2015年黑龙江省哈工大附中九年级上学期数学期中试卷与解析(五四学制)
2014~2015年哈工大附中九月月考试数学试题
2014~2015年哈工大附中九月月考试数学试题 命题人:李新阳 复核人:朱晓华一、选择题 (每小题3分,共计30分) 1.2-的倒数是( )A .22 B . 2 C .- 2D .-222.年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是( )A .0.156×10-5B .0.156×105C .1.56×10-6D .1.56×1063.在下面由阴影组成的图案中,是轴对称图形的图案是( )4.在Rt △ABC 中,∠C =90°,AC =6,BC =8,则sinB 的值为( ).A .43B .34C .53D .545.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )(A) 2)1(2+-=x y (B) 2)1(2++=x y(C) 2)1(2--=x y (D) 2)1(2-+=x y6.有下列四个命题:①相等的圆心角所对的弧相等;②直径是弦;③平分弦的直径垂直于弦;④顶点在圆心的角叫圆心角.其中正确的有( ) A .4个 B .3个 C . 2个 D . 1个7、如图,将△ABC 沿着它的中位线DE 对折,点A 落在F 处,若∠C=120°,∠A=20°,则∠FEB 的度数是 ( )(A)140° (B)120° (C)100° (D)80° 8.已知二次函数12-+=bx ax y 图像的开口向下,对称轴在y 轴右侧,则直线b ax y +=的图像经过的象限是( )(A )第一、二、三象限 (B )第一、二、四象限 (C )第一、三、四象限 (D )第二、三、四象限9.如图,将含30°角的直角三角尺ABC 绕点B 顺时针旋转150°后得到△EBD ,连结CD.若AB=4cm. 则△BCD 的面积为( ) A .4 3 B .2 3 C .3 D .2 10.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )二、填空题(每小题3分,共计30分) 11.函数y 中,自变量x 的取值范围是 . 12.一个三角形三边的长分别是8 cm 、12 cm 、18 cm ,则它的周长为 cm 。
2015年哈尔滨中考数学真题卷含答案解析
2015年哈尔滨市初中升学考试 数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共计30分)1.实数-12的相反数是( )A.12B.-12C.2D.-22.下列运算正确的是( ) A.(a 2)5=a 7B.a 2·a 4=a 6C.3a 2b-3ab 2=0D.(a 2)2=a 223.下列图形中,既是轴对称图形又是中心对称图形的是( )4.点A(-1,y 1),B(-2,y 2)在反比例函数y=2x 的图象上,则y 1,y 2的大小关系是( ) A.y 1>y 2B.y 1=y 2C.y 1<y 2D.不能确定5.如图所示的几何体是由五个小正方体组合而成的,它的主视图是( )6.如图,某飞机在空中A 处探测到它的正下方地平面上目标C,此时飞行高度AC=1 200 m,从飞机上看地平面指挥台B 的俯角α=30°,则飞机A 与指挥台B 的距离为( )A.1200mB.1200√2mC.1200√3mD.2400m7.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连结EF,分别交AD,CD于点G,H,则下列结论错误的是( )A.EABE =EGEFB.EGGH=AGGDC.ABAE=BCCFD.FHEH=CFAD8.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2,设扩大后的正方形绿地边长为x m,下面所列方程正确的是( )A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16009.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB'C'(点B的对应点是点B',点C的对应点是点C'),连结CC',若∠CC'B'=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°10.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计).小明与家的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟.下列说法:①小明从家出发5分钟时乘上公交车;②公交车的速度为400米/分钟;③小明下公交车后跑向学校的速度为100米/分钟;④小明上课没有迟到,其中正确的个数是( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题,共90分)二、填空题(每小题3分,共计30分)11.将123000000用科学记数法表示为.中,自变量x的取值范围是.12.在函数y=1-xx-2= .13.计算√24-3√2314.把多项式9a3-ab2分解因式的结果是.15.一个扇形的半径为3cm,面积为πcm2,则此扇形的圆心角为度.的解集为.16.不等式组{x+1>0,2x-1≤317.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形,若线段EF的中点为点M,则线段AM的长为.,AD=√65,CD=13,则线段AC 20.如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(本题7分)先化简,再求代数式(1x-y -2x2-xy)÷x-23x的值,其中x=2+tan60°,y=4sin30°.22.(本题7分)图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画出一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).23.(本题8分)某中学为了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.24.(本题8分)如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连结EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).25.(本题10分)华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?26.(本题10分)AB,CD是☉O的两条弦,直线AB,CD互相垂直,垂足为点E,连结AD,过点B作BF ⊥AD,垂足为点F,直线BF 交直线CD 于点G.(1)如图1,当点E 在☉O 外时,连结BC,求证:BE 平分∠GBC; (2)如图2,当点E 在☉O 内时,连结AC,AG,求证:AC=AG;(3)如图3,在(2)的条件下,连结BO 并延长交AD 于点H,若BH 平分∠ABF,AG=4,tan ∠D=43,求线段AH 的长.27.(本题10分)如图,在平面直角坐标系中,点O 为坐标原点,直线y=kx+1(k ≠0)与x 轴交于点A,与y 轴交于点C,过点C 的抛物线y=ax 2-(6a-2)x+b(a ≠0)与直线AC 交于另一点B,点B坐标为(4,3). (1)求a 的值;(2)点P 是射线CB 上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q,在x 轴上点Q 的右侧取点M,使MQ=58,在QP 的延长线上取点N,连结PM,AN,已知tan ∠NAQ-tan ∠MPQ=12,求线段PN 的长; (3)在(2)的条件下,过点C 作CD ⊥AB,使点D 在直线AB 下方,且CD=AC,连结PD,NC,当以PN,PD,NC 的长为三边长构成的三角形面积是258时,在y 轴左侧的抛物线上是否存在点E,连结NE,PE,使得△ENP 与以PN,PD,NC 的长为三边长的三角形全等?若存在,求出E 点坐标;若不存在,请说明理由.答案全解全析:一、选择题1.A 实数-12的相反数是12,故选A.2.B 对于A,(a 2)5=a 2×5=a 10,对于B,a 2·a 4=a 2+4=a 6,对于C,3a 2b-3ab 2=3ab(a-b),对于D,(a 2)2=a 222=a 24,故选B.3.D A 、B 是轴对称图形,C 是中心对称图形,D 既是轴对称图形又是中心对称图形.故选D.4.C ∵k=2>0,∴函数y=2x 的图象位于第一、三象限,且在每一象限内y 随x 的增大而减小,所以由-2<-1<0,得y 1<y 2.故选C.5.A 从正面看,从左向右的3列正方形的个数依次为1,1,2,故选A.6.D 由∠B=α=30°,sin B=ACAB ,得AB=ACsin30°=1 200×2=2 400 m.故选D. 7.C ∵四边形ABCD 是平行四边形,∴AD ∥BC, ∴△EAG ∽△EBF, ∴EA EB =EGEF ,A 正确,∵AB ∥CD,∴△GEA ∽△GHD,∴EG GH =AGGD ,B 正确, ∵AB ∥CD,∴FH EH =CFBC , 又∵BC=AD,∴FH EH =CFAD ,D 正确.故选C.8.A 依题意,扩大后增加的面积等于原长方形的长x m 与短边长增大的长度(x-60) m 的积,所列方程为x(x-60)=1 600,故选A. 9.C ∵AC=AC',∠CAC'=90°,∴∠CC'A=45°,∴∠AC'B'=45°-32°=13°, 又∵∠ACB=∠AC'B',∴∠B=90°-∠ACB=90°-13°=77°.故选C.10.D 依题意知,公交车的速度为(3 200-1 200)÷(12-7)=400(米/分钟),②正确. 小明上公交车(1 200-400)÷400=2(分钟)后与家相距1 200米,则小明从家出发7-2=5(分钟)时乘上公交车,①正确.小明下公交车跑向学校用了10+5-12=3(分钟),他没有迟到,④正确.小明下公交车后跑向学校的速度为(3 500-3 200)÷3=100(米/分钟),③正确.故选D.二、填空题11.答案 1.23×108解析 123 000 000=1.23×108.12.答案 x ≠2解析 依题意,有x-2≠0,得x ≠2. 13.答案 √6解析 原式=√4×6-3×√2×33×3=2√6-3×13×√6=2√6-√6=√6. 14.答案 a(3a+b)(3a-b)解析 原式=a(9a 2-b 2)=a[(3a)2-b 2]=a(3a+b)(3a-b).15.答案 40解析 设此扇形的圆心角为n 度,根据扇形的面积公式得nπr 2360=π,∵r=3 cm,∴n=40.16.答案 -1<x ≤2解析 由x+1>0得x>-1,由2x-1≤3得2x ≤4,即x ≤2,故原不等式组的解集为-1<x ≤2. 17.答案 69解析 设展出的油画作品有x 幅,由题意得12(x-7)+x=100,解得x=69.故展出的油画作品有69幅. 18.答案 16解析 随机抽取2名学生的所有可能为(甲、乙)、(甲、丙)、(甲、丁)、(乙、丙)、(乙、丁)、(丙、丁),共6种,则抽取的2名学生是甲和乙的概率为16. 19.答案 5.5或0.5解析 如图①,依题意知BE=BC=5,则AE=3,又EF=5,M 是EF 的中点,则EM=2.5,∴AM=3+2.5=5.5.图① 如图②,同理,FD=3,MF=2.5,则DM=DF+FM=3+2.5=5.5,AM=DM-DA=5.5-5=0.5.图② 综上,线段AM 的长为5.5或0.5. 20.答案 4√13解析 如图,作∠DAE=∠DAB 交BC 于点E,作DF ⊥AE 于点F,作AG ⊥BC 交BC 于点G.∵∠C+∠BAD=∠DAC,∠DAE+∠CAE=∠DAC,∴∠CAE=∠C,∴EA=EC.∵tan ∠BAD=47,∴tan ∠DAE=47,设DF=4k(k>0),则AF=7k,在Rt △ADF 中,AD 2=DF 2+AF 2,即(√65)2=(4k)2+(7k)2,解得k 1=1,k 2=-1(舍), ∴DF=4,AF=7.设EF=x(x>0),则EC=AE=7+x,DE=CD-EC=13-(7+x)=6-x,在Rt △DEF 中,DE 2=DF 2+EF 2,即(6-x)2=42+x 2, 解得x=53,∴DE=6-5=13,AE=7+5=26.设DG=y(y>0),则EG=133-y,在Rt △ADG 和Rt △AGE 中,AG 2=AD 2-DG 2=AE 2-GE 2,即(√65)2-y 2=(263)2-(133-y)2,解得y=1. ∴CG=12,AG=√65-1=8,在Rt △AGC 中,AC=√AG 2+CG 2=4√13.三、解答题21.解析 原式=[1x -y -2x(x -y)]÷x -23x=x -2x(x -y)·3x x -2=3x -y,(3分) ∵x=2+√3,y=4×12=2,(5分)∴原式=2+√3-2=√3=√3.(7分)22.解析 (1)正确画图.(3分)(2)正方形ABCD 正确.(5分)分割正确.(7分)23.解析 (1)1020%=50(名).答:本次抽样调查共抽取了50名学生.(2分)(2)50-10-20-4=16(名).(4分)答:测试结果为C 等级的学生有16名.正确画图.(5分)(3)700×450=56(名).(7分)答:估计该中学八年级700名学生中体能测试结果为D 等级的学生有56名.(8分)24.解析 (1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC,∴∠EAO=∠FCO.(1分)∵OA=OC,∠AOE=∠COF,∴△OAE ≌△OCF,∴OE=OF,(2分)同理,OG=OH.(3分)∴四边形EGFH 是平行四边形.(4分)(2)▱GBCH,▱ABFE,▱EFCD,▱EGFH(答对一个给1分).(8分)25.解析 (1)设购买一个A 品牌足球需x 元,则购买一个B 品牌足球需(x+30)元, 根据题意得2 500x =2 000x+30×2,(2分)解得x=50.(3分)经检验,x=50是原方程的解.(4分)x+30=80.答:购买一个A 品牌足球需50元,购买一个B 品牌足球需80元.(5分)(2)设本次购进a 个B 品牌足球,则购进A 品牌足球(50-a)个.根据题意得50×(1+8%)(50-a)+80×0.9a ≤3 260,(7分)解得a ≤3119.(8分)∵a 取正整数,∴a 最大值为31.(9分)答:此次华昌中学最多可购买31个B 品牌足球.(10分)26.解析 (1)证明:如图1,∵四边形ABCD 内接于☉O,∴∠D+∠ABC=180°,∵∠ABC+∠EBC=180°,∴∠D=∠EBC.(1分)∵GF ⊥AD,AE ⊥DG,∴∠A+∠ABF=90°,∠A+∠D=90°,∴∠ABF=∠D.(2分)∵∠ABF=∠GBE,∴∠GBE=∠EBC,即BE 平分∠GBC.(3分)图1(2)证明:如图2,连结CB,∵AB ⊥CD,BF ⊥AD,∴∠D+∠BAD=90°,∠ABG+∠BAD=90°,∴∠D=∠ABG,∵∠D=∠ABC,∴∠ABC=∠ABG.(4分)∵AB ⊥CD,∴∠CEB=∠GEB=90°,∵BE=BE,∴△BCE ≌△BGE,(5分)∴CE=EG,∵AE ⊥CG,∴AC=AG.(6分)图2(3)如图3,连结CO 并延长交☉O 于M,连结AM,图3∵CM 是☉O 的直径,∴∠MAC=90°,∵∠M=∠D,tan ∠D=43, ∴tan ∠M=43,∴AC AM =43, ∵AG=4,AC=AG,∴AC=4,AM=3,∴MC=2+AM 2=5,∴OC=52.(7分) 过H 作HN ⊥AB,垂足为点N,∵tan ∠D=43,AE ⊥DE,∴tan ∠BAD=34,∴NH AN =34, 设NH=3a(a>0),则AN=4a,∴AH=√NH 2+AN 2=5a,∵HB 平分∠ABF,NH ⊥AB,HF ⊥BF,∴HF=NH=3a,∴AF=8a.(8分)∵cos ∠BAF=AN AH =4a 5a =45,∴AB=AF cos ∠BAF=10a,∴NB=6a, ∴tan ∠ABH=NH NB =3a 6a =12.(9分) 过O 作OP ⊥AB,垂足为点P,∴PB=12AB=5a,tan ∠ABH=OP PB =12,∴OP=52a. ∵OB=OC=52,OP 2+PB 2=OB 2,∴a=√55, ∴AH=5a=√5.(10分)27.解析 (1)如图1,当x=0时,由y=kx+1得y=1,∴C(0,1),(1分)∵抛物线y=ax 2-(6a-2)x+b 经过C(0,1),B(4,3),∴{b =1,3=a ×42-(6a -2)×4+b,∴{a =34,b =1. ∴a=34.(2分)图1 (2)如图2,把B(4,3)代入y=kx+1中,3=4k+1,∴k=12,图2 ∴y=1x+1,令y=0,得0=1x+1,∴x=-2,∴A(-2,0),(3分)∴OA=2,∵C(0,1),∴OC=1,∴tan ∠CAO=OC OA =12,∵PQ ⊥x 轴,∴tan ∠PAQ=PQ QA ,∴PQ QA =12,(4分)设PQ=m,则QA=2m,∵tan ∠NAQ-tan ∠MPQ=12,∴NQ QA -MQ PQ =12,∵MQ=5,∴PN+m -58=1,∴PN=5.(5分)(3)在y 轴左侧抛物线上存在点E,使得△ENP 与以PN,PD,NC 的长为三边长的三角形全等. 如图3,过点D 作DF ⊥CO 于点F,图3 ∵DF ⊥CF,CD ⊥AB,∴∠CDF+∠DCF=90°,∠DCF+∠ACO=90°,∴∠CDF=∠ACO,∵CO ⊥x 轴,DF ⊥CO,∴∠AOC=∠CFD=90°,∵CA=CD,∴△ACO ≌△CDF,∴CF=AO=2,DF=CO=1,∴OF=CF -CO=1,(6分)在CF 上截取CH=PN,连结DH,PH,∵CH=PN=54,∴HF=CF -CH=34,∴DH=√DF 2+HF 2=54,∴DH=PN,(7分)∵CH=PN,CH ∥PN,∴四边形CHPN 是平行四边形,∴CN=HP,∴△PHD 是以PN,PD,NC 的长为三边长的三角形,∴S △PHD =258.延长FD,PQ 交于点G,∵PQ ∥y 轴,∴∠G=180°-∠CFD=90°,∴S 四边形HFGP =S △HFD +S △PHD +S △PDG ,∴12(HF+PG)FG=12HF ·FD+258+12DG ·PG,∵点P 在y=12x+1上,∴设P (t,12t +1),∴12(34+12t +1+1)t=12×34×1+258+12(t-1)(12t +1+1), ∴t=4,∴P(4,3),(8分)∴N (4,174),tan ∠DPG=DG PG =34,∵tan ∠HDF=HF FD =34,∴∠DPG=∠HDF,∵∠DPG+∠PDG=90°,∴∠HDF+∠PDG=90°,∴∠HDP=90°.(9分)∵PN=DH,若△ENP 与△PDH 全等,则有两种情况:当∠ENP=∠PDH=90°,EN=PD 时,∵PD=√PG 2+DG 2=5,∴EN=5,∴E (-1,174),由(1)得,抛物线为y=34x 2-52x+1,当x=-1时,y=174,∴点E 在抛物线上; 当∠NPE=∠HDP=90°,BE=PD 时,E(-1,3),但点E 不在抛物线上. ∴存在点E 满足题中条件,E (-1,174).(10分) (以上各解答题如有不同解法并且正确,请按相应步骤给分)。
黑龙江省哈尔滨市哈工大附属中学初三上学期期中考试数学试题
黑龙江省哈尔滨市哈工大附属中学初三上学期期中考试数学试题数学试卷考试时间〔120分钟〕 试卷总分值〔120分〕一、选择题〔每题3分,共30分〕1.以下四个图案中,是轴对称图形的是〔 〕.A. B. C. D.2.点M 与点N 〔2,5〕关于x 轴对称,那么点M 的坐标为〔 〕.A.〔-2,5〕B.〔2,5〕C.〔-2,-5〕D.〔2,-5〕3.以下运算中,正确的选项是〔 〕.A.623a a a =⋅B.2a a a =+C.222)(b a b a -=-D.()842a a =4.等腰三角形的两边长为8cm 和4cm ,那么它的周长为〔 〕.A .20cm B.16cm C.20cm 或16cm D.12cm5.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形〔a>b 〕,把余下的局部剪拼成一个矩形〔如图〕,经过计算图形〔阴影局部〕的面积,验证了一个等式,那么这个等式是〔 〕.A.222)(2b a b ab a +=++B.222)(2b a b ab a -=+-C.))((22b a b a b a +-=-D. ba a b a -=-222 6.假定等腰三角形的顶角为80°,那么它的底角为〔 〕.A.20°B.40°C.50°D.60°7.计算:201820174)25.0(⨯-的值为〔 〕.8.到三角形的三个顶点距离相等的点是〔 〕. A.三角形三条中线的交点 B.三角形三边垂直平分线的交点C.三角形三条角平分线的交点D.三角形三条高的交点9.如图,在△ABC 中,点E 在边AC 上,DE是AB 的垂直平分线, △ABC 的周长为19,△BCE 的周长为12,那么线段AB 的长为〔 〕. A.9 B.8 C.7 D.610.如图,在△ABC 中,∠ACB=90°,AC=BC ,点F 在边AB 上,点D 在边AC 上,衔接DF 并延伸DF 交CB 的延伸线于点E ,衔接CF ,且CF=FD ,过点A 作C第9题图ba b a a 第5题图AG ⊥CF 于点G ,AG 交FD 于点K ,过点B 作BH ⊥CF 交CF 的延伸线于点H ,以下四个结论中:〔1〕AG=CH ; 〔2〕AD=BE ;〔3〕当∠BGH=45°时,2BH-EF=FG ;〔4〕∠CAG=∠CEF.正确的有〔 〕个.A.1B.2C.3D.4二、填空题〔每题3分,共30分〕11.计算:)(233x x -÷2x = .12.如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,那么∠C 的度数为 .13.假定3=m a ,6=n a ,那么=-n m a 2 .14.如图,在△ABC 中,AB=AC ,BE=CD ,BD=CF ,∠EDF=70°,那么∠A 的度数为 .15.:,,23==+ab b a 那么22b a +的值为 .16.如图,在Rt △ABC 中,∠ACB=90°,∠B=30°,CD 是斜边AB 上的高,AD=3,那么线段BD 的长为.,∠ 一点,过F 作FD ⊥AB 于D ,FE ⊥AC 于E , 假定10=ABC S △,那么FE+FD = .19.,在△ABC 中,AB=AC ,BD 为AC 边上的高,∠ABD=40°,那么∠ACB 的度数为 . 20.如图,△ABC 为等边三角形,∠ADB=30°,CE ⊥BD 于点E ,AF ⊥BD 于点F ,BD=10,FD=2,那么线段BE 的长为 . 三、解答题〔21题、23题每题8分,22题、24每题7分,,共60分〕 21.计算: ⑴()()333242y x y x ÷- ⑵()()()3122+---y y y 22.先化简,再求值: )2)(2()32(2y x y x y x -+-+,其中.121=-=y x ,23.如图,在平面直角坐标系中,△ABC 三个顶点的坐标区分为A(2,4),B(1,1), C(3,2).〔1〕将△ABC 向下平移四个单位长度,画出平移后的△A 1B 1C 1 〔点A 、B 、C 的对应第20题图 第12题图B 第14题图B Ayx第23题图点区分是点A 1、B 1、C 1 〕;〔2〕画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2 〔点A 1、B 1、C 1 的对称点区分是点A 2、B 2、C 2 〕,并直接写出点C 2的坐标. 24.如图,在△ABE 中,AB=AE ,点D 、C 是△ABE 外部的两个点,衔接AD 、AC ,AD=AC ,且∠BAD=∠EAC ,衔接DE ,BC ,DE 、BC 交于点O.求证:OB=OE.25.某社区要整套购进A 型号和B 型号的两种健身器材.第一次购置A 型号10套,B 型号8套,恰恰支出6360元,购置一套B 型号健身器材比购置一套A 型号健身器材要多花120元. 〔1〕求A 型号和B 型号每套健身器材的单价各是多少元? 〔2〕在A 型号和B 型号每套健身器材的单价不变的条件下,该社区第二次购置A 型号和B 型号的两种健身器材共35套,且这次购置两种健身器材的总费用不超越12300元,求A 种型号健身器材至少要购置多少套?26. 如图,四边形ABCD 中,BC=AB ,∠ABC+∠ADC=180°,衔接BD.〔1〕如图1,求证:DB 平分∠ADC ;〔2〕如图2,衔接AC ,当∠BAC=60°时,求证:BD-CD=AD ;〔3〕如图3,在〔2〕的条件下,延伸AD 交BC 的延伸线于点F ,点E 在边AB 上,BE=CF ,衔接CE 交BD 于点G ,当DG=3,AF=8时,求BD 的长.27.如图,在平面直角坐标系中,O 为坐标原点,点A 为第四象限内一点,AB ⊥x轴于点B ,AB=4,OB=a ,且04-2 )(a . 〔1〕如图1,求点A 的坐标; 〔2〕 如图2,点C 在y 轴正半轴上,点D 在y 轴左侧,衔接AC 、CD 、AD ,且∠ADC=90°,CD=AD ,设点C 的纵坐标为m ,点D 的横坐标为n ,求证:m=-2n ; 〔3〕如图3,在〔2〕的条件下,点E 在线段OC 上,衔接BD 、DE 、BE ,且∠EBD=45°,当m=4时,求△CDE 的面积.第24题图 A DC EB OD B C 图1 D A C B图2 G E F D A。
黑龙江省哈尔滨市九年级数学上学期期中试卷(含解析)-人教版初中九年级全册数学试题
