量的变化;D、与引起感应电流的磁场方向相同。
3、穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则()A.线圈中感应电动势每秒增加2VB.线圈中感应电动势每秒减少2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势始终为2V4、在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B随时间如图2变化时,图3中正确表示线圈中感应电动势E变化的是()A. B. C. D.5、如图所示,竖直放置的螺线管与导线abcd构成回路,导线所在区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感强度按下列哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力()6.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移动过程中线框的一边a、b两点间电势差绝对值最大的是()二、多项选择题:(每题4分,共计16分)7、如图所示,导线AB可在平行导轨MN上滑动,接触良好,轨道电阻不计电流计中有如图所示方向感应电流通过时,AB的运动情况是:()A、向右加速运动;B、向右减速运动;C、向右匀速运动;D、向左减速运动。
高中物理电磁感应练习题及答案
高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。
2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。
下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。
二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。
答案:相反;相同。
31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。
如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。
答案:增大;减小。
三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。
答案:A.将回路绕原路转过90°。
法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。
这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。
在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。
高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。
高考物理电磁感应现象压轴题综合题含答案
高考物理电磁感应现象压轴题综合题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。
高中物理电磁感应的综合问题
高中物理电磁感应的综合问题电磁感应中产生了感应电动势E,如果形成闭合电路,就可与电路问题链接在一起,如果有感应电流通过导体,导体受到安培力的作用,可通过受力分析与力学问题、能量问题综合在一起。
通过链接,感应电动势能把场与路的问题及电学、力学问题综合起来,能把高中物理中的几个重要定则、定律:左手定则、右手定则、安培定则、牛顿运动定律、运动学知识、能的转化与守恒规律都链接在一起,形成一个立体的知识网络。
在解决这些综合问题时,我们应该怎样找到解题的突破口呢?首先,要运用法拉第电磁感应定律,求解出电路中的感应电动势,分清内、外电路,然后通过电路分析与受力分析,运用相关的物理规律进行解题,可用如下导图表示:其次,要具备“三种思想”:一是等效电路的思想,即考虑电磁学中的有关规律,如右手定则、楞次定律和法拉第电磁感应定律,将产生感应电动势的那部分电路等效为电源,画出等效电路,分析内外电路结构,应用闭合电路欧姆定律、串并联电路的性质和部分电路欧姆定律理顺各电学量之间的关系,当涉及到电量的求解时,注意一个普遍适用的计算式:感应电流通过电路的电荷量。
二是动力学思想:将通电导体的受力情况及运动情况进行动态分析,应用牛顿定律、动能定理等规律理顺各力学量之间的关系,关键是加速度、速度相互影响、变化的关系。
三是能量守恒的思想:电磁感应过程往往涉及多种能量形式的转化,因此从功和能的观点入手,分析清楚电磁感应过程中能量转化的关系,遵循在全过程中系统机械能、电能、内能之间相互转化和守恒的规律,则问题总能迎刃而解。
例、如图1所示,倾角θ=37°、电阻不计、间距L=0.30 m、长度足够长的平行导轨处,加有磁感应强度为B=1T,方向垂直于导轨平面(图中未画出)的匀强磁场,导轨两端各接一个阻值R0=2Ω的电阻,另一横跨在平行导轨间的金属棒质量m=1kg,电阻r=2Ω,其与导轨间的动摩擦因数μ=0.5,金属棒以平行于导轨向上的初速度v0=10m/s 上滑,直至上升到最高点的过程中,通过上端电阻的电荷量△q=0.1C (g=10m/s2,sin 37°=0.6),求:(1)金属棒的最大加速度;(2)上端电阻R0上产生的热量。
人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 习题课三 电磁感应中的综合问题
习题课三电磁感应中的综合问题课后·训练提升基础巩固一、选择题(第1~2题为单选题,第3~6题为多选题)1.如图所示,垂直于导体框平面向里的匀强磁场的磁感应强度为B,导体ef的长为l,ef的电阻为r,外电阻阻值为R,其余电阻不计。
ef与导体框接触良好,当ef在外力作用下向右以速度v匀速运动时,ef两端的电压为( )A.BlvB.BlvRR+r C.BlvrR+rD.BlvrR,导体棒切割磁感线产生的感应电动势为E=Blv,ef两端的电压相当于电源的路端电压,根据闭合电路欧姆定律得U ef=ER总·R=BlvR+rR,选项B正确。
2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t 按图乙所示变化时,下列选项能正确表示线圈中感应电动势E变化的是( )内,磁感应强度均匀增大,根据楞次定律,线圈中感应电流为负方向,且保持不变;1~3s内,磁感应强度不变,线圈中感应电流为零;3~5s 内,磁感应强度均匀减小,线圈中感应电流为正方向,且保持不变;0~1s内和3~5s内磁场的变化率之比为2∶1,即感应电动势之比为2∶1,可得出感应电动势图像为B,选项B正确。
3.由螺线管、电阻和水平放置的平行板电容器组成的电路如图所示,其中,螺线管匝数为n,横截面积为S,电容器两极板间距为d。
