中考数学复习二次根式2[人教版]
(中考数学)实数与二次根式(知识点梳理)(记诵版)
第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。
2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。
3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。
二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。
2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。
3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。
一个正数a 的正的平方根就是它的算术平方根。
三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。
开平方运算是已知指数和幂求底数。
2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。
3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。
考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。
2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。
3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。
5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。
中考数学复习指导:二次根式的加减复习及典例分析
二次根式的加减【重点难点点拨】重点:(1)二次根式化简为最简根式.(2)能熟练地进行二次根式的加减运算。
(3)会进行二次根式的混合运算。
难点与关键:(1)会判定是否是最简二次根式.(2)会判断什么样的两个二次根式是同类二次根式.(3)由整式运算知识迁移到含二次根式的运算.【规律方法指津】1、判断几个二次根式是不是同类二次根式,前提是将其化简成最简二次根式;2、二次根式的加减是把同类二次根式合并,不是同类二次根式则不能合并。
3、加法的运算律仍然适用于二次根式的运算。
【知识详细解读】1、同类二次根式(1)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如x x 25,2223 和和这样的二次根式都是同类二次根式。
(2)判断同类二次根式的方法:①首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。
②几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。
2、合并同类二次根式的方法合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。
3、二次根式的加减法则二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。
4、二次根式的混合运算方法和顺序运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。
运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。
5、二次根式的加减法则与乘除法则的区别乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。
【典型例题感悟】例1、在下列各组根式中,是同类二次根式的有_________。
.=11a a -≠+=,故②正确;==.解:②③点拨:判断两个二次根式是否为同类二次根式,必须先化简,而后判断。
人教版数学八年级下册二次根式(第2课时)教学课件
第二十一页,共三十九页。
探究新知
【议一议】如何区别 ( a )2与 a2 ?
( a)2
a2
从运算
(yùn
suàn)顺 从序取看值
范围
(fànwéi)
看从运算结 果看
意义
先开方,后平方
a≥0
a
表示一个非负 数a的算术平方
根的平方
第二十二页,共三十九页。
先平方,后开方
a取任何实数
|a|
表示一个实数a 的平方的算术平 方根
探究新知
【猜一猜】当a<0时, a=2
-a ?
a(a<0) 平方
(píngf
-2
āng)
-0.1 运算
...23
a2 4
0.01
4 .9..
算术
a2
(suànshù)
平方根
2
0.1 2 ..3.
观察两者有什么关系?
第十五页,共三十九页。
探究新知 归纳:
a2 的性质:
a (a≥0) a2 a
②理清语句层次明确运算顺序;
③牢记一些概念和公式.
第三十页,共三十九页。
巩固练习
如图,是一个(yī ɡè)圆形挂钟,正面面积为S,用代
S
数式表示出钟的半径为_________π_.
第三十一页,共三十九页。
连接中考
1.计算( 3)2 1的结果是___4_.
2.下列等式正确的是( A )
A.( 3)2 3
km/h,逆水行驶的速度是(v 2.5)km/h.
(2)设贺卡的长为5x,则宽为3x.依题意得15x2=S,所以 x 1S所5 ,
以它的长为 5 S . 15
第二十九页,共三十九页。
中考数学第一章《数的开方与二次根式》复习教案新人教版(最新整理)
)))章节第一章课题数的开方与二次根式课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
教学重点使学生掌握二次根式的有关概念、性质及根式的化简.教学难点二次根式的化简与计算.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.平方根与立方根(1)如果x2=a,那么x 叫做a 的。
一个正数有个平方根,它们互为;零的平方根是;没有平方根。
(2)如果x3=a,那么x 叫做a 的。
一个正数有一个的立方根;一个负数有一个的立方根;零的立方根是;2.二次根式(1(2(3(4)二次根式的性质①若a ≥ 0,则( a)2=;③ab =(a ≥ 0, b≥ 0)2⎧a ( ) a a② a = a =⎨-a ( );④b=b(a ≥ 0, b 0)⎩(5)二次根式的运算①加减法:先化为,在合并同类二次根式;babx2 +1 x2 y5 1223233x2+y2a 1+1a b②乘法:应用公式 a ⋅=ab (a ≥ 0, b ≥ 0) ;③除法:应用公式=a(a ≥0, b0)b④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。
(二):【课前练习】1.填空题2 . 判断题3.如果(x-2)2 =2-x 那么 x 取值范围是()A、x ≤2 B. x <2 C. x ≥2 D. x>24.下列各式属于最简二次根式的是()A. B. C. D.5.在二次根式:①12, ②③;④27和是同类二次根式的是()A.①和③B.②和③C.①和④ D.③和④二:【经典考题剖析】1.已知△ABC的三边长分别为 a、b、c, 且a、b、c 满足a2-6a+9+ b - 4 + | c - 5 |= 0 ,试判断△ABC 的形状.2.x 为何值时,下列各式在实数范围内有意义1(1);(2);(3)x - 43.找出下列二次根式中的最简二次根式:x2+y27x ,, , 0.1x ,, - 21, -x ,,2 24.判别下列二次根式中,哪些是同类二次根式:0.5-2x +31-xx2+12ab21 27 1 25 1 50 a2b675 4 - 4x + x 21 - 1 16 25 m2 - 4m + 4m 2 + 6m + 9 2 3 2 3 3 2 3 2 ( x - 2)2(x - 3)2( x - 2)( x - 3) 3 - x3 - x 2 - x3 - x2 - x17 1a3a 2 25x x 9 x 5 5 3 48 27 12 3x 2 -4 + 4-x 2 +1 ( p -1)2 (P - 2)21-2a+a 2 1-2a+a 2 3, 75, 18, , 2, , , 238ab 3 (b 0), -3b5. 化简与计算7 ① ;② (x 2) ;③ ;④ (m - 2) ⑤ (+ - 6 )2-( -+ 6 )2;⑥ (2 +3 - 6)(2 - 3 + 6 )三:【课后训练】1. 当 x≤2 时,下列等式一定成立的是( )A 、 = x - 2 C 、=2 - x ⋅B 、D 、 = = x - 32. 如果 (x-2)2 =2-x 那么 x 取值范围是()A 、x ≤2B. x <2C. x ≥2D. x >23. 当 a 为实数时, a 2 =-a 则实数 a 在数轴上的对应点在( )A .原点的右侧B .原点的左侧C .原点或原点的右侧D .原点或原点的左侧4. 有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④- 是 17 的平方根,其中正确的有( )A .0 个B .1 个C .2 个D .3 个5. 计算 a 3 +a 2所得结果是 .6. 当 a≥0 时,化简 =7.计算(1)、2 5+ 9 - 2; (2)、( - 2)2003( + 2)2004(3)、(2 - 3 2 )2;(4)、5 -6 +8. 已知: x 、y 为实数,y=x-2,求 3x+4y 的值。