2016-2017学年某某省某某156中九年级(上)期中数学试卷一、选择题(每小题3分,共计30分)1.在3,﹣l,0,π 这四个数中,最大的数是()A.3 B.﹣1 C.0 D.π2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x73.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.5.下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等6.反比例函数y=﹣的图象经过点(﹣2,3),则k的值为()A.3 B.﹣6 C.6 D.﹣37.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣18.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.9.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个二、填空题((每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是千米.12.使分式有意义的x的取值X围是.13.计算:﹣=.14.把多项式ax2+2ax+a分解因式的结果是.15.二次函数y=x2+2x﹣7的对称轴是直线.16.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.17.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC=.18.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).19.在矩形ABCD中,AD=10,AB=8,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为G,则∠ABG的正切值是.20.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC为边在△ABC外作等边△ACD,则BD的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.22.如图的方格纸中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图中画出以AB为边的钝角三角形ABC,使点C在格点上,并且在直线AB的上方,满足tan∠BAC=,且△ABC的面积为9;(2)以AC为斜边画Rt△ACD,使D点在AC上方,且满足tan∠ACD=2;(3)直接写出线段CD的长.23.小林初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,每位同学只能报重高、普高、职高中的一种.她通过采集数据绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把条形统计图补充完整;(3)如果小林所在年级共有260名学生,请你估计该年级报考普高的学生人数.24.兴趣小组在一次数学实践活动中,为了测量如图所示的小山顶的塔高,进行了如下的操作,首先在A处测得塔尖D的仰角为30°,然后沿AC方向前进72米到达山脚B处,此时测得塔尖D的仰角为60°,塔底E的仰角为45°,求塔高.(结果保留根号)25.某某市政府大力扶持大学生创业.李民在政府的扶持下投资销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定销售利润率不能超过80%.(1)如果李民想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设李民每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?26.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB 于点F;过D作⊙O的切线,交CA延长线于点E.(1)求证:AB∥DE;(2)写出AC、CD、BC之间的数量关系,并加以证明.(3)若tan∠B=,DF=5,求DE的长.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,与y轴交于点C,过B、C两点的直线解析式为y=﹣x+b.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,过点P作PD⊥BC于点D,垂足为点D.设P 点的横坐标为t,线段PD的长为d,求d与t的函数关系.(3)过A作射线AQ,交抛物线的对称轴于点M,点N是x轴正半轴上B点右侧一点;BN的垂直平分线交射线AQ于点G,点G关于x轴的对称点恰好在抛物线上.若=,求当(2)中的d最大时直线PN与x轴所夹锐角的正切值.2016-2017学年某某省某某156中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.在3,﹣l,0,π 这四个数中,最大的数是()A.3 B.﹣1 C.0 D.π【考点】实数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<3<π,∴在3,﹣1,0,π这四个数中,最大的数是π.故选D.2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x7【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.【解答】解:A、2x2•x3=2x5,故本选项正确;B、应为(x﹣2)2=x2﹣4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.3.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选C.4.在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】首先利用勾股定理求得AB的长,然后利用正弦函数的定义即可求解.【解答】解:AB===10,则sinA===.故选D.5.下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】三角形的内切圆与内心;确定圆的条件;切线的判定.【分析】根据确定圆的条件、三角形内心和外心以及切线的判定定理即可进行判断.【解答】解:A、在同一直线上的三点不能确定一个圆,所以A选项错误;B、经过圆心的直线是圆的对称轴,所以B选项正确;C、经过半径的外端点,且垂直于半径的直线是圆的切线,所以C选项错误;D、三角形的外心到三角形三个顶点距离相等,所以D选项错误.故选B.6.反比例函数y=﹣的图象经过点(﹣2,3),则k的值为()A.3 B.﹣6 C.6 D.﹣3【考点】反比例函数图象上点的坐标特征.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:∵反比例函数y=﹣的图象经过点(﹣2,3),∴﹣2k=﹣2×3=﹣6,∴k=3,故选A.7.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2+2的顶点坐标为(0,2),根据点平移的规律得到点(0,2)平移后得到对应点的坐标为(﹣1,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),把点(0,2)先向下平移1个单位,再向左平移1个单位得到对应点的坐标为(﹣1,1),所以所得新抛物线的解析式为y=(x+1)2+1.故选B.8.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.9.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的应用.【分析】在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题.【解答】解:当x=0时,y=,故柱子OA的高度为m;(1)正确;∵y=﹣x2+2x+=﹣(x﹣1)2+2.25,∴顶点是(1,2.25),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是2.25米;故(2)正确,(3)错误;解方程﹣x2+2x+=0,得x1=﹣,x2=,故水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外,(4)正确.故选:C.二、填空题((每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是×104千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×104,×104.12.使分式有意义的x的取值X围是x≠﹣.【考点】分式有意义的条件.【分析】根据分式有意义的条件可知2x+1≠0,再解不等式即可.【解答】解:由题意得:2x+1≠0,解得:x≠﹣,故答案为:x≠﹣13.计算:﹣=.【考点】实数的运算.【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=﹣2=﹣.故答案为:﹣.14.把多项式ax2+2ax+a分解因式的结果是a(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,再利用完全平方公式分解因式得出答案.【解答】解:ax2+2ax+a=a(x2+2x+1)=a(x+1)2.故答案为:a(x+1)2.15.二次函数y=x2+2x﹣7的对称轴是直线x=﹣1 .【考点】二次函数的性质.【分析】把函数解析式化为顶点式可求得其对称轴.【解答】解:∵y=x2+2x﹣7=(x+1)2﹣8,∴抛物线对称轴为x=﹣1,故答案为:x=﹣1.16.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5 .【考点】概率的意义.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5,故答案为:0.5.17.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC=.【考点】圆周角定理;坐标与图形性质;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,故答案为:.18.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).【考点】扇形面积的计算;弧长的计算.【分析】首先要明确S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF,然后依面积公式计算即可.【解答】解:连接OF,∵∠AOD=45°,四边形CDEF是正方形,∴OD=CD=DE=EF,于是Rt△OFE中,OE=2EF,∵OF=,EF2+OE2=OF2,∴EF2+(2EF)2=5,解得:EF=1,∴EF=OD=CD=1,∴S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF=﹣×1×1﹣1×1=.19.在矩形ABCD中,AD=10,AB=8,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为G,则∠ABG的正切值是或.【考点】解直角三角形;菱形的性质;矩形的性质.【分析】两种情况:①由矩形的性质得出CD=AB=8,BC=AD=10,∠ADB=∠CDF=90°,由菱形的性质得出CF=EF=BE=BC=10,由勾股定理求出DF,得出GF,即可求出AG;②同①得出AE=6,求出GE,即可得出AG的长,然后解直角三角形即可求得.【解答】解:分两种情况:①如图1所示:∵四边形ABCD是矩形,∴CD=AB=8,BC=AD=10,∠ADC=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=10,∴DF==6,∴AF=AD+DF=16,∵G是EF的中点,∴GF=EF=5,∴AG=AF﹣DF=16﹣5=11,∴tan∠ABG==;②如图2所示:同①得:AE=6,∵G是EF的中点,∴GE=5,∴AG=AE﹣GE=1,∴tan∠ABG==;故答案为:或.20.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC为边在△ABC外作等边△ACD,则BD的长为14 .【考点】勾股定理;等边三角形的性质.【分析】以AB为边作等边三角形AEB,连接CE,如图所示,由三角形ABE与三角形ACD都为等边三角形,利用等边三角形的性质得到AE=AB,AD=AC,且∠EAB=∠DAC=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EAC与三角形BAD全等,利用余弦定理求出EC的长就是BD的长.【解答】解:以AB为边作等边三角形AEB,连接CE,如图所示,∵△ABE与△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD(SAS),∴BD=EC,∵∠EBA=60°,∠ABC=60°,∴∠EBC=120°,在△EBC中,BC=10,EB=6,过点E做BC的垂线交BC于点F,则∠EBF=60°,∠FEB=30°,∴EF=3,FB=3,FC=10+3=13,∴EC2=FC2+EF2=196,∴BD=EC=14.故答案为:14.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】分别化简代数式和x的值,代入计算.【解答】解:原式=.∵x=4sin45°﹣2cos60°==2﹣1,∴原式===.22.如图的方格纸中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图中画出以AB为边的钝角三角形ABC,使点C在格点上,并且在直线AB的上方,满足tan∠BAC=,且△ABC的面积为9;(2)以AC为斜边画Rt△ACD,使D点在AC上方,且满足tan∠ACD=2;(3)直接写出线段CD的长.【考点】作图—应用与设计作图;勾股定理.【分析】(1)根据钝角三角形ABC,满足tan∠BAC=,且△ABC的面积为9进行作图;(2)根据Rt△ACD,满足tan∠ACD=2进行画图即可;(3)根据勾股定理求得线段CD的长.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△ADC即为所求;(3)如图所示,CD==.23.小林初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,每位同学只能报重高、普高、职高中的一种.她通过采集数据绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把条形统计图补充完整;(3)如果小林所在年级共有260名学生,请你估计该年级报考普高的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用重高人数除以重高人数所占的百分比即可得到该班人数;(2)用全班人数减去重高和职高的人数,求出普高的人数,然后补全条形统计图;(3)利用样本估计总体,用260乘以普高所占的百分比,即可得出答案.【解答】解:(1)根据题意得:25÷62.5%=40(人),答:该班的总人数是40人;(2)普高的人数是:40﹣25﹣5=10(人);补图如下:(3)根据题意得:260×=65(人),答:该年级报考普高的学生人数有65人.24.兴趣小组在一次数学实践活动中,为了测量如图所示的小山顶的塔高,进行了如下的操作,首先在A处测得塔尖D的仰角为30°,然后沿AC方向前进72米到达山脚B处,此时测得塔尖D的仰角为60°,塔底E的仰角为45°,求塔高.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】先由三角形外角的性质求出∠ADB=∠CBD﹣∠BAD=60°﹣30°=30°=∠BAD,根据等角对等边得出BD=AB=72米,再解Rt△BCD,得出BC=BD•cos60°=36,CD=BD•sin60°=36,解Rt△BCE,得出CE=BC=36,于是塔高DE=CD﹣EC=36﹣36.【解答】解:∵∠ADB=∠CBD﹣∠BAD=60°﹣30°=30°=∠BAD,∴BD=AB=72米.在Rt△BCD中,∵∠BCD=90°,∠DBC=60°,∴BC=BD•cos60°=72×=36,CD=BD•sin60°=72×=36.在Rt△BCE中,∵∠BCE=90°,∠EBC=45°,∴CE=BC=36,∴塔高DE=CD﹣EC=36﹣36.答:塔高DE为(36﹣36)米.25.某某市政府大力扶持大学生创业.李民在政府的扶持下投资销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定销售利润率不能超过80%.(1)如果李民想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设李民每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以得关于x的一元二次方程,从而可以解答本题,注意价部门规定销售利润率不能超过80%;(2)根据题意可以写出w关于x的函数关系式,从而可以求得函数的最大值,本题得以解决.【解答】解:(1)设销售单价定为x元,(x﹣20)(﹣10x+500)=2000,解得,x1=30,x2=40,∵x≤20+20×80%=36,∴x=30,即如果李民想要每月获得2000元的利润,那么销售单价应定为30元;(2)由题意可得,w=(x﹣20)(﹣10x+500)=﹣10(x﹣35)2+2250,∵20≤x≤36,∴当x=35时,w取得最大值,此时w=2250,即当销售单价定为35元时,每月可获得最大利润,最大利润为2250元.26.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB 于点F;过D作⊙O的切线,交CA延长线于点E.(1)求证:AB∥DE;(2)写出AC、CD、BC之间的数量关系AC+BC=CD ,并加以证明.(3)若tan∠B=,DF=5,求DE的长.【考点】圆的综合题.【分析】(1)连接BD.根据直径所对的圆周角是90°,可知:∠ACB=90°,从而可求得∠ABD=∠ACD=∠DCB=45°由弦切角定理可知:∠CDE=∠CBA+45°,由三角形外角的性质可知∠CFA=∠CBA+45°,故此∠AFC=∠EDC,从而可证明AB∥ED,(2)先根据角平分线的性质定理得出DG=DM,CM=CG,进而得出CG=CD再判断出Rt△ADG ≌Rt△BDM,最后等量代换即可;(3)先根据三角函数得出BC=2x,AB=x,再用角平分线定理得出AF和BF,借助(2)结论得出CF,CD,进而用相交弦定理建立方程求出x,最后用平行线分线段成比例定理得出DE.【解答】解:(1)如图1,∵AB是圆O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠DCB=45°.∴∠ABD=∠ACD=45°.由弦切角定理可知:∠CDE=∠CBD=∠CBA+∠ABD=∠CBA+45°.∵∠CFA=∠FCB+∠CBA=∠CBA+45°,∴∠AFC=∠EDC.∴AB∥ED,(2)AC+BC=CD理由:如图2,连接BD,AD,过点D作DG⊥AC,DM⊥BM,∵∠ACD=∠BCD,∴DG=DM,CM=CG由(1)知,AB∥DE,且DE是⊙O的切线,∴点D是半圆的中点,∵AB是直径,∴AD=BD,在Rt△ADG和Rt△BDM中,,∴Rt△ADG≌Rt△BDM,∴AG=BM,在Rt△CDG中,∠DCG=45°,∴CD=CG,∴CG=CD∴AC+BC=AC+CM+BM=AC+CM+AG=CM+CG=2CG=CD;即:AC+BC=CD故答案为:AC+BC=CD(3)设AC=x,∵tan∠B==,∴BC=2x,∴AB=x,∵CD平分∠ACB,∴=,∴AF=x,BF=x,由(2)知,CD=AC+BC=3x,∴CD=x,∵DF=5,∴CF=CD﹣DF=x﹣5,根据相交弦定理得,DF×CF=AF×BF,∴5(x﹣5)=x•x,∴x=6或x=,当x=6时,AF=2,BF=4,CD=9,CF=4,∵AB∥DE,∴,∴,∴DE=,当x=,AF=,CF=,CD=,∵AB∥DE,∴,∴,∴DE=.即:DE的长为.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,与y轴交于点C,过B、C两点的直线解析式为y=﹣x+b.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,过点P作PD⊥BC于点D,垂足为点D.设P 点的横坐标为t,线段PD的长为d,求d与t的函数关系.(3)过A作射线AQ,交抛物线的对称轴于点M,点N是x轴正半轴上B点右侧一点;BN的垂直平分线交射线AQ于点G,点G关于x轴的对称点恰好在抛物线上.若=,求当(2)中的d最大时直线PN与x轴所夹锐角的正切值.【考点】二次函数综合题.【分析】(1)利用抛物线的解析式求出点C坐标,即可求出b,推出点A、B两点坐标,利用待定系数法即可求出a.(2)如图1中,作PE⊥AB于F,交BC于E.设P(t,﹣t2+2t+3),则E(t,﹣t+3).首先证明△PDE是等腰直角三角形,推出PD=PE,由此即可解决问题.(3)如图2中,设BN的垂直平分线交x轴于H,抛物线的对称轴交x轴于D,作ML⊥GH 于L.首先证明cos∠GML=cos∠GAH=,由AH=GH,列出方程即可解决问题.【解答】解:(1)∵抛物线y=ax2﹣2ax+3与y轴交于点C,∴C(0,3)∵直线解析式为y=﹣x+b过B、C.∴C(0,b),B(b,0),∴b=3,∴B(3,0),∵抛物线的对称轴为x=1,A、B关于对称轴对称,∴A(﹣1,0),把A(﹣1,0)代入抛物线的解析式3a+3=0,∴a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1中,作PE⊥AB于F,交BC于E.设P(t,﹣t2+2t+3),则E(t,﹣t+3).∵OC=OB=3,∠COB=90°,∴∠COB=∠EFB=90°,∴∠FEB=∠PED=45°,∴d=PD=PE=(﹣t2+2t+3+t﹣3)=﹣t2+t.(0<t<3).∴d=﹣t2+t.(0<t<3).(3)如图2中,设BN的垂直平分线交x轴于H,抛物线的对称轴交x轴于D,作ML⊥GH 于L.∵GM:AN=5:8,设GM=5k,AN=8k,∵AB=4,BD=2,∴BN=8k﹣4,BH=4k﹣2,DH=DB+BH=4k,∴cos∠GML==,∵ML∥AH,∴∠GML=∠GAH,∴cos∠GAH=,∴AH=GH,设G点横坐标为m,∵点G关于x轴的对称点恰好在抛物线上,∴G(m,m2﹣2m﹣3),∴(m+1)=m2﹣2m﹣3,解得m=或﹣1(舍弃),∴点H(,0),N(,0).∵d=﹣t2+t=﹣(t﹣)2+,∵﹣<0,∴t=时,d有最大值,此时P(,),∴此时直线PN与x轴所夹锐角的正切值==.。
九年级数学上学期期中试卷含解析新人教版五四制
2016-2017学年黑龙江省哈尔滨六十九中九年级(上)期中数学试卷一.选择题1.﹣的相反数是()A. B.﹣C.﹣2 D.22.下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣45.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%6.已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大 B.减小 C.先增大再减小 D.先减小再增大7.如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A. B. C. D.9.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A. B. C. D.10.如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A. B. C. D.二.填空题11.将38000用科学记数法表示为.12.函数y=中自变量x的取值范围是.13.计算:﹣= .14.把多项式xy2﹣4x分解因式的结果为.15.不等式组的整数解是.16.方程=的解为.17.如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则= .18.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为.19.在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为.20.如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG= .三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.22.图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.23.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?24.在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC相等的线段(线段AC除外).25.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?26.已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF 的长.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C, =.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.2016-2017学年黑龙江省哈尔滨六十九中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一.选择题1.﹣的相反数是()A. B.﹣C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+1【考点】单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:底数不变,指数相加,以及合并同类项:只把系数相加,字母及其指数完全不变,幂的乘方法则:底数不变,指数相乘,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加分别求出即可.【解答】解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.【点评】此题主要考查了整式的混合运算,根据题意正确的掌握运算法则是解决问题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念分别分析求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣4【考点】反比例函数图象上点的坐标特征.【分析】将点(﹣2,5)代入解析式可求出k的值.【解答】解:∵反比例函数y=的图象经过点(﹣2,5),∴2﹣3k=﹣2×5=﹣10,∴﹣3k=﹣12,∴k=4,故选C.【点评】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“﹣”.6.已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大 B.减小 C.先增大再减小 D.先减小再增大【考点】二次函数的性质.【分析】首先确定其对称轴,然后根据其开口方向和对称轴确定其增减性.【解答】解:∵抛物线y=(x﹣2)2+1的对称轴为x=2,且开口向上,∴当x≥2时,y随x增大而增大,故选A.【点评】本题考查了二次函数的性质,解题的关键是首先确定抛物线的对称轴,然后确定其增减性.7.如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.【考点】解直角三角形的应用-方向角问题.【分析】根据题意,可得Rt△ABC,同时可知AC与∠ACB.根据三角函数的定义解答.【解答】解:根据题意,在Rt△ABC,有AC=a,∠ACB=α,且tanα=,则AB=AC×tanα=a•tanα,故选B.【点评】本题考查了解直角三角形的应用,要熟练掌握三角函数的定义.8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A. B. C. D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A. B. C. D.【考点】平行线分线段成比例.【分析】用平行线分线段成比例定理以及比例的性质进行变形即可得到答案.【解答】解:∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC,∴==,==,∵EF∥AB,∴=, =,∴,故选C.【点评】此题主要考查平行线分线段成比例定理的理解及运用.找准对应关系,避免错选其他答案.10.如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A. B. C. D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据实际情况来判断函数图象.【解答】解:当点p由点A运动到点B时,△APD的面积是由小到大;然后点P由点B运动到点C时,△APD的面积是不变的;再由点C运动到点D时,△APD的面积又由大到小;再观察图形的BC<AB<CD,故△APD的面积是由小到大的时间应小于△APD的面积又由大到小的时间.故选B.【点评】应理解函数图象的横轴和纵轴表示的量.二.填空题11.将38000用科学记数法表示为 3.8×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:38000=3.8×104,故答案为:3.8×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数y=中自变量x的取值范围是x≠﹣.【考点】函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,3x+1≠0,解得x≠﹣.