螺线管处于竖直向上的匀强磁场中,一质量为m、电荷量为q的带正电颗粒悬停在电容器中,重力加速度大小为g,则( )A.磁感应强度均匀增大B.磁感应强度均匀减小C.磁感应强度变化率为nmgdqSD.磁感应强度变化率为mgdnqS,带正电颗粒悬停在电容器中,粒子受重力与静电力作用,故静电力竖直向上,电容器下极板带正电,即通电螺线管的下端为电源正极,根据电源内部的电流由负极流向正极,由安培定则可知磁感应强度均匀减小,选项A错误,B正确。
带正电颗粒悬停在电容器中,粒子受重力与静电力作用,有qE=mg,根据法拉第电磁感应定律有E电=nΔΦΔt =nΔBΔtS,且E=E电d,联立解得ΔBΔt =mgdnqS,选项C错误,D正确。
高中物理电磁感应难题集
高中物理电磁感应难题集1.(2015•青浦区一模)如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8).求:(1)金属棒与导轨间的动摩擦因数μ(2)cd离NQ的距离s(3)金属棒滑行至cd处的过程中,电阻R上产生的热量(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式).2.(2015•潍坊校级模拟)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.3.(2014秋•西湖区校级月考)如图,一半径为R的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应强度大小为B,不计重力,求电场强度的大小.4.(2014•秦州区校级模拟)如图所示,两根足够长且平行的光滑金属导轨与水平面成53°夹角固定放置,导轨间连接一阻值为6Ω的电阻R,导轨电阻忽略不计.在两平行虚线m、n间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场.导体棒a的质量为m a=0.4kg,电阻R a=3Ω;导体棒b的质量为m b=0.1kg,电阻R b=6Ω;它们分别垂直导轨放置并始终与导轨接触良好.a、b从开始相距L0=0.5m处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,不计a、b之间电流的相互作用).求:(1)当a、b分别穿越磁场的过程中,通过R的电荷量之比;(2)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比;(3)磁场区域沿导轨方向的宽度d为多大;(4)在整个过程中,产生的总焦耳热.5.(2014•郫县校级模拟)如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30m.导轨电阻忽略不计,其间连接有固定电阻R=0.40Ω.导轨上停放一质量m=0.10kg、电阻r=0.20Ω的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下.用一外力F沿水平方向拉金属杆ab,使之由静止开始运动,电压传感器可将R两端的电压U即时采集并输入电脑,获得电压U随时间t 变化的关系如图乙所示.(1)试证明金属杆做匀加速直线运动,并计算加速度的大小;(2)求第2s末外力F的瞬时功率;(3)如果水平外力从静止开始拉动杆2s所做的功W=0.35J,求金属杆上产生的焦耳热.6.(2014•赣州二模)相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为m2=0.27kg 的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8Ω,导轨电阻不计.ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放.(1)指出在运动过程中ab棒中的电流方向和cd棒受到的安培力方向;(2)求出磁感应强度B的大小和ab棒加速度大小;(3)已知在2s内外力F做功40J,求这一过程中两金属棒产生的总焦耳热;(4)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力f cd随时间变化的图象.7.(2014•广东模拟)如图所示,有一足够长的光滑平行金属导轨,电阻不计,间距L=0.5m,导轨沿与水平方向成θ=30°倾斜放置,底部连接有一个阻值为R=3Ω的电阻.现将一根长也为L=0.5m质量为m=0.2kg、电阻r=2Ω的均匀金属棒,自轨道顶部静止释放后沿轨道自由滑下,下滑中均保持与轨道垂直并接触良好,经一段距离后进入一垂直轨道平面的匀强磁场中,如图所示.磁场上部有边界OP,下部无边界,磁感应强度B=2T.金属棒进入磁场后又运动了一段距离便开始做匀速直线运动,在做匀速直线运动之前这段时间内,金属棒上产生了Q r=2.4J的热量,且通过电阻R上的电荷量为q=0.6C,取g=10m/s2.求:(1)金属棒匀速运动时的速v0;(2)金属棒进入磁场后,当速度v=6m/s时,其加速度a的大小及方向;(3)磁场的上部边界OP距导轨顶部的距离S.8.(2013春•莲湖区校级期末)如图,一直导体棒质量为m、长为l、电阻为r,其两端放在位于水平面内间距也为l的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面.开始时,给导体棒一个平行于导轨的初速度v0.在棒的运动速度由v0减小至v1的过程中,通过控制负载电阻的阻值使棒中的电流强度I保持恒定.导体棒一直在磁场中运动.若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率.9.(2013•上海)如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连.导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T.一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:(1)电路中的电流;(2)金属棒在x=2m处的速度;(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;(4)金属棒从x=0运动到x=2m过程中外力的平均功率.10.(2013•广东)如图(a)所示,在垂直于匀强磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴转动,圆心O和边缘K通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件.流过电流表的电流I与圆盘角速度ω的关系如图(b)所示,其中ab段和bc段均为直线,且ab段过坐标原点.ω>0代表圆盘逆时针转动.已知:R=3.0Ω,B=1.0T,r=0.2m.忽略圆盘、电流表和导线的电阻.