初中数学 中考复习二次根式专题练习(含答案)
二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
初中数学二次根式基础知识点(共6篇)
初中数学二次根式根底知识点〔共6篇〕篇1:初中数学二次根式根底知识点 1.二次根式概念:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足以下条件:3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的_质:a(a0)22(1)(a)=a(a≥0);(2)aa0(a=0);5.二次根式的运算:a(a0)(1)因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式单项式和多项式统称为整式。
1.单项式:1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及_质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的_质符号,因此在排列时,仍需把每一项的_质符号看作是这一项的一局部,一起挪动初中数学一元二次方程常见考法1.考察一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵敏,所以一直很吸引命题者。
2022-2023年数学中考第一轮复习-专题二二次根式
专题二:二次根式1:考向解读1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.2.了解乘方与开方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、的化简与运算(分母有理化).2:导图导学3:考点数的乘方负数的奇次幕是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0.这样的二次根式叫做最简二次根式.(3)同类二次根式:当二次根式化为最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.二次根式的运算二次根式的性质:0(0)a a≥≥,2()(0)a a a=≥.2(0),||(0)a aa aa a≥⎧==⎨-<⎩.(0,0)ab a b a b=⋅≥≥.(0,0)a aa bb b=≥>.4:解题技巧化简二次根式的步骤(易错点)(1)把被开方数分解因式(或因数) ;(2)把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;(3)如果因式中有平方式(或平方数),应用关系式(a)2=a(a≥0)把这个因式(或因数)开出来,将二次根式化简。
二次根式运算中的注意事项(1)一般将最后结果化为最简二次根式,并且分母中不含二次根式。
(2)二次根式的加减:先将二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。
(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。
常见二次根式化简求值的九种技巧一、估算法二、公式法三、拆项法四、换元法 五、整体代入法 六、因式分解法 七、配方法 八、辅元法 九、先判后算法 考点1:二次根式有意义的条件 1.(2022•衡阳)如果二次根式1a -有意义,那么实数a 的取值范围是( ) A .1a > B .1a C .1a < D .1a 【分析】根据二次根式有意义的条件:被开方数为非负数,即可得出a 的取值范围. 【解答】解:由题意得:10a -, 1a ∴, 故选:B . 2.(2022•日照)若二次根式32x -在实数范围内有意义,则x 的取值范围为 32x . 【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:320x -,解得:32x , 故答案为:32x.举一反三1.(202236x -x 的取值范围是( )A .2x >B .2x <C .2xD .2x【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:360x -,2x ∴,故选:D .2.(2022•广州)代数式11x +有意义时,x 应满足的条件为( ) A .1x ≠- B .1x >- C .1x <- D .1x - 【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案. 【解答】解:代数式11x +有意义时,10x +>, 解得:1x >-. 故选:B . 3.(2022•常州)若二次根式1x -有意义,则实数x 的取值范围是( ) A .1x B .1x > C .0x D .0x > 【分析】根据二次根式有意义的条件,可得:10x -,据此求出实数x 的取值范围即可. 【解答】解:二次根式1x -有意义, 10x ∴-,解得:1x .故选:A .考点二:二次根式的定义1.(2022秋•二道区校级期中)下列式子中,不是二次根式的是( )A .3B .0.6C .12D .3π-【分析】根据二次根式的定义进行判断.【解答】解:3,0.6,1为二次根式,2而30π-<,所以3π-不是二次根式.故选:D.2.(2022春•泸县校级期中)下列式子中是二次根式的是()A.x B.3-C.2-D.38【分析】根据二次根式的定义:一般地,我们把形如(0)a a的式子叫做二次根式判断即可.【解答】解:A选项,x缺少条件0x,当0x<时,x不是二次根式,故该选项不符合题意;B选项,30-<,故该选项不符合题意;>,故该选项符合题意;C选项,20D选项,38是三次根式,故该选项不符合题意;故选:C.举一反三1.(2022秋•新蔡县校级月考)下列各式中,一定是二次根式的是()A a B21a+C32D2-【分析】(0)a a的式子叫做二次根式.【解答】解:A.当0a<aa+B21C32是三次根式,故此选项不合题意;D2-故选:B.2.(2022秋•宛城区校级月考)下列各式中,一定是二次根式的是() A.4-B.21x+x-C.32a D.21【分析】根据二次根式的定义进行判断.【解答】解:A.被开方数为负数,不是二次根式,故此选项不合题意;B.x的值不确定,被开方数的符号也不确定,不能确定是二次根式,故此选项不合题意;C.根指数是3,不是二次根式,故此选项不合题意;D.被开方数恒为正数,是二次根式,故此选项符合题意.故选:D.3.(2022秋•榆树市月考)下列各式中,一定是二次根式的是() A.3-B.32a C.22a+D.29a-【分析】根据二次根式的定义:一般地,我们把形如(0)a a的式子叫做二次根式.【解答】解:A.3-,被开方数是负数,二次根式无意义,故此选项不合题意;B.32a,三次根式,故此选项不合题意;a+,是二次根式,故此选项符合题意;C.22a-,被开方数有可能是负数,二次根式无意义,故此选项不合题意;D.29故选:C.考点三:考向3 二次根式的性质与化简1.(2021•娄底)2、5、m是某三角形三边的长,则22-+-等于((3)(7)m m)A.210-C.10D.4m-B.102m【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.【解答】解:2、5、m是某三角形三边的长,5252m ∴-<<+, 故37m <<, ∴22(3)(7)m m -+- 37m m =-+- 4=. 故选:D . 2.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简22|1|(1)()a b a b +--+-= 2 . 【分析】根据数轴可得:10a -<<,12b <<,然后即可得到10a +>,10b ->,0a b -<,从而可以将所求式子化简. 【解答】解:由数轴可得,10a -<<,12b <<,10a ∴+>,10b ->,0a b -<,22|1|(1)()a b a b ∴+--+-1(1)()a b b a =+--+-11a b b a =+-++-2=,故答案为:2.举一反三1.(2022•内蒙古)实数a 21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -【分析】根据数轴得:01a <<,得到0a >,10a -<||a =和绝对值的性质化简即可.【解答】解:根据数轴得:01a <<,0a ∴>,10a -<,∴原式||11a a =++-11a a =++-2=.故选:B .2.(2022( )A .B .3C .D .2【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为.【解答】===故选:A .3.(2022•河北)下列正确的是( )A23=+ B 23⨯ C 23= D 0.7【分析】A 0,0)a b 判断B 选项;根据||a 判断C 选项;根据算术平方根的定义判断D 选项.【解答】解:A 、原式=B 、原式23=⨯,故该选项符合题意;C 、原式29,故该选项不符合题意;D 、20.70.49=,故该选项不符合题意;故选:B .考点4:最简二次根式1.