故答案为:x≠﹣.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.计算:﹣= .【考点】二次根式的加减法.【专题】计算题.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.14.把多项式xy2﹣4x分解因式的结果为x(y+2)(y﹣2).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.不等式组的整数解是 2 .【考点】一元一次不等式组的整数解.【分析】解一元一次不等式组得出x的取值范围,再去其内的整数,即可得出结论.【解答】解:,解不等式①得:x>1;解不等式②得:x<3.∴不等式组的解为1<x<3,∴不等式组的整数解是2.故答案为:2.【点评】本题考查了一元一次不等式组的整数解,熟练掌握一元一次不等式组的解法是解题的关键.16.方程=的解为x=5 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得3(x﹣1)=2(x+1),去括号得:3x﹣3=2x+2,解得:x=5,检验:当x=5时,(x+1)(x﹣1)≠0,则原方程的解为x=5.故答案为x=5.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的对边相等,即可得出EC、AB的比例关系,易证得△EFC∽△BFA,可根据相似三角形的对应边成比例求出BF、EF的比例关系.【解答】解:∵DE:EC=1:2,∴EC:DC=2:3,;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△ABF∽△CEF,∴BF:EF=AB:EC,∵AB:EC=CD:EC=3:2,∴BF:FE=3:2,故答案为:.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.18.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为 4 .【考点】垂径定理;线段垂直平分线的性质;勾股定理.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故答案为:4.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.19.在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为或15 .【考点】解直角三角形.【分析】如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,先求出BE,EC,在RT△BCE 中利用勾股定理即可解决,如图2中,当点D在线段AB上时,作BE⊥CD于E,方法类似第一种情形.【解答】解:如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,∵AC⊥CD,∴AC∥BE,∴==,∵AC=6,∴BE=,∵tan∠BCE=,∴EC=2BE=3,∴BC===.如图2中,当点D在线段AB上时,作BE⊥CD于E,∵AC∥BE,AC=6,∴==,∴BE=3,∵tan∠BCE=,∴EC=2BE=6,∴BC==15.故答案为:或15.【点评】本题考查解直角三角形、平行线的性质、锐角三角函数、勾股定理等知识,解题的关键是添加辅助线,利用平行线的性质解决问题,属于中考常考题型.20.如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG= .【考点】正方形的性质.【分析】如图,连接EF、DF,作FM⊥DE于M.先求出△DEF的面积,再求出高FM,利用勾股定理求出EM、DM,利用等腰三角形的性质求出DG即可解决问题.【解答】解:如图,连接EF、DF,作FM⊥DE于M.∵四边形ABCD是正方形,∴AB=BC=CD=AD=10,∵AE=EB=BF=FC=5,∴ED==5,EF==5,∴S△DEF=100﹣×10×5﹣×10×5﹣×5×5=×DE•FM,∴FM=3,在Rt△EFM中,EM==,∴DM=DE﹣EM=4,∵∠MGF=45°,∴∠MGF=∠MFG=45°,∴MG=FM=3,∴DG=DM﹣MG=.故答案为.【点评】本题考查正方形的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会利用分割法求三角形面积,学会添加常用辅助线,构造直角三角形,属于中考常考题型.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.【考点】分式的化简求值;特殊角的三角函数值.【分析】根据特殊角的三角函数值求出m的值,再把要求的代数式进行化简,然后代值计算即可.【解答】解:∵m=tan60°﹣2sin30°=﹣2×=﹣1,∴÷=×===.【点评】此题考查了分式的化简求值,用到的知识点是特殊角的三角函数值、完全平方公式和平方差公式,关键是把要求的代数式化到最简,再代值计算.22.图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.【考点】作图—相似变换;等腰三角形的判定;勾股定理.【分析】(1)根据题意画出等腰三角形;(2)根据图a,按比例画出图b.【解答】(1)解:如图a(2)如图b.【点评】本题考查了等腰三角形的判定、勾股定理、作图相似变换,要充分利用网格.23.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?【考点】扇形统计图;条形统计图.【专题】图表型.【分析】(1)用参加坐位体前摆的人数与仰卧起坐的人数的人数除以其所占的百分比即可得到测试人数;(2)用总人数减去其他各项人数即可得到参加立定跳远的人数,补全统计图即可;(3)用总人数乘以其所占的比即可得到参加仰卧起坐的人数.【解答】解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有 45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.【点评】本题考查了扇形及条形统计图的知识,解题的关键是认真的读图并从中整理出进一步解题的信息.24.在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC 相等的线段(线段AC除外).【考点】菱形的判定与性质.【专题】证明题.【分析】(1)如图1,利用等腰三角形的性质得∠DCA=∠ADC,CE=AE,再利用CF∥AB得到∠ECF=∠EAD,则∠DCA=∠ECF,于是根据等腰三角形的判定方法可得CD=CF,所以四边形ADCF为平行四边形,加上DA=DC可判断四边形ADCF是菱形;(2)如图2,先证明△ADC为等边三角形得到AC=AD=CD,∠ACD=60°,再利用菱形的性质可得AC=AD=DC=CF=AF,然后证明BD=CD即可.【解答】解:(1)证明:如图1,∵AD=CD,DE⊥AC,∴∠DCA=∠ADC,CE=AE,∵CF∥AB,∴∠ECF=∠EAD,∴∠DCA=∠ECF,即CE平分∠DCF,而CE⊥DF,∴CD=CF,∴AD∥CF,∴四边形ADCF为平行四边形,而DA=DC,∴四边形ADCF是菱形;(2)如图2,∵∠ACB=90°,∠B=30°,∴∠BAC=60°,而DA=DC,∴△ADC为等边三角形,∴AC=AD=CD,∠ACD=60°,∵四边形ADCF为菱形,∴AC=AD=DC=CF=AF,∵∠B=∠DCB=30°,∴BD=CD,∴AC=AD=DC=CF=AF=BD.【点评】本题考查了菱形的判定与性质:菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形).;菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.25.(10分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【考点】分式方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.【点评】本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.26.已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF 的长.【考点】圆的综合题.【分析】(1)先判断出∠BOD=∠NDO,进而得出∠AOC=∠CDO,即可得出△AMO≌△OND,结论得证;(2)构造出直角三角形,先判断出PH=OA,即可得出CG=OC,进而求出∠AOC=30°,最后用角的差,即可得出结论.(3)先求出CD=2CG=16,再判断出△AOE≌△COD,进而判断出四边形AODF是平行四边形,最后用线段的差即可得出结论;【解答】解:(1)如图1,连接OD,∴OA=OD,∵CD∥AB,∴∠BOD=∠NDO,,∴∠AOC=∠BCD,∴∠AOC=∠CDO,在△AMO和△OND中,,∴△AMO≌△OND,∴AM=ON,(2)如图2,过点C作CG⊥AB,PH⊥AB,∴CG=PH,∵AP=OP,∠APO=90°,∴∠AOP=45°,PH=OA,∴CG=OA=OC,∴∠AOC=30°,∴∠COP=∠AOP﹣∠AOC=15°.(3)如图3,作OG⊥CD于G,连接OD,∵AB=20,∴OC=10CG=OC•cos∠C=OC•cos∠AOC=10×=8 ∴CD=2CG=16∵NE=NF,∴∠E=∠EFN∵CD∥AB,∴∠EFN=∠A∴∠E=∠A,∴OE=OA∵CD∥AB,∴∠BOD=∠D=∠C=∠AOC∴∠AOE=∠COD∴△AOE≌△COD,∴AE=CD=16∵△AOM≌△ODN,∴∠NOD=∠A=∠E∴AE∥OD,∴四边形AODF是平行四边形∴AF=OD=10∴EF=AE﹣AF=16﹣10=6,【点评】此题是四边形综合题,主要考查了圆的性质,平行线的性质,全等三角形的判定和性质,平行四边形的判定和性质,得出△AOE≌△COD是解本题的关键.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C, =.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.【考点】二次函数综合题.【分析】(1)先求出A、B两点坐标,再根据条件求出点C坐标,即可解决问题.(2)如图1中,设P(t,t2﹣6t+5),想办法求出D、E两点坐标(用t表示),只要纵坐标相同即可证明.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.,设DM=MG=a,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,求出a,再根据tan∠DPE=tan∠GME,得=,列出方程即可解决问题.【解答】解:(1)对于抛物线y=mx2﹣6mx+5m,令y=0,得mx2﹣6mx+5m=0,解得x=1或5,∴A(1,0),B(5,0),∴AB=4,∵=,∴OC=5,∴5m=5,∴m=1.(2)如图2中,设P(t,t2﹣6t+5).∵OC=OB=5,∠AOB=90°,∴∠OCB=∠OBC=∠EBF=45°,∵PE⊥AB于F,∴△BEF是等腰直角三角形,∴BF=EF=t﹣5,∴点E坐标(t,5﹣t),∵A(1,0),P(t,t2﹣6t+5),设直线AP的解析式为y=kx+b,则有,解得,∴D(0,5﹣t),∴D、E两点纵坐标相同,∴DE∥AB.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.∵EG=2PG,∴GE=(t2﹣5t),∵MD=MG,设DM=MG=a,∴∠MDG=∠MGD,∴∠GME=2∠MDG,∵∠DPE=2∠GDE,∴∠DPE=∠GME,∴tan∠DPE=tan∠GME,∴=,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,∴a=t3﹣t2+t,∴EM=t﹣a=﹣t3+t2﹣t,∴=,整理得到16t2﹣160t+391=0,解得t=或(舍弃),∴点P坐标(,).【点评】本题考查二次函数综合题、一次函数、等腰直角三角形的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题,计算比较复杂,属于中考压轴题.。
黑龙江省哈尔滨市2015年中考数学试题含答案
2015年黑龙江哈尔滨中考数学试卷答题时间:120分钟 分值:120分一、选择题(每小题3分,共计30分) 1.实数12-的相反数是( ) (A )12 (B )12- (C )2 (D ) -2 2.下列运算正确的是( )(A )257()a a = (B )246a aa = (C )22330a b ab -= (D )2222a a ⎛⎫= ⎪⎝⎭3.下列图形中,既是轴对称图形又是中心对称图形的是( )(A) (B) (C) (D) 4.点A (-1,1y ),B (-2,2y )在反比例函数2y x=的图象上,则1y ,2y 的大小关系是( )(A )1y >2y (B )1y =2y (C )1y <2y (D )不能确定 5.如图所示的几何体是由五个小正方形体组合而成的,它的主视图是( )6如图:某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞机飞行高度AC =1200m ,从飞机上看地平面指挥台B 的俯角α=30︒,则飞机A 与指挥台B 的距离为( )(A )1200m (B) 12002m (C)12003m (D)2400m7.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD 、CD 于点G ,H ,则下列结论错误的是( ) (A )EA EG BE EF = (B )EG AG GH GD = (C )AB BC AE CF = (D ) FH CFEH AD=正面8.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m ,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m ,设扩大后的正方形绿地边长为X m ,下面所列方程正确的是( )(A ) x(x-60)=1600 (B) x(x+60)=1600 (C) 60(x+60)=1600 (D) 60(x-60)=1600 9.如图,在Rt ∆ABC 中,∠BAC =90,将∆ABC 绕点A 顺时针旋转90后得到∆A B C ''(点B 的对应点是点B ',点C 的对应点是点C '),连接C C '。
哈尔滨市九年级上期中数学试卷含答案解析(五四学制)
2022-2023黑龙江省哈尔滨九年级(上)期中数学试卷(五四学制)一.选择题1.﹣的相反数是()A.B.﹣C.﹣2 D.22.下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣45.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%6.已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大B.减小C.先增大再减小D.先减小再增大7.如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C. D.9.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.10.如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A. B.C.D.二.填空题11.将38000用科学记数法表示为.12.函数y=中自变量x的取值范围是.13.计算:﹣= .14.把多项式xy2﹣4x分解因式的结果为.15.不等式组的整数解是.16.方程=的解为.17.如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则= .18.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为.19.在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为.20.如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG= .三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.22.图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.23.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?24.在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC 相等的线段(线段AC除外).25.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?26.已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C, =.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.2022-2023黑龙江省哈尔滨九年级(上)期中数学试卷(五四学制)参考答案与试题解析一.选择题1.﹣的相反数是()A.B.﹣C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+1【考点】单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:底数不变,指数相加,以及合并同类项:只把系数相加,字母及其指数完全不变,幂的乘方法则:底数不变,指数相乘,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加分别求出即可.【解答】解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.【点评】此题主要考查了整式的混合运算,根据题意正确的掌握运算法则是解决问题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念分别分析求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣4【考点】反比例函数图象上点的坐标特征.【分析】将点(﹣2,5)代入解析式可求出k的值.【解答】解:∵反比例函数y=的图象经过点(﹣2,5),∴2﹣3k=﹣2×5=﹣10,∴﹣3k=﹣12,∴k=4,故选C.【点评】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“﹣”.6.已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大B.减小C.先增大再减小D.先减小再增大【考点】二次函数的性质.【分析】首先确定其对称轴,然后根据其开口方向和对称轴确定其增减性.【解答】解:∵抛物线y=(x﹣2)2+1的对称轴为x=2,且开口向上,∴当x≥2时,y随x增大而增大,故选A.【点评】本题考查了二次函数的性质,解题的关键是首先确定抛物线的对称轴,然后确定其增减性.7.如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.【考点】解直角三角形的应用-方向角问题.【分析】根据题意,可得Rt△ABC,同时可知AC与∠ACB.根据三角函数的定义解答.【解答】解:根据题意,在Rt△ABC,有AC=a,∠ACB=α,且tanα=,则AB=AC×tanα=a•tanα,故选B.【点评】本题考查了解直角三角形的应用,要熟练掌握三角函数的定义.8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C. D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S=MN•AC=AM•MC,△AMC∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.【考点】平行线分线段成比例.【分析】用平行线分线段成比例定理以及比例的性质进行变形即可得到答案.【解答】解:∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC,∴==,==,∵EF∥AB,∴=, =,∴,故选C.【点评】此题主要考查平行线分线段成比例定理的理解及运用.找准对应关系,避免错选其他答案.10.如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A. B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据实际情况来判断函数图象.【解答】解:当点p由点A运动到点B时,△APD的面积是由小到大;然后点P由点B运动到点C时,△APD的面积是不变的;再由点C运动到点D时,△APD的面积又由大到小;再观察图形的BC<AB<CD,故△APD的面积是由小到大的时间应小于△APD的面积又由大到小的时间.故选B.【点评】应理解函数图象的横轴和纵轴表示的量.二.填空题11.将38000用科学记数法表示为 3.8×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:38000=3.8×104,故答案为:3.8×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数y=中自变量x的取值范围是x≠﹣.【考点】函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,3x+1≠0,解得x≠﹣.故答案为:x≠﹣.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.计算:﹣= .【考点】二次根式的加减法.【专题】计算题.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.14.把多项式xy2﹣4x分解因式的结果为x(y+2)(y﹣2).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.不等式组的整数解是 2 .【考点】一元一次不等式组的整数解.【分析】解一元一次不等式组得出x的取值范围,再去其内的整数,即可得出结论.【解答】解:,解不等式①得:x>1;解不等式②得:x<3.∴不等式组的解为1<x<3,∴不等式组的整数解是2.故答案为:2.【点评】本题考查了一元一次不等式组的整数解,熟练掌握一元一次不等式组的解法是解题的关键.16.方程=的解为x=5 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得3(x﹣1)=2(x+1),去括号得:3x﹣3=2x+2,解得:x=5,检验:当x=5时,(x+1)(x﹣1)≠0,则原方程的解为x=5.故答案为x=5.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的对边相等,即可得出EC、AB的比例关系,易证得△EFC∽△BFA,可根据相似三角形的对应边成比例求出BF、EF的比例关系.【解答】解:∵DE:EC=1:2,∴EC:DC=2:3,;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△ABF∽△CEF,∴BF:EF=AB:EC,∵AB:EC=CD:EC=3:2,∴BF:FE=3:2,故答案为:.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.18.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为4.【考点】垂径定理;线段垂直平分线的性质;勾股定理.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故答案为:4.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.19.在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为或15 .【考点】解直角三角形.【分析】如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,先求出BE,EC,在RT△BCE 中利用勾股定理即可解决,如图2中,当点D在线段AB上时,作BE⊥CD于E,方法类似第一种情形.【解答】解:如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,∵AC⊥CD,∴AC∥BE,∴==,∵AC=6,∴BE=,∵tan∠BCE=,∴EC=2BE=3,∴BC===.如图2中,当点D在线段AB上时,作BE⊥CD于E,∵AC∥BE,AC=6,∴==,∴BE=3,∵tan∠BCE=,∴EC=2BE=6,∴BC==15.故答案为:或15.【点评】本题考查解直角三角形、平行线的性质、锐角三角函数、勾股定理等知识,解题的关键是添加辅助线,利用平行线的性质解决问题,属于中考常考题型.20.如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG= .【考点】正方形的性质.【分析】如图,连接EF、DF,作FM⊥DE于M.先求出△DEF的面积,再求出高FM,利用勾股定理求出EM、DM,利用等腰三角形的性质求出DG即可解决问题.【解答】解:如图,连接EF、DF,作FM⊥DE于M.∵四边形ABCD是正方形,∴AB=BC=CD=AD=10,∵AE=EB=BF=FC=5,∴ED==5,EF==5,∴S=100﹣×10×5﹣×10×5﹣×5×5=×DE•FM,△DEF∴FM=3,在Rt△EFM中,EM==,∴DM=DE﹣EM=4,∵∠MGF=45°,∴∠MGF=∠MFG=45°,∴MG=FM=3,∴DG=DM﹣MG=.故答案为.【点评】本题考查正方形的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会利用分割法求三角形面积,学会添加常用辅助线,构造直角三角形,属于中考常考题型.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.【考点】分式的化简求值;特殊角的三角函数值.【分析】根据特殊角的三角函数值求出m的值,再把要求的代数式进行化简,然后代值计算即可.【解答】解:∵m=tan60°﹣2sin30°=﹣2×=﹣1,∴÷=×===.【点评】此题考查了分式的化简求值,用到的知识点是特殊角的三角函数值、完全平方公式和平方差公式,关键是把要求的代数式化到最简,再代值计算.22.图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.【考点】作图—相似变换;等腰三角形的判定;勾股定理.【分析】(1)根据题意画出等腰三角形;(2)根据图a,按比例画出图b.【解答】(1)解:如图a(2)如图b.【点评】本题考查了等腰三角形的判定、勾股定理、作图相似变换,要充分利用网格.23.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?【考点】扇形统计图;条形统计图.【专题】图表型.【分析】(1)用参加坐位体前摆的人数与仰卧起坐的人数的人数除以其所占的百分比即可得到测试人数;(2)用总人数减去其他各项人数即可得到参加立定跳远的人数,补全统计图即可;(3)用总人数乘以其所占的比即可得到参加仰卧起坐的人数.【解答】解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有 45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.