(1)根据图(b)写出ab、bc段对应I与ω的关系式;(2)求出图(b)中b、c两点对应的P两端的电压U b、U c;(3)分别求出ab、bc段流过P的电流I p与其两端电压U p的关系式.11.(2013•武清区校级模拟)如图所示,ef,gh为水平放置的足够长的平行光滑导轨,导轨间距为L=1m,导轨左端连接一个R=2Ω的电阻,将一根质量为0.2kg的金属棒cd垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B=2T的匀强磁场中,磁场方向垂直于导轨平面向下.现对金属棒施加一水平向右的拉力F,使棒从静止开始向右运动.试解答以下问题.(1)若施加的水平外力恒为F=8N,则金属棒达到的稳定速度v1是多少?(2)若施加的水平外力的功率恒为P=18W,则金属棒达到的稳定速度v2是多少?(3)若施加的水平外力的功率恒为P=18W,则金属棒从开始运动到速度v3=2m/s的过程中电阻R产生的热量为8.6J,则该过程所需的时间是多少?12.(2013•宝山区一模)相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为m2=0.27kg 的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8Ω,导轨电阻不计.ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放.(g=10m/S2)(1)求出磁感应强度B的大小和ab棒加速度大小;(2)已知在2s内外力F做功40J,求这一过程中ab金属棒产生的焦耳热;(3)求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力f cd随时间变化的图线.13.(2013•河南模拟)如图所示,在一光滑水平的桌面上,放置一质量为M,宽为L的足够长“U”型框架,其ab部分电阻为R,框架其它部分的电阻不计.垂直框架两边放一质量为m、电阻为R的金属棒cd,它们之间的动摩擦因数为μ,棒通过细线跨过一定滑轮与劲度系数为k的另一端固定的轻弹簧相连.开始弹簧处于自然状态,框架和棒均静止.现在让框架在大小为2μmg的水平拉力作用下,向右做加速运动,引起棒的运动可看成是缓慢的.水平桌面位于竖直向上的匀强磁场中,磁感应强度为B.问:(1)框架和棒刚开始运动的瞬间,框架的加速度为多大?(2)框架最后做匀速运动(棒处于静止状态)时的速度多大?(3)若框架通过位移S 后开始匀速,已知弹簧的弹性势能的表达式为kx2(x为弹簧的形变量),则在框架通过位移s 的过程中,回路中产生的电热为多少?14.(2013•漳州模拟)如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg、阻值r=0.5Ω的匀质金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.(g=10m/s2)(1)保持ab棒静止,在0~4s内,通过金属棒ab的电流多大?方向如何?(2)为了保持ab棒静止,需要在棒的中点施加了一平行于导轨平面的外力F,求当t=2s时,外力F的大小和方向;(3)5s后,撤去外力F,金属棒将由静止开始下滑,这时用电压传感器将R两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2.4m,求金属棒此时的速度及下滑到该位置的过程中在电阻R上产生的焦耳热.15.(2012•浙江)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置.如图所示,自行车后轮由半径r1=5.0×10﹣2m的金属内圈、半径r2=0.40m的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4跟金属条,每根金属条的中间均串联有一电阻值为R的小灯泡.在支架上装有磁铁,形成了磁感应强度B=0.10T、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=.后轮以角速度ω=2π rad/s,相对转轴转动.若不计其它电阻,忽略磁场的边缘效应.(1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图;(3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差U ab随时间t变化的U ab﹣t图象;(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价.16.(2012•天津)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T.棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F.17.(2012•广东)如图所示,质量为M的导体棒ab,垂直放在相距为l 的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置间距为d的平行金属板,R和R x分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v.(2)改变R x,待棒沿导轨再次匀速下滑后,将质量为m带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的R x.18.(2012•上海)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上.一电阻不计,质量为m 的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形.棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱.导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0.以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B.在t=0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a.(1)求回路中感应电动势及感应电流随时间变化的表达式;(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?(3)某一过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量.19.(2012•邯郸一模)如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.如图所示,将甲、乙两阻值相同,质量均为m的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l.