(2021•桂林)下列根式中,是最简二次根式的是( ) A .19 B .4 C .2a D .a b + 【分析】直接根据最简二次根式的概念:(1)被开方数不含分母,分母中不含根号;(2)被开方数中不含能开得尽方的因数或因式判断即可. 【解答】解:11.93A =,不是最简二次根式; .42B =,不是最简二次根式; 2.||C a a =,不是最简二次根式; .D a b +,是最简二次根式. 故选:D . 2.(2022•杭州)计算:4= ;2(2)-= .【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解答】解:42=,2(2)4-=,故答案为:2,4.举一反三1.(2022秋•忻州月考)下列二次根式是最简二次根式的是( )A 12B 3C 12D 2a 【分析】根据最简二次根式的概念判断即可.【解答】解:A 124323⨯=,被开方数中含能开得尽方的因数,不是最简二次根式,本选项不符合题意;B 3是最简二次根式,本选项符合题意;C 122=D 2||a a =,被开方数中含能开得尽方的因数,不是最简二次根式,本选项不符合题意;故选:B .2.(2021•益阳)将452化为最简二次根式,其结果是( ) A .452 B .902 C .9102 D .3102 【分析】根据二次根式的性质进行化简即可. 【解答】解:459523102222⨯⨯==⨯, 故选:D . 3.(2022秋•永春县期中)下列二次根式是最简二次根式的是( ) A .13 B .18 C .7 D .12 【分析】根据最简二次根式的定义进行判断即可. 【解答】解:13.33A =,因此13不是最简二次根式,所以选项A 不符合题意; .1832B =,因此18不是最简二次根式,所以选项B 不符合题意;.7C 是最简二次根式,因此选项C 符合题意;.1223D =,因此12不是最简二次根式,所以选项D 不符合题意; 故选:C .考点5:二次根式的乘除法1.(2022•山西)计算:1182⨯的结果为 . 【分析】按照二次根式的乘法法则计算即可.【解答】解:原式93==.故答案为:3.2.(2022•衡阳)计算:28⨯= .【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解答】解:原式28164=⨯==.故答案为:4举一反三1.(2022•呼和浩特)下列运算正确的是( ) A 1822=± B .222()m n m n +=+C .1211x x x-=--D .2229332y x xy x y-÷=-【分析】利用二次根式的乘法的法则,完全平方公式,分式的减法的法则,分式的除法的法则对各项进行运算即可. 【解答】解:A 1822,故A 不符合题意; B 、222()2m n m mn n +=++,故B 不符合题意;C 、21221xx x x x--=--,故C 不符合题意; D 、2229332y x xy x y-÷=-,故D 符合题意; 故选:D .2.(202211622正确的是( ) A .4B .2C 7D .2±【分析】直接利用二次根式的乘除运算法则化简,进而得出答案. 【解答】解:原式11622=÷⨯4=2=.故选:B .3.(202223= .【分析】根据二次根式的乘法法则进行计算即可. 【解答】236= 6.考点61.(2021•潍坊)下列运算正确的是( ) A .2211()24a a a -=-+ B .1221()a a --=C .33a ab b-=- D .623=【分析】根据完全平方公式判断A ,根据负整数指数幂判断B ,根据分式的基本性质判断C ,根据二次根式的除法判断D .【解答】解:A 选项,原式214a a =-+,故该选项正确;B 选项,原式122211()()a a a-===,故该选项正确;C 选项,根据分式的基本性质,分子,分母都乘或除以一个不为0的数,分式的值不变,不能分子,分母都加3,故该选项错误;D 选项,原式2=,故该选项错误;故选:AB .2.(2021•娄底)计算:0111(2021)()2cos45221π--++-︒+. 【分析】根据零指数幂,分母有理化,负整数指数幂,特殊角的三角函数值计算即可.【解答】解:原式222121222(2)1-=++-⨯- 12122=+-+-2=.举一反三1.(2022秋•嘉定区月考)下列结论正确的是( ) A 22a b +是最简二次根式 B x y -x y + C 2(12)12-D a ba b-=+【分析】根据最简二次根式的定义,有理化因式的定义,不等式的解法即可得到结论.【解答】解:A 是最简二次根式,故本选项正确,符合题意;BC 1,故本选项错误,不符合题意;D=故选:A .2.(2022•信阳二模)下列式子运算正确的是( ) A .632a a a ÷= B .22(2)4a a =C 1=D .22()(2)2x y x y x y -+=+【分析】根据整式运算相关的法则和分母有理化逐项判断. 【解答】解:632a a ÷=,故A 错误,不符合题意;22(2)4a a =,故B 正确,符合题意;1,故C 错误,不符合题意;22()(2)2x y x y x xy y -+=+-,故D 错误,不符合题意;故选:B .3.(2022春•孝义市期末)下列是最简二次根式的是( )AB C D 【分析】根据最简二次根式的定义解决此题.【解答】解:A 不是最简二次根式,那么A 不符合题意.B 不是最简二次根式,那么B 不符合题意.C .根据最简二次根式的定义,C 不符合题意.D.根据最简二次根式的定义,15是最简二次根式,那么D符合题意.故选:D.考点7:同类二次根式1.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是() A.8与3B.2与12C.5与15D.75与27【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.先将各选项进行化简,再根据被开方数是否相同进行判断即可.【解答】解:A、822=和3不是同类二次根式,本选项不合题意;B、1223=与2不是同类二次根式,本选项不合题意;C、5与15不是同类二次根式,本选项不合题意;D、7553=是同类二次根式,本选项符合题意.=,2733故选:D.2.(2020•上海)下列二次根式中,与3是同类二次根式的是() A.6B.9C.12D.18【分析】根据同类二次根式的定义解决此题.【解答】解:A.根据同类二次根式的定义,6与3不是同类二次根式,那么A 不符合题意.B.根据算术平方根以及同类二次根式,93=与3不是同类二次根式,那么B 不符合题意.=与3是同类二次C.根据二次根式的性质以及同类二次根式的定义,1223根式,那么C符合题意.D.根据二次根式的性质以及同类二次根式的定义,1832=与3不是同类二次根式,那么D 不符合题意. 故选:C .举一反三1.(2022秋•浦东新区校级月考)下列四组二次根式,不是同类二次根式的是( ) A 313B 850C 34x 38xD 3x 233a x 【分析】根据同类二次根式的定义:化成最简二次根式后,被开方数相同的叫做同类二次根式,即可解答. 【解答】解:A 、133=∴313故A 不符合题意;B 、822=5052=∴850故B 不符合题意;C 、342x x x 3822x x ,∴34x 38x故C 符合题意;D 、2333a x ax x =∴3x 233a x故D 不符合题意; 故选:C .2.(20222022m +2可以合并,则m 的值为( ) A .2020B .2020-C .2024D .2024-【分析】2022m +22022m +2的被开方数相同,即20222m +=.【解答】解:最简二次根式2022m +与2可以合并,则2022m +与2是同类二次根式,20222m ∴+=.解得2020m =-. 故选:B .3.(2022春•綦江区校级月考)若8和最简二次根式37m -是同类二次根式,则m 的值为( ) A .5m =B .2m =C .3m =D .6m =【分析】先把8化为最简二次根式22,再根据同类二次根式得到372m -=,然后解方程即可. 【解答】解:822=,372m ∴-=, 3m ∴=.故选:C .考点8:二次根式的加减法1.(2022•鞍山)下列运算正确的是( ) A .2810+= B .3412a a a ⋅= C .222()a b a b -=-D .2336(2)8ab a b -=-【分析】利用二次根式的加法的法则,完全平方公式,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A 、2832+=,故A 不符合题意;B 、347a a a ⋅=,故B 不符合题意;C 、222()2a b a ab b -=-+,故C 不符合题意;D 、2336(2)8ab a b -=-,故D 符合题意;故选:D .2.(2022•宁夏)下列运算正确的是( ) A .220--=B .826-=C .3362x x x +=D .326()x x -=【分析】直接利用二次根式的加减、合并同类项、幂的乘方与积的乘方法则分别化简,进而判断得出答案.【解答】解:A .224--=-,故此选项不合题意;B .822-=,故此选项不合题意;C .3332x x x +=,故此选项不合题意;D .326()x x -=,故此选项符合题意;故选:D .举一反三1.