【点评】本题考查了扇形及条形统计图的知识,解题的关键是认真的读图并从中整理出进一步解题的信息.24.在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC 相等的线段(线段AC除外).【考点】菱形的判定与性质.【专题】证明题.【分析】(1)如图1,利用等腰三角形的性质得∠DCA=∠ADC,CE=AE,再利用CF∥AB得到∠ECF=∠EAD,则∠DCA=∠ECF,于是根据等腰三角形的判定方法可得CD=CF,所以四边形ADCF为平行四边形,加上DA=DC可判断四边形ADCF是菱形;(2)如图2,先证明△ADC为等边三角形得到AC=AD=CD,∠ACD=60°,再利用菱形的性质可得AC=AD=DC=CF=AF,然后证明BD=CD即可.【解答】解:(1)证明:如图1,∵AD=CD,DE⊥AC,∴∠DCA=∠ADC,CE=AE,∵CF∥AB,∴∠ECF=∠EAD,∴∠DCA=∠ECF,即CE平分∠DCF,而CE⊥DF,∴CD=CF,∴AD∥CF,∴四边形ADCF为平行四边形,而DA=DC,∴四边形ADCF是菱形;(2)如图2,∵∠ACB=90°,∠B=30°,∴∠BAC=60°,而DA=DC,∴△ADC为等边三角形,∴AC=AD=CD,∠ACD=60°,∵四边形ADCF为菱形,∴AC=AD=DC=CF=AF,∵∠B=∠DCB=30°,∴BD=CD,∴AC=AD=DC=CF=AF=BD.【点评】本题考查了菱形的判定与性质:菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形).;菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.25.(10分)(•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【考点】分式方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.【点评】本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.26.已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.【考点】圆的综合题.【分析】(1)先判断出∠BOD=∠NDO,进而得出∠AOC=∠CDO,即可得出△AMO≌△OND,结论得证;(2)构造出直角三角形,先判断出PH=OA,即可得出CG=OC,进而求出∠AOC=30°,最后用角的差,即可得出结论.(3)先求出CD=2CG=16,再判断出△AOE≌△COD,进而判断出四边形AODF是平行四边形,最后用线段的差即可得出结论;【解答】解:(1)如图1,连接OD,∴OA=OD,∵CD∥AB,∴∠BOD=∠NDO,,∴∠AOC=∠BCD,∴∠AOC=∠CDO,在△AMO和△OND中,,∴△AMO≌△OND,∴AM=ON,(2)如图2,过点C作CG⊥AB,PH⊥AB,∴CG=PH,∵AP=OP,∠APO=90°,∴∠AOP=45°,PH=OA,∴CG=OA=OC,∴∠AOC=30°,∴∠COP=∠AOP﹣∠AOC=15°.(3)如图3,作OG⊥CD于G,连接OD,∵AB=20,∴OC=10CG=OC•cos∠C=OC•cos∠AOC=10×=8 ∴CD=2CG=16∵NE=NF,∴∠E=∠EFN∵CD∥AB,∴∠EFN=∠A∴∠E=∠A,∴OE=OA∵CD∥AB,∴∠BOD=∠D=∠C=∠AOC∴∠AOE=∠COD∴△AOE≌△COD,∴AE=CD=16∵△AOM≌△ODN,∴∠NOD=∠A=∠E∴AE∥OD,∴四边形AODF是平行四边形∴AF=OD=10∴EF=AE﹣AF=16﹣10=6,【点评】此题是四边形综合题,主要考查了圆的性质,平行线的性质,全等三角形的判定和性质,平行四边形的判定和性质,得出△AOE≌△COD是解本题的关键.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C, =.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.【考点】二次函数综合题.【分析】(1)先求出A、B两点坐标,再根据条件求出点C坐标,即可解决问题.(2)如图1中,设P(t,t2﹣6t+5),想办法求出D、E两点坐标(用t表示),只要纵坐标相同即可证明.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.,设DM=MG=a,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,求出a,再根据tan∠DPE=tan∠GME,得=,列出方程即可解决问题.【解答】解:(1)对于抛物线y=mx2﹣6mx+5m,令y=0,得mx2﹣6mx+5m=0,解得x=1或5,∴A(1,0),B(5,0),∴AB=4,∵=,∴OC=5,∴5m=5,∴m=1.(2)如图2中,设P(t,t2﹣6t+5).∵OC=OB=5,∠AOB=90°,∴∠OCB=∠OBC=∠EBF=45°,∵PE⊥AB于F,∴△BEF是等腰直角三角形,∴BF=EF=t﹣5,∴点E坐标(t,5﹣t),∵A(1,0),P(t,t2﹣6t+5),设直线AP的解析式为y=kx+b,则有,解得,∴D(0,5﹣t),∴D、E两点纵坐标相同,∴DE∥AB.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.∵EG=2PG,∴GE=(t2﹣5t),∵MD=MG,设DM=MG=a,∴∠MDG=∠MGD,∴∠GME=2∠MDG,∵∠DPE=2∠GDE,∴∠DPE=∠GME,∴tan∠DPE=tan∠GME,∴=,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,∴a=t3﹣t2+t,∴EM=t﹣a=﹣t3+t2﹣t,∴=,整理得到16t2﹣160t+391=0,解得t=或(舍弃),∴点P坐标(,).【点评】本题考查二次函数综合题、一次函数、等腰直角三角形的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题,计算比较复杂,属于中考压轴题.。
黑龙江省哈尔滨工业大学附中九年级数学上学期10月月考试卷(含解析)
2015-2016学年黑龙江省哈尔滨工业大学附中九年级(上)月考数学试卷一、选择题1.下列计算中,结果正确的是()A.a3•a2=a6B.(a2)3=a6C.(2a)(3a)=6a D.a6÷a2=a32.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)3.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<14.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A. = B. = C. = D. =5.用配方法解方程a2﹣4a﹣1=0,下列配方正确的是()A.(a﹣2)2﹣4=0 B.(a+2)2﹣5=0 C.(a+2)2﹣3=0 D.(a﹣2)2﹣5=06.已知a为锐角,且sin(a﹣10°)=,则a等于()A.50° B.60° C.70° D.80°7.一辆汽车沿倾斜角α的斜坡前进800米,则它上升的高度是()A.800•sinα米B.米C.800•cosα米D.米8.抛物线y=﹣x2+2kx+2与x轴的交点个数为()A.0个B.1个C.2个D.3个9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.310.快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y(千米)与所用的时间x(时)的关系如图所示,下列说法正确的有()①快车返回的速度为140千米/时;②慢车的速度为70千米/时;③出发小时时,快慢两车距各自出发地的路程相等;④快慢两车出发小时时相距150千米.A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,满分30分)11.在函数中,自变量x的取值范围是.12.分解因式:2x2﹣18= .13.不等式组的解集是.14.如图,在平行四边形ABCD中,E在DC上,若BF:BE=4:7,则DE:EC= .15.抛物线y=2x2+3x﹣1向右平移2个单位,再向上平移3个单位,得到新的抛物线解析式是.16.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+b经过点A(﹣6,0)B(0,3)两点,点C、D在直线AB上,C的纵坐标为4,点D在第三象限,且△OBC与△OAD的面积相等,则点D的坐标为.17.如图,点D、E分别在△ABC边BC、AC上,连接线段AD、BE交于点F,若AE:EC=1:3,BD:DC=2:3,则EF:FB= .18.在等腰△ABC中,AB=AC,cos∠ABC,点P是直线BC上一点,且PC PB=1:3,则tan∠APB= .19.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=75t﹣1.5t2,那么飞机着陆后滑行秒能停下来.20.在△ABC中,D、E分别为BC、AB的中点,EG⊥AC于点G,EG、AD交于点F,若AG=4,BC=2,tan∠DAC=,则AC= .三、解答题(其中21、22题各7分,23、24题各8分,25、26、27题各10分,共计60分)第20题图21.化简求值:,其中x=2sin45°﹣tan45°.22.图1、图2分别是6×5的网格,网格中每个小正方形的边长均为1,每个网格中画有一个四边形.请分别在图1、图2中各画一条线段,满足以下要求:(1)线段的一个端点为四边形的顶点,另一个端点在四边形一边的格点上(2014秋•扶沟县期中)二次函数y=ax2+bx+c的图象过A(﹣3,0),B(1,0),C(0,3),点D在函数图象上,点C,D 是二次函数图象上的一对对称点,一次函数图象过点B,D,求:(1)一次函数和二次函数的解析式;(2)写出使一次函数值大于二次函数值的x的取值范围.24.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)足球第一次落地点C距守门员多少米?25.某公司销售一种成本价为40元/件的产品,经调查,发现每天销售量y(件)与销售单价x(元/件)可近似于一次函数y=﹣x+120.(1)若该公司每天获得1200元的利润,且进货成本不超过2000元,那么该公司应把销售单价定为多少?(2)该公司要想每天获得最大的利润,应把销售单价定为多少?最大利润值为多少?26.如图,在等腰直角三角形ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上.(1)若CE:AE=1:7,求tan∠CDE的值.(2)以DE为腰作等腰直角三角形DEF,连接CF、BF,若CE=1,△CDF的面积为,求BF的长.27.如图,已知抛物线y=﹣x2﹣2x+6与y轴交于点A,与x轴交于B、C两点,连接AC.(1)求直线AC的解析式;(2)点P为直线AC上方抛物线上的一点,过点P作PD⊥AC点D,当线段PD的最长时,求点P的坐标;(3)在(2)的条件下,连接PB,Q为抛物线上一动点,过点Q做QF⊥PB交直线PB于点F.若Q 点的横坐标为t,抛物线的对称轴与AC交于点E,求t为何值时,EF=QE?2015-2016学年黑龙江省哈尔滨工业大学附中九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题1.下列计算中,结果正确的是()A.a3•a2=a6B.(a2)3=a6C.(2a)(3a)=6a D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据同底数幂的乘法,幂的乘方与积的乘方、单项式乘单项式、同底数幂的除法的法则分别进行计算,即可得出答案.【解答】解:a3•a2=a5,A错误;(a2)3=a6,B正确;(2a)(3a)=6a2,C错误;a6÷a2=a4,D错误.故选:B.【点评】本题考查的是同底数幂的乘法,幂的乘方与积的乘方、单项式乘单项式、同底数幂的除法,掌握各部分的运算法则是解题关键.2.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.3.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1【考点】反比例函数的性质.【专题】常规题型.【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【解答】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选:A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.4.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A. = B. = C. = D. =【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理由DE∥BC可判断=, =,则可对A、C进行判断,由EF∥AB得到=, =,可对B、D进行判断.【解答】解:A、∵DE∥BC,∴ =,所以A选项的比例式正确;B、∵EF∥AB,∴ =,即=,所以B选项的比例式正确;C、∵DE∥BC,∴ =,所以C选项的比例式错误;D、∵EF∥AB,∴ =,即=,所以D选项的比例式错误.故选C.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.5.用配方法解方程a2﹣4a﹣1=0,下列配方正确的是()A.(a﹣2)2﹣4=0 B.(a+2)2﹣5=0 C.(a+2)2﹣3=0 D.(a﹣2)2﹣5=0【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项变形后,配方即可得到结果.【解答】解:方程整理得:a2﹣4a=1,配方得:a2﹣4a+4=5,即(a﹣2)2﹣5=0,故选D【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.已知a为锐角,且sin(a﹣10°)=,则a等于()A.50° B.60° C.70° D.80°【考点】特殊角的三角函数值.【分析】根据sin60°=得出a的值.【解答】解:∵sin60°=,∴a﹣10°=60°,即a=70°.故选C.【点评】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.7.一辆汽车沿倾斜角α的斜坡前进800米,则它上升的高度是()A.800•sinα米B.米C.800•cosα米D.米【考点】解直角三角形的应用-坡度坡角问题.【分析】在三角函数中,根据坡度角的正弦值=垂直高度:坡面距离即可解答.【解答】解:如图,∠A=α,∠C=90°,则他上升的高度BC=ABsinα=800•sinα米.故选A.【点评】此题主要考查了坡角问题的应用,通过构造直角三角形,利用锐角三角函数求解是解题关键.8.抛物线y=﹣x2+2kx+2与x轴的交点个数为()A.0个B.1个C.2个D.3个【考点】抛物线与x轴的交点.【分析】令﹣x2+2kx+2=0,求出△的值,判断出其符号即可.【解答】解:令﹣x2+2kx+2=0,∵△=4k2+8>0,∴抛物线y=﹣x2+2kx+2与x轴有两个交点.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系是解答此题的关键.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.3【考点】二次函数图象与系数的关系.【分析】①由二次函数y=ax2+bx+c与x轴有2个交点,可得b2﹣4ac>0;②由抛物线开口方向、对称轴、抛物线与y轴的交点,可判定a,b,c的符号,继而判定abc<0;③由关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,可得直线y=m与抛物线无交点,继而求得答案.【解答】解:①∵二次函数y=ax2+bx+c与x轴有2个交点,∴b2﹣4ac>0;故正确;②∵开口向下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故正确;③∵关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,∴即直线y=m与抛物线无交点,∴m>2,故正确.故选D.【点评】此题考查了二次函数的图象与系数的关系.注意二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点以及抛物线与x轴交点的个数确定.10.快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y(千米)与所用的时间x(时)的关系如图所示,下列说法正确的有()①快车返回的速度为140千米/时;②慢车的速度为70千米/时;③出发小时时,快慢两车距各自出发地的路程相等;④快慢两车出发小时时相距150千米.A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】根据题意,快车往返行驶的时间与慢车驶往甲地的时间相同,再根据速度=路程÷时间分别求出两车的速度即可;然后分别求出x=和时两车行驶的路程,再判断即可.【解答】解:∵快车到达乙地后停留1小时,快车比慢车晚1小时到达甲地,∴快车往返行驶的时间与慢车驶往甲地的时间相同,∴快车的速度==140千米/时,故①正确;慢车的速度==70千米/时,故②正确;x=时,快车到达乙地又返回,行驶路程=(﹣1)×140=千米,慢车路程=×70=千米,∵420×2﹣=千米,∴快慢两车距各自出发地的路程相等,故③正确;x=时,甲乙还没有相遇,二者相距:420﹣×(140+70)=420﹣270=150千米,故④正确.综上所述,说法正确的有①②③④共4个.故选:D.【点评】本题考查了一次函数的应用,主要是行程问题的考查,读懂题目信息以及函数图象表示的行驶过程是解题的关键,难点在于出发小时时快车到达乙地并且休息后已经返回.二、填空题(共10小题,每小题3分,满分30分)11.在函数中,自变量x的取值范围是x≠3 .【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.分解因式:2x2﹣18= 2(x+3)(x﹣3).【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.不等式组的解集是≤x<2 .【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得:x≥,则不等式组的解集是:≤x<2.故答案是:≤x<2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.如图,在平行四边形ABCD中,E在DC上,若BF:BE=4:7,则DE:EC= 1:3 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】求出BF:EF=4:3,根据平行四边形的性质得出AB=DC,AB∥DC,根据相似三角形的判定得出△CEF∽△ABF,求出=,即可得出答案.【解答】解:∵BF:BE=4:7,∴BF:EF=4:3,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴△CEF∽△ABF,∴==,∴CE:CD=3:4,∴DE:EC=1:3,故答案为:1:3.【点评】本题考查了平行四边形的性质,相似三角形的性质和判定的应用,能求出=是解此题的关键.15.抛物线y=2x2+3x﹣1向右平移2个单位,再向上平移3个单位,得到新的抛物线解析式是y=(x﹣)2+.【考点】二次函数图象与几何变换.【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:y=2x2+3x﹣1=2(x+)2﹣,其顶点坐标为(﹣,﹣).向右平移2个单位长度,再向上平移3个单位长度后的顶点坐标为(,),得到的抛物线的解析式是y=(x﹣)2+.故答案为:y=(x﹣)2+.【点评】此题主要考查了一次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.16.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+b经过点A(﹣6,0)B(0,3)两点,点C、D在直线AB上,C的纵坐标为4,点D在第三象限,且△OBC与△OAD的面积相等,则点D的坐标为(﹣8,﹣1).【考点】一次函数图象上点的坐标特征.【分析】利用待定系数法求得直线的解析式,进而求得C的坐标,根据△OBC与△OAD的面积相等,求得D的纵坐标,代入直线解析式即可求得D的坐标.【解答】解:∵直线y=kx+b经过点A(﹣6,0)、B(0,3)两点,∴,解得:,∴直线为y=x+3;∵点C在直线AB上,C的纵坐标为4,∴4=x+3,解得x=2,设D(m,n),∵△OBC与△OAD的面积相等,∴AO•|n|=×3×2,∴3|n|=3,∴|n|=1,点D在第三象限,∴n=﹣1,∴D(m,﹣1),代入y=x+3得,﹣1=m+3,解得m=﹣8,∴D(﹣8,﹣1).故答案为:(﹣8,﹣1).【点评】本题考查了一次函数与坐标轴的交点坐标,直线上的点的特点,三角形的面积等,根据△OBC与△OAD的面积相等列出等式是解题的关键.17.如图,点D、E分别在△ABC边BC、AC上,连接线段AD、BE交于点F,若AE:EC=1:3,BD:DC=2:3,则EF:FB= .【考点】平行线分线段成比例.【分析】作EH∥BC交AD于H,根据平行线分线段成比例定理列出比例式求出,根据平行线分线段成比例定理解答即可.【解答】解:作EH∥BC交AD于H,∴==,∵=,∴=,∵EH∥BC,∴==,故答案为:.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.18.在等腰△ABC中,AB=AC,cos∠ABC,点P是直线BC上一点,且PC PB=1:3,则tan∠APB= 或.【考点】解直角三角形;等腰三角形的性质.【分析】如图,过D作AD⊥BC于D,根据等腰三角形的性质得到BD=CD,根据cos∠ABC=,设BD=4x,AB=5x,得到BC=8x,由于PC:PB=1:3,得到PD=2x,根据三角函数的定义即可得到结论.【解答】解:如图1,过D作AD⊥BC于D,∵AB=AC,∴BD=CD,∵cos∠ABC=,∴设BD=4x,AB=5x,∴AD=3x,∴BC=8x,∵PC:PB=1:3,∴PB=6x,∴PD=2x,∴tan∠APB==;如图2,∵PC:PB=1:3,∴PB=12x,∴PD=8x,∴tan∠APB==;综上所述:tan∠APB=或.故答案为:或.【点评】本题考查了解直角三角形,等腰三角形的性质,正确的作出辅助线是解题的关键.19.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=75t﹣1.5t2,那么飞机着陆后滑行25 秒能停下来.【考点】二次函数的应用.【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【解答】解:由题意,s=75t﹣1.5t2=﹣1.5(t2﹣50t+625﹣625)=﹣1.5(t﹣25)2+937.5,即当t=25秒时,飞机才能停下来.故答案是:25.【点评】本题考查了二次函数的应用.解题时,利用配方法求得t=25时,s取最大值.20.在△ABC中,D、E分别为BC、AB的中点,EG⊥AC于点G,EG、AD交于点F,若AG=4,BC=2,tan∠DAC=,则AC= 12 .【考点】相似三角形的判定与性质.【分析】设AC=2a,连接DE,过D作DH⊥AC于H,根据D、E分别为BC、AB的中点,于是得到DE=AC=a,DE∥AC,CD==,根据已知条件tan∠DAC==,求得FG=2,通过△AGF∽△DFE,根据相似三角形的性质得到,求得EF=a,得到DH=EH=2+a,HC=2a﹣4﹣a=a﹣4,根据勾股定理列方程,即可得到结论.【解答】解:设AC=2a,连接DE,过D作DH⊥AC于H,∵D、E分别为BC、AB的中点,∴DE=AC=a,DE∥AC,CD==,∵tan∠DAC==,∴FG=2,∵DE∥AC,∴△AGF∽△DFE,∴,即,∴EF=a,∴DH=EH=2+a,HC=2a﹣4﹣a=a﹣4,在Rt△DHC中,DH2+CH2=DC2,即,解得:a=6,a=﹣(舍去),∴AC=12.故答案为:12.【点评】本题考查了相似三角形的判定和性质,勾股定理,三角形的中位线的性质,正确的周长辅助线是解题的关键.三、解答题(其中21、22题各7分,23、24题各8分,25、26、27题各10分,共计60分)第20题图21.化简求值:,其中x=2sin45°﹣tan45°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】将原式被除式的分子利用完全平方公式分解因式,除式中的x+2分母看做1,通分并利用同分母分式的加法法则计算,分子合并后利用平方差公式分解因式,并利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后得到最简结果,然后利用特殊角的三角函数值化简得出x的值,将x的值代入化简后的式子中计算,即可得到原式的值.【解答】解:÷(x+2+)=÷=•=,当x=2sin45°﹣tan45°=2×﹣1=﹣1时,原式===1﹣.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.22.图1、图2分别是6×5的网格,网格中每个小正方形的边长均为1,每个网格中画有一个四边形.请分别在图1、图2中各画一条线段,满足以下要求:(1)线段的一个端点为四边形的顶点,另一个端点在四边形一边的格点上(2014秋•扶沟县期中)二次函数y=ax2+bx+c的图象过A(﹣3,0),B(1,0),C(0,3),点D在函数图象上,点C,D 是二次函数图象上的一对对称点,一次函数图象过点B,D,求:(1)一次函数和二次函数的解析式;(2)写出使一次函数值大于二次函数值的x的取值范围.【考点】二次函数与不等式(组).【分析】(1)将A、B、C的坐标代入抛物线的解析式中即可求得二次函数的解析式,进而可根据抛物线的对称轴求出D点的坐标,再用待定系数法求出一次函数解析式;(2)根据(1)画出函数图象,即可写出一次函数值大于二次函数值的x的取值范围.【解答】解:(1)二次函数y1=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),C(0,3),则,解得.故二次函数图象的解析式为y1=﹣x2﹣2x+3,∵对称轴x=﹣1,∴点D的坐标为(﹣2,3),设y2=kx+b,∵y2=kx+b过B、D两点,∴,解得.∴y2=﹣x+1;(2)函数的图象如图所示,∴当y2>y1时,x的取值范围是x<﹣2或x>1.【点评】此题主要考查了一次函数和二次函数解析式的确定以及根据函数图象比较函数值大小,画出函数图象熟练运用数形结合是解决第2问的关键.24.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)足球第一次落地点C距守门员多少米?【考点】二次函数的应用.【分析】(1)以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系,得出抛物线的顶点是(6,4),利用顶点式求出解析式即可;(2)利用令y=0,则﹣x2+x+1=0,求出图象与x轴交点坐标即可得出答案.【解答】解:(1)以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣,所以抛物线解析式为:y=﹣x2+x+1;(2)令y=0,则﹣x2+x+1=0,解得:x1=6﹣4(舍去),x2=6+4=12.8(米),所以,足球落地点C距守门员约12.8米.