从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小以a=gsinθ,乙金属杆刚进入磁场时做匀速运动.(1)求每根金属杆的电阻R为多少?(2)从刚释放金属杆时开始计时,写出从计时开始到甲金属杆离开磁场的过程中外力F随时间t的变化关系式,并说明F的方向.(3)若从开始释放两杆到乙金属杆离开磁场,乙金属杆共产生热量Q,试求此过程中外力F对甲做的功.20.(2012•温州模拟)一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面是绝缘且光滑的斜面顶端,自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端BB′,设金属框在下滑时即时速度为v,与此对应的位移为s,那么v2﹣s图象如图2所示,已知匀强磁场方向垂直斜面向上.试问:(1)分析v2﹣s图象所提供的信息,计算出斜面倾角θ和匀强磁场宽度d.(2)匀强磁场的磁感应强度多大?(3)金属框从斜面顶端滑至底端所需的时间为多少?(4)现用平行斜面沿斜面向上的恒力F作用在金属框上,使金属框从斜面底端BB′静止开始沿斜面向上运动,匀速通过磁场区域后到达斜面顶端.试计算恒力F做功的最小值.21.(2012•中山市校级模拟)如图1所示,在坐标系xOy中,在﹣L≤x<0区域存在强弱可变化的磁场B1,在0≤x≤2L区域存在匀强磁场,磁感应强度B2=2.0T,磁场方向均垂直于纸面向里.一边长为L=0.2m、总电阻为R=0.8Ω的正方形线框静止于xOy平面内,线框的一边与y轴重合.(1)若磁场B1的磁场强度在t=0.5s内由2T均匀减小至0,求线框在这段时间内产生的电热为多少?(2)撤去磁场B1,让线框从静止开始以加速度a=0.4m/s2沿x轴正方向做匀加速直线运动,求线框刚好全部出磁场前瞬间的发热功率.(3)在(2)的条件下,取线框中逆时针方向的电流为正方向,试在图2给出的坐标纸上作出线框中的电流I 随运动时间t的关系图线.(不要求写出计算过程,但要求写出图线端点的坐标值,可用根式表示)22.(2012•麦积区校级模拟)如图水平金属导轨的间距为1m,处在一个竖直向上的匀强磁场中,磁感应强度B=2T,其上有一个与之接触良好的金属棒,金属棒的电阻R=1Ω,导轨电阻不计,导轨左侧接有电源,电动势E=10V,内阻r=1Ω,某时刻起闭合开关,金属棒开始运动,已知金属棒的质量m=1kg,与导轨的动摩擦因数为0.5,导轨足够长.问:(1)金属棒速度为2m/s时金属棒的加速度为多大?(2)金属棒达到稳定状态时的速度为多大?(3)导轨的右端是一个高和宽均为0.8m的壕沟,那么金属棒离开导轨后能否落到对面的平台?23.(2012•眉山模拟)如图所示,两根不计电阻的金属导线MN与PQ 放在水平面内,MN是直导线,PQ的PQ1段是直导线,Q1Q2段是弧形导线,Q2Q3段是直导线,MN、PQ1、Q2Q3相互平行.M、P间接入一个阻值R=0.25Ω的电阻.质量m=1.0kg、不计电阻的金属棒AB能在MN、PQ上无摩擦地滑动,金属棒始终垂直于MN,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向竖直向下.金属棒处于位置(I)时,给金属棒一向右的初速度v1=4 m/s,同时给一方向水平向右F1=3N的外力,使金属棒向右做匀减速直线运动;当金属棒运动到位置(Ⅱ)时,外力方向不变,改变大小,使金属棒向右做匀速直线运动2s到达位置(Ⅲ).已知金属棒在位置(I)时,与MN、Q1Q2相接触于a、b两点,a、b的间距L1=1 m;金属棒在位置(Ⅱ)时,棒与MN、Q1Q2相接触于c、d两点;位置(I)到位置(Ⅱ)的距离为7.5m.求:(1)金属棒向右匀减速运动时的加速度大小;(2)c、d两点间的距离L2;(3)金属棒从位置(I)运动到位置(Ⅲ)的过程中,电阻R上放出的热量Q.24.(2012•黄州区校级模拟)如图(a)所示,间距为L电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域I内有方向垂直于斜面的匀强磁场,磁感应强度恒为B不变;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t的大小随时间t变化的规律如图(b)所示.t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上也由静止释放.在ab棒运动到区域Ⅱ的下边界EF之前,cd棒始终静止不动,两棒均与导轨接触良好.又已知cd棒的质量为m,区域Ⅱ沿斜面的长度也是L,在t=t x时刻(t x未知)ab棒恰好进入区域Ⅱ,重力加速度为g.求:(1)通过cd棒中的电流大小和区域I内磁场的方向(2)ab棒开始下滑的位置离区域Ⅱ上边界的距离s;(3)ab棒从开始到下滑至EF的过程中,回路中产生的总热量.(结果均用题中的已知量表示)25.(2011•四川)如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场.电阻R=0.3Ω、质量m1=0.1kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05kg的小环.已知小环以a=6m/s2的加速度沿绳下滑,K 杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10m/s2,sin37°=0.6,cos37°=0.8.求(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率.26.(2011•海南)如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m.竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好.求:(1)细线烧断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度.27.(2011•天津)如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止.取g=10m/s2,问:(1)通过cd棒的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?28.(2011•上海)电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上.阻值r=0.5Ω,质量m=0.2kg 的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q r=0.1J.(取g=10m/s2)求:(1)金属棒在此过程中克服安培力的功W安;(2)金属棒下滑速度v=2m/s时的加速度a.