(2022•鄂尔多斯)下列运算正确的是( ) A .32235523a b a b a b += B .2363(2)6a b a b -=-C .2124-=-D 2832=【分析】把每一选项按照运算法则计算后判断结果即可.【解答】解:32232a b a b +不能合并,因为不是同类项,A 选项错误;2363(2)8a b a b -=-,B 选项也错误;2124-=,C 选项也错误; 2832=D 选项正确.故选:D .2.(2022123( ) A 15B .32C .33D .53【分析】根据二次根式的加法法则,先化简,再合并同类二次根式.【解答】解:12323333+=+=. 故选:C .3.(2022秋•沈河区校级月考)下列计算正确的是( ) A .2(2)2-=-B .43331-=C .235+=D .1222= 【分析】直接利用二次根式的性质以及二次根式的加减运算法则分别计算,进而得出答案.【解答】解:2.(2)2A -=,故此选项不合题意;.43333B -=,故此选项不合题意; .23C +无法合并,故此选项不合题意;12.22222D =⨯=,故此选项符合题意; 故选:D .考点9:二次根式混合运算1.(2022•朝阳)计算:637|4|÷--= . 【分析】先算除法,去绝对值,再合并即可. 【解答】解:原式6374=÷-34=-1=-.故答案为:1-.2.(2022•泰安)计算:48633⋅-= . 【分析】化简二次根式,然后先算乘法,再算减法. 【解答】解:原式238633=⨯-⨯4323=- 23=,故答案为:23.举一反三1.(2022•安顺)估计1()(2552)5A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式210=<<,310452106∴<<,故选:B.2.(2022•湖北)下列各式计算正确的是()A235÷D236=B.43331C1226【分析】利用二次根式的加减法的法则,二次根式的乘除法的法则对各项进行运算即可.【解答】解:A23A不符合题意;B、43333,故B不符合题意;=C不符合题意;C1223D236,故D符合题意;故选:D.3.(2022•青岛)计算1的结果是()(2712)3A3B.1C5D.3【分析】先根据二次根式的乘法进行计算,再根据二次根式的性质进行计算,最后算减法即可.【解答】解:1(2712)3112712=⨯⨯3394=-32=-1=,故选:B .考点10:二次根式的化简求值1.(2022•内蒙古)已知x ,y 是实数,且满足1228y x x =-+-+,则xy 的值是 .【分析】根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.【解答】解:1228y x x =-+-+,20x ∴-,20x -,2x ∴=,18y =, 则原式1112842=⨯==, 故答案为:122.(2022秋•浦东新区校级月考)已知15x x-=,那么1x x+的值为 .【分析】把所求的式子转为条件的形式,再进行求解即可. 【解答】解:15x x-=,∴1x x+21()x x =+21()4x x =-+2(5)4=+54=+3=.故答案为:3.举一反三1.(2021•包头)若21x =,则代数式222x x -+的值为( ) A .7B .4C .3D .322-【分析】利用条件得到12x -两边平方得221x x -=,然后利用整体代入的方法计算.【解答】解:21x =+,12x ∴-2(1)2x ∴-=,即2212x x -+=,221x x ∴-=, 222123x x ∴-+=+=.故选:C .2.(2022秋•琼山区校级月考)已知51x =时,则代数式223x x ++的值( ) A .1B .4C .7D .3【分析】根据完全平方公式以及二次根式的性质即可求出答案. 【解答】解:51x =-时,15x ∴+=2(1)5x ∴+=,2215x x ∴++=,2237x x ∴++=,故选:C .3.(2022春•东莞市月考)若1220223x =1220223y ,则222x xy y ++的值( )A .12B .4C .2022D .8【分析】先利用x 、y 的值计算出22x y +=,再利用完全平方公式得到2222()x xy y x y ++=+,然后利用整体代入的方法计算.【解答】解:1220223x =+,1220223y =-, 22x y ∴+=,22222()(22)8x xy y x y ∴++=+==.故选:D .考点11:二次根式的应用1.(2022秋•新蔡县校级月考)如图,在长方形中放入面积分别为32和18的正方形m 和正方形n ,则图中阴影部分的周长为 .【分析】先根据正方形的面积公式求得两个正方形的边长,再根据图形求得阴影部分的长与宽,最后根据矩形的周长公式求得结果. 【解答】解:根据题意得,2(321818)⨯-+242=⨯ 82=,故答案为:82.2.(2022秋•仁寿县校级月考)若直角三角形斜边长为4,周长为432+,则三角形面积等于 .【分析】由周长可得出两直角边的关系,再利用勾股定理列出另一方程求出两直角边之积进而求得三角形的面积. 【解答】解:设两直角边长分别为x ,y ;则22443216x y x y ⎧++=+⎪⎨+=⎪⎩, 解得1xy =.故这个三角形的面积为1122xy =, 故答案为:12.举一反三1.(20221250的周长为( ) A .23102B .4352C .43102D .4352或23102【分析】分腰长为1250关系进行验证,可求得其周长.【解答】12121250,不满足三角形的三边关系;50125050系,此时周长为23102综上可知,三角形的周长为23102 故选:A .2.(2022•雄县校级开学)如图,在一个长方形中无重叠的放入面积分别为29cm 和28cm 的两张正方形纸片,则图中空白部分的面积为( )A .21)cmB .21cmC .26)cmD .28)cm【分析】根据HLFG MCEF S S S =+矩形矩形空白部分,需求HC 以及LM .由题意得()229ABCH S HC cm ==正方形,()22228LMEF S LM LF MF cm ====正方形,故3HC cm =,)LM LF MF cm ===,进而解决此题.【解答】解:如图所示:由题意知:()229ABCH S HC cm ==正方形,()22228HCDG S LM LF ME cm ====正方形.3()HC cm ∴=,)LM LF MF cm ===.HLFG MCDE S S S ∴=+矩形矩形空白部分HL LF MC ME =⋅+⋅ HL LF MC LF =⋅+⋅()HL MC LF =+⋅ ()HC LM LF =-⋅(3=-⨯2)cm =.故选:D .3.(2022春•孝义市期末)如图,从一个大正方形中裁去面积为26cm 和215cm 的两个小正方形,则留下阴影部分的面积为( )A.2B.221cm C.2D.2【分析】根据小正方形的面积得到边长即可得到大正方形的边长,根据阴影部分的面积=大正方形的面积-两个小正方形的面积即可得出答案.【解答】解:两个小正方形的面积为15和6,∴,+=--∴阴影部分的面积26151526615=+--2)cm=,故选:A.专题二:练习一.选择题1.(2022秋•榆树市期中)下列计算正确的是( ) ABCD 3-2.(2022秋•恩阳区 月考)x ( ) A .1.5B .1-C .3-D .9-3.(2022秋•新蔡县校级月考)已知x 、y 为实数,且1y =,则x y +的值是( ) A .2022B .2023C .2024D .20254.(2022秋•文山市校级月考)下列二次根式中,是最简二次根式的是( )AB C D 5.(2022秋•新蔡县校级月考)下列各式计算正确的是( ) A=B = C=D 6.(2022秋•汝州市校级月考)下列二次根式中,最简二次根式是( )A .B C .D 7.(2022秋•泌阳县校级月考)若代数式有意义,则实数x 的取值范围是()A .1x ≠B .0xC .1x -D .0x 且1x ≠-8.(2022秋•泌阳县校级月考)下列二次根式中,是最简二次根式的是( ) ABC D9.(2022秋•宛城区校级月考)下列根式中为最简二次根式的是( )AB C D 10.(2022秋•泌阳县校级月考)下列运算正确的是( ) AB .2C D 11.(2022秋•渝中区校级月考)下列计算正确的是( )A3-B 2=C 123D .2(10-=12.(2022秋•邓州市校级月考)已知ABC ∆的面积为212cm ,底边为,则底边上的高为( )A .B .C D .13.(2022秋•邓州市校级月考)下列二次根式中属于最简二次根式的是( )ABC D14.(2022秋•商水县月考)如图,数轴上表示1和的对应点分别为A 、B ,点B 关于点A 的对称点是C ,设C 点 表示的数为x ,则x +( )A .1B .1C 1D .215.(2022秋•安溪县校级月考)已知y =,则20202021()()x y x y +-的值为( ) A .2B .2C .1-D .116.(2022秋•安溪县校级月考)下列计算正确的是( )A2=-B .26=C D .=17.(2022秋•西安月考)下列计算中正确的是( ) A=B .1C 8D18.(2022( ) A .2BC D 19.(2022春•重庆月考)下列二次根式是最简二次根式的是( )AB C D 0)a >20.