QoS for real-time multicast over satellites
QoS典型配置指导
[Switch] acl number 3002 [Switch-acl-adv-3002] rule permit ip source 192.168.1.1 0 destination 192.168.2.1 0 [Switch-acl-adv-3002] quit
第1章 QoS 典型配置指导
1.1 端口限速和流量监管典型配置指导
1.1.1 组网图
图1-1 配置端口限速和流量监管组网图
1.1.2 应用要求
公司企业网通过交换机(以 S5500-EI 为例)实现互连。网络环境描述如下:
z
Host A 的 IP 地址为192.168.1.2,Server 的 IP 地址为192.168.1.1,两
1.1.5 完整配置
# traffic classifier classifier_hostA operator and if-match acl 2000 traffic classifier classifier_hostB operator and if-match acl 3001 traffic classifier classifier_Server operator and if-match acl 3002 # traffic behavior behavior_Server car cir 64 cbs 4000 ebs 4000 green pass red discard yellow pass traffic behavior behavior_hostA car cir 320 cbs 4000 ebs 4000 green pass red discard yellow pass traffic behavior behavior_hostB car cir 64 cbs 4000 ebs 4000 green pass red discard yellow pass # qos policy policy_hostA classifier classifier_hostA behavior behavior_hostA qos policy policy_hostB classifier classifier_hostB behavior behavior_hostB qos policy policy_Server classifier classifier_Server behavior behavior_Server # acl number 2000 rule 0 permit source 192.168.1.2 0 # acl number 3001 rule 0 permit ip source 192.168.2.1 0 destination 192.168.1.1 0 acl number 3002 rule 0 permit ip source 192.168.1.1 0 destination 192.168.2.1 0 # interface GigabitEthernet1/0/1 qos apply policy policy_hostA inbound # interface GigabitEthernet1/0/2 qos apply policy policy_hostB inbound
直播服务器使用指南
超限组播效劳器使用指南超限组播流媒体系统是基于组播的流媒体系统,具有撑持客户数量巨大的长处。
包罗轮播、点播和直播/转播功能。
使用多项独有的专利技术,与其他基于组播的视频效劳系统比拟具有如下长处。
1.操纵IP组播协议撑持海量用户享受视像效劳的时候,效劳器和网络主干的负载极低。
2.成功解决了大规模组播网络丢包造成的视频马赛克问题。
能够确保视频数据传输的可靠性。
3.解决了以IP组播协议实现即点即播VOD的难题,是全球率先采用IP组播协议实现VOD即点即播的功能〔免费试用版不包含此功能〕。
一、安装前筹办工作1.开通网络组播协议,〔1〕首先开通核心交换机的IP组播协议,一般交换机都是用PIM协议撑持组播路由协议,要注意的是PIM协议是针对端口的,所以需要将每一个需要组播数据流的交换机端口都进行PIM设置,建议使用SM稀疏模式;〔2〕其次要开通二层交换机上的IGMP Snooping协议;〔3〕详细的信息介绍参考"如何构建撑持组播协议的校园网"2.检测组播协议的连通性:我们为大师提供了一个简单易用的组播测试东西,具体使用如下:在效劳器端发送组播执行如下步调:〔1〕输入测试的组播地址,注意不要与已经在使用的组播地址冲突;〔2〕点击开始按钮〔3〕您会看到绿灯闪烁,如果是红灯闪烁,那么需要查抄您的网络连接;(4) 需要注意的是如果从头连接网线以后,需要关闭发送端和接收端测试程序,再从头运行,否那么刚刚的错误状态可能干扰下一步的测试。
在客户接收组播端执行如下步调:〔1〕填写与发送端相对应的组播地址;〔2〕点击开始按钮〔3〕您会看到绿灯闪烁,而且会有数据包的相关信息和数量,如果是红灯闪烁,那么需要查抄您的网络连接;〔4〕注意,如果您在用测试软件过程中,曾经插拔网线,或者关闭交换机的电源,测试东西软件会自动遏制工作,您必需关闭测试软件,然后从头翻开测试软件。
3.在WinXP、WIN2000或WIN2003效劳器上安装IIS效劳器,具体的操作步调参考微软的相关资料。
阿姆瑞特 QoS 用户手册说明书
阿姆瑞特流量分析整形产品用户手册北京阿姆瑞特软件有限公司2018年11月版目录第一部分:前言 (4)声明 (4)产品应用差异说明 (4)意见反馈 (4)第二部分:网络规划 (5)产品亮点与应用 (5)产品规格 (6)第三部分:网络部署 (7)网桥接入 (7)基本配置 (7)流量控制配置 (10)连接数控制配置 (16)http管控配置 (18)网关接入 (20)基本配置 (21)接口设置 (23)策略路由设置 (25)负载均衡设置 (27)端口映射设置 (29)DNS管控配置 (30)DHCP配置 (33)PPPOE认证配置 (34)Web认证配置 (45)应用分流配置 (48)PPPOE代拨网关 (51)研发背景及应用场景 (51)正确理解PPPOE代拨 (51)PPPOE代拨的基本配置: (52)代拨路由策略 (52)代拨DNS重定向策略 (53)游戏快线 (53)基本配置 (54)旁路接入 (54)基本配置 (54)第四部分:应用商店 (56)DDNS服务 (57)共享检测 (58)第五部分:设备维护 (59)维护基本原则 (59)如何获取技术支持 (60)接口维护 (61)安全维护 (63)配置备份 (65)第一部分:前言声明版权:本文的内容是阿姆瑞特流量分析整形产品用户手册。
文中的资料、说明等相关内容归北京阿姆瑞特软件有限公司所有。
本文中的任何部分未经北京阿姆瑞特软件有限公司(以下简称“阿姆瑞特”)许可,不得转印、影印或复印、发行。
修订:北京阿姆瑞特软件有限公司保留不预先通知客户而修改本文档所含内容的权利。
责任:北京阿姆瑞特软件有限公司对于您的使用或不能使用本产品而发生的任何损害不负任何赔偿责任,包括但不限于直接的、间接的、附加的个人损害或商业损失或任何其它损失。
产品应用差异说明本文挡的开发过程是基于阿姆瑞特QoS AmFlow 10.00.00。
本文档描述的部分内容可能跟您购买的设备有差异,其原因可能是您购买的设备版本低于或者高于阿姆瑞特QoS AmFlow 10.00.00。
计算机网络第五版之QoS-中文翻译
5.4 QoS前一节所看到的技术是减少拥堵和提高网络性能。
然而,应用程序想要从网络得到更强的性能保证,而不是“尽最大努力”。
特别是多媒体程序,经常有最小吞吐量和最大延迟的要求。
这一节,我们将继续研究网络性能,但是现在要重点关注提供满足应用程序需求的服务质量的方法。
为了提供好的服务质量,一个简单的解决方案是建造一个足以容纳任何流量的具有足够容量的网络。
这个解决方案叫做overprovisioning。
根据这个方案建造的网络将不会有明显的丢包,而且低延迟(假设有一个恰当的路由选择方案)。
这样的网络的性能是最好的。
某种程度上,电话系统是overprovisioning的,因为一般情况下,拿起听筒立刻就能听到拨号音。
这是因为,电话系统有足够多的可用容量,总是能满足需求。
这个方案的问题在于,太过昂贵。
基本上就是砸钱来解决问题。
QoS机制使用较少的容量同时较低的成本来让网络满足应用程序的需求。
此外,overprovisioning基于预期的流量。
如果流量模式有较大的改变,所有投资就白费了。
使用QoS机制,网络能坚持做出的性能保证,即使流量模式有较大的变化,代价是拒绝一些请求。
为了确保服务质量,有四个问题必须解决:1、应用程序对网络有什么需求。
2、如何调整进入网络的流量。
3、为了保证性能,如何在路由器上预留资源。
4、网络能否稳妥地接受更多的流量。
没有单项技术能有效应对所有这些问题。
相反,发展了多种技术用在网络(传输)层。
实际使用的服务质量解决方案捆绑了多种技术。
为此,我们将描述用于互联网的两个版本的服务质量,称作Intergrated Services和Differentiated Services。
5.4.1 应用程序需求从源到目的的一连串数据分组,称作流(flow)。
一条流,在面向连接的网络中是一个连接上的所有数据分组,在无连接网络中是从一个进程发往另一个进程的所有数据分组。
每条流的需求能用下面四个主要参数来描述:带宽、延迟、抖动和丢失率。
07-QoS配置命令
-2-
QoS 配置命令
service-policy
1.1.2 bandwidth
要配置当前流映像所占带宽和队列上限,可使用策略映像配置态中的配置命令 bandwidth,使用本命令的 no 形式从策略映像中删除某个类型映像或恢复参数的默认值。
bandwidth bandwidth(kbps) [queue-limit packet-number]
-I-
第1章 QoS 配置命令
1.1 QoS配置命令
QoS 配置命令包括: z Class z Bandwidth z priority z set z class-map z custom-queue-list z fair-queue z policy-map z priority-group z priority-list default z priority-list interface z priority-list protocol z priority-list queue-limit z queue-list default z queue-list interface z queue-list protocol z queue-list queue byte-count z queue-list queue limit z random-detect z service-policy z show class-map z show policy-map z show queue
QoS技术详解及实例
一般来说,基于存储转发机制的Internet(Ipv4标准)只为用户提供了“尽力而为(best-effort)”的服务,不能保证数据包传输的实时性、完整性以及到达的顺序性,不能保证服务的质量,所以主要应用在文件传送和电子邮件服务。
随着Internet的飞速发展,人们对于在Internet上传输分布式多媒体应用的需求越来越大,一般说来,用户对不同的分布式多媒体应用有着不同的服务质量要求,这就要求网络应能根据用户的要求分配和调度资源,因此,传统的所采用的“尽力而为”转发机制,已经不能满足用户的要求。
QoS的英文全称为"Quality of Service",中文名为"服务质量"。
QoS是网络的一种安全机制, 是用来解决网络延迟和阻塞等问题的一种技术。
对于网络业务,服务质量包括传输的带宽、传送的时延、数据的丢包率等。
在网络中可以通过保证传输的带宽、降低传送的时延、降低数据的丢包率以及时延抖动等措施来提高服务质量。
通常 QoS 提供以下三种服务模型:Best-Effort service(尽力而为服务模型)Integrated service(综合服务模型,简称Int-Serv)Differentiated service(区分服务模型,简称Diff-Serv)1. Best-Effort 服务模型Best-Effort 是一个单一的服务模型,也是最简单的服务模型。
对Best-Effort 服务模型,网络尽最大的可能性来发送报文。
但对时延、可靠性等性能不提供任何保证。
Best-Effort 服务模型是网络的缺省服务模型,通过FIFO 队列来实现。
它适用于绝大多数网络应用,如FTP、E-Mail等。
2. Int-Serv 服务模型Int-Serv 是一个综合服务模型,它可以满足多种QoS需求。
该模型使用资源预留协议(RSVP),RSVP 运行在从源端到目的端的每个设备上,可以监视每个流,以防止其消耗资源过多。
通用路由平台 VRP 说明书 QoS 分册
目录第1章 QoS简介.....................................................................................................................1-11.1 简介....................................................................................................................................1-11.2 传统的分组投递业务..........................................................................................................1-11.3 新业务引发的新需求..........................................................................................................1-21.4 拥塞的产生、影响和对策...................................................................................................1-21.4.1 拥塞的产生..............................................................................................................1-21.4.2 拥塞的影响..............................................................................................................1-31.4.3 对策.........................................................................................................................1-31.5 几种主要的流量管理技术...................................................................................................1-4第2章流量监管和流量整形配置............................................................................................2-12.1 简介....................................................................................................................................2-12.1.1 流量监管..................................................................................................................2-12.1.2 流量整形..................................................................................................................2-32.1.3 接口限速..................................................................................................................2-52.2 配置流量监管.....................................................................................................................2-62.2.1 建立配置任务...........................................................................................................2-62.2.2 配置流量监管列表....................................................................................................2-72.2.3 配置流量监管策略....................................................................................................2-72.2.4 检查配置结果...........................................................................................................2-72.3 配置流量整形.....................................................................................................................2-82.3.1 建立配置任务...........................................................................................................2-82.3.2 配置流量整形...........................................................................................................2-82.3.3 检查配置结果...........................................................................................................2-92.4 配置接口限速.....................................................................................................................2-92.4.1 建立配置任务...........................................................................................................2-92.4.2 配置接口限速.........................................................................................................2-102.4.3 