(3)为求金属棒下滑的最大速度v m,有同学解答如下:由动能定理W重﹣W安=mv,….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.29.(2011•奉贤区二模)如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=lm,bc边的边长l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框受到沿光滑斜面向上的恒力F的作用,已知F=10N.斜面上ef线(ef∥gh)的右方有垂直斜面向上的均匀磁场,磁感应强度B随时间t的变化情况如B﹣t图象,时间t是从线框由静止开始运动时刻起计的.如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s=5.1m,求:(1)线框进入磁场时匀速运动的速度v;(2)ab边由静止开始到运动到gh线处所用的时间t;(3)线框由静止开始到运动到gh线的整个过程中产生的焦耳热.30.(2011•萧山区校级模拟)如图所示,两根电阻不计,间距为l的平行金属导轨,一端接有阻值为R的电阻,导轨上垂直搁置一根质量为m.电阻为r的金属棒,整个装置处于竖直向上磁感强度为B的匀强磁场中.现给金属棒施一冲量,使它以初速V0向左滑行.设棒与导轨间的动摩擦因数为μ,金属棒从开始运动到停止的整个过程中,通过电阻R的电量为q.求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.。
高中物理电磁感应经典题型精选(附有答案)
高中物理电磁感应经典题型精选*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前5分钟收取答题卡一、选择题1.如图所示,金属矩形线框abcd用细线悬挂在U形磁铁中央,磁铁可绕OO′轴缓慢转动(从上向下看是逆时针转动),则当磁铁转动时,从上往下看,线框abcd的运动情况是()A.顺时针转动 B.逆时针转动 C.向外平动D.向里平动2.(多选)下列说法正确的是( )A.电容的定义式表明:电容C与电量Q成正比,与电压U成反比B.负电荷在电场中电势越高的地方具有的电势能越多C.电动势由电源中非静电力的特性决定,跟电源的体积无关,也跟外电路无关D.用硅钢片做变压器铁芯是为减小涡流3.右图为日光灯的结构示意图,若按图示的电路连接,关于日光灯发光的情况,下列说法正确的是A.S1接通,S2、S3断开,日光灯就能正常发光B.S1 、S2接通,S3断开,日光灯就能正常发光C.S3断开,接通S1、S2后,再断开S2,日光灯就能正常发光D.S1、S2、S3接通,日光灯就能正常发光4.如图所示,两匀强磁场的磁感应强度和大小相等、方向相反。
金属圆环的直径与两磁场的边界重合。
下列变化会在环中产生顺时针方向感应电流的是()A同时增大减小B. 同时减小增大C. 同时以相同的变化率增大和D. 同时以相同的变化率减小和5.如图所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB 与OO′平行,且AB、OO′所在平面与线圈平面垂直。
若要在线圈中产生abcda 方向的感应电流,可行的做法是A.AB中电流I逐渐增大B.AB中电流I先增大后减小C.AB正对OO′,逐渐靠近线圈D.线圈绕OO′轴逆时针转动90°(俯视)6. 如图所示,两相同灯泡A1、A2,A1与一理想二极管D连接,线圈L的直流电阻不计.下列说法正确的是()A.闭合开关S后,A1会逐渐变亮B.闭合开关S稳定后,A1、A2亮度相同C.断开S的瞬间,A1会逐渐熄灭D.断开S的瞬间,a点的电势比b点低7.在如图所示的电路中,a、b为两个完全相同的灯泡,L为自感线圈,E为电源,S为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( )A.合上开关,a先亮,b后亮;断开开关,a、b同时熄灭B.合上开关,b先亮,a后亮;断开开关,a先熄灭,b后熄灭C.合上开关,b先亮,a后亮;断开开关,a、b同时熄灭D.合上开关,a、b同时亮;断开开关,b先熄灭,a后熄灭8.如图所示,虚线两侧的磁感应强度大小均为B,方向相反,电阻为R的导线弯成顶角为90°,半径为r的两个扇形组成的回路,O为圆心,整个回路可绕O 点转动。
高中物理经典难题电磁感应专题
高中物理大题集练——电磁感应1、如图所示,两平行的光滑金属导轨安装在一倾角为a的光滑绝缘斜面上,导轨间距为L,电阻忽略不计且足够长,以宽度为d的有界匀强磁场垂直于斜面向上,磁感应强度为B.另有一长为2d的绝缘杆将一导体棒和一边长为d(d V L)的正方形线框连在一起组成的固定装置,总质量为m,导体棒中通有大小恒为I的电流.将整个装置置于导轨上,开始时导体棒恰好位于磁场的下边界处.由静止释放后装置沿斜面向上运动,当线框的下边运动到磁场的上边界MN处时装置的速度恰好为零•重力加速度为g.(1)求刚释放时装置加速度的大小;(2)求这一过程中线框中产生的热量;(3)之后装置将向下运动,然后再向上运动,经过若干次往返后,最终整个装置将在斜面上作稳定的往复运动.求稳定后装置运动的最高位置与最低位置之间的距离.2、如图(a)所示,间距为I、电阻不计的光滑导轨固定在倾角为0的斜面上。
在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域II内有垂直于斜面向下的匀强磁场,其磁感应强度B t的大小随时间t变化的规律如图(b)所示。
t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放。
在ab棒运动到区域II的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。
已知cd 棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域II沿斜面的长度为21,在t=t x时刻(t x未知)ab棒恰进入区域II,重力加速度为g。
求:(1) 通过cd棒电流的方向和区域I内磁场的方向;(2) 当ab棒在区域II内运动时,cd棒消耗的电功率;(3) ab棒开始下滑的位置离EF的距离;(4) ab棒开始下滑至EF的过程中回路中产生的热量。
3、如图甲所示,长、宽分别为L[=0.1m、L2=0.2m的矩形金属线框位于竖直平面内,其匝数为100匝,总电阻为1Q,可绕其竖直中心轴O1O2转动.线框的两个末端分别与两个彼此绝缘的铜环C、D(集流环)焊接在一起,并通过电刷和定值电阻R=9Q相连.线框所在空间有水平向右均匀分布的磁场,磁感应强度B的大小随时间t的变化关系如图乙所示,其中B0=5X1O-3T、B1=1X10-2T 和t1=2x10-3S.在0〜t1的时间内,线框保持静止,且线框平面和磁场垂直;t1时刻后线框在外力的驱动下开始绕其竖直中心轴以角速度3=200rad/s匀速转动.求:(2) 线框匀速转动后,在转动一周的过程中电流通过电阻R产生的热量;(3) 线框匀速转动后,从图甲所示位置转过90°的过程中,通过电阻R的电何量.4、有一金属细棒ab,质量m=0.05kg,电阻不计,可在两条轨道上滑动,如图所示,轨道间距为L=0.5m,其平面与水平面的夹角为0=37°,置于垂直于轨道甲平面向上的匀强磁场中,磁感应强度为B=1.0T,金属棒与轨道的动摩擦因数卩=0.5,(设最大静摩擦力与滑动摩擦力大小相等)回路中电源电动势为E=3V,内阻r=0.5Q.(g=10m/s2,sin37°=0.6,cos37°=0.8)求:(1)为保证金属细棒不会沿斜面向上滑动,流过金属细棒ab的电流的最大值为多少?(2)滑动变阻器R的阻值应调节在什么范围内,金属棒能静止在轨道上?5、如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为0的绝缘斜面上,两导轨间距为L。
高中物理电磁感应精选练习题及答案
【例1】 (2004,上海综合)发电的基本原理是电磁感应。
发现电磁感应现象的科学家是( )A .安培B .赫兹C .法拉第D .麦克斯韦解析:该题考查有关物理学史的知识,应知道法拉第发现了电磁感应现象。
答案:C【例2】发现电流磁效应现象的科学家是___________,发现通电导线在磁场中受力规律的科学家是__________,发现电磁感应现象的科学家是___________,发现电荷间相互作用力规律的的科学家是___________。
解析:该题考查有关物理学史的知识。
答案:奥斯特 安培 法拉第 库仑☆☆对概念的理解和对物理现象的认识【例3】下列现象中属于电磁感应现象的是( )A .磁场对电流产生力的作用B .变化的磁场使闭合电路中产生电流C .插在通电螺线管中的软铁棒被磁化D .电流周围产生磁场解析:电磁感应现象指的是在磁场产生电流的现象,选项B 是正确的。
答案:B★巩固练习 1. )A .磁感应强度越大的地方,磁通量越大B .穿过某线圈的磁通量为零时,由B =SΦ可知磁通密度为零 C .磁通密度越大,磁感应强度越大D .磁感应强度在数值上等于1 m 2的面积上穿过的最大磁通量解析:B 答案中“磁通量为零”的原因可能是磁感应强度(磁通密度)为零,也可能是线圈平面与磁感应强度平行。
答案:CD 2. )A .Wb/m 2B .N/A ·mC .kg/A ·s 2D .kg/C ·m解析:物理量间的公式关系,不仅代表数值关系,同时也代表单位.答案:ABC 3. )A .只要穿过线圈的磁通量发生变化,线圈中就一定有感应电流B .只要闭合导线做切割磁感线运动,导线中就一定有感应电流C .若闭合电路的一部分导体不做切割磁感线运动,闭合电路中一定没有感应电流D .当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感应 电流答案:D4.在一长直导线中通以如图所示的恒定电流时,套在长直导线上的闭合线环(环面与导线垂直,长直导线通过环的中心),当发生以 )A .保持电流不变,使导线环上下移动B .保持导线环不变,使长直导线中的电流增大或减小C .保持电流不变,使导线在竖直平面内顺时针(或逆时针)转动D .保持电流不变,环在与导线垂直的水平面内左右水平移动解析:画出电流周围的磁感线分布情况。
高中物理-专题 变压器与电磁感应综合问题(解析版)
2021年高考物理100考点最新模拟题千题精练(选修3-2)第五部分 交变电流专题5.15 变压器与电磁感应综合问题一、选择题1.(2019吉林东北师大附中测试)如图,单匝矩形导线框abcd 与匀强磁场乖直,线框电阻不计,线框绕与cd 边重合的同定转轴以恒定角速度从图示位置开始匀速转动,理想变压器匝数比为n 1:n 2.开关S 断开时,额定功率为P 的灯泡L 1正常发光,电流表示数为I ,电流表内阻不计,下列说法正确的是( )A. 线框中产生的电流为正弦式交变电流B. 线框从图中位置转过π/4时,感应电动势瞬时值为P/IC. 灯泡L 1的额定电压等于12n Pn ID. 如果闭合开关S ,则电流表示数变大 【参考答案】.ABD【解析】线框绕垂直于磁场方向的轴匀速转动,线框中产生的是电流为正弦式交变电流,选项A 正确;线框从中性面转动,当转动π/4时,感应电动势的瞬时值表达式为2P/I ·sin45°=P/I ,选项B 正确;原线圈两端的电压U 1= P/I ,由变压器变压公式,副线圈两端的电压U 2=21n n U 1=21n Pn I,选项C 错误;S 闭合,副线圈电阻变小,输出功率变大,输入功率变大,由P=UI 可知原线圈电流变大,即电流表示数变大,选项D 正确。
2.(2019随州质量检测)(多选)如图所示,MN 和PQ 为处于同一水平面内的两根平行的光滑金属导轨,垂直导轨放置金属棒ab 与导轨接触良好。
N 、Q 端接理想变压器的初级线圈,理想变压器的输出端有三组次级线圈,分别接有电阻元件R 、电感元件L 和电容元件C 。
在水平金属导轨之间加竖直向下的匀强磁场,若用I R 、I L 、I c 分别表示通过R 、L 和C 的电流,则下列判断中正确的是( ) A .在ab 棒匀速运动且ab 棒上的电流已达到稳定后,I R ≠0、I L ≠0、I C =0B.在ab棒匀速运动且ab棒上的电流已达到稳定的,I R=0、I L=0、I C=0C.若ab棒在某一中心位置附近做v=v m sin ωt的运动,则I R≠0、I L≠0、I C≠0D.若ab棒匀加速运动,则I R≠0、I L≠0、I C=0【参考答案】BCD【名师解析】在ab棒匀速运动过程中,ab棒产生恒定的感应电动势,左边原线圈中产生恒定的电流,形成恒定的磁场,穿过右侧的三个副线圈的磁通量不变,则副线圈中没有感应电动势产生,所以I R=0、I L=0、I C=0,故A错误,B正确;若ab棒在某一中心位置附近做简谐运动,原线圈中产生正弦式交变电流,副线圈中将有感应电流产生,故I R≠0、I L≠0、I C≠0,故C正确;若ab棒匀加速运动,原线圈中感应电流均匀增大,穿过副线圈的磁通量均匀增大,副线圈中产生恒定的感应电动势,由于电容器有隔直的特性,I C=0,而电感线圈有通直的特性,I L≠0,故I R≠0、I L≠0、I C=0,故D正确。
高考物理电磁感应现象压轴难题综合题含答案解析
高考物理电磁感应现象压轴难题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。
高中物理计算题提升含答案-电磁感应综合题