(2022秋•禅城区校级月考)实数a 、b 在轴上的位置如图所示,且||||a b >,则化||a b -的结果为( )A .2a b +B .2a b -+C .bD .2a b -21.(202230b -=,则b 的取值范围是( ) A .3b >B .3b <C .3bD .3b22.(2022春•鲤城区校级期中)下列计算错误的是( ) A=B .3=C =D 23.(2022( ) A .1x >B .1xC .1x ≠D .1x24.(2022有意义的实数x 的取值范围是( ) A .2xB .3x 且2x ≠C .2x >且3x ≠D .2x 且3x ≠25.(2022春•福山区期中)下列计算中,正确的是( ) A .21 B .3=C 3D =26.(2022春•鼓楼区校级期中)下列运算正确的是( )A .3=B =C 3=-D .215=27.(2022( ) A .0B .3C .D .28.(2022春•东莞市月考)下列各组二次根式中,能进行合并的是( ) ABC D29.(2022春•东莞市月考)下列二次根式中,最简二次根式是( )AB C D 30.(2022春•东莞市校级期中)当a 满足( ) A .3aB .3a >C .3a -D .3a >-31.(2022春•仓山区校级期中)下列计算正确的是( )A4B 32=C 5=±D 1=-32.(2022春•东莞市校级期中)下列计算正确的是( ) A=B =C5-D 1=33.(2022春•杭州期中)下列运算正确的是( )A=B .26=C D 2=-34.(2022秋•高新区校级月考)若实数a ,b ,c 在数轴上的对应点的位置如图所示,则化简||b c +( )A .b c a +-B .b c a ++C .b c a ---D .b c a --+35.(2022春•北京期中)下列二次根式计算正确的是( ) A=BC D36.(2022春•武隆区校级期中)把二次根式化简为( ) A .B C .D 二.填空题37.(2022秋•忻州月考)若最简二次根式则x=.38.(2022=的值为.39.(20222)<<=.x40.(2022秋•仁寿县校级月考)计算:20212022⋅=.41.(2022.42.(2022在实数范围内有意义,则x的取值范围是.43.(2022秋•高新区校级月考)若3y=,则xy的值为.44.(2022秋•虹口区校级月考)设x=y=t为时,代数式22++=.2062202022x xy y45.(2022秋•虹口区校级月考)若x,y满足6y=,则x y⋅的平方根为.46.(2022秋•虹口区校级月考)在二次根式;.(填写编号)47.(2022秋•仁寿县校级月考)若直角三角形的两边长为a、b,且满足b-==.|4|048.(2022秋•虹口区校级月考)已知x=,则654322--+-+.x x x x49.(2022秋•二道区校级期中)当1x=.50.(2022秋•渝中区校级月考)若两不等实数a,b满足8b+,则a+=,8.三.解答题51.(2022秋•禅城区校级月考)计算.(1)01)|-(252.(2022秋•浦东新区校级月考)先化简,+,其中5x =,15y =.53.(2022. 54.(2022秋•薛城区校级月考)计算:(1)+(2)2011)()|1(2)3π---+--55.(202256.(202257.(2022春•江汉区校级月考)计算:(1(2)747a .一.选择题1.【解答】解:AA选项不符合题意;B==B选项不符合题意;C==C选项符合题意;D.原式6318=⨯=,所以D选项不符合题意;故选:C.2.【解答】解:由题意得,210x +,解得0.5x -,3210.50-<-<-<-<,故选项A符合题意.故选:A.3.【解答】解:20230x -,20230x-,20230x∴-=,2023x∴=,1y∴=,202312024x y∴+=+=,故选:C.4.【解答】解:A是最简二次根式,故本选项符合题意;B的被开方数的因数不是整数,不是最简二次根式,故本选项不符合题意;C不符合题意;D不是最简二次根式,故本选项不符合题意;故选:A .5.【解答】解:A ,故A 不符合题意;B =B 不符合题意;C C 不符合题意;D D 符合题意;故选:D .6.【解答】解:A 、原式=,故A 不符合题意.B 、原式=B 不符合题意.C 、C 符合题意.D 、原式||a =,故D 不符合题意.故选:C .7.【解答】解:根据题意得:100x ≠⎪⎩, 解得0x .故选:B .8.【解答】解:AB 不是最简二次根式,故此选项不合题意;C D不是最简二次根式,故此选项不合题意; 故选:A .9.【解答】=式,故A 选项不符合题意;是最简二次根式,故B 选项符合题意;=C 选项不符合题意;,被开方数含能开得尽方的因式,不是最简二次根式,故D 选项不符合题意;故选:B .10.【解答】解:A A 不符合题意;B 、=B 不符合题意;C C 不符合题意;D D 符合题意;故选:D .11.【解答】解:A 3=,故此选项不合题意;B 2=,故此选项符合题意;C =,故此选项不合题意;D .2(20-=,故此选项不合题意; 故选:B .12.【解答】解:ABC ∆的面积为212cm ,底边为,∴底边上的高为:122)cm ⨯÷=. 故选:B .13.【解答】解:A 故本选项不符合题意;B 的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;C 的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;D 是最简二次根式,故本选项符合题意; 故选:D .14.【解答】解:由题意可得:1AB CA ==,则C点坐标为:11)2x=-=-故22x==.故选:D.15.【解答】解:y=,∴20 20xx-=⎧⎨-=⎩,20x∴-=,解得2x=,y∴=20202021()()x y x y∴+-20202020()()()x y x y x y=+--2020[()()]()x y x y x y=+--222020()()x y x y=--20201(2=⨯2=+故选:B.16.【解答】解:A|2|2=-=,故本选项不符合题意;B.24312=⨯=,故本选项不符合题意;CD.4(2=⨯=,故本选项符合题意;故选:D.17.【解答】解:A=B.=C=D 故选:A .18.【解答】解:A .2不是同类二次根式,故本选项不合题意;B =C =,与不是同类二次根式,故本选项不合题意;D = 故选:B .19.【解答】解:2=不是最简二次根式,=C 是最简二次根式;(0)D a >,因此不是最简二次根式; 故选:C .20.【解答】解:实数a 、b 在轴上的位置可知,0a b <<,且||||a b >, 0a b ∴-<,∴原式a b a =-+-2b a =-,故选:B .21.【解答】解:30b -=,即|3|3b b -=-,30b ∴-, 即3b ,故选:D .22.【解答】解:A =A 不符合题意;B 、B 符合题意;C =C 不符合题意;D=D不符合题意;故选:B.23.【解答】解:由题意得:10x-,解得:1x,故选:B.24.【解答】解:由题意得:20x-且30x-≠,解得:2x且3x≠,故选:D.25.【解答】解:A.原式=A选项不符合题意;B.3B选项不符合题意;C.原式C选项不符合题意;D.原式=,所以D选项符合题意.故选:D.26.【解答】解:A.3不能合并,所以A选项不符合题意;B B选项不符合题意;=,所以C选项不符合题意;C.原式3D.原式1=,所以D选项符合题意.5故选:D.27.【解答】解:原式===.故选:A.28.【解答】解:A不能合并,故此选项不符合题意;B、∴C、=,∴不是同类二次根式,不能合并,故此选项不符合题意;D、==,∴故选:B.29.【解答】解:|a=不是最简二次根式;C故选:D.30.【解答】解:由题意得,30a+,解得3a-,故选:C.31.【解答】解:A、原式=,故A不符合题意.B、原式3=,故B符合题意.2=,故C不符合题意.C、原式5D、原式1=,故D不符合题意.故选:B.32.【解答】解:A A不符合题意;B=B符合题意;C5,故C不符合题意;D D不符合题意;故选:B.,故选项A正确,符合题意;33.【解答】212=,故选项B错误,不符合题意;C错误,不符合题意;2,故选项D错误,不符合题意;故选:A.34.【解答】解:根据题意得:0∴+<,b c<<<,0c b a||+=---,b c b c a故选:C.35.【解答】==,故选项A错误,不符合题意;==C错误,不符合题意;不能合并,故选项D错误,不符合题意;故选:B.36.【解答】解:10->,a∴<,a∴二次根式0<,∴二次根式化简为故选:A.二.填空题37.【解答】解:最简二次根式∴+=,x25解得:3x=,故答案为:3.38.【解答】解:=,22∴,220∴-=,0∴=,0≠,∴0=,∴25a b ∴=,∴ 5035255b b b b b b++=-+ 5829b b =2=.39.【解答】解:原式11)=-2=,故答案为:2.40.【解答】解:原式2021=⨯⨯2021(1)=-⨯1=-⨯=, 故答案为:41.【解答】0)x y z =>>>,两边平方得:13x y z ++++ 比较系数得:13x y z ++=①,5xy =②,7xz =③,35yz =④,由②得:5x y =,代入③得:57z y=, 即:75y z =, 代入④得:225y =,5y ∴=,1x ∴=,7z =,∴原式.42.