【点评】此题主要考查了顶点式求二次函数解析式以及一元二次方程的解法等知识,正确建立坐标系得出解析式是解题关键.25.某公司销售一种成本价为40元/件的产品,经调查,发现每天销售量y(件)与销售单价x(元/件)可近似于一次函数y=﹣x+120.(1)若该公司每天获得1200元的利润,且进货成本不超过2000元,那么该公司应把销售单价定为多少?(2)该公司要想每天获得最大的利润,应把销售单价定为多少?最大利润值为多少?【考点】二次函数的应用.【专题】应用题.【分析】(1)根据题意可以列出相应的方程和不等式,从而可以得到该公司每天获得1200元的利润,且进货成本不超过2000元,那么该公司应把销售单价定为多少,本题得以解决;(2)根据题意可以列出相应的函数关系式,然后化为顶点式,即可解答本题.【解答】解:(1)由题意可得,(x﹣40)(﹣x+120)=1200,解得,x1=60,x2=100,∵40(﹣x+120)≤2000,得x≥70,∴x=100,即该公司应把销售单价定为每件100元;(2)设公司每天获得的销售利润为S,由题意可得,S=(x﹣40)(﹣x+120)=﹣(x﹣80)2+1600,∴当x=80时,每天获得的利润最大,此时最大利润为1600元,即该公司要想每天获得最大的利润,应把销售单价定为每件80元,最大利润为1600元.【点评】本题考查二元一次方程、不等式、二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数关系化为顶点式,知道二次函数的性质.26.如图,在等腰直角三角形ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上.(1)若CE:AE=1:7,求tan∠CDE的值.(2)以DE为腰作等腰直角三角形DEF,连接CF、BF,若CE=1,△CDF的面积为,求BF的长.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】(1)作EF⊥BC于F,则EF∥AB,由平行线分线段成比例定理得出CF:BC=1:8,得出CF:DF=1:3,证出△CEF是等腰直角三角形,得出EF=CF,EF:DF=1:3即可;(2)作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,易证∠DFE=∠ACB═45°,可得D、E、C、F四点共圆,从而可证得∠DEN=∠DFM,进而可得△DNE≌△DMF,则有DN=DM,NE=MF.易证四边形DNCM是正方形,设正方形DNCM的边长为x,根据△CDF的面积为7.5建立关于x的方程,求出x,从而可求出FC、KC、BK,然后根据勾股定理就可求出BF的长.【解答】解:(1)作EF⊥BC于F,如图1所示:则EF∥AB,∴CF:BF=CE:AE=1:7,∴CF:BC=1:8,∵点D为BC的中点,∴BD=CD,∴CF:DF=1:3,∵△ABC是等腰直角三角形,∴∠C=45°,∴△CEF是等腰直角三角形,∴EF=CF,∴EF:DF=1:3,∴tan∠CDE==;(2)作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图2所示.∵△ABC和△DEF都是等腰直角三角形,∴∠DFE=∠ACB=45°,∴D、E、C、F四点共圆∴∠EDF+∠ECF=180°,∠DEC+∠DFC=180°,∠DCF=∠DEF=45°.∵∠DEN+∠DEC=180°,∴∠DEN=∠DFM.在△DNE和△DMF中,,∴△DNE≌△DMF(AAS),∴DN=DM,NE=MF.∵∠DNC=∠NCM=∠DMC=90°,∴四边形DNCM是矩形.∵DN=DM,∴矩形DNCM是正方形.设正方形DNCM的边长为x,则NC=MC=DM=DN=x,∴MF=NE=NC﹣EC=x﹣1,∴FC=MC+FM=x+(x﹣1)=2x﹣1.∵△CDF的面积为7.5,∴x(2x﹣1)=7.5.解得:x1=﹣2.5(舍去),x2=3.∴BD=DC==3,FC=5,∴KF=FC•sin45°=,同理:KC=,∴BK=BC﹣KC=6﹣=,∴BF==.【点评】本题考查了四点共圆、圆内接四边形的性质、圆周角定理、等腰直角三角形的性质、全等三角形的判定与性质、正方形的判定与性质、解一元二次方程、锐角三角函数的定义、勾股定理等知识,综合性比较强.而通过证明D、E、C、F四点共圆和△DNE≌△DMF是解决本题的关键.27.如图,已知抛物线y=﹣x2﹣2x+6与y轴交于点A,与x轴交于B、C两点,连接AC.(1)求直线AC的解析式;(2)点P为直线AC上方抛物线上的一点,过点P作PD⊥AC点D,当线段PD的最长时,求点P的坐标;(3)在(2)的条件下,连接PB,Q为抛物线上一动点,过点Q做QF⊥PB交直线PB于点F.若Q 点的横坐标为t,抛物线的对称轴与AC交于点E,求t为何值时,EF=QE?【考点】二次函数综合题.【分析】(1)根据坐标轴上点的特点,令x=0,y=0,再用待定系数法求解即可;(2)先判断出△PDE∽△AOC,得到PD=DE=PE,再建立PE=﹣x2﹣2x+6﹣(x+6)=﹣x2﹣3x,根据二次函数极值的确定方法即可;(3)先求出直线PB解析式为y=﹣x+3,再确定出QQ1的解析式,求出它和抛物线的交点坐标的横坐标即可.【解答】解:(1)令x=0,y=6,∴A(0,6),令y=0,﹣ x2﹣2x+6=0,∴x1=2,x2=﹣6,∴B(2,0),C(﹣6,0),设直线AC的解析式为y=kx+b,∴,∴,∴直线AC解析式为y=x+6,(2)作PE∥y轴,∴∠PEA=∠CAO,∵∠PDE=∠AOC=90°,∴△PDE∽△AOC∵OA=0C,∴PD=DE=PE,设P(x,﹣ x2﹣2x+6),∴E(x,x+6),∴PE=﹣x2﹣2x+6﹣(x+6)=﹣x2﹣3x,当x=﹣3时,PE最长,把x=﹣3代入y=﹣x2﹣2x+6=,∴P(﹣3,);(3)如图,点M(﹣2,4),∵B(2,0),P(﹣3,);∴直线PB解析式为y=﹣x+3,∵G(﹣2,6),∴G关于M的对称点为(﹣2,2),∵直线Q1Q∥PB,且过H,∴Q1Q解析式为y=﹣x﹣1,∵,∴x=,∴t=.【点评】此题是二次函数综合题,主要考查了坐标轴上点的特点,待定系数法,三角形的相似的性质和判定,对称的性质,解本题的关键是确定函数关系式.。
2014-2015学年黑龙江省哈工大附中九年级上学期期中数学试卷与解析(五四学制)
2014-2015学年黑龙江省哈工大附中九年级(上)期中数学试卷(五四学制)一、选择题(每小题3分,共30分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.2.(3分)下列运算正确的是()A.x2•x3=x6B.(﹣x2)3=x6C.x6÷x5=x D.x2+x3=x53.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.4.(3分)如果将抛物线y=(x﹣2)2+1向左平移1个单位,再向上平移3个单位,那么所得新抛物线的解析式为()A.y=(x﹣3)2+4 B.y=(x﹣1)2+4 C.y=(x+1)2+2 D.y=(x+1)2 5.(3分)如图在△ABC中,DE∥BC,DF∥AC,则下列比例式不正确的是()A.=B.=C.=D.=6.(3分)如图,线段AB为⊙O的直径,C、D为⊙O上两点,且BC=4,tan∠BDC=,则⊙O的半径为()A.2 B.5 C.4 D.47.(3分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,且点A、B均在(1,0)的右侧,则下列选项中不正确的是()A.a<0 B.b<0 C.c<0 D.a+b+c<08.(3分)下列说法中,正确的个数有()①长度相等的弧叫做等弧;②垂直于弦的直径平分弦,并且平分弦所对的两条弧;③圆的切线垂直于过切点的半径;④一条弧所对的圆周角等于它所对的圆心角的一半.A.1个 B.2个 C.3个 D.4个9.(3分)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,则∠BAD的值为()A.30°B.21°C.58°D.48°10.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC 的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B. C.D.二、填空题(每小题3分,共30分)11.(3分)函数y=中,自变量x的取值范围是.12.(3分)因式分解:a2﹣1=.13.(3分)不等式组的解集是.14.(3分)抛物线y=(x+1)2﹣3的顶点坐标为.15.(3分)如图,AB是⊙O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=.16.(3分)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.17.(3分)某商场第1年销售电视机5000台,第3年销售电视机7200台,如果每年的销售量比上一年增加的百分率相同,则这个百分率为.18.(3分)在平面直角坐标系中,直线y=﹣2x+2与x轴交于点A,与y轴交于点B,若以点N(m,2)为圆心的⊙N同时与x轴、直线AB相切,则m的值为.19.(3分)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.20.(3分)如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A、C,PC交AB的延长线于点D,DE⊥PO的延长线于点E,若PC=6,tan∠PDA=,则OE的长为.三、解答题(满分60分)21.(6分)先化简,再求代数式(1﹣)÷的值,其中x=4sin45°﹣2cos60°.22.(6分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在网格中小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在网格中小正方形的顶点上),使△ABD为等腰三角形(画一个即可).23.(8分)如图,某校一幢教学大楼的顶部竖直有一块“传承文明,启智求真”的宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知tan∠BAF=,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据≈1.414,≈1.732)24.(10分)已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.25.(8分)经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)该经销店要获得最大月利润,售价应定为每吨多少元?26.(10分)△ABC中,∠ABC=45°,BD⊥AC于点D,CE⊥AB于点E,BD交CE 于点F.(1)如图1,求证:BF=AC;(2)如图2,连接DE,求证:DE平分∠ADB;(3)在图2中,若AD=4,AE=,求BC的长.27.(12分)已知在平面直角坐标系中,直线y=kx+b与x轴交于点A(4,0),与y轴交于点B(0,m),直线AB上有一点M,M的横坐标为m,以M为顶点的抛物线经过点B.(1)如图1,当m=5时,求抛物线的解析式;(2)如图2,过点M作BM的垂线交y轴于点C,延长CM至点D使MC=MD,作ME∥x轴,DE∥y轴,ME与DE交于点E,设点D(x,y),求DE的长并直接写出y关于x的函数关系式.(3)过点D作BM的平行线交(2)中的函数图象于点P,连接BD、MP,当以点B、M、D、P为顶点的四边形是平行四边形时,求点P的坐标.2014-2015学年黑龙江省哈工大附中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.【解答】解:(A)原式=3,故A不是最简二次根式;(B)原式=,故B是最简二次根式;(C)原式=,故C不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.2.(3分)下列运算正确的是()A.x2•x3=x6B.(﹣x2)3=x6C.x6÷x5=x D.x2+x3=x5【解答】解:(A)原式=x5,故A错误;(B)原式=﹣x6,故B错误;(D)原式=x2+x3,故D错误故选:C.3.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.4.(3分)如果将抛物线y=(x﹣2)2+1向左平移1个单位,再向上平移3个单位,那么所得新抛物线的解析式为()A.y=(x﹣3)2+4 B.y=(x﹣1)2+4 C.y=(x+1)2+2 D.y=(x+1)2【解答】解:抛物线y=(x﹣2)2+1的顶点坐标为(2,1),向左平移1个单位,再向上平移3个单位后的顶点坐标为(1,4),所以,所得抛物线解析式为y=(x﹣1)2+4.故选:B.5.(3分)如图在△ABC中,DE∥BC,DF∥AC,则下列比例式不正确的是()A.=B.=C.=D.=【解答】解:A、∵DE∥BC,∴=,故本选项错误;B、∵DE∥BC,∴△ADE∽△ABC,∴=≠,故本选项正确;C、∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形,∴DE=FC,∵DE∥BC,DF∥AC,∴=,=,∴=,故本选项错误;D、∵DE∥BC,∴△DEH∞△FBH,∴=,∵=,∴=,故本选项错误;故选:B.6.(3分)如图,线段AB为⊙O的直径,C、D为⊙O上两点,且BC=4,tan∠BDC=,则⊙O的半径为()A.2 B.5 C.4 D.4【解答】解:∵tan∠BDC=,∠BDC=∠BAC,∴tan∠BAC=,∵线段AB为⊙O的直径,C、D为⊙O上两点,且BC=4,∴∠ACB=90°,∴tan∠BAC=,解得,AC=8,∴AB=,∴⊙O的半径为2,故选:A.7.(3分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,且点A、B均在(1,0)的右侧,则下列选项中不正确的是()A.a<0 B.b<0 C.c<0 D.a+b+c<0【解答】解:A、∵抛物线开口向下,∴a<0,A不符合题意;B、∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,B符合题意;C、∵抛物线与y轴交于负半轴,∴c<0,C不符合题意;D、∵当x=1时,y<0,∴a+b+c<0,D不符合题意.故选:B.8.(3分)下列说法中,正确的个数有()①长度相等的弧叫做等弧;②垂直于弦的直径平分弦,并且平分弦所对的两条弧;③圆的切线垂直于过切点的半径;④一条弧所对的圆周角等于它所对的圆心角的一半.A.1个 B.2个 C.3个 D.4个【解答】解:①长度相等的弧叫做等弧,错误,完全重合的两条弧叫做等弧;②垂直于弦的直径平分弦,并且平分弦所对的两条弧,正确,垂径定理;③圆的切线垂直于过切点的半径;正确,切线的性质;④一条弧所对的圆周角等于它所对的圆心角的一半.错误.应该是同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半;故选:B.9.(3分)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,则∠BAD的值为()A.30°B.21°C.58°D.48°【解答】解:连接BD,如图,则∠ADB=90°,并且∠ABD=∠ACD=42°.所以∠BAD=90°﹣∠ABD=90°﹣42°=48°.故选:D.10.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC 的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B. C.D.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.二、填空题(每小题3分,共30分)11.(3分)函数y=中,自变量x的取值范围是x≥2.【解答】解:根据题意得,x﹣2≥0且x≠0,解得x≥2且x≠0,所以,自变量x的取值范围是x≥2.故答案为:x≥2.12.(3分)因式分解:a2﹣1=(a+1)(a﹣1).【解答】解:a2﹣1=a2﹣12=(a+1)(a﹣1).13.(3分)不等式组的解集是x>1.【解答】解:,由①得,x>1;由②得,x>﹣3,故此不等式组的解集为:x>1.故答案为:x>1.14.(3分)抛物线y=(x+1)2﹣3的顶点坐标为(﹣1,﹣3).【解答】解:∵y=(x+1)2﹣3,∴顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).15.(3分)如图,AB是⊙O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=.【解答】解:根据题意得AE=9﹣1=8,根据垂径定理得CE=DE,根据相交弦定理得CE2=AE•BE,CE=2.所以CD=4.16.(3分)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.【解答】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=AB=2cm,∴扇形OAB的弧AB的长==π,∴2πr=π,∴r=(cm).故答案为.17.(3分)某商场第1年销售电视机5000台,第3年销售电视机7200台,如果每年的销售量比上一年增加的百分率相同,则这个百分率为20%.【解答】解:设每年的销售量比上一年增加的百分率为x,由题意得:5000(1+x)2=7200,解得:x1=0.2,x2=﹣2.2(不合题意,舍去);答:这个百分率为20%.故答案为:20%.18.(3分)在平面直角坐标系中,直线y=﹣2x+2与x轴交于点A,与y轴交于点B,若以点N(m,2)为圆心的⊙N同时与x轴、直线AB相切,则m的值为±.【解答】解:在平面直角坐标系中,直线y=﹣2x+2与x轴交于点A,与y轴交于点B,∴A(1,0),B(0,2),∵以点N(m,2)为圆心的⊙N同时与x轴、直线AB相切,∴点N(m,2)到x轴的距离和到直线AB的距离相等,∴2=,解得:m=±,故答案为:±.19.(3分)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.【解答】解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=8,tanC=,∴=,QC=BQ=4,∴AQ=6,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过B′点作B′E⊥BC于点E,∴B′E=AQ=3,∴=,∴EC=2,设BD=x,则B′D=x,∴DE=8﹣x﹣2=6﹣x,∴x2=(6﹣x)2+32,解得:x=,直线l与边BC交于点D,那么BD的长为:.故答案为:.20.(3分)如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A、C,PC交AB的延长线于点D,DE⊥PO的延长线于点E,若PC=6,tan∠PDA=,则OE的长为.【解答】解:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠EPD且PA⊥AO,∴∠PAO=90°,∵∠AOP=∠EOD,∠PAO=∠E=90°,∴∠APO=∠EDO,∴∠EPD=∠EDO;连接OC,∵PA=PC=6,tan∠PDA=,∴在Rt△PAD中,AD=8,PD=10,∴CD=4,∵tan∠PDA=,∴在Rt△OCD中,OC=OA=3,OD=5,∵∠EPD=∠ODE,∴△OED∽△DEP,∴==2,∴DE=2OE在Rt△OED中,OE2+DE2=OD2,即5OE2=52,∴OE=.故答案为:.三、解答题(满分60分)21.(6分)先化简,再求代数式(1﹣)÷的值,其中x=4sin45°﹣2cos60°.【解答】解:当x=4×﹣2×=2﹣1时,∴原式=×===22.(6分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在网格中小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在网格中小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【解答】解:(1)图中△ABC即为所求.(∠ACB=90°)(2)图中,△ABD即为所求.(AB=AD=5)23.(8分)如图,某校一幢教学大楼的顶部竖直有一块“传承文明,启智求真”的宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知tan∠BAF=,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据≈1.414,≈1.732)【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,tan∠BAF=,∴∠BAF=30°,∴BF=AB=5,AF=5 .∴BG=AF+AE=5 +15.Rt△BGC中,∠CBG=45°,∴CG=BG=5 +15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15 .∴CD=CG+GE﹣DE=5 +15+5﹣15 =20﹣10 ≈2.7m.答:宣传牌CD高约2.7米.24.(10分)已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.【解答】(1)证明:连接OE.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°;在△BOE中,OB=OE,∠B=60°,∴∠B=∠OEB=∠BOE=60°,∴∠BOE=∠A=60°,∴OE∥AC(同位角相等,两直线平行);∵EF⊥AC,∴OE⊥EF,即直线EF是⊙O的切线;(2)解:连接DF.∵DF与⊙O相切,∴∠ADF=90°.设⊙O的半径是r,则EB=r,EC=4﹣r,AD=4﹣2r.在Rt△ADF中,∠A=60°,∴AF=2AD=8﹣4r.∴FC=4r﹣4;在Rt△CEF中,∵∠C=60°,∴EC=2FC,∴4﹣r=2(4r﹣4),解得,r=;∴⊙O的半径是.25.(8分)经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)该经销店要获得最大月利润,售价应定为每吨多少元?【解答】解:(1)售价降了260﹣240=20(元),∵当每吨售价每下降10元时,月销售量就会增加7.5吨,∴月销售量就会增加7.5×2=15吨,则此时的月销售量为45+15=60吨;(2)若每吨材料售价为x(元),∵当每吨售价每下降10元时,月销售量就会增加7.5吨,∴月销售量就会增加×7.5=(260﹣x)吨,即月销售量为[45+(260﹣x)]吨,∴该经销店的月利润为y=(x﹣100)[45+(260﹣x)]=﹣0.75(x﹣210)2+9075,∵当x=210元时,总利润y的最大值为9075,∴该经销店要获得最大月利润,售价应定为每吨210元.26.(10分)△ABC中,∠ABC=45°,BD⊥AC于点D,CE⊥AB于点E,BD交CE 于点F.(1)如图1,求证:BF=AC;(2)如图2,连接DE,求证:DE平分∠ADB;(3)在图2中,若AD=4,AE=,求BC的长.【解答】解:(1)∵∠BEC=90°,∴∠EBF+∠BFE=90°,∵∠BDC=90°,∴∠ACE+∠CFD=90°,∵∠BFE=∠CFD,∴∠EBF=∠ECA,∵∠BEC=90°,∠ABC=45°,∴∠ECB=45°=∠ABC,∴BE=CE,在△BEF和△CEA中,,∴△BEF≌△CEA,∴BF=AC,(2)由(1)知,∠BCE=45°,∵∠BEC=∠BDC=90°,∴点B,C,D,E共圆,∴∠BDE=∠BCE=45°,∴∠ADE=90°﹣∠BDE=45°=∠BDE,∴DE平分∠ADB;(3)如图2,连接AF,由(1)知,△BEF≌△CEA,∴EF=AE=,根据勾股定理得,AF=2,在Rt△ADF中,DF==2,设AC=x,BE=y,∴BF=AC=x,则BD=BF+DF=x+2,在Rt△BEF中,BF2﹣BE2=10,∴x2﹣y2=10①,在Rt△ABD中,AB2﹣BD2=AD2,∴(y+)2﹣(x+2)2=16,∴y2+2y﹣x2﹣4x=10②,联立①②解得,y=3或y=(舍),在Rt△BCE中,BC=BE=y=6,27.(12分)已知在平面直角坐标系中,直线y=kx+b与x轴交于点A(4,0),与y轴交于点B(0,m),直线AB上有一点M,M的横坐标为m,以M为顶点的抛物线经过点B.(1)如图1,当m=5时,求抛物线的解析式;(2)如图2,过点M作BM的垂线交y轴于点C,延长CM至点D使MC=MD,作ME∥x轴,DE∥y轴,ME与DE交于点E,设点D(x,y),求DE的长并直接写出y关于x的函数关系式.(3)过点D作BM的平行线交(2)中的函数图象于点P,连接BD、MP,当以点B、M、D、P为顶点的四边形是平行四边形时,求点P的坐标.【解答】解:(1)由题意A(4,0),B(0,5),代入y=kx+b中,得到,解得,∴直线AB的解析式为y=﹣x+5.∵M(5,﹣),设抛物线的解析式为y=a(x﹣5)2﹣,把(0,5)代入得到a=,∴抛物线的解析式为y=(x﹣5)2﹣.(2)如图2中,延长EM交y轴于F.∵∠MFC=∠DEM=90°,∠DME=∠CMF,CM=DM,∴△DME≌△CMF,∴FM=EM=m,∵OB=m,∴EM=OB,∵CD⊥AB,∴∠DMB=90°,∴∠BMF+∠DME=90°,∵∠BMF+∠ABO=90°,∴∠DME=∠ABO,∵OB=EM,∠AOB=∠DEM=90°,∴△DME≌△ABO,∴DE=AO=4,∵FM∥OA,∴=,∴=,∴BF=m2,∴M(m,m﹣m2),∵D(x,y),FM=EM=m,∴2m=x,y=4+m﹣m2,∴m=x代入y=4+m﹣m2,得到y=﹣x2+x+4.(3)①如图3中,抛物线的解析式y=﹣x2+x+4如图所示,由(2)可知,M(m,m﹣m2),D(2m,4+m﹣m2),∵四边形BDPM是平行四边形,∴P(3m,4+m﹣m2﹣m2)代入y=﹣x2+x+4,解得:m=8或0(舍弃),∴P(24,﹣20).②如图4中,当四边形PBMD是平行四边形时,易知M(m,m﹣m2),D(2m,4+m﹣m2),P(m,4+m),把P(m,4+m)代入y=﹣x2+x+4得到,m=﹣8或0(舍弃),∴P(﹣8,﹣4)综上所述,满足条件的点P坐标为(24,﹣20)或(﹣8,﹣4).。
2014-2015学年黑龙江省哈尔滨156中九年级上学期期中数学试卷与解析(五四学制)