电磁感应中的压轴大题常考的问题有以下四个方面1.电磁感应与力学综合问题2.电磁感应与能量综合问题3.电磁感应与电路综合问题4.电磁感应与力、技术应用综合问题不论考查哪类问题,实质上就两个模型.模型1:电磁场中的导体棒模型(单棒)模型2:电磁场中的线框模型(含两根导体棒)解决电磁感应综合问题的一般思路是“先电后力”即●先作“源”的分析——分析电路中由电磁感应所产生的电源,求出电源参数E和r;●再进行“路”的分析——分析电路结构,弄清串并联关系,求出相关部分的电流大小,以便安培力的求解;●然后是“力”的分析——分析研究对象(通常是金属杆、导体、线圈等)的受力情况,尤其注意其所受的安培力;●接着进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型;●最后是“能量”的分析——寻找电磁感应过程和研究对象的运动过程中其能量转化和守恒的关系电磁感应综合(一)1.如图所示,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R的电阻,在两导轨间OO1O1′O′矩形区域内有垂直导轨平面竖直向下,宽为d的匀强磁场,磁感应强度为B。
一根质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0。
现用大小为F、水平向右的恒力拉ab棒,使它Array由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计)。
求:(1)棒ab在离开磁场右边界时的速度;(2)棒ab通过磁场区的过程中整个回路所消耗的电能;(3)试分析讨论ab棒在磁场中可能的运动情况。
2.如图所示,固定于水平桌面上的金属框架cdef,处在竖直向下的匀强磁场中,金属棒ab搁在框架上,可无摩擦滑动。
此时,adeb构成一个边长为l的正方形。
棒的电阻为r,其余部分电阻不计。
开始时磁感强度为B 0。
(1)若从t =0时刻起,磁感强度均匀增加,每秒增量为k ,同时保持棒静止。
求棒中的感应电流。
高考物理电磁感应现象压轴难题综合题附答案解析
高考物理电磁感应现象压轴难题综合题附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
高中物理 电磁感应综合应用问题
电磁感应综合问题,不仅涉及电学多个知识的综合,还常和力学知识相联系,能够考查学生的理解能力、分析综合能力。
是历年高考考查的热点、重点,题型有选择题也有解答题。
所以,本专题在考前应重点强化复习。
知识结构:本专题涉及到的问题有以下几种类型:1.电磁感应和电学知识综合应用。
可以和闭合电路欧姆定律、法拉第电磁感应定律、楞次定律、左右手定则等知识结合,判断电动势和电流大小方向等问题。
2.电磁感应和力学知识综合应用。
可以和力学中的牛顿定律、动量知识结合,判断有关导体棒,线圈速度加速度变化情况。
3.电磁感应和能量转化结合。
判断外力做功情况、电路产热情况以及导体棒或线圈动能变化情况。
重点提示:1.要注意基本规律的理解。
本单元涉及的内容综合性强,但深刻理解基本概念和规律是解决综合问题的基础。
(1)要注意感应电动势的大小和磁通量的变化率成正比,与磁通量的大小无关。
(2)要注意E=和E=BLv 和联系和区别。
(3)要注意左手定则和右手定则的区别。
(4)要深刻理解楞次定律。
理解阻碍含义。
阻碍并不是相反,阻碍也不是阻止。
增反减同,来拒去留。
对线框导体棒在磁场中运动问题要弄清楚哪部分相当于电源,知道电源内部电流是从负极到正极,根据这点判断导体的哪端相当于电源正极。
2.电磁感应与力和运动结合的问题,研究方法与力学相同。
首先明确研究对象,搞清物理过程,正确地进行受力分析。
导体棒在磁场中运动问题是个重点。
对导体棒和线框在磁场中运动时受力情况、运动情况的动态分析,思考方向是:导体受力运动产生感应电动势 ------感应电流---------导体受安培力-------阻碍导体相对运动-------合外力变化---------加速度变化-------速度变化---------感应电动势变化……,当加速度等于零,导体达到稳定运动状态,速度达到最大。
3.电磁感应现象中,产生的电能是其他形式的能转化来的,外力克服安培力做多少功,就有多少电能产生.从能量转化和守恒的观点看,楞次定律是能量守恒定律在电磁感应现象中的具体表现,电磁感应现象是能量守恒定律的重要例证,也是解决一些电磁感应问题的重要方法,从能量守恒和转化方面分析电磁感应问题往往可以使问题变的简单,在复习中应注意应用.典型例题例1.如图所示,在跟匀强磁场垂直的平面内放置一个折成锐角的裸导线MON,∠MON=α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应综合问题电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面:(1)受力情况、运动情况的动态分析。
思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。
要画好受力图,抓住 a =0时,速度v 达最大值的特点。
(2)功能分析,电磁感应过程往往涉及多种能量形势的转化。
例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l xB B 20π=。
一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:(1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律;(2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。
答案:(1))()(sin v l t R l vtv l B F 203222220≤≤=π (2)Rv l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。
一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向与初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。
求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系。
答案:(1)m av x 1220== (2)向运动时=0.18N 向左运动时=0.22N (3)当;x 010220轴相反方向与时,,/>=<F s m lB maR v 当;x 010220轴相同方向与时,,/<=>F s m lB maR v 【例3】 如图5所示,在水平面上有一个固定的两根光滑金属杆制成的37°角的导轨AO 和BO ,在导轨上放置一根和OB 垂直的金属杆CD ,导轨和金属杆是用同种材料制成的,单位长度的电阻值均为0.1Ω/m ,整个装置位于垂直红面向里的匀强磁场中,匀强磁场的磁感应强度随时间的变化关系为B=0.2tT ,现给棒CD 一个水平向右的外力,使CD 棒从t=0时刻从O 点处开始向右做匀加速直线运动,运动中CD 棒始终垂直于OB ,加速度大小为0.1m/s 2,求(1)t=4s 时,回路中的电流大小;(2)t=4s时,CD 棒上安培力的功率是多少?答案:(1)1A (2)0.192W 。
【例4】如图6所示,光滑且足够长的平行金属导轨MN 、PQ 电阻不计,固定在同一水平面上,两导轨相距m 40.=l ,导轨的两个端M 与P 处用导线连接一个R=0.4Ω的电阻。
理想电压表并联在R 两端,导轨上停放一质量m=01kg 、电阻r=0.1Ω的金属杆,整个装置处于磁感应强度B=0.5T 的匀强磁场中,磁场方向垂直导轨平面向下,现用一水平向右的恒定外力F=1.0N 拉杆,使之由静止开始运动,由电压表读数U 随时间t 变化关系的图象可能的是:【例5】如图8所示,两根相距为d 的足够长的光滑平行金属导轨位于竖直的xOy 平面内,导轨与竖直轴yO 平行,其一端接有阻值为R 的电阻。
在y>0的一侧整个平面内存在着与xOy 平面垂直的非均匀磁场,磁感应强度B 随y 的增大而增大,B=ky ,式中的k 是一常量。
一质量为m 的金属直杆MN 与金属导轨垂直,可在导轨上滑动,当t=0时金属杆MN 位于y=0处,速度为v 0,方向沿y 轴的正方向。
在MN 向上运动的过程中,有一平行于y 轴的拉力F 人选用于金属杆MN 上,以保持其加速度方向竖直向下,大小为重力加速度g 。
设除电阻R 外,所有其他电阻都可以忽略。
问:(1)当金属杆的速度大小为20v 时,回路中的感应电动势多大? (2)金属杆在向上运动的过程中拉力F 与时间t 的关系如何?答案:(1)g d kv E 163301= (2))()(gv R gt t v k F 02202t 21≤-=式中 【例6】(2004北京理综)如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻。
一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b 向a 方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值。
解析:(18分)(1)如图所示:重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上(2)当ab 杆速度为v 时,感应电动势E =BLv ,此时电路电流 RBLv R E I ==ab 杆受到安培力Rv L B BIL F 22== 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ 解得 mRv L B g a 22sin -=θ (3)当θsin 22m g Rv L B =时,ab 杆达到最大速度v m 22sin L B mgR v m θ= 【例7】(2004上海)水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。
用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动。
当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图。
(取重力加速度g =10m/s 2)(1)金属杆在匀速运动之前做什么运动?(2)若m =0.5kg ,L =0.5m ,R =0.5Ω;磁感应强度B 为多大?(3)由v —F 图线的截距可求得什么物理量?其值为多少?解析:(1)变速运动(或变加速运动、加速度减小的加速运动,加速运动)。
(2)感应电动势vBL =ε ①感应电流R I ε= ② 安培力RL vB IBL F M 22== ③ 由图线可知金属杆受拉力、安增力和阻力作用,匀速时合力为零。
f RL vB F +=22 ④ )(22f F L B R v -=∴ ⑤ 由图线可以得到直线的斜率k=2,12==∴kLR B (T ) ⑥ (3)由直线的截距可以求得金属杆受到的阻力f ,f =2(N ) ⑦若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数4.0=μ ⑧【例8】如图所示,两根相距为L 的足够长的平行金属导轨,位于水平的xy 平面内,一端接有阻值为R 的电阻。
在0>x 的一侧存在沿竖直方向的均匀磁场,磁感应强度B 随x 的增大而增大,B=kx ,式中的k 是一常量。
一金属杆与金属导轨垂直,可在导轨上滑动。
当t=0时金属杆位于x =0处,速度为0v ,方向沿x 轴的正方向。
在运动过程中,有一大小可调节的外力F 作用于金属杆以保持金属杆的加速度恒定,大小为a ,方向沿x 轴正方向。
除电阻R 以外其余电阻都可以忽略不计。
求:(1)当金属杆的速度大小为v 时,回路中的感应电动势有多大?(2)若金属杆的质量为m ,施加于金属杆上的外力与时间的关系如何?R解析: (1)根据速度和位移的关系式ax v v 2202=- α2202v v x -=由题意可知,磁感应强度为 α2)(202v v k kx B -== 感应电动势为 α2)(202Lv v v BLv E -==(2)金属杆在运动过程中,安培力方向向左,因此,外力方向向右。
由牛顿第二定律得 F -BIL=ma ma R v L B F +=22因为at v v at t v k kx B +=+==020),21(所以ma Rat v at t v L k F +++=)()21(022022 【例9】如图所示,abcd 为质量M=2kg 的导轨,放在光滑绝缘的水平面上,另有一根质量m=0.6kg 的金属棒PQ 平行bc 放在水平导轨上,PQ 棒左边靠着绝缘固定的竖直立柱e 、f ,导轨处于匀强磁场中,磁场以OO ′为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度均为B=0.8T.导轨的bc 段长m l 5.0=,其电阻Ω=4.0r ,金属棒的电阻R=0.2Ω,其余电阻均可不计,金属棒与导轨间的动摩擦因数.2.0=μ 若在导轨上作用一个方向向左、大小为F=2N 的水平拉力,设导轨足够长,g 取10m/s 2,试求:(1)导轨运动的最大加速度;(2)流过导轨的最大电流;(3)拉力F 的最大功率.解析:(1)导轨向左运动时,导轨受到向左的拉力F ,向右的安培力F 1和向右的摩擦力f 。
根据牛顿第二定律:Ma f F F =--1 F 1=BI l (1分)f =μ(mg —BI l )MBIl mg F a )1(:μμ---=整理得 a O`当I=0时,即刚拉动时,a 最大. 2max /4.0s m Mmg F a =-=μ (2)随着导轨速度增大,感应电流增大,加速度减小.当a =0时,I 最大 即0)1(max =---l BI mg F μμ A Blmg F I 5.2)1(max =--=μμ (3)当a =0时,I 最大,导轨速度最大.r R Blv I +=max max s m Blr R I v /75.3)(max max =+= W v F P 5.7max max =⋅=∴【例10】相距为L 的足够长光滑平行金属导轨水平放置,处于磁感应强度为B ,方向竖直向上的匀强磁场中。