【解答】解:由题意得:230x -且20x -≠, 解得:32x 且2x ≠, 故答案为:32x且2x ≠. 43.【解答】解:根据题意,得310130x x -⎧⎨-⎩, 解得13x =,所以3y =,所以1313xy =⨯=.故答案为:1.44.【解答】解:(1t xy t ==,42x y t +==+,2206220220()2222022x xy y x y xy ∴++=++=,20(42)2222022t ∴++=,解得:2t =或3t =-(舍去)2t ∴=.故答案为:2.45.【解答】解:x ,y 满足6y =, ∴30620x x -⎧⎨-⎩, 解得3x =,6y ∴=,18x y ∴⋅=,x y ∴⋅的平方根为=±.故答案为:±46.【解答】解:=,=⑤23=∴②⑤. 故答案为:②⑤.47.【解答】解:|4|0b -=,即|3||4|0a b -+-=,3a ∴=,4b =, ∴该直角三角形的斜边长的平方22223425a b =+=+=, 故答案为:25.48.【解答】解:2022x ==654322x x x x ∴--+-+5432(2x x x x x =--+-+-54322x x x x =-+-+54322x x x x =-+-+-432[1]2x x x x =-+-+-4321]2x x x =-+-+432(202220211)2x x x =--+-+-322x x =-+2(2x x x =-+-22x x =+22x x =+[2]x x =+-2]x =+(202120222)x =-+x ==49.【解答】解:当1x =时,原式3=, 故答案为:3.50.【解答】解:38a b +=,8b +=,0a b ∴-+,0∴-=, a b ≠,∴≠∴3=,16a b ++=,7a b ∴+=,27∴-=,∴21=,∴原式32124=+=.故答案为:21.三.解答题51.【解答】解:(1)原式1=1=+(2)原式=+23=+5=.52.【解答】===当5x=,15y=时,原式===.53.【解答】=4=4=.54.【解答】解:(1)原式=÷==;2(2)原式=---+51911=.755.【解答】解:原式===56.【解答】解:原式==.57.【解答】解:(1==+-4=;4(2)747a2=⨯+a a747=147=20。
中考重点二次根式方程的解法
中考重点二次根式方程的解法一、引言在中考数学考试中,根式方程是一个重点考察的内容。
其中,二次根式方程常常是学生们较为容易忽视或者容易出错的部分。
因此,掌握二次根式方程的解法对于提高解题能力和应对中考考试非常重要。
本文将介绍几种常见的解二次根式方程的方法,希望能帮助广大学生顺利解决这类题目。
二、完全平方式解法完全平方式是解二次根式方程常用的一种解法。
当我们遇到二次根式方程时,首先要判断是否可以进行完全平方式的转化。
具体步骤如下:1. 将二次根式的根式部分的系数提取出来,令其为 $a$。
2. 将二次根式方程左右两边进行平方操作,消去根号。
3. 得到一个二次方程,化简并移项,变成 $ax^2 + bx + c = 0$ 的形式。
4. 利用一元二次方程的解根公式求解。
例题:解方程 $\sqrt{2x-3} + \sqrt{x+1} = \sqrt{3x-2}$解法:1. 提取根式部分系数,得到 $a = \sqrt{2}$。
2. 平方消去根号,得到方程 $(2x-3) + 2\sqrt{(2x-3)(x+1)} + (x+1) =3x-2$。
3. 化简并移项,得到方程 $2\sqrt{(2x-3)(x+1)} = x$。
4. 继续化简,得到方程 $4(2x-3)(x+1) = x^2$。
5. 展开并移项,得到方程 $4x^2 - 6x - 9 = x^2$。
6. 继续移项,得到方程 $3x^2 - 6x - 9 = 0$。
7. 使用一元二次方程解根公式,得到 $x_1 = 3, x_2 = -1$。
8. 检验解,发现两个解都满足原方程,因此得出结论。
三、区间取值法解法在解二次根式方程时,有些情况下无法直接使用完全平方式转化。
此时,可以考虑使用区间取值法进行求解。
具体步骤如下:1. 对于含有根号的二次根式方程,将根式部分的取值范围找出。
2. 针对不同的取值范围,进行分段并分类讨论。
3. 将二次根式方程转化成二次方程,求解得到每个取值范围内的解。
中考数学复习《二次根式》专项练习题-附带答案
中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。
中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件
1
10,则a- 的值为
±
.
6. (2022·
南通海门模拟)如图,四边形ABCD和CEFG是两个相邻的正
方形,其中B,C,E三点在同一条直线上,点D在CG上,它们的面积分
7
别为27平方米和48平方米,则BE的长为
1
2
3
4
5
6
7
米.
8
7. 计算:
(1) 48÷ 3+
1
×
2
解:原式= ÷ +
典例7 (2023·
南通二模)如图,从一个大正方形中恰好可以裁去面积为
2cm2和8cm2的两个小正方形,余下两个全等的矩形(图中涂色部分),
则大正方形的边长为
3
cm.
典例8 (2023·
海安模拟)先化简,再求值:
4+4
+
+2
÷ 2 ,其中m
= 2-2.
++ + (+)
C )
1
的结果是(
3
4. (2022·
青岛)计算( 27- 12)×
A.
3
3
C. 5
B. 1
B )
D. 3
5. 已知2,5,m是某三角形三边的长,则 ( − 3)2 + ( − 7)2 的
值为(
D )
A. 2m-10
B. 10-2m
C. 10
D. 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
6. (2022·
呼伦贝尔)实数a在数轴上的对应点的位置如图所示,则化简
中考数学复习指导:解答二次根式问题的几点注意
解答二次根式问题的几点注意二次根式的运算可以说是二次根式乘法、除法及加减法运算法则的综合运用,也是本章内容的落脚点,是前面几节内容的总结,在进行二次根式的运算时,请同学们还要注意以下几点:一、注意运算顺序问题二次根式的运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号里面的.例1.计算:.解:原式==.说明:计算时注意运算顺序,另外,除法没有分配律,若做成就错了.二、注意运算法则问题在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式可以看作“多项式”,因此实数运算中的运算律(分配律、结合律、交换律),所有的乘法公式(平方差公式、完全平方公式、立方和、立方差公式等)在二次根式的运算中仍然适用.例2.计算:(+―)(――).解:原式=〔(―)+〕〔(―)―〕=(―)―()=8―2―3=5―2.三、注意熟练进行二次根式计算和化简在理解二次根式基本概念基础上,掌握好二次根式的重要性质多做一些练习,就能达到熟练计算和化简二次根式的目的,除此之外还要掌握一些方法技巧. 1.因式分解法 例4.化简:+ 解:原式=+===+2.观察法例5.设等式在实数范围内成立,其中a,x,y实数,则的值为().解:由二次根式定义知:a-y≥0,x-a≥0,a(x-a)≥0,a(y-a)≥0,∴a≥0且a≤0∴a=0∴已知等式可化为,∴x= -y. ∴==.3.凑零法例6.已知=求+的值.解:由==,得,两边平方后整理得,原式=.4.倒数法例7.当时,求代数式的值.解:由,得,∴原式=.5.整体代入法例8.已知,,求代数式的值.解:由已知得,,,,原式=. 6.换元法例9.已知,求的值.解:设>0,则1,由已知得两边平方得,=0,,,b =,,.四、探索与思考:1.(1)判断下列各式是否正确.你认为成立的,请在括号内打“∨”,不成立的打“×”.①()②()③()④()(2)你判断完以上各题之后,请猜测你发现的规律,用含n的式子将其规律表示出来,并注明n的取值范围:.(3)请用数学知识说明你所写式子的正确性.2.如图1,所示的集合中有5个实数,请计算其中的有理数的和与无理数的积的差.3.细心观察如图2,认真分析各式,然后解答问题.S =;S =;S =……(1)请用含有n(n 为正整数)的等式表示上述变化规律;AAA AAAS1SSS3,,,-2,图1(2)推算出OA的长.(3)求出的值.4.先将化简,然后自选一个合适的x值,代入化简后的式子求值.答案与提示:1.答案为①∨②∨③∨④×.(2)、(3)略。
新人教初中数学中考复习数的开方与二次根式【精品】
知 识
1.判断正误:
[答案] (1)× (2)× (3)× (4)×
巩
固
(1)36 的平方根是 6; ( )
(5)× (6)×
高 频
(2)±9 的平方根是±3; ( )
考
向 (3) 4=±2; ( )
探
究
(4)0.01 是 0.1 的平方根; ( )
[解析](1)36 的平方根是±6,故错误; (2)-9 没有平方根,故错误; (3) 4=2,故错误; (4)0.1 是 0.01 的算术平方根,故错误;
(1)
1 ������
=
������
������ ·
������
=
������ ������
;
(2)
1 ������ -
������ =(
������ -
������+ ������ ������)( ������+
������
=
)
������ + ������-������
������ .