2014-2015学年黑龙江省哈尔滨156中九年级(上)期中数学试卷(五四学制)一、选择题(每小题3分,共计30分)1.(3分)下列各数中,小于﹣3的数是()A.0 B.1 C.﹣2 D.﹣42.(3分)下列运算正确的是()A.3x﹣x=3 B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x23.(3分)下面几何图形中,一定是轴对称图形的有()A.1个 B.2个 C.3个 D.4个4.(3分)用科学记数法表示52000000正确的是()A.52×107 B.5.2×108C.5.2×107D.52×1085.(3分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+36.(3分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4 D.87.(3分)下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.两点之间线段最短C.角平分线上的点到角两边的距离相等D.一次函数y=﹣x+1的函数值随自变量的增大而增大8.(3分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m9.(3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=10.(3分)有两段长度相等的路面铺设任务,分别交给甲、乙两个施工队同时进行施工,甲、乙两个施工队铺设路面的长度y(米)与施工时间x(时)之间的函数关系的部分图象如图所示,下列四种说法:①施工6小时,甲队比乙队多施工了10米;②施工4小时,甲、乙两队施工的长度相同;③施工5小时,甲乙两队共完成路面铺设任务95米;④如果甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了铺设任务,则路面铺设任务的长度为110米.其中正确的是()A.1个 B.2个 C.3个 D.4个二、填空题(请将正确的答案选项填入表格中,每小题3分,共计24分)11.(3分)函数y=的自变量的取值范围是.12.(3分)分解因式:ax4﹣9ay2=.13.(3分)不等式组的解集是.14.(3分)已知圆锥的母线长为5,底面圆半径为2,则此圆锥的侧面积为.15.(3分)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔支.16.(3分)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.17.(3分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.18.(3分)等腰△ABC中,AC=BC=16,∠ACB=120°,点D是AC中点,E点、F 点分别在AB、BC上,且AE=2BE,连EF,过F作EF的垂线,交AC于G,当点F 从C点向B点运动的过程中,若GD=2,则BF=.三、解答题(共66分)19.(6分)先化简,再求值:÷﹣,其中x=2tan60°﹣4sin30°.20.(6分)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.21.(6分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上、(1)在图1中画出△ABC(点C在小正方形的顶点上),△ABC为等腰三角形.且∠BAC为45°;(2)在图2中画出△ABC(点C在小正方形的顶点上),△ABC为等腰三角形.且∠ABC的正切值为.22.(6分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.23.(6分)有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后任意摸出两张.(1)用树状图(或列表法)表示所摸的两张牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌的牌面图形能组合成轴对称图形的纸牌的概率.24.(6分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).25.(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?26.(10分)如图,AB是圆O的直径,C是弧AB的中点,圆O的切线BD交AC 的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交圆O于点H,连接BH交CF于点G.(1)求证:AC=CD;(2)求tan∠BAF的值;(3)若OB=2,求BG的长.27.(12分)如图,直角梯形ABCO的两边OA,OC分别在x轴,y轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.直线l的解析式为y=x﹣3,它与x轴交于点G,与y轴交于点E,动点P由点C开始沿C ﹣B﹣A的路径运动,过点P作PH⊥直线l于点H.(1)求该抛物线的函数解析式.(2)当点P在BC边上运动时,作射线EP交抛物线于点Q,当△EPH的面积是12时,求Q点坐标.(3)过点P作x轴的垂线,垂足为点F,是否存在这样的点P,使PF=PH?若存在,求出点P的坐标;若不存在,请说明理由.2014-2015学年黑龙江省哈尔滨156中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)下列各数中,小于﹣3的数是()A.0 B.1 C.﹣2 D.﹣4【解答】解:A、0>﹣3,故本选项错误;B、1>﹣3,故本选项错误;C、∵|﹣2|=2,|﹣3|=3,∴﹣2>﹣3,故本选项错误;D、∵|﹣4|=4,|﹣3|=3,∴﹣4<﹣3,故本选项正确;故选:D.2.(3分)下列运算正确的是()A.3x﹣x=3 B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.3.(3分)下面几何图形中,一定是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:圆弧、角、等腰梯形都是轴对称图形.故选:C.4.(3分)用科学记数法表示52000000正确的是()A.52×107 B.5.2×108C.5.2×107D.52×108【解答】解:将52000000用科学记数法表示为5.2×107.故选:C.5.(3分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选:C.6.(3分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4 D.8【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.7.(3分)下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.两点之间线段最短C.角平分线上的点到角两边的距离相等D.一次函数y=﹣x+1的函数值随自变量的增大而增大【解答】解:A、由于a=﹣1<0,则抛物线开口向下,所以A选项的说法正确;B、两点之间线段最短,所以B选项的说法正确;C、角平分线上的点到角两边的距离相等,所以C选项的说法正确;D、当k=﹣1,y随x的增大而减小,所以D选项的说法错误.故选:D.8.(3分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选:B.9.(3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=【解答】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=,∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=.故选:C.10.(3分)有两段长度相等的路面铺设任务,分别交给甲、乙两个施工队同时进行施工,甲、乙两个施工队铺设路面的长度y(米)与施工时间x(时)之间的函数关系的部分图象如图所示,下列四种说法:①施工6小时,甲队比乙队多施工了10米;②施工4小时,甲、乙两队施工的长度相同;③施工5小时,甲乙两队共完成路面铺设任务95米;④如果甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了铺设任务,则路面铺设任务的长度为110米.其中正确的是()A.1个 B.2个 C.3个 D.4个【解答】解:①施工6小时,甲队比乙队多施工了60﹣50=10米,正确;设甲队在0≤x≤6的时段内y与x之间的函数关系式y=k1x,由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b,由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y=5x+20,②由题意,得10x=5x+20,解得x=4.∴当x为4h时,甲、乙两队所挖的河渠长度相等,正确;③把x=5代入解析式y=10x=50,把x=5代入解析式y=5x+20=45,45+50=95,施工5小时,甲乙两队共完成路面铺设任务95米,正确;④乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了铺设任务,则路面铺设任务的长度为60+50=110米,正确;故选:D.二、填空题(请将正确的答案选项填入表格中,每小题3分,共计24分)11.(3分)函数y=的自变量的取值范围是x≠1.【解答】解:由题意,得x﹣1≠0,解得x≠1,故答案为:x≠1.12.(3分)分解因式:ax4﹣9ay2=a(x2+3y)(x2﹣3y).【解答】解:原式=a(x4﹣9y2)=a(x2+3y)(x2﹣3y),故答案为:a(x2+3y)(x2﹣3y)13.(3分)不等式组的解集是3<x<4.【解答】解:,解①得:x>3,解②得:x<4.则不等式组的解集是:3<x<4.故答案是:3<x<414.(3分)已知圆锥的母线长为5,底面圆半径为2,则此圆锥的侧面积为10π.【解答】解:依题意知母线长=5,底面半径r=2,则由圆锥的侧面积公式得S=πrl=π×5×2=10π.故答案为:10π.15.(3分)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.【解答】解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.16.(3分)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.【解答】解:∵关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.17.(3分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.18.(3分)等腰△ABC中,AC=BC=16,∠ACB=120°,点D是AC中点,E点、F 点分别在AB、BC上,且AE=2BE,连EF,过F作EF的垂线,交AC于G,当点F 从C点向B点运动的过程中,若GD=2,则BF=11或13.【解答】解:分两种情况:①当G在D的上方时,如图1,连接EG、CE,过点F作HF⊥AC,交AC的延长线于H,∵∠ACB=120°,∴∠FCH=60°,∠CFH=30°,设CH=x,则CF=2x,HF=x,过C作CM⊥AB于M,∵AC=BC=16,∴AB=16,∠A=∠B=30°,AM=AB=8,∵AE=2BE,∴AE=,∴EM=﹣8=,Rt△ACM中,∠A=30°,∴CM=8,∴CE==2EM,∴∠ECM=30°,∵∠ACM=60°,∴∠ACE=90°,∴∠BCE=120°﹣90°=30°,∵∠GCE=∠GFE=90°,∴G、C、F、E四点共圆,∴∠EGF=∠ECF=30°,Rt△GCE中,EG==,∵∠EGF=30°,∴EF=EG=,∴FG===,在Rt△GFH中,由勾股定理得:GF2=GH2+FH2,,4x2+12x﹣55=0,(2x+11)(2x﹣5)=0,x1=﹣5.5(舍),x2=2.5,∴BF=BC﹣CF=16﹣2x=16﹣5=11,②当G在D的下方时,如图2,同理,CE=,∴EG==,同理EF=EG=,∴FG=EF=,由勾股定理得:GF2=GH2+FH2,,4x2+20x﹣39=0,(2x﹣3)(2x+13)=0,x1=1.5,x2=﹣6.5(舍),∴BF=BC﹣CF=16﹣2x=16﹣3=13,故答案为:11或13.三、解答题(共66分)19.(6分)先化简,再求值:÷﹣,其中x=2tan60°﹣4sin30°.【解答】解:÷﹣===,当x=2tan60°﹣4sin30°=2﹣4×=2时,原式=.20.(6分)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.【解答】解:(1)∵点A(4,1)在反比例函数y=上,∴m=xy=4×1=4,∴.把B(a,2)代入,得2=,∴a=2,∴B(2,2).∵把A(4,1),B(2,2)代入y=kx+b∴解得,∴一次函数的解析式为;(2)∵点C在直线上,∴当x=0时,y=3,∴C(0,3)过A作AE⊥x轴于E.=S梯形AEOC﹣S△COD﹣S△DEA==5.∴S△ACD21.(6分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上、(1)在图1中画出△ABC(点C在小正方形的顶点上),△ABC为等腰三角形.且∠BAC为45°;(2)在图2中画出△ABC(点C在小正方形的顶点上),△ABC为等腰三角形.且∠ABC的正切值为.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:△ABC即为所求.22.(6分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,,∴△AEB≌△CFB(SAS),∴AE=CF.(2)∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.23.(6分)有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后任意摸出两张.(1)用树状图(或列表法)表示所摸的两张牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌的牌面图形能组合成轴对称图形的纸牌的概率.【解答】解:(1)(2)一共有12种结果,每种结果出现的可能性相同,能组合成轴对称图形的情况数有6种,=;∴P(两张牌的牌面图形能组合成轴对称的纸牌)答:摸出两张牌的牌面图形能组合成轴对称图形的纸牌的概率是.24.(6分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).【解答】解:如图,作CE⊥AB于E,设AE=x海里.在Rt△ACE中,∵∠AEC=90°,∠ACE=90°﹣∠CAE=30°,∴CE=AE=x,AC=2AE=2x.在Rt△BCE中,∵∠BEC=90°,∠CBE=45°,∴BE=CE=x.∵AE+BE=AB,∴x+x=100(+1),∴x=100,∴AC=200海里,CE=100海里.以D为顶点,DC为一边,在∠CDE的内部作∠CDF=∠DCE=15°,交CE于F,如图,则CF=DF.设DE=y海里,则EF=y海里,DF=2y海里=CF.∵EF+CF=EC,∴y+2y=100,∴y=200﹣300,∴AD=AE+DE=100+200﹣300=200﹣200.故A与C之间的距离AC为200海里;A与D之间的距离AD为(200﹣200)海里.25.(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.26.(10分)如图,AB是圆O的直径,C是弧AB的中点,圆O的切线BD交AC 的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交圆O于点H,连接BH交CF于点G.(1)求证:AC=CD;(2)求tan∠BAF的值;(3)若OB=2,求BG的长.【解答】证明:(1)如图1,连接OC、BC,∵C是弧AB的中点,∴AB⊥OC,∵BD为⊙O的切线,∴AB⊥BD,∴OC∥BD,∵AO=BO,∴AC=CD;(2)如图2,连接OC,∵E是OB的中点,∴OE=BE,∵OC∥FB,∴∠COE=∠FBE,在△OEC和△BEF中,∵,∴△OEC≌△BEF,∴OC=BF,设BE=x,则BF=OC=2x,AB=4x,在Rt△ABF中,tan∠BAF=.(3)tan∠FBH=tan∠BAF=,tan∠EFB=,∴∠EFB=∠FBH,∴FG=BG,∵∠EFB+∠FEB=90°,∠FBH+∠GBE=90°,∴∠GBE=∠FEB,∴EG=BG,∴BG=EG=FG,由勾股定理得:BE==,∴BG=BE=.27.(12分)如图,直角梯形ABCO的两边OA,OC分别在x轴,y轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.直线l的解析式为y=x﹣3,它与x轴交于点G,与y轴交于点E,动点P由点C开始沿C﹣B﹣A的路径运动,过点P作PH⊥直线l于点H.(1)求该抛物线的函数解析式.(2)当点P在BC边上运动时,作射线EP交抛物线于点Q,当△EPH的面积是12时,求Q点坐标.(3)过点P作x轴的垂线,垂足为点F,是否存在这样的点P,使PF=PH?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题意得:A(4,0),C(0,4),对称轴为x=1.设抛物线的解析式为y=ax2+bx+c,则有:,解得.∴抛物线的函数解析式为:y=﹣x2+x+4.(2)如图1,延长HP交y轴于点M,则△EMH、△CMP均为等腰直角三角形.设CM=CP=m,∴EM=OC+CM+OE=7+m,S△EPH=S△EMH﹣S△EMP=×(7+m)××(7+m)﹣×(7+m)×m=12,∴m=1,∴P(1,4),∵E(0,﹣3),∴直线EP的解析式为:y=7x﹣3,解得,,,∴Q(5﹣6,35﹣45);②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).假设存在满足条件的点P.①当点P在BC边上时,如图2所示,此时PF=4.若PH=PF,则点P为∠OGD的角平分线与BC的交点,有GH=GF,过点H分别作HM⊥PF于点M,FK⊥x轴于点K,∵∠OGD=135°,∴∠HPF=45°,即△PHM为等腰直角三角形,设GF=GH=t,则GK=FK=MF=t,∴PM=HM=FK=FG+GK=t+t,∴PF=PM+MF=t+t+t=4,解得t=4 ﹣4,则OF=3﹣t=7﹣4 ,∴P(7﹣4 ,4);②∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BA与直线l交于点K,则K(,).当点P在线段BK上时,如图3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PF=8﹣2a,PQ=11﹣3a,∴PH=(11﹣3a).若PF=PH,则8﹣2a=(11﹣3a),解得a=1﹣2 <0,故此种情形不存在;③当点P在线段KA上时,如答图2﹣4所示.∵PF、PH夹角为135°,∴只可能是PH=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3 ),又因为G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3 .联立直线MG:y=(﹣1)x+3﹣3 与直线AB:y=﹣2x+8,可求得:P(1+2 ,6﹣4 ),综上所述:存在这样的点P,使PF=PH,P(7﹣4 ,4)或(1+2 ,6﹣4 ).。
黑龙江省哈尔滨市九年级数学上学期期中试卷(含解析)
2016-2017学年黑龙江省哈尔滨156中九年级(上)期中数学试卷一、选择题(每小题3分,共计30分)1.在3,﹣l,0,π 这四个数中,最大的数是()A.3 B.﹣1 C.0 D.π2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x73.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.5.下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等6.反比例函数y=﹣的图象经过点(﹣2,3),则k的值为()A.3 B.﹣6 C.6 D.﹣37.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣18.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.9.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个二、填空题((每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是千米.12.使分式有意义的x的取值范围是.13.计算:﹣= .14.把多项式ax2+2ax+a分解因式的结果是.15.二次函数y=x2+2x﹣7的对称轴是直线.16.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.17.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC= .18.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).19.在矩形ABCD中,AD=10,AB=8,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为G,则∠ABG的正切值是.20.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC为边在△ABC外作等边△ACD,则BD的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.22.如图的方格纸中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图中画出以AB为边的钝角三角形ABC,使点C在格点上,并且在直线AB的上方,满足tan∠BAC=,且△ABC的面积为9;(2)以AC为斜边画Rt△ACD,使D点在AC上方,且满足tan∠ACD=2;(3)直接写出线段CD的长.23.小林初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,每位同学只能报重高、普高、职高中的一种.她通过采集数据绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把条形统计图补充完整;(3)如果小林所在年级共有260名学生,请你估计该年级报考普高的学生人数.24.兴趣小组在一次数学实践活动中,为了测量如图所示的小山顶的塔高,进行了如下的操作,首先在A处测得塔尖D的仰角为30°,然后沿AC方向前进72米到达山脚B处,此时测得塔尖D的仰角为60°,塔底E的仰角为45°,求塔高.(结果保留根号)25.哈尔滨市政府大力扶持大学生创业.李民在政府的扶持下投资销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定销售利润率不能超过80%.(1)如果李民想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设李民每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?26.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB 于点F;过D作⊙O的切线,交CA延长线于点E.(1)求证:AB∥DE;(2)写出AC、CD、BC之间的数量关系,并加以证明.(3)若tan∠B=,DF=5,求DE的长.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,与y轴交于点C,过B、C两点的直线解析式为y=﹣x+b.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,过点P作PD⊥BC于点D,垂足为点D.设P 点的横坐标为t,线段PD的长为d,求d与t的函数关系.(3)过A作射线AQ,交抛物线的对称轴于点M,点N是x轴正半轴上B点右侧一点;BN的垂直平分线交射线AQ于点G,点G关于x轴的对称点恰好在抛物线上.若=,求当(2)中的d最大时直线PN与x轴所夹锐角的正切值.2016-2017学年黑龙江省哈尔滨156中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.在3,﹣l,0,π 这四个数中,最大的数是()A.3 B.﹣1 C.0 D.π【考点】实数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<3<π,∴在3,﹣1,0,π这四个数中,最大的数是π.故选D.2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x7【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.【解答】解:A、2x2•x3=2x5,故本选项正确;B、应为(x﹣2)2=x2﹣4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.3.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选C.4.在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】首先利用勾股定理求得AB的长,然后利用正弦函数的定义即可求解.【解答】解:AB===10,则sinA===.故选D.5.下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】三角形的内切圆与内心;确定圆的条件;切线的判定.【分析】根据确定圆的条件、三角形内心和外心以及切线的判定定理即可进行判断.【解答】解:A、在同一直线上的三点不能确定一个圆,所以A选项错误;B、经过圆心的直线是圆的对称轴,所以B选项正确;C、经过半径的外端点,且垂直于半径的直线是圆的切线,所以C选项错误;D、三角形的外心到三角形三个顶点距离相等,所以D选项错误.故选B.6.反比例函数y=﹣的图象经过点(﹣2,3),则k的值为()A.3 B.﹣6 C.6 D.﹣3【考点】反比例函数图象上点的坐标特征.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:∵反比例函数y=﹣的图象经过点(﹣2,3),∴﹣2k=﹣2×3=﹣6,∴k=3,故选A.7.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2+2的顶点坐标为(0,2),根据点平移的规律得到点(0,2)平移后得到对应点的坐标为(﹣1,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),把点(0,2)先向下平移1个单位,再向左平移1个单位得到对应点的坐标为(﹣1,1),所以所得新抛物线的解析式为y=(x+1)2+1.故选B.8.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.9.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的应用.【分析】在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题.【解答】解:当x=0时,y=,故柱子OA的高度为m;(1)正确;∵y=﹣x2+2x+=﹣(x﹣1)2+2.25,∴顶点是(1,2.25),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是2.25米;故(2)正确,(3)错误;解方程﹣x2+2x+=0,得x1=﹣,x2=,故水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外,(4)正确.故选:C.二、填空题((每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是 6.9×104千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:69000用科学记数法表示为6.9×104,故答案为6.9×104.12.使分式有意义的x的取值范围是x≠﹣.【考点】分式有意义的条件.【分析】根据分式有意义的条件可知2x+1≠0,再解不等式即可.【解答】解:由题意得:2x+1≠0,解得:x≠﹣,故答案为:x≠﹣13.计算:﹣= .【考点】实数的运算.【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=﹣2=﹣.故答案为:﹣.14.把多项式ax2+2ax+a分解因式的结果是a(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,再利用完全平方公式分解因式得出答案.【解答】解:ax2+2ax+a=a(x2+2x+1)=a(x+1)2.故答案为:a(x+1)2.15.二次函数y=x2+2x﹣7的对称轴是直线x=﹣1 .【考点】二次函数的性质.【分析】把函数解析式化为顶点式可求得其对称轴.【解答】解:∵y=x2+2x﹣7=(x+1)2﹣8,∴抛物线对称轴为x=﹣1,故答案为:x=﹣1.16.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5 .【考点】概率的意义.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5,故答案为:0.5.17.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC= .【考点】圆周角定理;坐标与图形性质;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,故答案为:.18.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).【考点】扇形面积的计算;弧长的计算.【分析】首先要明确S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF,然后依面积公式计算即可.【解答】解:连接OF,∵∠AOD=45°,四边形CDEF是正方形,∴OD=CD=DE=EF,于是Rt△OFE中,OE=2EF,∵OF=,EF2+OE2=OF2,∴EF2+(2EF)2=5,解得:EF=1,∴EF=OD=CD=1,∴S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF=﹣×1×1﹣1×1=.19.在矩形ABCD中,AD=10,AB=8,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为G,则∠ABG的正切值是或.【考点】解直角三角形;菱形的性质;矩形的性质.【分析】两种情况:①由矩形的性质得出CD=AB=8,BC=AD=10,∠ADB=∠CDF=90°,由菱形的性质得出CF=EF=BE=BC=10,由勾股定理求出DF,得出GF,即可求出AG;②同①得出AE=6,求出GE,即可得出AG的长,然后解直角三角形即可求得.【解答】解:分两种情况:①如图1所示:∵四边形ABCD是矩形,∴CD=AB=8,BC=AD=10,∠ADC=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=10,∴DF==6,∴AF=AD+DF=16,∵G是EF的中点,∴GF=EF=5,∴AG=AF﹣DF=16﹣5=11,∴tan∠ABG==;②如图2所示:同①得:AE=6,∵G是EF的中点,∴GE=5,∴AG=AE﹣GE=1,∴tan∠ABG==;故答案为:或.20.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC为边在△ABC外作等边△ACD,则BD的长为14 .【考点】勾股定理;等边三角形的性质.【分析】以AB为边作等边三角形AEB,连接CE,如图所示,由三角形ABE与三角形ACD都为等边三角形,利用等边三角形的性质得到AE=AB,AD=AC,且∠EAB=∠DAC=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EAC与三角形BAD全等,利用余弦定理求出EC的长就是BD的长.【解答】解:以AB为边作等边三角形AEB,连接CE,如图所示,∵△ABE与△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD(SAS),∴BD=EC,∵∠EBA=60°,∠ABC=60°,∴∠EBC=120°,在△EBC中,BC=10,EB=6,过点E做BC的垂线交BC于点F,则∠EBF=60°,∠FEB=30°,∴EF=3,FB=3,FC=10+3=13,∴EC2=FC2+EF2=196,∴BD=EC=14.故答案为:14.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】分别化简代数式和x的值,代入计算.【解答】解:原式=.∵x=4sin45°﹣2cos60°==2﹣1,∴原式===.22.如图的方格纸中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图中画出以AB为边的钝角三角形ABC,使点C在格点上,并且在直线AB的上方,满足tan∠BAC=,且△ABC的面积为9;(2)以AC为斜边画Rt△ACD,使D点在AC上方,且满足tan∠ACD=2;(3)直接写出线段CD的长.【考点】作图—应用与设计作图;勾股定理.【分析】(1)根据钝角三角形ABC,满足tan∠BAC=,且△ABC的面积为9进行作图;(2)根据Rt△ACD,满足tan∠ACD=2进行画图即可;(3)根据勾股定理求得线段CD的长.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△ADC即为所求;(3)如图所示,CD==.23.小林初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,每位同学只能报重高、普高、职高中的一种.她通过采集数据绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把条形统计图补充完整;(3)如果小林所在年级共有260名学生,请你估计该年级报考普高的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用重高人数除以重高人数所占的百分比即可得到该班人数;(2)用全班人数减去重高和职高的人数,求出普高的人数,然后补全条形统计图;(3)利用样本估计总体,用260乘以普高所占的百分比,即可得出答案.【解答】解:(1)根据题意得:25÷62.5%=40(人),答:该班的总人数是40人;(2)普高的人数是:40﹣25﹣5=10(人);补图如下:(3)根据题意得:260×=65(人),答:该年级报考普高的学生人数有65人.24.兴趣小组在一次数学实践活动中,为了测量如图所示的小山顶的塔高,进行了如下的操作,首先在A处测得塔尖D的仰角为30°,然后沿AC方向前进72米到达山脚B处,此时测得塔尖D的仰角为60°,塔底E的仰角为45°,求塔高.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】先由三角形外角的性质求出∠ADB=∠CBD﹣∠BAD=60°﹣30°=30°=∠BAD,根据等角对等边得出BD=AB=72米,再解Rt△BCD,得出BC=BD•cos60°=36,CD=BD•sin60°=36,解Rt△BCE,得出CE=BC=36,于是塔高DE=CD﹣EC=36﹣36.【解答】解:∵∠ADB=∠CBD﹣∠BA D=60°﹣30°=30°=∠BAD,∴BD=AB=72米.在Rt△BCD中,∵∠BCD=90°,∠DBC=60°,∴BC=BD•cos60°=72×=36,CD=BD•sin60°=72×=36.在Rt△BCE中,∵∠BCE=90°,∠EBC=45°,∴CE=BC=36,∴塔高DE=CD﹣EC=36﹣36.答:塔高DE为(36﹣36)米.25.哈尔滨市政府大力扶持大学生创业.李民在政府的扶持下投资销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定销售利润率不能超过80%.(1)如果李民想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设李民每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以得关于x的一元二次方程,从而可以解答本题,注意价部门规定销售利润率不能超过80%;(2)根据题意可以写出w关于x的函数关系式,从而可以求得函数的最大值,本题得以解决.【解答】解:(1)设销售单价定为x元,(x﹣20)(﹣10x+500)=2000,解得,x1=30,x2=40,∵x≤20+20×80%=36,∴x=30,即如果李民想要每月获得2000元的利润,那么销售单价应定为30元;(2)由题意可得,w=(x﹣20)(﹣10x+500)=﹣10(x﹣35)2+2250,∵20≤x≤36,∴当x=35时,w取得最大值,此时w=2250,即当销售单价定为35元时,每月可获得最大利润,最大利润为2250元.26.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB 于点F;过D作⊙O的切线,交CA延长线于点E.(1)求证:AB∥DE;(2)写出AC、CD、BC之间的数量关系AC+BC=CD ,并加以证明.(3)若tan∠B=,DF=5,求DE的长.【考点】圆的综合题.【分析】(1)连接BD.根据直径所对的圆周角是90°,可知:∠ACB=90°,从而可求得∠ABD=∠ACD=∠DCB=45°由弦切角定理可知:∠CDE=∠CBA+45°,由三角形外角的性质可知∠CFA=∠CBA+45°,故此∠AFC=∠EDC,从而可证明AB∥ED,(2)先根据角平分线的性质定理得出DG=DM,CM=CG,进而得出CG=CD再判断出Rt△ADG ≌Rt△BDM,最后等量代换即可;(3)先根据三角函数得出BC=2x,AB=x,再用角平分线定理得出AF和BF,借助(2)结论得出CF,CD,进而用相交弦定理建立方程求出x,最后用平行线分线段成比例定理得出DE.【解答】解:(1)如图1,∵AB是圆O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠DCB=45°.∴∠ABD=∠ACD=45°.由弦切角定理可知:∠CDE=∠CBD=∠CBA+∠ABD=∠CBA+45°.∵∠CFA=∠FCB+∠CBA=∠CBA+45°,∴∠AFC=∠EDC.∴AB∥ED,(2)AC+BC=CD理由:如图2,连接BD,AD,过点D作DG⊥AC,DM⊥BM,∵∠ACD=∠BCD,∴DG=DM,CM=CG由(1)知,AB∥DE,且DE是⊙O的切线,∴点D是半圆的中点,∵AB是直径,∴AD=BD,在Rt△ADG和Rt△BDM中,,∴Rt△ADG≌Rt△BDM,∴AG=BM,在Rt△CDG中,∠DCG=45°,∴CD=CG,∴CG=CD∴AC+BC=AC+CM+BM=AC+CM+AG=CM+CG=2CG=CD;即:AC+BC=CD故答案为:AC+BC=CD(3)设AC=x,∵tan∠B==,∴BC=2x,∴AB=x,∵CD平分∠ACB,∴=,∴AF=x,BF=x,由(2)知, CD=AC+BC=3x,∴CD=x,∵DF=5,∴CF=CD﹣DF=x﹣5,根据相交弦定理得,DF×CF=AF×BF,∴5(x﹣5)=x•x,∴x=6或x=,当x=6时,AF=2,BF=4,CD=9,CF=4,∵AB∥DE,∴,∴,∴DE=,当x=,AF=,CF=,CD=,∵AB∥DE,∴,∴,∴DE=.即:DE的长为.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,与y轴交于点C,过B、C两点的直线解析式为y=﹣x+b.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,过点P作PD⊥BC于点D,垂足为点D.设P 点的横坐标为t,线段PD的长为d,求d与t的函数关系.(3)过A作射线AQ,交抛物线的对称轴于点M,点N是x轴正半轴上B点右侧一点;BN的垂直平分线交射线AQ于点G,点G关于x轴的对称点恰好在抛物线上.若=,求当(2)中的d最大时直线PN与x轴所夹锐角的正切值.【考点】二次函数综合题.【分析】(1)利用抛物线的解析式求出点C坐标,即可求出b,推出点A、B两点坐标,利用待定系数法即可求出a.(2)如图1中,作PE⊥AB于F,交BC于E.设P(t,﹣t2+2t+3),则E(t,﹣t+3).首先证明△PDE是等腰直角三角形,推出PD=PE,由此即可解决问题.(3)如图2中,设BN的垂直平分线交x轴于H,抛物线的对称轴交x轴于D,作ML⊥GH 于L.首先证明cos∠GML=cos∠GAH=,由AH=GH,列出方程即可解决问题.【解答】解:(1)∵抛物线y=ax2﹣2ax+3与y轴交于点C,∴C(0,3)∵直线解析式为y=﹣x+b过B、C.∴C(0,b),B(b,0),∴b=3,∴B(3,0),∵抛物线的对称轴为x=1,A、B关于对称轴对称,∴A(﹣1,0),把A(﹣1,0)代入抛物线的解析式3a+3=0,∴a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1中,作PE⊥AB于F,交BC于E.设P(t,﹣t2+2t+3),则E(t,﹣t+3).∵OC=OB=3,∠COB=90°,∴∠COB=∠EFB=90°,∴∠FEB=∠PED=45°,∴d=PD=PE=(﹣t2+2t+3+t﹣3)=﹣t2+t.(0<t<3).∴d=﹣t2+t.(0<t<3).(3)如图2中,设BN的垂直平分线交x轴于H,抛物线的对称轴交x轴于D,作ML⊥GH 于L.∵GM:AN=5:8,设GM=5k,AN=8k,∵AB=4,BD=2,∴BN=8k﹣4,BH=4k﹣2,DH=DB+BH=4k,∴cos∠GML==,∵ML∥AH,∴∠GML=∠GAH,∴cos∠GAH=,∴AH=GH,设G点横坐标为m,∵点G关于x轴的对称点恰好在抛物线上,∴G(m,m2﹣2m﹣3),∴(m+1)=m2﹣2m﹣3,解得m=或﹣1(舍弃),∴点H(,0),N(,0).∵d=﹣t2+t=﹣(t﹣)2+,∵﹣<0,∴t=时,d有最大值,此时P(,),∴此时直线PN与x轴所夹锐角的正切值==.。
2016-2017学年黑龙江省哈工大附中九年级上学期期中数学试卷与解析(五四学制)
2016-2017学年黑龙江省哈工大附中九年级(上)期中数学试卷(五四学制)一、选择题(每小题3分,共计30分)1.(3分)9的相反数是()A.B.9 C.﹣9 D.﹣2.(3分)下列计算正确的是()A.a2•a3=a6 B.a6÷a2=a3C.2a2+a2=3a4D.(﹣2a)3=﹣8a33.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.(3分)点(﹣2,4)在反比例函数y=(k≠0)的图象上,则该函数的图象位于第()象限.A.一、三B.二、四C.一、四D.二、三5.(3分)已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值为()A.B.C.D.6.(3分)如图,AB是⊙O的直径,CD为弦,连结AD、AC、BC,若∠CAB=65°,则∠D的度数为()A.65°B.40°C.25°D.35°7.(3分)如果将抛物线y=(x﹣1)2+2向下平移1个单位,那么所得的抛物线解析式是()A.y=(x﹣1)2+3 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=x2+28.(3分)如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=9.(3分)如图,把△ABC绕点C顺时针旋转某个角度θ得到△A′B′C,∠A=30°,∠1=70°,则旋转角θ可能等于()A.40°B.50°C.70°D.100°10.(3分)二次函数y=ax2+bx+c与一次函数y=ax+c 在同一坐标系内的图象可能是图中所示的()A.B.C.D.二、填空题(每小题3分,共计30分)11.(3分)将数字2170 000用科学记数法表示为.12.(3分)在函数中,自变量x的取值范围是.13.(3分)分解因式:m3n﹣2m2n+mn=.14.(3分)化简:﹣=.15.(3分)不等式组的解集为.16.(3分)一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个球为白球的概率是.17.(3分)2016年1月某市房地产公司的住房销售量为100套,3月份的住房销售量为169套,若每月平均增长的百分率相同,则该公司这两个月住房销售量的平均增长率为.18.(3分)一个扇形的面积为32πcm2,弧长为8πcm,则该扇形的半径为cm.19.(3分)在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E为AB 边上一点.若BC=8,DE=5,则线段BE=.20.(3分)如图,△ABC中,∠ACB=90°,AC=BC=3,点D在AC上,CD=1,连接BD,过点C作CH⊥BD于点H,O为AB中点,连接OH,则OH的长为.三、解答题(其中21--22题各7分,23--24题各8分,25--27题各l0分,共计60分)21.(7分)先化简,再求值(﹣1)÷,其中x=2cos30°﹣tan45°.22.(7分)如图,网格中每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中画出以AB为底的等腰△BAC,点C在小正方形的挌点上,且tan∠ACB=.(2)在图中画出将线段EF绕点F顺时针旋转90°后的线段FD,连接CD、DE、CE,直接写出△CDE的面积.23.(8分)为了了解初二学生每学期参加假期社会实践活动的情况,某区教育行政部门随机抽样调查了某校初二学生一个学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出该校初二学生总数;(2)通过计算补全条形统计图;(3)如果该区共有初二学生5600人,请你估计“活动时间大于4天”的大约有多少人.24.(8分)如图,四边形ABCD中,∠ADC=90°,点E为边BC上的一点,连接DE,点F为ED上的一点,连接AF、BF,且AB=AC,AD=AF,∠BAC=∠DAF.(1)求证:∠BFE=∠CDE;(2)若DE=9,CD=2,tan∠CDE=,求边BC的长.25.(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?26.(10分)已知线段AB、CD为⊙O的两条弦,且AB⊥CD于点H,连接AC、BC、BD.(1)如图1,过圆心O作OE⊥BD于点E,求证:OE=AC;(2)如图2,作直径BF,连接CF、OD,若∠FCD=45°,tan∠ODC=,求tanA 的值;(3)如图3,在(2)的条件下,过点D作DG⊥CD交CF的延长线于点G,连接BG,过点D作DP⊥BG于点P,延长DP交CG于点K,若FG=2,求线段FK的长.27.(10分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0)和点B(,0);(1)求抛物线的解析式;(2)如图2,点P是第一象限内抛物线上的一动点,点Q是射线OB上的一动点,过点Q作直线m⊥x轴,射线AP交直线m于点E,点F为直线m上的一点,连接AF、BF,且∠ABF=2∠PAB,过点B作射线AP的垂线,垂足为C,直线BC 交直线AF于点D,将△ABF沿直线AF翻折得到△AFB′,点B的对应点B′恰好落在直线m上,求∠ADC的度数;(3)如图3,在(2)的条件下,当直线m与y轴重合时,求点P的坐标.2016-2017学年黑龙江省哈工大附中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)9的相反数是()A.B.9 C.﹣9 D.﹣【解答】解:根据相反数的定义,得9的相反数是﹣9.故选:C.2.(3分)下列计算正确的是()A.a2•a3=a6 B.a6÷a2=a3C.2a2+a2=3a4D.(﹣2a)3=﹣8a3【解答】解:A、a2•a3=a5≠a6,本选项错误;B、a6÷a2=a4≠a3,本选项错误;C、2a2+a2=3a2≠3a4,本选项错误;D、(﹣2a)3=﹣8a3,本选项正确.故选:D.3.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:B.4.(3分)点(﹣2,4)在反比例函数y=(k≠0)的图象上,则该函数的图象位于第()象限.A.一、三B.二、四C.一、四D.二、三【解答】解:把点(﹣2,4)代入y=得k=﹣2×4=﹣8,∴反比例函数的解析式为y=﹣,∵k<0,∴反比例函数的图象位于第二、四象限.故选:B.5.(3分)已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值为()A.B.C.D.【解答】解:由勾股定理得AB==5,sinA=,故选:D.6.(3分)如图,AB是⊙O的直径,CD为弦,连结AD、AC、BC,若∠CAB=65°,则∠D的度数为()A.65°B.40°C.25°D.35°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=65°,∴∠B=90°﹣65°=25°,∴∠D=∠B=25°.故选:C.7.(3分)如果将抛物线y=(x﹣1)2+2向下平移1个单位,那么所得的抛物线解析式是()A.y=(x﹣1)2+3 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=x2+2【解答】解:∵y=(x﹣1)2+2的顶点坐标为(1,2),∴把抛物线向下平移1个单位,得新抛物线顶点坐标为(1,1),∵平移不改变抛物线的二次项系数,∴平移后的抛物线的解析式是y=(x﹣1)2+1.故选:B.8.(3分)如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=【解答】解:∵AB∥CD∥EF,∴,∴A选项正确,故选:A.9.(3分)如图,把△ABC绕点C顺时针旋转某个角度θ得到△A′B′C,∠A=30°,∠1=70°,则旋转角θ可能等于()A.40°B.50°C.70°D.100°【解答】解:∵△ABC绕点C顺时针旋转某个角度θ得到△A′B′C,∴∠A=∠A′=30°,又∵∠1=∠A′+∠ACA′=70°,∴∠θ=∠ACA′=40°,故选:A.10.(3分)二次函数y=ax2+bx+c与一次函数y=ax+c 在同一坐标系内的图象可能是图中所示的()A.B.C.D.【解答】解:A、由抛物线可知,a>0,由直线可知,a<0,错误;B、由抛物线可知,a<0,由直线可知,a>0,错误;C、由抛物线可知,a>0,c<0,由直线可知,a>0,c>0,错误;D、由抛物线可知,a<0,过点(0,c),由直线可知,a<0,过点(0,c),正确.故选:D.二、填空题(每小题3分,共计30分)11.(3分)将数字2170 000用科学记数法表示为 2.17×106.【解答】解:2170 000=2.17×106,故答案为:2.17×106.12.(3分)在函数中,自变量x的取值范围是x≠1.【解答】解:根据题意可得x﹣1≠0;解得x≠1;故答案为x≠1.13.(3分)分解因式:m3n﹣2m2n+mn=mn(m﹣1)2.【解答】解:原式=mn(m2﹣2m+1)=mn(m﹣1)2.故答案为mn(m﹣1)2.14.(3分)化简:﹣=.【解答】解:原式=2﹣=.故答案为:.15.(3分)不等式组的解集为x≤﹣2.【解答】解:解不等式①得:x<1,解不等式②得:x≤﹣2,∴不等式组的解集为x≤﹣2,故答案为:x≤﹣2.16.(3分)一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个球为白球的概率是.【解答】解:因为袋子中装有6个球,其中4个黑球2个白球,从中摸出一个球共有六种结果,是白球的有2种可能,所以摸出白球的概率是.17.(3分)2016年1月某市房地产公司的住房销售量为100套,3月份的住房销售量为169套,若每月平均增长的百分率相同,则该公司这两个月住房销售量的平均增长率为30%.【解答】解:由题意可得,100(1+x)2=169,解得x1=0.3=30%,x2=﹣2.3(舍去).故答案是:30%.18.(3分)一个扇形的面积为32πcm2,弧长为8πcm,则该扇形的半径为8cm.【解答】解:设半径是rcm,∵一个扇形的弧长是8πcm,扇形的面积为32πcm2,∴32π=×8π×r,解得r=8.故答案为:8.19.(3分)在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E为AB 边上一点.若BC=8,DE=5,则线段BE=7或1.【解答】解:如图,∵在Rt△ABC中,∠BAC=90°,AB=AC,BC=8,∴AB=AC=8.过点D作DM⊥AB于点M,∵D为BC的中点,∴DM=AC=4,AM=BM=4,∵DE=5,∴EM==3,∴BE=4+3=7或BE=4﹣3=1.故答案为:7或1.20.(3分)如图,△ABC中,∠ACB=90°,AC=BC=3,点D在AC上,CD=1,连接BD,过点C作CH⊥BD于点H,O为AB中点,连接OH,则OH的长为.【解答】解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°,CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴=,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.三、解答题(其中21--22题各7分,23--24题各8分,25--27题各l0分,共计60分)21.(7分)先化简,再求值(﹣1)÷,其中x=2cos30°﹣tan45°.【解答】解:原式=﹣•=﹣,当x=2×﹣1=﹣1时,原式=﹣.22.(7分)如图,网格中每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中画出以AB为底的等腰△BAC,点C在小正方形的挌点上,且tan∠ACB=.(2)在图中画出将线段EF绕点F顺时针旋转90°后的线段FD,连接CD、DE、CE,直接写出△CDE的面积.【解答】解:(1)如图所示,△ABC即为所求.(2)如图所示,线段DF即为所求,△CDE的面积=×6×1=3.23.(8分)为了了解初二学生每学期参加假期社会实践活动的情况,某区教育行政部门随机抽样调查了某校初二学生一个学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出该校初二学生总数;(2)通过计算补全条形统计图;(3)如果该区共有初二学生5600人,请你估计“活动时间大于4天”的大约有多少人.【解答】解:(1)根据题意得:a=1﹣(5%+10%+15%+15%+30%)=25%,八年级学生总数为20÷10%=200(人);(2)活动时间为5天的人数为200×25%=50(人),活动时间为7天的人数为200×5%=10(人),补全统计图,如图所示:(3)根据题意得:5600×(25%+15%+5%)=2520(人)则活动时间不少于4天的约有2520人.24.(8分)如图,四边形ABCD中,∠ADC=90°,点E为边BC上的一点,连接DE,点F为ED上的一点,连接AF、BF,且AB=AC,AD=AF,∠BAC=∠DAF.(1)求证:∠BFE=∠CDE;(2)若DE=9,CD=2,tan∠CDE=,求边BC的长.【解答】(1)证明:∵∠BAC=∠DAF,∴∠BAF=∠CAD,在△BAF和△CAD中,,∴△BAF≌△CAD,∴∠BFA=∠CDA=90°,∵AF=AD,∴∠AFD=∠ADF,∵∠CDE+∠ADF=90°,∠BFE+∠AFD=90°,∴∠BFE=∠CDE.(2)解:作CN⊥DE于N,BM⊥DE于M.∵△BAF≌△CAD,∴BF=CD,∵∠BFM=∠CDN,∠M=∠CND=90°,∴△BFM≌△CDN,∴BM=CN,∵BM∥CN,∴∠NCE=∠MBE,∵∠CEN=∠MEB,∴△CNE≌△BME,∴BE=CE,在RtCDN中,CD=2,tan∠CDN=,∴CN=4,DN=6,∵DE=9,∴EC===5,∴BC=2EC=10.25.(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.26.(10分)已知线段AB、CD为⊙O的两条弦,且AB⊥CD于点H,连接AC、(1)如图1,过圆心O作OE⊥BD于点E,求证:OE=AC;(2)如图2,作直径BF,连接CF、OD,若∠FCD=45°,tan∠ODC=,求tanA 的值;(3)如图3,在(2)的条件下,过点D作DG⊥CD交CF的延长线于点G,连接BG,过点D作DP⊥BG于点P,延长DP交CG于点K,若FG=2,求线段FK的长.【解答】(1)证明:如图1中,作直径BM,连接AD、MD.∵OE⊥BD,∴BE=ED,∵OB=OM,∴OE=DM,∵BM是直径,AB⊥CD,∴∠MAB=∠DHB=90°,∴AM∥CD,∴∠MAD=∠ADC,∴=,∴OE=AC.(2)如图2中,∵∠FCD=45°,∴∠DOF=2∠FCD=90°,∠DBF=∠DCF=45°,∴∠ODB=∠OBD=45°,∴OD=OB,∵tan∠ODC==,设OE=a,OD=2a,则EB=OE=a,BD=2a,∵∠EOD=∠EHB=90°,∠OED=∠BEH,∴∠ODE=∠EBH,∴tan∠EBH=tan∠ODE==,∴EH=a,HB=a,在Rt△DHB中,DH===a,∵∠A=∠CDB,∴tan∠A=tan∠CDB===.(3)如图3中,连接DF、BC,作BM⊥GD于M.∵∠GCD=∠FBD=45°,∠CDG=∠BDF=90°,∴△CDG,△BDF是等腰直角三角形,∴DF=DB,DG=DC,∠FDG=∠BDC,∴△FDG≌△BDC,∴BC=FG=2,∴BH=CH=,DH=BM=3,∵∠CFB=∠CDB,∴tan∠CFB=tan∠CDB==,∴CF=6,CG=CF+GF=8,∴DG=CD=4,BG==2,∵DP⊥BG,∴•BG•DP=•DG•BM,∴DP==,∴PG==,由△GPK∽△GCB得=,∴=,∴GK=5,∴KF=GK﹣FG=5﹣2=3.27.(10分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0)和点B(,0);(1)求抛物线的解析式;(2)如图2,点P是第一象限内抛物线上的一动点,点Q是射线OB上的一动点,过点Q作直线m⊥x轴,射线AP交直线m于点E,点F为直线m上的一点,连接AF、BF,且∠ABF=2∠PAB,过点B作射线AP的垂线,垂足为C,直线BC 交直线AF于点D,将△ABF沿直线AF翻折得到△AFB′,点B的对应点B′恰好落在直线m上,求∠ADC的度数;(3)如图3,在(2)的条件下,当直线m与y轴重合时,求点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(﹣4,0)和点B(,0);∴,∴,∴抛物线的解析式为y=﹣x2+x+3,(2)∵将△ABF沿直线AF翻折得到△AFB′,∴∠BAF=∠B'AF,∠ABF=∠AB'F,∵∠ABF=2∠PAB,∴∠AB'F=2∠PAB,∵∠AB'F+∠B'AO=90°,∴2∠PAB+∠B'AF+∠BAF=2∠PAB+2∠BAF=90°,∴∠PAB+∠BAF=45°,∴∠CAF=45°,∵CD⊥AC,∴∠ACD=90°,∴∠ADC=45°.(3)如图3,当直线m与y轴重合时,由折叠知,BF=B'F,AB'=AB=+4=,在Rt△AOB'中,OB'==,∴B'(0,﹣)设F(0,m),∴OF=﹣m,B'F=m+,∵∠B'AF=∠OAF,∴,∴,∴m=﹣,∴F(0,﹣),∴BF=B'F=﹣+=,过点B作∠ABF的角平分线交y轴于G,∴∠OBG=∠FBG=∠ABF=∠BAP,设G(0,n),∴OG=﹣n,FG=n+,∵∠OBG=∠FBG,∴,∴,∴n=﹣,∴G(0,﹣),∴OG=,∴tan∠OBG===,∵∠BAP=∠OBG,∴tan∠BAP===,∴OE=1,∴E(0,1),∵A(﹣4,0),∴直线AE的解析式为y=x+1①,∵点P是抛物线y=﹣x2+x+3②上,联立①②解得,(舍)或,∴P(3,).。
黑龙江省 哈尔滨工业大学附属中学校2023--2024学年九年级上学期数学(五四制)练习卷
工附2020级九上数学练习20230902一、选择题(每题3分)1.把抛物线122 x y 向左平移5个单位,向上平移2个单位,所得抛物线的解析式为()A.522 x y B.522 x y C.2)5(22 x y D.1)5(22 x y 2.如图,梯形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B=60°,CD=1,BC=()A.3B.332 C.4 D.3343.如果sin 2α+cos 230°=1,那么锐角α的度数是()A .30°B .45°C .60°D .90°4.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()5.如图,在Rt △ABC 中,∠ACB =90°,AC =24,AB =25,CD 是斜边AB 上的高,则cos ∠BCD 的值为()A .725B .2425C .724D .2476.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变,又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为() A.40海里 B.60海里 C.海里 D.7.如图,在平行四边形ABCD 中,E 是CD 上的一点,DE :EC=2:3,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF =()A.2:5:25 B.4:9:25C.2:3:5D.4:10:258.如图,∠EFG =90°,EF =10,OG =17,cos ∠FGO =,则点F 的坐标是()A.(8,274)B.(8,12)C.(6,334) D.(6,10)9.如图,AB=4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE=12DB ,作EF ⊥DE 并截取EF=DE ,连结AF 并延长交射线BM 于点C .设BE=x ,BC=y ,则y 关于x 的函数解析式是()A.y=﹣12��−4B.y=﹣2��−1C.y=﹣3��−1D.y=﹣8��−410.已知二次函数c bx ax y 2的图象如图所示,其对称轴为直线x=-1,给出下列结论:①b 2>ac 4;②abc>0;③2a +b=0;④a +b+c>0;⑤a -b+c<0.其中错误的有()个.A .1B .2C .3D .4二、填空题(每题3分)11.若抛物线y=x 2-4x+c 的顶点在x 轴上,则c 的值是.12.如图,在△ABC 中,∠C=90°,∠B=60°,D 是AC 上一点,DE ⊥AB 于E ,且CD=2,DE=1,则BC 的长为.13.如图,某男生推铅球时,铅球飞行的高度y(m)与水平距离x(m)之间的关系是35321212 x x y ,则该男生推铅球的成绩是m.14.如图,在四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD .若sin ∠ACB =31,则tan D =.15.如图,在Rt △ABC 中,∠ACB =90°,AC =2,tan B =,CD 平分∠ACB 交AB于点D ,DE ⊥BC ,垂足为点E ,则DE =.16.如图,在矩形ABCD 中,DE ⊥AC ,垂足为E ,且tan ∠ADE =43,AC =5,则AB 的长________.17.如图,在△ABC 中,已知∠C =90°,sin ∠A =37,点D 为边AC 上一点,若∠BDC=45°,DC =6cm,则△ABC 的面积等于cm 2.18.如图,正方形ABCD 的边长为2,BE=CE ,MN=1,线段MN 的两端点在CD ,AD 上滑动,当DM 为____________时,△ABE 与以D ,M ,N 为顶点的三角形相似.19.如图,三角形ABC 中,AD ⊥BC 于D ,以AB 为边作菱形ABEF ,使点E 落在BC 边上,点G 在EF 上,BG 交AC 于点M ,若∠AMG+∠F=180°,tan ∠FAM=34,BG=10,则AD 的长为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年黑龙江省哈工大附中九年级(上)期中数学试卷(五四学制)一、选择题(每小题3分,共30分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.2.(3分)下列运算正确的是()A.x2•x3=x6B.(﹣x2)3=x6C.x6÷x5=x D.x2+x3=x53.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.4.(3分)如果将抛物线y=(x﹣2)2+1向左平移1个单位,再向上平移3个单位,那么所得新抛物线的解析式为()A.y=(x﹣3)2+4 B.y=(x﹣1)2+4 C.y=(x+1)2+2 D.y=(x+1)2 5.(3分)如图在△ABC中,DE∥BC,DF∥AC,则下列比例式不正确的是()A.=B.=C.=D.=6.(3分)如图,线段AB为⊙O的直径,C、D为⊙O上两点,且BC=4,tan∠BDC=,则⊙O的半径为()A.2 B.5 C.4 D.47.(3分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,且点A、B均在(1,0)的右侧,则下列选项中不正确的是()A.a<0 B.b<0 C.c<0 D.a+b+c<08.(3分)下列说法中,正确的个数有()①长度相等的弧叫做等弧;②垂直于弦的直径平分弦,并且平分弦所对的两条弧;③圆的切线垂直于过切点的半径;④一条弧所对的圆周角等于它所对的圆心角的一半.A.1个 B.2个 C.3个 D.4个9.(3分)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,则∠BAD的值为()A.30°B.21°C.58°D.48°10.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC 的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B. C.D.二、填空题(每小题3分,共30分)11.(3分)函数y=中,自变量x的取值范围是.12.(3分)因式分解:a2﹣1=.13.(3分)不等式组的解集是.14.(3分)抛物线y=(x+1)2﹣3的顶点坐标为.15.(3分)如图,AB是⊙O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=.16.(3分)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.17.(3分)某商场第1年销售电视机5000台,第3年销售电视机7200台,如果每年的销售量比上一年增加的百分率相同,则这个百分率为.18.(3分)在平面直角坐标系中,直线y=﹣2x+2与x轴交于点A,与y轴交于点B,若以点N(m,2)为圆心的⊙N同时与x轴、直线AB相切,则m的值为.19.(3分)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l 翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.20.(3分)如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A、C,PC交AB的延长线于点D,DE⊥PO的延长线于点E,若PC=6,tan∠PDA=,则OE的长为.三、解答题(满分60分)21.(6分)先化简,再求代数式(1﹣)÷的值,其中x=4sin45°﹣2cos60°.22.(6分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在网格中小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在网格中小正方形的顶点上),使△ABD为等腰三角形(画一个即可).23.(8分)如图,某校一幢教学大楼的顶部竖直有一块“传承文明,启智求真”的宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知tan∠BAF=,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据≈1.414,≈1.732)24.(10分)已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.25.(8分)经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)该经销店要获得最大月利润,售价应定为每吨多少元?26.(10分)△ABC中,∠ABC=45°,BD⊥AC于点D,CE⊥AB于点E,BD交CE 于点F.(1)如图1,求证:BF=AC;(2)如图2,连接DE,求证:DE平分∠ADB;(3)在图2中,若AD=4,AE=,求BC的长.27.(12分)已知在平面直角坐标系中,直线y=kx+b与x轴交于点A(4,0),与y轴交于点B(0,m),直线AB上有一点M,M的横坐标为m,以M为顶点的抛物线经过点B.(1)如图1,当m=5时,求抛物线的解析式;(2)如图2,过点M作BM的垂线交y轴于点C,延长CM至点D使MC=MD,作ME∥x轴,DE∥y轴,ME与DE交于点E,设点D(x,y),求DE的长并直接写出y关于x的函数关系式.(3)过点D作BM的平行线交(2)中的函数图象于点P,连接BD、MP,当以点B、M、D、P为顶点的四边形是平行四边形时,求点P的坐标.2014-2015学年黑龙江省哈工大附中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.【解答】解:(A)原式=3,故A不是最简二次根式;(B)原式=,故B是最简二次根式;(C)原式=,故C不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.2.(3分)下列运算正确的是()A.x2•x3=x6B.(﹣x2)3=x6C.x6÷x5=x D.x2+x3=x5【解答】解:(A)原式=x5,故A错误;(B)原式=﹣x6,故B错误;(D)原式=x2+x3,故D错误故选:C.3.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.4.(3分)如果将抛物线y=(x﹣2)2+1向左平移1个单位,再向上平移3个单位,那么所得新抛物线的解析式为()A.y=(x﹣3)2+4 B.y=(x﹣1)2+4 C.y=(x+1)2+2 D.y=(x+1)2【解答】解:抛物线y=(x﹣2)2+1的顶点坐标为(2,1),向左平移1个单位,再向上平移3个单位后的顶点坐标为(1,4),所以,所得抛物线解析式为y=(x﹣1)2+4.故选:B.5.(3分)如图在△ABC中,DE∥BC,DF∥AC,则下列比例式不正确的是()A.=B.=C.=D.=【解答】解:A、∵DE∥BC,∴=,故本选项错误;B、∵DE∥BC,∴△ADE∽△ABC,∴=≠,故本选项正确;C、∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形,∴DE=FC,∵DE∥BC,DF∥AC,∴=,=,∴=,故本选项错误;D、∵DE∥BC,∴△DEH∞△FBH,∴=,∵=,∴=,故本选项错误;故选:B.6.(3分)如图,线段AB为⊙O的直径,C、D为⊙O上两点,且BC=4,tan∠BDC=,则⊙O的半径为()A.2 B.5 C.4 D.4【解答】解:∵tan∠BDC=,∠BDC=∠BAC,∴tan∠BAC=,∵线段AB为⊙O的直径,C、D为⊙O上两点,且BC=4,∴∠ACB=90°,∴tan∠BAC=,解得,AC=8,∴AB=,∴⊙O的半径为2,故选:A.7.(3分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,且点A、B均在(1,0)的右侧,则下列选项中不正确的是()A.a<0 B.b<0 C.c<0 D.a+b+c<0【解答】解:A、∵抛物线开口向下,∴a<0,A不符合题意;B、∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,B符合题意;C、∵抛物线与y轴交于负半轴,∴c<0,C不符合题意;D、∵当x=1时,y<0,∴a+b+c<0,D不符合题意.故选:B.8.(3分)下列说法中,正确的个数有()①长度相等的弧叫做等弧;②垂直于弦的直径平分弦,并且平分弦所对的两条弧;③圆的切线垂直于过切点的半径;④一条弧所对的圆周角等于它所对的圆心角的一半.A.1个 B.2个 C.3个 D.4个【解答】解:①长度相等的弧叫做等弧,错误,完全重合的两条弧叫做等弧;②垂直于弦的直径平分弦,并且平分弦所对的两条弧,正确,垂径定理;③圆的切线垂直于过切点的半径;正确,切线的性质;④一条弧所对的圆周角等于它所对的圆心角的一半.错误.应该是同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半;故选:B.9.(3分)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,则∠BAD的值为()A.30°B.21°C.58°D.48°【解答】解:连接BD,如图,则∠ADB=90°,并且∠ABD=∠ACD=42°.所以∠BAD=90°﹣∠ABD=90°﹣42°=48°.故选:D.10.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC 的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B. C.D.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.二、填空题(每小题3分,共30分)11.(3分)函数y=中,自变量x的取值范围是x≥2.【解答】解:根据题意得,x﹣2≥0且x≠0,解得x≥2且x≠0,所以,自变量x的取值范围是x≥2.故答案为:x≥2.12.(3分)因式分解:a2﹣1=(a+1)(a﹣1).【解答】解:a2﹣1=a2﹣12=(a+1)(a﹣1).13.(3分)不等式组的解集是x>1.【解答】解:,由①得,x>1;由②得,x>﹣3,故此不等式组的解集为:x>1.故答案为:x>1.14.(3分)抛物线y=(x+1)2﹣3的顶点坐标为(﹣1,﹣3).【解答】解:∵y=(x+1)2﹣3,∴顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).15.(3分)如图,AB是⊙O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=.【解答】解:根据题意得AE=9﹣1=8,根据垂径定理得CE=DE,根据相交弦定理得CE2=AE•BE,CE=2.所以CD=4.16.(3分)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.【解答】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=AB=2cm,∴扇形OAB的弧AB的长==π,∴2πr=π,∴r=(cm).故答案为.17.(3分)某商场第1年销售电视机5000台,第3年销售电视机7200台,如果每年的销售量比上一年增加的百分率相同,则这个百分率为20%.【解答】解:设每年的销售量比上一年增加的百分率为x,由题意得:5000(1+x)2=7200,解得:x1=0.2,x2=﹣2.2(不合题意,舍去);答:这个百分率为20%.故答案为:20%.18.(3分)在平面直角坐标系中,直线y=﹣2x+2与x轴交于点A,与y轴交于点B,若以点N(m,2)为圆心的⊙N同时与x轴、直线AB相切,则m的值为±.【解答】解:在平面直角坐标系中,直线y=﹣2x+2与x轴交于点A,与y轴交于点B,∴A(1,0),B(0,2),∵以点N(m,2)为圆心的⊙N同时与x轴、直线AB相切,∴点N(m,2)到x轴的距离和到直线AB的距离相等,∴2=,解得:m=±,故答案为:±.19.(3分)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.【解答】解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=8,tanC=,∴=,QC=BQ=4,∴AQ=6,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过B′点作B′E⊥BC于点E,∴B′E=AQ=3,∴=,∴EC=2,设BD=x,则B′D=x,∴DE=8﹣x﹣2=6﹣x,∴x2=(6﹣x)2+32,解得:x=,直线l与边BC交于点D,那么BD的长为:.故答案为:.20.(3分)如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A、C,PC交AB的延长线于点D,DE⊥PO的延长线于点E,若PC=6,tan∠PDA=,则OE的长为.【解答】解:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠EPD且PA⊥AO,∴∠PAO=90°,∵∠AOP=∠EOD,∠PAO=∠E=90°,∴∠APO=∠EDO,∴∠EPD=∠EDO;连接OC,∵PA=PC=6,tan∠PDA=,∴在Rt△PAD中,AD=8,PD=10,∴CD=4,∵tan∠PDA=,∴在Rt△OCD中,OC=OA=3,OD=5,∵∠EPD=∠ODE,∴△OED∽△DEP,∴==2,∴DE=2OE在Rt△OED中,OE2+DE2=OD2,即5OE2=52,∴OE=.故答案为:.三、解答题(满分60分)21.(6分)先化简,再求代数式(1﹣)÷的值,其中x=4sin45°﹣2cos60°.【解答】解:当x=4×﹣2×=2﹣1时,∴原式=×===22.(6分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在网格中小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在网格中小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【解答】解:(1)图中△ABC即为所求.(∠ACB=90°)(2)图中,△ABD即为所求.(AB=AD=5)23.(8分)如图,某校一幢教学大楼的顶部竖直有一块“传承文明,启智求真”的宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知tan∠BAF=,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据≈1.414,≈1.732)【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,tan∠BAF=,∴∠BAF=30°,∴BF=AB=5,AF=5 .∴BG=AF+AE=5 +15.Rt△BGC中,∠CBG=45°,∴CG=BG=5 +15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15 .∴CD=CG+GE﹣DE=5 +15+5﹣15 =20﹣10 ≈2.7m.答:宣传牌CD高约2.7米.24.(10分)已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.【解答】(1)证明:连接OE.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°;在△BOE中,OB=OE,∠B=60°,∴∠B=∠OEB=∠BOE=60°,∴∠BOE=∠A=60°,∴OE∥AC(同位角相等,两直线平行);∵EF⊥AC,∴OE⊥EF,即直线EF是⊙O的切线;(2)解:连接DF.∵DF与⊙O相切,∴∠ADF=90°.设⊙O的半径是r,则EB=r,EC=4﹣r,AD=4﹣2r.在Rt△ADF中,∠A=60°,∴AF=2AD=8﹣4r.∴FC=4r﹣4;在Rt△CEF中,∵∠C=60°,∴EC=2FC,∴4﹣r=2(4r﹣4),解得,r=;∴⊙O的半径是.25.(8分)经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)该经销店要获得最大月利润,售价应定为每吨多少元?【解答】解:(1)售价降了260﹣240=20(元),∵当每吨售价每下降10元时,月销售量就会增加7.5吨,∴月销售量就会增加7.5×2=15吨,则此时的月销售量为45+15=60吨;(2)若每吨材料售价为x(元),∵当每吨售价每下降10元时,月销售量就会增加7.5吨,∴月销售量就会增加×7.5=(260﹣x)吨,即月销售量为[45+(260﹣x)]吨,∴该经销店的月利润为y=(x﹣100)[45+(260﹣x)]=﹣0.75(x﹣210)2+9075,∵当x=210元时,总利润y的最大值为9075,∴该经销店要获得最大月利润,售价应定为每吨210元.26.(10分)△ABC中,∠ABC=45°,BD⊥AC于点D,CE⊥AB于点E,BD交CE 于点F.(1)如图1,求证:BF=AC;(2)如图2,连接DE,求证:DE平分∠ADB;(3)在图2中,若AD=4,AE=,求BC的长.【解答】解:(1)∵∠BEC=90°,∴∠EBF+∠BFE=90°,∵∠BDC=90°,∴∠ACE+∠CFD=90°,∵∠BFE=∠CFD,∴∠EBF=∠ECA,∵∠BEC=90°,∠ABC=45°,∴∠ECB=45°=∠ABC,∴BE=CE,在△BEF和△CEA中,,∴△BEF≌△CEA,∴BF=AC,(2)由(1)知,∠BCE=45°,∵∠BEC=∠BDC=90°,∴点B,C,D,E共圆,∴∠BDE=∠BCE=45°,∴∠ADE=90°﹣∠BDE=45°=∠BDE,∴DE平分∠ADB;(3)如图2,连接AF,由(1)知,△BEF≌△CEA,∴EF=AE=,根据勾股定理得,AF=2,在Rt△ADF中,DF==2,设AC=x,BE=y,∴BF=AC=x,则BD=BF+DF=x+2,在Rt△BEF中,BF2﹣BE2=10,∴x2﹣y2=10①,在Rt△ABD中,AB2﹣BD2=AD2,∴(y+)2﹣(x+2)2=16,∴y2+2y﹣x2﹣4x=10②,联立①②解得,y=3或y=(舍),在Rt△BCE中,BC=BE=y=6,27.(12分)已知在平面直角坐标系中,直线y=kx+b与x轴交于点A(4,0),与y轴交于点B(0,m),直线AB上有一点M,M的横坐标为m,以M为顶点的抛物线经过点B.(1)如图1,当m=5时,求抛物线的解析式;(2)如图2,过点M作BM的垂线交y轴于点C,延长CM至点D使MC=MD,作ME∥x轴,DE∥y轴,ME与DE交于点E,设点D(x,y),求DE的长并直接写出y关于x的函数关系式.(3)过点D作BM的平行线交(2)中的函数图象于点P,连接BD、MP,当以点B、M、D、P为顶点的四边形是平行四边形时,求点P的坐标.【解答】解:(1)由题意A(4,0),B(0,5),代入y=kx+b中,得到,解得,∴直线AB的解析式为y=﹣x+5.∵M(5,﹣),设抛物线的解析式为y=a(x﹣5)2﹣,把(0,5)代入得到a=,∴抛物线的解析式为y=(x﹣5)2﹣.(2)如图2中,延长EM交y轴于F.∵∠MFC=∠DEM=90°,∠DME=∠CMF,CM=DM,∴△DME≌△CMF,∴FM=EM=m,∵OB=m,∴EM=OB,∵CD⊥AB,∴∠DMB=90°,∴∠BMF+∠DME=90°,∵∠BMF+∠ABO=90°,∴∠DME=∠ABO,∵OB=EM,∠AOB=∠DEM=90°,∴△DME≌△ABO,∴DE=AO=4,∵FM∥OA,∴=,∴=,∴BF=m2,∴M(m,m﹣m2),∵D(x,y),FM=EM=m,∴2m=x,y=4+m﹣m2,∴m=x代入y=4+m﹣m2,得到y=﹣x2+x+4.(3)①如图3中,抛物线的解析式y=﹣x2+x+4如图所示,由(2)可知,M(m,m﹣m2),D(2m,4+m﹣m2),∵四边形BDPM是平行四边形,∴P(3m,4+m﹣m2﹣m2)代入y=﹣x2+x+4,解得:m=8或0(舍弃),∴P(24,﹣20).②如图4中,当四边形PBMD是平行四边形时,易知M(m,m﹣m2),D(2m,4+m﹣m2),P(m,4+m),把P(m,4+m)代入y=﹣x2+x+4得到,m=﹣8或0(舍弃),∴P(﹣8,﹣4)综上所述,满足条件的点P坐标为(24,﹣20)或(﹣8,﹣4).赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。