检查配置结果.........................................................................................................2-102.5 配置举例...........................................................................................................................2-102.5.1 流量监管配置示例..................................................................................................2-102.5.2 流量整形配置示例..................................................................................................2-12第3章拥塞管理配置..............................................................................................................3-13.1 简介....................................................................................................................................3-13.1.1 拥塞管理策略...........................................................................................................3-13.1.2 拥塞管理技术的对比................................................................................................3-53.2 配置先进先出队列..............................................................................................................3-63.2.1 建立配置任务...........................................................................................................3-63.2.2 配置FIFO队列的长度.............................................................................................3-73.3 配置优先队列.....................................................................................................................3-73.3.1 建立配置任务...........................................................................................................3-73.3.2 配置优先列表...........................................................................................................3-83.3.3 配置缺省队列...........................................................................................................3-93.3.4 配置队列长度...........................................................................................................3-93.3.5 在接口上应用优先列表组.........................................................................................3-93.3.6 检查配置结果.........................................................................................................3-103.4 配置定制队列...................................................................................................................3-103.4.1 建立配置任务.........................................................................................................3-103.4.2 配置定制列表.........................................................................................................3-113.4.3 配置缺省队列.........................................................................................................3-113.4.4 配置队列长度.........................................................................................................3-123.4.5 配置各队列每次轮询发送的字节数........................................................................3-123.4.6 在接口上应用定制列表..........................................................................................3-123.4.7 检查配置结果.........................................................................................................3-133.5 配置加权公平队列............................................................................................................3-133.5.1 建立配置任务.........................................................................................................3-133.5.2 配置加权公平队列..................................................................................................3-143.5.3 检查配置结果.........................................................................................................3-143.6 配置RTP队列..................................................................................................................3-143.6.1 建立配置任务.........................................................................................................3-143.6.2 在接口上应用RTP队列.........................................................................................3-153.6.3 配置最大预留带宽..................................................................................................3-163.6.4 检查配置结果.........................................................................................................3-163.7 优先队列配置举例............................................................................................................3-16第4章拥塞避免配置..............................................................................................................4-14.1 简介....................................................................................................................................4-14.2 配置WRED........................................................................................................................4-34.2.1 建立配置任务...........................................................................................................4-34.2.2 启用WRED............................................................................................................4-44.2.3 配置WRED计算平均队长的指数............................................................................4-44.2.4 配置WRED各优先级参数.......................................................................................4-44.2.5 检查配置结果...........................................................................................................4-5第5章基于类的QoS配置.....................................................................................................5-15.1 简介....................................................................................................................................5-15.1.1 流分类......................................................................................................................5-25.1.2 标记.........................................................................................................................5-25.1.3 DSCP......................................................................................................................5-35.1.4 标准的PHB.............................................................................................................5-35.1.5 基于类的队列CBQ(Class Based Queue)..........................................................5-4 5.2 配置流分类.........................................................................................................................5-45.2.1 建立配置任务...........................................................................................................5-45.2.2 在类视图中定义匹配类的规则.................................................................................5-55.2.3 检查配置结果...........................................................................................................5-6 5.3 配置基于类的标记动作.......................................................................................................5-75.3.1 建立配置任务...........................................................................................................5-75.3.2 配置标记报文的DSCP值........................................................................................5-85.3.3 配置标记报文的IP优先级值...................................................................................5-85.3.4 配置标记FR报文的DE标志位的值........................................................................5-85.3.5 配置标记ATM信元的CLP标志位的值...................................................................5-85.3.6 配置标记MPLS EXP域的值...................................................................................5-95.3.7 配置标记VLAN优先级8021P的值.........................................................................5-9 5.4 配置基于类的流量监管和流量整形动作.............................................................................5-95.4.1 建立配置任务...........................................................................................................5-95.4.2 配置基于类的流量监管动作...................................................................................5-105.4.3 配置基于类的流量整形动作...................................................................................5-105.4.4 检查配置结果.........................................................................................................5-11 5.5 配置基于类的流量限速动作..............................................................................................5-115.5.1 建立配置任务.........................................................................................................5-115.5.2 配置基于类的流量限速动作...................................................................................5-125.5.3 检查配置结果.........................................................................................................5-12 5.6 配置CBQ动作.................................................................................................................5-125.6.1 建立配置任务.........................................................................................................5-125.6.2 配置AF..................................................................................................................5-135.6.3 配置WFQ..............................................................................................................5-135.6.4 配置最大队列长度..................................................................................................5-145.6.5 配置EF.................................................................................................................5-145.6.6 检查配置结果.........................................................................................................5-14 5.7 配置基于类的WRED动作...............................................................................................5-155.7.1 建立配置任务.........................................................................................................5-155.7.2 配置基于类的WRED丢弃方式.............................................................................5-155.7.3 配置基于类的WRED的丢弃参数.........................................................................5-165.7.4 检查配置结果.........................................................................................................5-16 5.8 配置流量策略...................................................................................................................5-175.8.1 建立配置任务.........................................................................................................5-175.8.2 定义策略并进入策略视图.......................................................................................5-175.8.3 为流分类指定流动作..............................................................................................5-185.8.4 检查配置结果.........................................................................................................5-185.9 配置策略嵌套动作............................................................................................................5-185.9.1 建立配置任务.........................................................................................................5-185.9.2 配置策略嵌套动作.................................................................................................5-195.9.3 检查配置结果.........................................................................................................5-205.10 应用策略.........................................................................................................................5-205.10.1 建立配置任务.......................................................................................................5-205.10.2 应用策略..............................................................................................................5-215.10.3 检查配置结果.......................................................................................................5-215.11 调试CBQ.......................................................................................................................5-215.12 配置举例.........................................................................................................................5-225.12.1 基于类的队列配置举例........................................................................................5-225.12.2 策略嵌套配置举例...............................................................................................5-26第6章 QPPB配置..................................................................................................................6-16.1 简介....................................................................................................................................6-16.2 配置QPPB.........................................................................................................................6-26.2.1 建立配置任务...........................................................................................................6-26.2.2 配置路由策略...........................................................................................................6-36.2.3 应用路由策略...........................................................................................................6-46.2.4 定义类及类的匹配规则............................................................................................6-46.2.5 配置基于类的动作....................................................................................................6-46.2.6 定义流量策略...........................................................................................................6-46.2.7 在接口下应用流量策略............................................................................................6-46.2.8 在接口下应用QPPB................................................................................................6-56.2.9 检查配置结果...........................................................................................................6-56.3 QPPB配置举例..................................................................................................................6-56.4 故障排除...........................................................................................................................6-11第7章链路效率机制配置.......................................................................................................7-17.1 简介....................................................................................................................................7-17.1.1 IP报文头压缩..........................................................................................................7-17.1.2 链路分片与交叉.......................................................................................................7-27.2 配置IP报文头压缩.............................................................................................................7-37.2.1 建立配置任务...........................................................................................................7-37.2.2 启动IP头压缩........................................................................................................7-47.2.3 配置TCP头压缩的最大连接数................................................................................7-47.2.4 配置RTP头压缩的最大连接数................................................................................7-57.2.5 检查配置结果...........................................................................................................7-57.3 配置链路分片和交叉..........................................................................................................7-57.3.1 建立配置任务...........................................................................................................7-57.3.2 使能LFI..................................................................................................................7-67.3.3 配置LFI分片的最大时延........................................................................................7-67.3.4 配置MP绑定带宽....................................................................................................7-67.3.5 启动VT接口动态QoS的限速功能.........................................................................7-77.4 维护....................................................................................................................................7-77.4.1 调试IP头压缩.........................................................................................................7-77.4.2 清空压缩运行信息....................................................................................................7-8第8章帧中继QoS配置.........................................................................................................8-18.1 简介....................................................................................................................................8-18.1.1 帧中继class............................................................................................................8-28.1.2 实现的帧中继QoS...................................................................................................8-28.2 配置帧中继流量整形..........................................................................................................8-58.2.1 建立配置任务...........................................................................................................8-58.2.2 配置帧中继流量整形参数.........................................................................................8-68.2.3 将整形参数应用到接口............................................................................................8-78.2.4 使能帧中继流量整形................................................................................................8-78.3 配置帧中继流量监管..........................................................................................................8-88.3.1 建立配置任务...........................................................................................................8-88.3.2 配置帧中继流量监管参数.........................................................................................8-98.3.3 将流量监管参数应用到接口.....................................................................................8-98.3.4 使能帧中继流量监管................................................................................................8-98.4 配置帧中继接口的拥塞管理..............................................................................................8-108.4.1 建立配置任务.........................................................................................................8-108.4.2 配置帧中继接口的拥塞管理策略............................................................................8-108.5 配置帧中继虚电路的拥塞管理..........................................................................................8-118.5.1 建立配置任务.........................................................................................................8-118.5.2 配置帧中继虚电路的拥塞管理策略........................................................................8-128.5.3 配置虚电路的DE规则...........................................................................................8-128.5.4 将拥塞策略应用到虚电路.......................................................................................8-138.6 配置帧中继通用队列........................................................................................................8-138.6.1 建立配置任务.........................................................................................................8-138.6.2 配置帧中继通用队列..............................................................................................8-148.6.3 将通用队列应用到帧中继接口...............................................................................8-158.6.4 将通用队列应用到帧中继虚电路............................................................................8-158.6.5 检查配置结果.........................................................................................................8-158.7 配置帧中继PVC PQ队列................................................................................................8-168.7.1 建立配置任务.........................................................................................................8-168.7.2 配置帧中继接口的PVC PQ队列...........................................................................8-168.7.3 配置帧中继虚电路PVC PQ队列等级....................................................................8-178.8 配置帧中继分片................................................................................................................8-188.8.1 建立配置任务.........................................................................................................8-188.8.2 配置帧中继分片.....................................................................................................8-198.8.3 将帧中继分片应用到虚电路...................................................................................8-198.8.4 检查配置结果.........................................................................................................8-198.9 调试帧中继QoS...............................................................................................................8-208.10 配置举例.........................................................................................................................8-208.10.1 帧中继流量整形配置举例.....................................................................................8-208.10.2 帧中继分片配置举例............................................................................................8-22第9章 ATM QoS配置............................................................................................................9-19.1 简介....................................................................................................................................9-19.2 配置ATM PVC的拥塞管理................................................................................................9-29.2.1 建立配置任务...........................................................................................................9-29.2.2 配置ATM PVC的FIFO队列...................................................................................9-39.2.3 配置ATM PVC的CQ队列.....................................................................................9-49.2.4 配置ATM PVC的PQ队列......................................................................................9-49.2.5 配置ATM PVC的WFQ队列..................................................................................9-49.2.6 应用CBQ................................................................................................................9-49.2.7 配置ATM PVC的RTPQ队列.................................................................................9-59.2.8 配置ATM PVC的预留带宽.....................................................................................9-59.3 配置ATM PVC的拥塞避免................................................................................................9-59.3.1 建立配置任务...........................................................................................................9-59.3.2 配置ATM PVC的拥塞避免.....................................................................................9-69.4 配置ATM接口的流量监管.................................................................................................9-79.4.1 建立配置任务...........................................................................................................9-79.4.2 配置ATM接口的流量监管.......................................................................................9-79.5 配置ATM接口基于类的策略..............................................................................................9-89.5.1 建立配置任务...........................................................................................................9-89.5.2 配置ATM接口基于类的策略...................................................................................9-99.6 配置PVC业务映射............................................................................................................9-99.6.1 建立配置任务...........................................................................................................9-99.6.2 配置PVC-Group内PVC的IP优先级..................................................................9-109.6.3 为PVC-Group内创建的PVC配置流量参数.........................................................9-109.7 Multilink PPPoA QoS配置...............................................................................................9-119.7.1 建立配置任务.........................................................................................................9-119.7.2 创建Multilink PPPoA虚拟接口模板......................................................................9-129.7.3 创建PPPoA虚拟接口模板并绑定到Multilink PPPoA...........................................9-129.7.4 配置PPPoA应用...................................................................................................9-129.7.5 在Multilink PPPoA虚拟接口模板上应用QoS策略...............................................9-129.7.6 重启PVC...............................................................................................................9-139.8 配置举例...........................................................................................................................9-139.8.1 ATM PVC上的CBQ配置举例..............................................................................9-13。
中国电信xg-PON设备技术要求 发布稿
中国电信集团公司企业标准
Q/CT X-2017
中国电信 XG-PON 设备技术要求
Technical Requirements for XG-PON equipment of China Telecom
(V1.0)
2017-XX 发布
中国电信集团公司 发布来自2017-XX 实施Q/CT X-2017
目次
前 言.................................................................... IV 中国电信 XG-PON 设备技术要求 ................................................ 1 1 范围....................................................................... 1 2 规范性引用文件............................................................. 1 3 缩略语..................................................................... 2 4 XG-PON 系统参考模型 ....................................................... 5 5 业务类型和设备类型......................................................... 6
I
Q/CT X-2017
11.2 MAC 地址数量限制..................................................... 30 11.3 过滤和抑制 ........................................................... 30 11.4 用户认证及用户接入线路(端口)标识 ................................... 31 11.5 ONU 的认证功能 ....................................................... 31 11.6 静默机制 ............................................................. 35 11.7 异常发光 ONU 的检测与处理功能 ........................................ 36 11.8 其他安全功能 ......................................................... 38 12 组播功能................................................................. 38 12.1 组播实现方式 ......................................................... 38 12.2 组播机制和协议要求 ................................................... 39 12.3 分布式 IGMP/MLD 方式功能要求 ........................................ 39 12.4 可控组播功能要求 ..................................................... 41 12.5 组播性能要求 ......................................................... 43 13 系统保护................................................................. 44 13.1 设备主控板 1+1 冗余保护 ............................................... 44 13.2 OLT 上联口双归属保护 ................................................. 44 13.3 配置恢复功能 ......................................................... 44 13.4 电源冗余保护功能 ..................................................... 45 13.5 光链路保护倒换功能 ................................................... 45 14 光链路测量和诊断功能..................................................... 48 14.1 总体要求 ............................................................. 48 14.2 OLT 光收发机参数测量 ................................................. 49 14.3 ONU 的光收发机参数测量 ............................................... 49 15 ONU 软件升级功能 ........................................................ 50 16 告警功能要求............................................................. 50 17 性能统计功能要求......................................................... 50 18 语音及 TDM 业务要求 ..................................................... 52 18.1 语音业务要求 ......................................................... 52 18.2 TDM 业务要求......................................................... 52 19 视频业务承载要求......................................................... 53 20 时间同步功能............................................................. 53 21 业务承载要求............................................................. 53 21.1 以太网/IP 业务性能指标要求 ............................................ 53 21.2 语音业务性能指标要求 ................................................. 54 21.3 电路仿真方式的 n×64Kbit/s 数字连接及 E1 通道的性能指标 ................. 54 21.4 时钟与时间同步性能指标要求 ........................................... 55 22 操作管理维护要求......................................................... 55 22.1 总体要求 ............................................................. 55 22.2 ONU 的远程管理功能 ................................................... 56 22.3 ONU 本地管理要求 ..................................................... 56 23 设备硬件要求............................................................. 57 23.1 指示灯要求 ........................................................... 57 23.2 开关与按钮 ........................................................... 58
路由器的QoS设置技巧
路由器的QoS设置技巧在现代化的家庭里,越来越多的设备依赖于网络连接来实现各种功能。
比如智能手机、台式电脑、笔记本电脑、平板电脑、网络电视等等。
但是,网络带宽是有限的资源,也就是说在同时连接多个设备的情况下,网络速度就会降低,这样就会影响我们的上网体验。
但是,我们可以通过QoS技术来解决这个问题。
什么是QoS技术?QoS指的是服务质量(Quality of Service),是一项网络技术,目的是用来提高数据流在网络中传输的效率和质量。
通过QoS技术可以对不同类型的数据流进行优先级别的区分,从而保证网络上的重要数据得到优先处理,提高整个网络的传输效率。
1. 拓扑结构:首先,我们需要了解我们家庭网络的拓扑结构。
比如在我们家里,可能会有几个不同位置的路由器,这些路由器之间会形成一个局域网,而路由器连接的设备就处于这个局域网内。
所以,我们需要将不同位置的路由器之间进行连接,这样才能实现QoS的功能。
2. 设备连接:接着,我们需要考虑将哪些设备和应用程序进行QoS调优。
一般来说,对于网络直接连接到路由器的设备,我们可以对其进行实时故障检测、应用程序优先级分配等设置,以确保重要的流量能被优先处理。
3. 分类标记:接下来,我们需要对数据流进行一些标记的处理,这些标记包括分类标记和优先级标记。
分类标记是将数据流分成不同的服务类型,比如:视频、文件下载、游戏、音频等等。
这个标记步骤是QoS设置的核心,只有正确的标记才能实现QoS的目的。
不同路由器型号有不同的标记方式,因此需要参考路由器的说明手册进行设置。
4. 优先级别设置:接下来,我们需要对不同的服务类型设置优先级别,以确保重要数据有足够的带宽供应。
比如,我们可以提高视频和游戏的优先级别,将它们设置为高优先级别,而将文件下载和其他数据流设置为低优先级别。
5. 测试:最后,我们需要进行一些基准测试来验证设置的有效性。
可以使用一些网络测试应用程序来测试带宽的利用率和平均响应时间,以便评估QoS设置是否减少了网络拥塞的情况。
无线网络中实时流媒体传输的QoS解决方案
而 不会 出现 重 新 布 线 的 问题 。无 线 音 箱 不 受 特殊 地 理 环 境 的 限制 , 遇 山 地 、 口或 开 阔 地 等 特殊 的地 理 位 置 和 如 港 环境将对有线音箱的布线工程有着极强的制约力。 本 文设 计 的无线 音响 能够使 用 内置 的 W ii O. 1 ) F( 21b 8 轻松 接 入 无线 局 域 网 , 后再 接 入 广 域 网 , 听音 乐 网站 然 收 的音 乐 。如果有 另一 个音 源 ( P ) 接入 同一 个局 域 网 如 C也 的话 , 可 以播放 这个 音源 内 的音 乐 文件 。 也
维普资讯
电 子
测
量
技
术
第 3 卷 第 1期 O
20 年 1 07 月
E LECTRONI C M EAS UREM ENT TECHNOLOGY
无 线 网络 中 实 时流 媒体 传 输 的 Qo S解 决 方 案
杨嘉 珠。 姜姣 娇
(. 1 天津 大学电信 学院 天津 3 0 7 ;. 0 0 2 2 中国移动 天津分公 司 天津 300) 0 10
s t f eQ ml y o evc e urme tf rc ryn u i n d o Ho t mp v t e l i e c p bl y t a i y t a i fS r i rq i s h t e e n o r ig a do a d v e . w O i r e i ra- a i o s t a a it O m i g a a te S o o u r n e f mmu i t n i aci c l e h iu s ea d o eo et h iu i i le f temi y tm. Qo c nc i r i c nq e su n n f h n edf c t so ra n s se ao s t t a i t e q c fu i s g
视频会议的QoS保障技术
视频会议的QoS保障技术随着信息技术的不断发展和互联网的广泛普及,视频会议已经成为了人们交流的一种重要手段。
无论是企业、政府还是个人,都可以通过视频会议的方式,实现远距离的沟通和协作。
但是在视频会议中,最为重要的就是通信的质量保障。
因为视频会议中需要传输的数据量非常大,而且对于实时性要求也非常高,如果网络质量不好,势必会对视频会议的效果产生很大的影响。
因此,如何保障视频会议的质量就成为了一个技术难点。
下面,我们将介绍一些视频会议中QoS保障技术的应用,以期能够更好地满足用户的需求。
一、视频会议的QoS保障技术概述1. QoS是什么QoS全称为Quality of Service,即服务质量。
它是指在网络中对于不同应用要求的数据传输质量进行区分和保障。
QoS包括了带宽、时延、丢包率、抖动等多个方面。
在网络传输中,不同应用对于这些方面的要求是有所不同的。
比如,视频会议对于时延和带宽的要求很高,而对于丢包率和抖动的要求较低。
2. QoS保障技术的作用网络中存在着诸如拥塞、带宽不足等问题,而这些问题都会对数据传输造成各种不利的影响。
在视频会议中,由于要求实时性,不能容忍数据传输中的任何丢失或延迟,因此网络中必须采取一些措施,来保障视频会议的质量。
QoS保障技术就是通过对网络进行优化,来尽可能满足视频会议的要求,从而提高视频会议的质量。
二、视频会议QoS保障技术的具体应用1. 带宽管理技术视频会议需要大量的带宽来传输数据,但是网络中的带宽是有限的。
因此,在进行视频会议时,需要对带宽进行管理。
带宽管理技术可以通过限制不必要的网络流量,来优化视频会议的传输质量。
其中,最简单的带宽管理技术是进行流量控制,即避免网络中出现带宽过载的情况。
还有一些带宽管理技术,例如差分服务(Differentiated Services,DS)、集成服务(Integrated Services,IS)等,它们都可以根据应用对带宽、时延、丢包率等不同方面的要求,来分配网络资源。
multicast-routing distributed 命令
multicast-routing distributed 命令
"multicast-routing"是Cisco路由器上的一个子命令,用于启用和配置多播路由。
在启用多播路由之后,你可以使用以下命令来配置你的设备:
1.进入特权模式:在设备控制台上输入“enable”,然后输入
“configure terminal”命令来进入全局配置模式。
2.启用多播路由:在全局配置模式下,输入“multicast-routing”命
令来启用多播路由。
3.配置接口:接下来,你需要配置要用于多播的接口。
使用
“interface”命令来选择要配置的接口,然后输入“ip pim sparse-
dense-mode”命令来启用PIM稀疏密集模式。
4.配置PIM:在接口配置模式下,你可以使用“ip pim sparse-mode”
命令来启用PIM稀疏模式,或者使用“ip pim autorp listener”命
令来使设备支持Auto-RP。
5.完成配置:最后,输入“end”命令来退出配置模式,并输入“write
memory”命令来保存配置更改。
以上步骤是一个基本的示例,具体的配置可能会因设备和网络环境而有所不同。
在进行多播路由配置之前,请务必仔细阅读设备的文档,并确保你了解你的网络拓扑和需求。
移动通信中的QoS解析
移动通信中的QoS解析
在移动通信中,QoS(Quality of Service)是指网络为用户提供的服务质量。
它是一个衡量网络性能的指标,包括带宽、延迟、
丢包率、抖动等方面。
主要的QoS参数包括:
1. 带宽:表示单位时间内能够传输的数据量,通常以bps
(bits per second)为单位。
高带宽可以提供更快的数据传输速度。
2. 延迟:指从发送数据到接收数据所需要的时间,通常以ms (milliseconds)为单位。
低延迟可以提供更快的响应时间,适用
于实时应用,如语音通话或视频会议。
3. 丢包率:指在数据传输过程中丢失的数据包的比例。
低丢包率可以确保数据的完整性,尤其对于实时应用很重要。
4. 抖动:指数据包在网络中传输时的时延变化。
高抖动会导致数据包的到达时间不稳定,对于实时应用会产生不良影响。
为了提供高质量的服务,运营商及网络设备厂商可以采取以下
策略来保证QoS:
1. 流量控制:通过限制网络中的流量来确保带宽的可用性,防止网络拥塞。
2. 优先级排队:为不同类型的数据包分配优先级,确保高优先级的数据包能够尽快传输。
3. 拥塞控制:通过监测网络流量,并在检测到拥塞时采取措施,如减少带宽或拒绝新的连接,以保持网络的稳定性。
4. 路由优化:通过选择更短路径或不拥塞的路径来减少延迟和抖动。
,QoS在移动通信中非常重要,可以为用户提供稳定、高速的
数据传输和优质的通信体验。
QoS模型术语详
QoS模型术语详解随着数据设备对QoS实现的越来越多,我们也应该更多地去关注QoS方面的知识。
但是在阅读QoS文献的时候,发现太多的QoS术语让我们对相关文档望而却步。
如果要对各种QoS模型做详尽的阐述,限于篇幅不太可能,而且也没有必要,因为关于QoS文献很多。
本文试图对QoS模型及其中的术语做深入浅出的解释,并给出出现该术语的RFC,以便大家做深入的了解,希望对大家的学习有所帮助。
QoSQoS,英文全称Quality of Service,即服务质量。
不同网络的服务质量指标不同,不同的组织对QoS也有不同的定义:电信网的QoS由ITU(国际电信联盟)定义;ATM网络的QoS由ATM论坛定义;IP网络的QoS由IETF定义。
IP QoSIP网络服务质量由RFC 2386定义,具体的服务质量指标可以量化为带宽、延迟、延迟抖动、丢失率和吞吐量等。
以下术语都是与IP QoS相关的术语。
QoS模型目前IETF定义了两种QoS模型:综合服务(IntServ)和区分服务(DiffServ),综合服务是一种基于资源预留的端到端服务质量模型;区分服务是基于每跳PHB的服务质量模型。
IntServ模型RFC1633定义的IntServ模型只是一个基本的体系架构,它规定了在网络上保证QoS 的一些基本要素。
IntServ的基本思想是网络中的每个网络单元,包括主机和路由器,在需要进行数据传输时首先在传输路径上进行资源预留,这种预留是基于流的,相比较DiffServ 来讲,属于精细粒度的预留。
IntServ模型可以用在视频流和音频流应用方面,它可以保证多媒体流在网络拥塞时不受干扰。
在IntServ中,Flow Specs作为资源预留的描述,RSVP 作为资源预留的信令。
Flow Specs中文翻译成流规范,流规范包括两个方面:1、流是什么样子的?在流描述(T-Specs,Traffic Specification)中定义。
5G NR QOS概述
5G NR QOS概述1.1 QoS流(QoS Flow)5G QoS模型基于Qos流,5G QoS模型支持保障流比特速率(GBR QoS)的QoS流和非保障流比特速率(Non-GBR)的QoS流,5G QoS模型还支持反射QoS。
QoS流是PDU会话中最精细的QoS区分粒度,这就是说两个PDU会话的区别就在于它们的QoS流不一样(具体一般就是QoS流的TFT参数不同);在5G系统中一个QoS流ID(QFI)用于标识一条QoS流;PDU会话中具有相同QFI 的用户平面数据会获得相同的转发处理(如相同的调度、相同的准入门限等);QFI在一个PDU会话内要唯一,也就是说一个PDU会话可以有多条(最多64条)QoS流,但每条QoS流的QFI都是不同的(取值范围0~63),UE的两条PDU会话的QFI是可能会重复的;QFI可以动态配置或等于5QI。
在5GS,QoS流是被SMF控制的,其可以是预配置或通过PDU会话建立和修改流程来建立。
QoS流的特征在于:•-AN侧的QoS配置,这些配置可以是SMF通过AMF给AN提供给AN的或者是在AN 上预置的•-UE侧的QoS规则(rule),这些规则是SMF在PDU建立或修改流程中提供给UE 的或UE通过反射QoS机制推导出来的•-UPF侧的上行和下行PDR(s),这些PDR(s)是SMF配置的在5GS,一条PDU会话内要求有一条关联默认QoS规则的QoS流,在PDU 的整个生命周期内这个默认QoS流保持存在,且这个默认的QoS流要是Non-GBR QoS流。
注:上面的默认QoS流在整个PDU会话生命周期内都给UE提供了连接;由于可能需要和EPS交互,所以要求这个默认QoS流为Non-GBR。
1.2 QoS配置(QoS Profile)一个QoS流是“GBR”还是“Non-GBR”取决于它的QoS配置;一个QoS流的QoS配置包含的QoS参数如下:•-每条QoS流的QoS配置都会包含的QoS参数:5QI、ARP•-每条Non-GBR QoS流的QoS配置可能还会包含参数:反射Qos属性(RQA)•-每条GBR QoS流的QoS配置还会包含参数:保证流比特率(GFBR)、最大流比特率(MFBR)•- 每条GBR QoS流的QoS配置可能还会包含:指示控制、最大丢包率•每条QoS配置有一个与之对应的QFI,QFI包含在QoS配置中。
华为LTE-Qos管理介绍及测试验证V7
华为LTE Qos管理介绍及测试验证2015年10月目录一、LTE Qos管理介绍 (3)二、无线Qos参数介绍 (4)三、华为无线Qos设置 (5)四、QCI验证站点选取 (6)五、QCI优先级策略验证用例 (6)六、测试总结 (17)一、LTE Qos管理介绍EPS系统中以EPS承载为基本单元来进行QoS管理,QoS管理需要E2E网络共同进行,各网元主要功能如下:PCRF是策略和计费控制单元。
PCRF可动态生成QoS策略,并将该策略下发给PGW。
P-GW (Packet Data Network Gateway)是QoS策略执行单元。
P-GW按照SDF模板(TFT, Traffic Flow Template)识别服务数据流(SDF),并将服务数据流聚集映射到一个EPS承载上;SDF 模板可由PCRF动态配置策略生成,在运营商未部署PCRF的情况下,也可静态配置在P-GW 上。
S-GW(Serving Gateway)进行包路由和转发。
将S5承载唯一的映射成为S1承载;MME 负责获取HSS中的用户签约数据和在网元间转发QoS参数。
HSS负责存储用户信息和签约QoS 策略。
eNodeB根据当前的空口和传输资源状况,按照QoS参数建立UE承载和调度UE承载的数据,通过差异化的资源管理和分配策略来保证UE承载的QoS水平。
eNodeB: E-UTRAN NodeB PCRF: Policy and Charging Rules Function HSS: Home Subscriber Server S-GW:Serving GatewayMME: Mobility Management Entity UE: User Equipment在EPS中,QoS控制的基本单元是承载。
用户的业务数据流以该基本单元在网络实施QoS 控制。
映射到同一个EPS承载的业务数据流将得到同样的QoS保障 (如调度策略、无线承载策略等)。
NETGEAR无线路由器QOS功能设置方法
NETGEAR无线路由器QOS功能设置方法开拓视野:netgear无线路由器在国内的名字叫网件或是美国网件。
那么netgear无线路由器如何设置上网,NETGEAR 无线路由器怎么设置 QoS 功能,下面店铺为您一一解答。
QoS(Quality of Service),即服务质量,网络安全机制的一种,是通过给局域网中的应用、端口或计算机设定优先次序,从而解决网络延迟和阻塞等问题的一种技术。
在正常情况下,如果网络只用于特定的无时间限制的应用系统,并不需要QoS. 但是对关键应用和多媒体应用就十分必要。
当网络过载或拥塞时,QoS 能确保重要业务量不受延迟或丢弃,同时保证网络的高效运行。
下面以WGR614v10为例,介绍NETGEAR无线路由器中QoS功能的设置。
第一步进入QoS设置菜单高级-QoS设置,点击“QoS设置”可见如下页面,点击“添加优先规则”。
第二步设定优先规则NETGEAR 路由器通常支持四种优先类别,如下图。
即用户可针对应用程序、在线游戏、路由器的局域网端口、或局域网设备的MAC地址来指定优先机制。
下面分别说明设置步骤。
基于“应用程序”的QoS设置——即局域网中任何设备,只要运行某应用程序,在网络拥塞时,就按照规则设定的优先级处理。
例一:所需应用在列表中已经存在,直接选择、设定优先级别即可。
例二:所需应用在列表中无法找到,需手动添加。
注:用户必须预先知晓,自己所添加的新应用的协议类型及起始、结束端口,以下仅作示例。
基于“在线游戏”的QoS设置——即局域网中任何设备,只要运行此游戏,在网络拥塞时,就按照规则设定的优先级处理。
列表中已存在的游戏类别,直接添加即可;如需添加新游戏,请预先确认其协议类型及起始、结束端口。
基于“局域网端口”的QoS设置——仅用于有线连接到路由器局域网端口的设备。
选择局域网端口,确定优先级别,点击应用即可,优先规则对于对连接到此端口的设备生效。
基于“MAC地址”的QoS设置——可根据MAC地址,设定任意有线/无线设备的优先级别。
WebRTC QoS优化(双链路笔记)
WebRTC QoS优化(双链路笔记)WebRTC是一种开放源代码的实时通信技术,其使用数据包的交换来提供点对点的连接。
它可用于在Web浏览器之间建立实时音频、视频和数据通信。
然而,为了确保高质量的实时通信,需要优化WebRTC的QoS(服务质量)。
以下是一些WebRTC QoS优化的双链路笔记:1. 设置合适的码率和分辨率码率和分辨率直接影响WebRTC的视频质量。
如果码率过低,视频可能会出现模糊和卡顿现象。
选择较高的分辨率也会导致视频质量下降。
为了避免这些情况,应根据网络状况动态调整码率和分辨率。
2. 应用丢包恢复和重传机制丢包是实时通信中常见的问题,可以通过启用丢包恢复和重传机制来解决。
使用这些机制可以减少在网络不佳时丢失数据的风险,并提高数据的可靠性。
3. 使用STUN和TURN服务器STUN和TURN服务器能够帮助WebRTC客户端在NAT(网络地址翻译器)或防火墙背后建立连接。
使用这些服务器可以使WebRTC客户端之间的连接更加快速、可靠和稳定。
4. 充分利用TCP和UDP传输协议WebRTC使用UDP协议进行实时数据传输,而TCP协议则用于信令传输。
但是,如果网络状况不佳,可以尝试使用TCP协议进行实时数据传输。
TCP协议是可靠的,能够在网络出现问题时重新传输数据。
5. 确保服务器位置合适为了减少延迟和丢包,WebRTC客户端和服务器之间的距离应尽可能短。
如果使用的服务器与客户端位于不同的地理位置,则应考虑使用多个服务器进行负载均衡。
总之,WebRTC QoS的优化需要考虑多个因素,包括网络状况、码率和分辨率、丢包恢复和重传机制、使用STUN和TURN服务器、充分利用TCP和UDP传输协议以及服务器位置。
通过合理地应用这些优化策略,可以大大提高WebRTC实时通信的质量和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QoS for real-time multicast over satellitesG. Bianchi (1), N. Blefari-Melazzi (2), V. Marziale (3), C. Tocci (3), A. Sánchez(4), H. Cruickshank(5),B. Carro(6)(1) University of Palermo, D.I.E, Viale delle Scienze, Parco d'Orleans, 90128 Palermo Italy,Tel: +39 091 6566249, email: bianchi@elet.polimi.it(2) University of Perugia, D.I.E.I., Via G. Duranti 93, 06125 Perugia, ItalyTel: +39 075 5853630, email: blefari@diei.unipg.it(3) Alenia Spazio, Via G. V. Bona, 85, 00156 Roma, ItalyTel: +39 06 4151394; +39 06 4151275, email: v.marziale@roma.alespazio.it;c.tocci@rmmail.alespazio.it(4) Telefonica R&D, (5) University of Surrey, (6) Universidad de ValladolidABSTRACTNext generation satellite systems are ideally suited for multicast and real-time traffic. Therefore, it is highly attractive to offer IP multi-videoconference services over IP multicast enabled satellite systems, combining link efficiency and access to remote areas.ICEBERGS project, presented in this paper, addresses the integration of IP video and IP multicast in EuroSkyWay geostationary satellite system. Its initial architecture must be upgraded to cope with IP multicast real-time services. Given the importance of integration with existing IP networks, i.e. Internet, also the necessary implications are analysed.I.INTRODUCTIONMulticast real-time traffic imposes on the underlying communication infrastructure the additional burden of QoS-sensitivity. IP-based Multiparty Videoconference services represent a typical example of multiparty, multimedia conversational services requesting for QoS-sensitive connectivity. Due to their wide area coverage, Geostationary (GEO) satellite systems, optimised for multicast real-time traffic, represent an ideal platform, since they can provide uniform continental delivery with a single satellite hop using only a small number of multicast enabled routers. There is therefore a need to develop an integrated satellite multicast system, to address commercial needs, and to promote the technology within standards bodies and with applications developers.VoIP transport through Satellite has the following advantages and characteristics:•Strict guarantee of QoS thanks to the control of the end to end transport network .•Low cost of satellite links in comparison with terrestrial networks. Fixed cost independent of the destination of the call.•Satellites from any operator can be used. However, next generation broadband satellites with on board processing offer promising advantages and are therefore the ideal platform.•Access to remote areas not covered by terrestrial networks. Complementary to terrestrial networks for the transport of VoIP.The target of the project is the design, demonstration and validation of a broadband network including a regenerative satellite system interworking with the terrestrial Internet, upgraded to support business class services. The focus is on the development of advanced techniques to support broadband conversational multiparty and multicasting services which require strict QoS guarantees. Three major activity groups are foreseen:·Service and system requirements definition, to identify the satellite system and architecture requirements against the videoconference service identifying specific routing and protocol features.·Architecture design and support analyses: the satellite network architecture will be upgraded in terms of:1)Traffic Management for Multicast Real-time flow;2)QoS Support for Multicast Real-time flow based on packet probing techniques; 3)Intelligent Routing for multiple optimised landing; 4)Connection Management support for Multiparty Videoconference. Also the architecture to support the videoconference service will be defined. The more critical topics will be validated via software Simulation.·Demonstration and system validation which envisage the design and development of a demonstrator system that through the execution of a validation campaign intends to implement the more significant specifications worked out in the System architecture design activity. Through a fully representative Demonstrator Network Prototype configuration, the following innovative aspects will be demonstrated: a)provision of IP multiparty conversational service through a broadband geo-stationary Ka satellite network (EuroSkyWay);b)validation and characterisation of the performance of the techniques selected for QoS requirements.II.ESW SYSTEM ARCHITECTUREThis section provides an overview of the main architectural features characterizing the ESW broadband satellite system integrated with terrestrial Internetnetwork for the support of QoS sensitive multicast services.EuroSkyWay [1] is a regional satellite-based communications system, forming a continental network supporting a wide range of user data rates and services applications (see Figure 1). Particular care has been devoted to the design of an efficient inter-work with the current and future terrestrial networks to fully exploit the advantages offered by its unique T-Switch On-Board Processing (OBP). This will allow to provide end-to-end, single hop, meshed connectivity together with on-demand, QoS guaranteed connections, i.e. the identical connectivity concepts of the terrestrial networks have been implemented still maintaining the advantages of the satellite transmission medium in terms of user data distribution and service deployment. The innovative OBP adopted by the ESW network candidates it as an ideal communication infrastructure for the most advanced Internet-based services for both consumer subscribers and business subscribers.Figure 1: ESW System ArchitectureESW can operate as both an access and a core network and such an intrinsic peculiarity makes it naturally suitable both to provide services to end users and to operate as backbone interconnecting different telecom operators.The development of the ESW system envisages different phases. In the first phase, to be operational in the year 2004, it will be able to provide coverage to the so-called Extend European Region consisting of Europe, Middle East, Mediterranean Africa and some ex-USSR countries. Such a coverage will be guaranteed by two co-located geo-stationary satellites operating at Ka band and characterised by On Board Processing functionality in charge of managing traffic resources and traffic switching.The main aspect of the ESW system to be highlighted in this context, especially for the impact on the design of an integrated Satellite-Internet scenario, is that ESW acts as an underlying network with respect to the existing terrestrial networks it is connected to. As a matter of fact, ESW provides the means to transparently transfer both signalling and traffic data generated both at terminal level and in external networks which, for this reason, can be logically considered as overlaying networks.The second fundamental aspect to be pointed out is that the ESW network will provide the above mentioned transparent connectivity by operating through a minimum set of protocols and signalling procedures which are applicable to the satellite system only to efficiently control the provision of switched capacity on demand. Resources are allocated through an efficient bandwidth on demand mechanism, called Dynamic Bandwidth Allocation Capabilities (BDAC), based on the transmission to the Traffic Resource Manager, located within payload, of proper In Band/Out of Band Requests guaranteeing low latency of the assignment process. This will allow to support a wide range of traffic classes and achieve an efficient bandwidth usage which directly results into (i) cost saving, (ii) high number of contemporary served users, (iii) spread satisfaction within the user population in the usage of the ESW communication infrastructure.Satellite connection handling is performed by the Network Operation Centre (NOC), implemented as a centralised entity in charge of executing the following procedures: Synchronisation, Registration, Authentication and Connection Management; the latter consists of connection control procedures – i.e. call admission control (executed to verify if the system is able to provide the necessary resources to support the connection with the requested QoS), connection set-up and connection clearing - and resource management procedures (based on the implementation of the bandwidth on demand mechanism).The ground stations (Gateways, Provider Terminals) represent the point of attachment to the ground network infrastructure and therefore they implement inter-working functionality between the satellite and terrestrial protocols such as Internet protocol.The inter-operation with the terrestrial overlaying network is realized by means of programmable, and therefore reconfigurable and updatable, Inter Working Functions (IWF) which are able to accept not only any existing protocols but also any possible new protocols which can be developed in the future.The IWF is also in charge of performing synchronisation, location management and connection management procedures.The Satellite Payload in addition to switching functionality, it is also in charge of executing synchronisation and resource management procedures. In order to best face the users needs the following classes of satellite terminals have been identified:•low-medium rate terminals: operating at a transmission rate ranging from 16 Kbps up to 160 Kbps (personal mobile and transportable terminals with little power autonomy).•medium-high rate terminals: operating at a transmission rate ranging from 16 Kbps up to 512 Kbps (personal transportable and small group mobile terminals).•high rate terminals: operating at a transmission rate ranging from 16 Kbps up to 2 Mbps (large group mobile terminals).Downlink data rates are: 6 Mbps for individual use satellite terminals and 16 Mbps for collective use satellite terminals.II.A ESW-Internet InterconnectionThe overall Icebergs system consists of a service architecture based on the Session Initiation Protocol (SIP) and related protocol stack which will be deployed onto an innovative Broadband Communication infrastructure composed by the ESW Broadband Satellite system interconnected to the terrestrial Internet network to provide multiparty videoconference services.ESW can be seen, from an Internet perspective, as usual service provider since it is able to provide Internet connectivity. It will be, at the same time, an Internet Service Provider (ISP) – since it is able to provide connectivity directly to end users – and a Network Service Provider (NSP) – since it can act as backbone network provider. Therefore, ESW will connect the IP network as each service provider belonging to this network does, that is:•with direct interconnection with terrestrial service providers. In this case direct links are established between one or more ESW ground stations and one or more edge routers of the terrestrial service provider. SLA’s are negotiated bilaterally on a peer-to-peer basis between ESW and the terrestrial service provider. The objective of this negotiation is to obtain (each others) guarantees about a given level of performance and availability. This agreement is realized by fixing the value of all the parameters associated with the additional functionality implemented in the Icebergs system for the support of IP multiparty QoS sensitive conversational services;•at the Network Access Point (NAP). In this case the ESW ground station connects to a NAP which represents a neutral meeting ground where service provider traffic is exchanged. ESW can exploit this meeting ground in order to execute purchase agreements with other service providers connected at the same NAP. In this context, ESW will typically act as a network service provider providing backbone connectivity to the regional service providers at the NAP.From an Internet topological viewpoint, the whole ESW will act as an Internet Autonomous System (ESW-AS) [2].Since ESW will act both as an Internet Service Provider (ISP) providing connectivity directly to end users, and as a Network Service Provider (NSP) i.e. as a backbone network provider, it shall be configured as Multi-Homed Transit AS.This means that the ESW AS:- shall be characterised by several connections with the outside world – one connection for each ESW ground station connected both to a NAP or, via a direct interconnection, to an edge router of a service provider; - shall allow transit traffic by other AS’s.In addition ESW shall exchange routing information with other AS’s via a suitable inter-domain multicast routing protocol such as Multiprotocol Border Gateway Protocol, (MBGP).III.C ONFERENCING PROTOCOLSThe Session Initiation Protocol (SIP, RFC 2543) is a signalling protocol used to establish sessions over an IP network. It is emerging as the protocol of choice for setting up conferencing, telephony, multimedia and other new types of communication sessions such as instant messaging. Work on SIP is accomplished primarily in the IETF SIP working group, and at SIP bake-offs.It has been developed as a mechanism to establish sessions, not worrying about the details of them; it just initiates, terminates and modifies sessions. This simplicity means that SIP scales, it is extensible, and it fits well in different architectures and deployment scenarios.SIP is a request-response protocol that closely resembles two other Internet protocols, HTTP and SMTP, consequently, SIP integrates well with Internet applications. Using SIP, telephony becomes another web application and integrates easily into other Internet services.SIP is an application-layer control protocol for creating, modifying and terminating sessions with one or more participants. SIP invitations carry session descriptions that allow participants to agree on a set of compatible media types. It supports user mobility by proxying and redirecting requests to the user's current location. SIP is not tied to any particular conference control protocol. It is designed to be independent of the lower-layer transport protocol and can be extended with additional capabilities.There are five basic entities in SIP: UA, proxy server, redirect server, registrar server and location server.UA (User Agent): is an application that contains both an user agent client and user agent server. The user agent client is an application that initiates the SIP request and the user agent server is an application that contacts the user when a SIP request is received and that returns a response on behalf of the user. The response accepts, rejects or redirects the request.Proxy server: is an intermediary program that acts as both a server and a client for the purpose of making requests on behalf of other clients. A proxy interprets, and, if necessary, rewrites a request message before forwarding it.Redirect server: is a server that accepts a SIP request, maps the address into zero or more new addresses and returns these addresses to the client.Registrar server: is a server that accepts register requests and is typically co-located with a proxy or redirect server and may offer location services.Location sever: is a server used to obtain information about a callee's possible location(s).IV.I P MULTICAST WITH QOS Network support for multicast sessions is a complex issue, when QoS guarantees need to be provided. Thereason is that, while a number of multicast schemes have been proposed [3] according to the author’s knowledge none of these proposals deals with the issue of reserving resources and performing call admission control along the multicast paths. To this purpose, in this section we outline preliminary proposals aimed at integrating multicast addressing and routing with a QoS support paradigm, called GRIP (Gauge&Gate Reservation with Independent Probing), originally proposed in the framework of the IST SUITED project. Several multicast protocols have been proposed up to now. We assume to deploy GRIP over the PIM-SM (Protocol Independent Multicast, Sparse-Mode) solution [6]., due to its large deployment base and suitability with the ICEBERGS scenario. In what follows we first review GRIP and PIM-SM operation. Next, we discuss the issues related to the support of GRIP over PIM-SM.IV.A GRIPGRIP (Gauge&Gate Reservation with Independent Probing) is a scalable per-flow admission control mechanism, devised to operate over a stateless DiffServ domain. GRIP has been proposed in [4, 5] with unicast applications in mind.GRIP combines an admission control procedure based on end-point operation with localized measurements and decisions taken by core routers. When a user terminal requests a unicast connection, the source node transmits a probing packet. Meanwhile, the source node activates a probing phase timeout, lasting for a reasonably low time. If no response is received from the destination node before the timeout expiration, the source node enforces rejection of the connection setup attempt. Otherwise, if a feedback packet is received in time, the connection is accepted, and control is given back to the user application, which starts a data phase, simply consisting in the transmission of information packets.Unlike reservation protocols such as RSVP, GRIP does not require routers to support an explicit signaling protocol. Instead, routers implicitly convey congestion information at the network edges by means of data forwarding plane operations. The key idea is to differentiate probing from information packets by using diverse Differentiated Services Code Point (DSCP) labels.Packets incoming to a DiffServ router output port are dispatched to the relevant queues according to their DSCP tag. Within the router, a GRIP module is in charge of handling both probing packets and information packets. A measurement module is in charge of measuring the load offered by information packets, i.e., the overall aggregate accepted traffic. On the basis of these running traffic measurements, and according to a suitable Decision Criterion the measurement module drives an Accept/Reject switch. When the switch is in the ACCEPT state, incoming probing packets are forwarded to the output queue. Conversely, probing packets are dropped when the switch is the REJECT state. In other words, the router acts as a gate for the probing flow, where the gate is opened or closed on the basis of the traffic estimates (hence the Gauge&Gate in the acronym GRIP).Hence, in order for a call setup procedure to succeed, the probing packet needs to find all the routers along the path in the ACCEPT state (if the probing packet encounters a router in the REJECT state, it gets discarded; hence it does not reach the destination, no feedback packet will be relayed back, and the call will be blocked as soon as the probing phase timeout).IV.B PIM-SMPIM-SM (Protocol Independent Multicast – Sparse Mode) makes use of the unicast routing tables, that is it re-uses the underlying unicast routing protocols (hence the name). The multicast tree construction is as follows: 1.first of all, the network planner configure arendezvous point (RP): different groups may use different RPs, but a group can only have a single RP;information about which routers are RPs and the mappings of multicast groups to RPs must be discovered by all routers;2.receivers send explicit join messages to the selectedRP. Forwarding state is created in each router along the path from the receiver to the RP. A single shared tree, rooted at the RP is formed for each group; the tree is a reverse shortest path tree 1. In each router along the path a state corresponding to the information (*,G) is created. This symbology meansa multicast connection between whichever sourceand group G;3. a source send multicast data packets, encapsulated inunicast packets, to the RP; these packets have also the role of register packets. If the RP has a forwarding state for that group (i.e. there are receivers that joined that group), the multicast packet is de-capsulated and sent to the group. Otherwise, the RP sends a register-stop message to the source, thus avoiding wasting bandwidth between source and RP.Eventually the RP may wish to send a join message to the source; such message, intercepted by routers along the path from source to RP, allows setting-up a connection between source and RP. In each router along such path a state corresponding to the information (S,G) is created. From now on, the source can send multicast packets to RP without the need of encapsulating them;4.optionally, a leaf router (that is a destination router)can ask the source to send packets directly to it by using a shortest path rooted at the source (source-based tree), avoiding the RP. To do this, the leaf router sends a join message to the source and, after 1Reverse Path Forwarding (RPF) is a technique used in several multicast protocols. Each source starts by flooding multicast datagrams to all multicast routers. Each router that receives a packet performs a Reverse Path Forwarding (RPF) check; i.e. it checks if the incoming interface on which the packet is received, is the same interface that the router itself would use to send traffic to the source. All packets received on that interface are forwarded on all outgoing interfaces. All other packets are discarded.receiving the first packet along this new path, it sendsa prune message to RP, requesting it to send no moredata.IV.C GRIP over PIM-SMTo support GRIP over PIM-SM it is necessary to determine the GRIP end-points in charge of exchanging Probing and Feedback packets. This is not a straightforward issue, as shown in Figure 2, where the case of a new destination willing to connect to a multicast tree is depicted. From the figure, we see that new resources need to be reserved only along the path that connects the new destination to the nearest branching router (Path A in Figure 2) GRIP endpoint operation should be supported also by the latter router, i.e., in principle by all multicast routers. This would require a change in the PIM-SM operation that we want to avoid.Our proposed solution is to endow the RP with GRIP endpoint operation, without touching all the other multicast routers. Thus, the GRIP operation is run along Path B shown in Figure 2. The price to pay for this solution is a transient reservation along the path comprised between the RP and the branching router (see [4, 5] for the notion of transient reservation in GRIP).Figure 2: Example scenarioLet’s now discuss a preliminary, possible solution based on the GRIP operation over the RP. In what follows, we limit our considerations to the case of a new destination that wants to join a unidirectional multicast session (i.e. data are transmitted by a single source node) with QoS guarantees. First, we note that, in this case, resourse availability must be checked on the downlink path. Thus, the new destination emits a “trigger” packet toward the RP. When the RP receives this trigger packet, it starts a GRIP probing phase addressed to the new destination. An important issue is that, in order to guarantee that the probing packet emitted by the RP follows the same path followed by data traffic (i.e. the multicast tree), the probing packet must be send via multicast routing. This implies that copies of the probing phase will be received by all destination nodes, which simply ignore them.A number of open issues arise and need to be discussed during the project lifetime, including but not limited to:•Mechanisms to avoid distribution of unnecessary probes;•Effect of transient, unnecessary resource reservation on the network performance;•Handling of bidirectional connections (i.e., nodes that act as both sender and receiver);•Interoperation with application-layer multicast schemes, and support for a wide set of multicast application level scenarios;•Eventual extensions to other multicast protocols such as Root Addressed Multicast Architecture [3], source specific sparse mode [8], Explicit Multicast (Xcast)[7], etc.•Integration of the described proposal with new DiffServ multicast research activities;•Improvements of the described basic scheme;•Performance evaluation.REFERENCES[1]R. Mura, G. Losquadro, "A Satellite NetworkBringing Broadband Communications to the Users", in Proceedings of 6th Ka Band Utilization Conference, Cleveland, Ohio, USA, 31 May-2 June, 2000[2]P. Conforto, C. Tocci, G. Losquadro, R.E. Sheriff,P.M.L. Chan, Y.F. Hu; “Ubiquitous Internet in an Integrated Satellite-Terrestrial Environment: the SUITED Solution”, IEEE Communication Magazine Special Issue on Service Portability and Virtual Home Environment, January 2002 Vol.40 No. 1[3]K. G. Almeroth: "The Evolution of Multicast: fromthe MBone to Inter-Domain Multicast to Internet2 Deployment", IEEE Network, January/February 2000[4]G. Bianchi, N. Blefari-Melazzi, M. Femminella, F.Pugini: "Performance Evaluation of a Measurement-Based Algorithm for Distributed Admission Control in a DiffServ Framework", IEEE Globecom 2001, San Antonio, Texas, USA, 25-29 Novembre 2001[5]G. Bianchi, N. Blefari-Melazzi, M. Femminella:"Per-flow QoS Support over a Stateless DiffServ Domain", to appear on Computer Networks, Elsevier, special issue on "The New Internet Architecture", May 2002[6] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S.Deering, M. Handley, V. Jacobson, C. Liu, P.Sharma, L. Wei: "Protocol Independent Multicast-Sparse Mode (PIM-SM)”: Protocol Specification.RFC 2362, June 1998.[7]R. Boivie, N. Feldman, Y. Imai,j W. Livens, D.Ooms, O. Paridaens: "Explicit Multicast (Xcast) Basic Specification", raft-ooms-xcast-basic-spec-02.txt, October 2001[8]H. Holbrook, B. Cain: " Source-Specific Multicastfor IP", draft-holbrook-ssm-arch-03.txt, November 2001。