基 础
固
A.x≥4
高
B.x>4
4-x>0,解得 x<4,故选 D.
频
C.x≤4
D.x<4
考
向
探
究
基 础
考向三 二次根式的化简与计算
知 识
9.[2019·常德]下列运算正确的是 ( D )
巩
固
A. 3 + 4= 7
B. 12=3 2
高 频
C. (-2)2=-2
考
向
探
究
D.
164 =
21 3
基 础
中考数学专题特训第六讲:二次根式(含详细参考答案)
中考数学专题复习第六讲:二次根式【基础知识回顾】 一、二次根式式子a ( )叫做二次根式【赵老师提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式】二、二次根式的性质:①(a )2= (a ≥0)= (a ≥0 ,b ≥0)(a ≥0, b ≥0)【赵老师提醒:二次根式的性质注意其逆用:如比较23和的大小,可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小】 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算【赵老师提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 】 【重点考点例析】考点一:二次根式有意义的条件(a ≥o )(a <o )例1 (2012•潍坊)如果代数式43x -有意义,则x 的取值范围是( ) A .x ≠3 B .x <3 C .x >3 D .x ≥3思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练1.(2012•德阳)使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12 C .x≥0且x≠12D .一切实数 1.C1.解:由题意得:2x-1≠0,x≥0, 解得:x≥0,且x≠12, 故选:C .考点二:二次根式的性质例2 (2012•张家界)实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b . 故选C .点评:本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练为 . 1.-b2.解:∵由数轴可知:b <0<a ,|b|>|a|,=|a+b|+a =-a-b+a =-b ,故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3. 点评:此题主要考查了二次根式的混合运算以及负整数指数幂的性质,熟练利用这些性质将各式进行化简是解题关键. 对应训练4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0,(1)1)4x x x +=本题考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .804.D分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可.=80, 故选D .点评:本题考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算,本题主要考查学生的思维能力和应变能力,题目比较好,是一道具有代表性的题目.【聚焦山东中考】1.(2012•泰安)下列运算正确的是( )A 5=-B .21()164--=C .x 6÷x 3=x 2 D .(x 3)2=x 5 1.B .2.(2012•临沂)计算:= . 2.03.7【备考真题过关】一、选择题A .x >0B .x≥-2C .x≥2D .x≤2 1.DA B .5 C .2 D .22.AA .3BC .D .3.C .A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 4.A即5<m <6, 故选A .5.(2012•南充)下列计算正确的是( )A .x 3+x 3=x 6B .m 2•m 3=m 6C .3=D = 5.D6.(2012•黔东南州)下列等式一定成立的是( )A .945-=B .5315⨯=C .93=±D .2(9)9--=6.B7.(2012•广西)使式子有意义的x 的取值范围是( )A . x ≥﹣1B . ﹣1≤x ≤2C . x ≤2D .﹣1<x <2 考点: 二次根式有意义的条件。
人教版初中数学八年级下册《数的开方与二次根式》
回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
考点聚焦 考点1 平方根、算术平方根与立方根 平方
平方
立方
回归教材
考点聚焦
考向探究
第4课时┃ 数的开方与二次根式
考点聚焦
考点1 平方根、算术平方根与立方根
名称
性质
算术平方根
只有_非___负__数__才有算术平方根,而 且算术平方根都是_非__负___数__.
二次根式 1. a • b= ab(a___≥__0___,b__≥__0____);
的乘除
2.
b= a
ba(a___>__0___,b___≥__0___).
二次根式 如:要估算 7在哪两个相邻的整数之间,先对 7进 的估算 行平方,因为 4<7<9,所以 2< 7<3.
回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
乘以分母的有理化因式,达到化去分母中根号的目的,如:1+1
= 2
(
12×+(1)(2-12)-1)=
2-1,
1 3+
2=(
1×( 3- 3+ 2)(
3-
2)=
3
- 2.
回归教材
考点聚焦
考向探究
第4课时┃数的开方与二次根式
考 向 探 究4
二次根式的大小比较
命题角度
1.比较二次根式与有理数的大小、比较两个二次根式的大小;
A B CD
2.二次根式
(1)二次根式、最简二次根式的概念
√
(2)用有理数估计二次根式值的大致范围
√
(3)用二次根式(根号下仅限于数)的加、减、乘、除运
算法则进行简单四则运算
中考数学总复习 第05讲 二次根式及其运算课件(考点精
考点2 二次根式的运算
【例2】 (1)(2012·黔东南州)下列等式一定成 立的是( B )
A. 9 4 5
B. 5 3 15
C. 9 3
D. 92 9
考点2 二次根式的运算
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(3)(2012·南通) 计算: 48÷ 3- 21× 12+ 24 解 原式= 16- 6+2 6=4+ 6.
求值问题“五招”
(1)巧用乘法公式;(2)巧用平方;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
1.(2013·嘉兴)二次根式中 x 3 ,x的取值范围是 x≥3
2.(2011·杭州)下列各式中,正确的是( B )
A. 32 3
B. 32 3
C. 32 3
D. 32 3
3.(2012·金华)一个正方形的面积为15,估计它的边
(2)若几个非负数的和为零,则每一个非负数都等于零;
两个防范
(1)求 a2时,一定要注意确定 a 的大小,应注意利用等式 a2=|a|,当问题中已知条件不能直接判定 a 的大小时就要分 类讨论;
(2)一般情况下,我们解题时,总会习惯地把重点放在探 求思路和计算结果上,而忽视了一些不太重要、不直接影响求 解过程的附加条件.要特别注意,问题中的条件没有主次之分, 都必须认真对待.
请完成考点跟踪突破
(3)(2012·安顺)计算 12 3 3 3 .
考点3 二次根式混合运算
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.
2023年中考数学总复习第一章《数与式》第二节 二次根式
2023年中考数学总复习第一章《数与式》第二节二次根式一、选择题1.[2020·邯郸丛台区二模]下列二次根式中,是最简二次根式的是()A.B.C.D.2.[2020·上海]下列二次根式中,与是同类二次根式的是()A.B.C.D.3.[2020·衡水模拟]下列计算正确的是()A.B.C.D.4.[2020·宜昌]对于无理数,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是()A.B.C.D.5.[2020·石家庄模拟]如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与BC.A与C D.B与C(第5题图)6.[2020·原创]下列运算正确的是()A. B.C. D.7.[2020·聊城]计算的结果正确的是()A.1B.C.5D.98.[人八下课本P11,T12高仿]如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78cm2B.cm2C.cm2D.cm2(第8题图)9.[易错][2020·秦皇岛模拟]按如图所示的运算程序,若输入数字“9”,则输出的结果是()A.7B.C.1D.(第9题图)二、填空题10.[2020·扬州]代数式在实数范围内有意义,则实数x的取值范围是_______.11.[2020·保定模拟]若2□=6,则“□”内的运算符号为_______.12.[2020·河北模拟]计算×-的结果是_______.13.[2020·保定定兴县一模]==_______.14.[2020·哈尔滨]计算的结果是______.15.[2020·常德]计算:=_______.16.[2020·山西]计算:=_______.三、解答题17.[2019·石家庄新华区模拟]计算:.18.[创新][2020·遵化二模]利用平方差公式可以进行简便计算:例1:99×101=(100-1)(100+1)=1002-12=10000-1=9999;例2:39×410=39×41×10=(40-1)(40+1)×10=(402-12)×10=(1600-1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)。
人教版初中数学中考复习 一轮复习-数的开方与二次根式
伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为( )
A. 5
B.4
C.2 5
D.5
知识点四、二次根式-二次根式的运算
解:p a b c a b 4 5
2
2
所以a b 6, a 6 b
s pp ap bp c 55 a5 b5 4
55 (6 b)5 b1 5 b 15 b
3 的结果是______.
3 12
解: 3 1 1 1 3 12 1 4 1 2 3
5. 化简: 1 1 49
解: 1 1 9 4 13 13 4 9 36 36 36 6
知识点三、二次根式-二次根式的性质
D 1.[2019·济宁]下列计算正确的是 ( )
A. 3 2 3
解:原式 9 — 1 8 22
9 2 — 1 2 2 2 22 22
3 2 — 2 2 2 22
3 — 1 2 2 2 2
3 2
知识点四、二次根式-二次根式的运算
2、(2021. 铜仁)计算( 27 — 18)( 3 — 2)
解:原式 (3 3 - 3 2)( 3 - 2) 9-3 6 -3 6 6 15- 6 6
一轮复习
数的开方与二次根式
课标要求
1. 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方 根 、 .立方根。 2. 了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求
百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根. 3. 能用有理数估计一个无理数的大致范围. 4. 了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、
5 4 b3 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A、原点左侧 B、原点右侧 C、原点或原点左侧
D、原点或原点右侧
4、已知 xy < 0, 则 x y 化简 后为 ( ) A、 x y C、 x y B、 x y
2
x y D、
5、已知:当a取某一范围内的 2 2 实数时,代数式 (2 a) (a 3) 的值是一个常数(确定值),则 这个常数是( ) A、-1 C、 1 B 、0 D 、5
第五讲 二次根式
1、下列二次根式中,属于最简 二次根式的是( ) A、 4a
a C、 4
B、
a 4
4
D、 a
2、能使等式
A、 x ≠ 2 C、 x > 2
x x2
x 成 x2
立的x的取值范围是(
)
B、 x ≥ 0 D、 x ≥ 2
3、若 a a,则实数a在数 轴上的对应点一定在( )
6、求下列各式有意义的 x 的值(1)来自3x 2(2)
x 3 2 3x
2 3 x (3) x2
(4) x 2 2 x 3
7、(1)若 a 3, b 2, 且ab 0,
则 a – b =_________.
(2)两个不相等的无理数,它们 的乘积为有理数,则这两个数 可以是________。
8、(1) (2 5 ) 2 =_______;
(2)在实数范围内分解因式:
4 x –
25 = ________;
1 (3)化简:a a
9、已知:实数a、b在数轴上对 应的点的位置如图所示,化简
b (b a )
b
2
=_________. x
o
a
10、已知:x ≤1 ,化简:
2 2
1 2 2 x x 1 x 4 x 4 =______。 4
1 13、已知:a 2 3
1 2a a a 2a 1 求: 2 a 1 a a
2 2
的值。
; / 鹿血片
duh27exc
间,宝音便已是苏明远。着品月底绣枝梅纹缎绵袍,外罩银羽斗篷,一般的长身玉立、风度翩翩,立在堂口焦急相望,听喧哗说“来了来 了”,好些人殷勤引来一匹马,马上端坐的正是蝶宵华。他会骑马,蓄的马必是名种,这一匹,叫“菊花青”,青色毛片上点点的白花旋, 胸阔眼大,举步平稳,仪容俊美,蝶宵华着件乌黑斗篷,掩了他全身,长长拖到蹬下,只露出他一张绝色的脸,只有双手拢来那么大,苍白 疲倦。一群人,有的接缰、有的抱蹬,一团火的把蝶宵华接了下来,蝶宵华自己解下斗篷,露出里头雪衣冰袂。他将斗篷丢给旁边的一人, 那人一脸受宠若惊的表情抱住了。蝶宵华看也不看他,举步往内,宝音的苏明远却拦在了面前。第三十一章 梦惊戏台见神仙(4)苏明远身 份高,掌堂的不敢说什么,但脸上也实在急了。幸而宝音也不多说,只低低对蝶宵华道:“外头传芙蓉花主。”蝶宵华即刻回答:“我同她 无怨无仇。”真的,他有什么理由替韩毓笙招麻烦?宝音只好让开,想再问问他,他被什么不得了的人拘了去,害得现在才来,但看着蝶宵 华神色,又觉得:问又如何?只能默然让开道。苏明远在蝶宵华面前,也是如此吗?满腔的话,一句也说不出。明明被他的丽色所慑,却一 个手也抬不起来碰他。蝶宵华从她身边擦过,轻声道:“再说,我知道厉害。”宝音纵有再多怀疑,于这一句话中冰消瓦解,他话中的真诚 与委屈,叫她不能不相信,忍不住心头一暖、又一酸。舞台上,锣声铿锵,宝音醒来,身仍在福家堂会中,戏台上挑帘幕是《珠帘寨》的 “求情发兵”一折,二皇娘当家话事、大摆威风。她恍恍惚惚,不觉是梦是醒,探袖,已空。貘奴已然不在了。宝音惊觉,召乐韵来,嘱咐 了两句话。蝶宵华还没来,掌堂的在外头风口上望穿秋水,猛见第一个腿快的孩子,奔来到:“来了来了!”后头一群人拥来一匹马,菊花 青,马上坐着乌黑斗篷的蝶宵华,绝色的脸只有双手拢来那么大,苍白疲倦。——却与宝音所梦一式一样!苏明远在堂口等着,原来是遍寻 不见蝶宵华,忖及这场堂会,就来这里等,也是刚到,见蝶宵华来,便要上前,旁边却听一声:“大少爷。”苏明远住了足,看时,却是乐 韵。他知一等丫头,不是想出门就能随便出门的,她在这里,莫非韩毓笙也在这里?苏明远要问蝶宵华,正是为着韩毓笙!乐韵这丫头拦住 则甚?“姑娘道,”乐韵悄声转述,“大少爷莫因热心,误寒了别人的心。”蝶宵华将步入角门,驻足,回身,望着苏明远。舞台上,锣声 铿锵,二皇娘终于同意发兵。这一场快完了。苏明远不语,蝶宵华也不语,这两人竟好像立成了木桩子。苏明远身份高,掌堂的不敢说什么, 脸上也实在急了。幸而苏明远开口,只客客气气来了一句:“蝶老板满
1 2x x x 4x 4 _______。
2 1 18 4 11、计算:(1) 2 1 2
(2) a 3 9a
a
a 2 3
1 1 6 2 3 ( 2 ) (3) 3 32 12
12、已知一个三角形的三条边 长分别是1, 1,x ,化简: