2019年高考一轮热点难点名师精讲与专题16:恒成立问题你会多少

合集下载

新高考数学一轮复习知识点解析21--- 恒成立和存在性问题

新高考数学一轮复习知识点解析21--- 恒成立和存在性问题

新高考数学一轮复习知识点解析1.积累常用的不等式,熟练运用导数解决不等式恒成立问题、存在性问题. 2.熟练使用分离参数、分类讨论等方法解决参数范围问题. 3.能够大致描绘函数图象,能借助图象理解题意和解题.【例1】已知函数()ln xf x ax x=-,a ∈R . (1)若()()2g x x f x '=,其中()f x '是函数()f x 的导函数,试讨论()g x 的单调性; (2)证明:当12a e≥时,()0f x ≥. 【答案】(1)当0a ≥时,()g x 在()0,∞+上单调递增;当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,∞+,()221ln 1ln x xx x f x a a x x⋅--'=-=-,恒成立和存在性问题()2221ln ln 1x a a x x g x x x -⎛⎫-=+- ⎪⎝⎭=,()21212ax g x ax x x+'=+=, 当0a ≥时,()0g x '≥恒成立,此时()g x 在()0,∞+上单调递增; 当0a <时,()0g x '>,即2210ax +>可得212x a-<,所以0x <<,由()0g x '<,即2210ax +<可得212x a->,所以x >所以当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减, 综上所述:当0a ≥时,()g x 在()0,∞+上单调递增;当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减. (2)当12a e≥时,()1ln 2xf x x e x ≥-, 设()1ln 2x h x x e x =-,则()222211ln ln 1111ln 222x x x x x x eh x e x e x x ⋅-+--'=-=-=, 令()21ln 12t x x x e =+-,则()110t x x e x '=+>, 所以()21ln 12t x x x e=+-在()0,∞+上单调递增,且1102t e e =⨯+=,所以0x <<时,()0t x <,即()0h x '<,此时()h x 单调递减;当x >()0t x >,即()0h x '>,此时()h x 单调递增, 所以()1ln 2x h x x e x=-在(上单调递减,在)+∞单调递增,所以()min 102h x h e ====, 所以()1ln 02xh x x e x=-≥对于()0,x ∈+∞恒成立, 所以()0f x ≥.【变式1.1】已知函数()2ln f x ax x =-. (1)讨论()f x 的单调性; (2)证明:当12a >时,()3f x >恒成立. 【答案】(1)0a ≤时,()f x 在()0,∞+为单调减函数;0a >时,()f x 在1(0,)2a为单调减函数,在1(,)2a+∞为单调增函数;(2)证明见解析. 【解析】(1)121()2ax f x a x x-'=-=,其中0x >; 当0a ≤时,()0f x '<,()f x 在()0,∞+为单调减函数; 当0a >时,1(0,)2x a ∈,()0f x '<,()f x 为单调减函数;1(,)2x a∈+∞,()0f x '>,()f x 为单调增函数,综上,0a ≤时,()f x 在()0,∞+为单调减函数;0a >时,()f x 在1(0,)2a 为单调减函数,在1(,)2a+∞为单调增函数.(2)证明:因为12a >2=≥当且仅当2=12x a=时,取等号.由(1)知min 1()()1ln 22f x f a a==+,所以()ln 21f x a +≥+,令1()ln 21()2g x x x =+>,则()g x 为增函数,所以1()()32g x g >=,即12a >时,()3f x >恒成立. 【例2】已知函数()xe f x x=.(1)求曲线()y f x =在2x =处的切线方程;(2)设()()ln 2G x xf x x x =--,证明:()3ln 22G x >--.【答案】(1)24e y x =;(2)证明见解析.【解析】(1)2()x x e x e f x x -'=,22222(2)24e e e f -'==且2(2)2e f =,所以切线方程22(2)24e e y x -=-,即24e y x =.(2)由()()ln 2(0)G x xf x x x x =-->,1()2x G x e x '=--,21()0xG x e x''=+>,所以 ()G x '在(0,)+∞为增函数,又因为(1)30G e '=-<,25(2)02G e ''=->, 所以存在唯一0(1,2)x ∈,使()000120x G x e x '=--=, 即012x e x =+且当()00,x x ∈时,()0G x '<,()G x 为减函数, ()0,x x ∈+∞时,()0G x '>,()G x 为增函数,所以()0min 0000001()ln 22ln 2x G x G x e x x x x x ==--=+--,0(1,2)x ∈, 记1()2ln 2H x x x x =+--,(12)x <<, 211()20H x x x'=---<,所以()H x 在(1,2)上为减函数,所以13()(2)2ln 24ln 222H x H >=+--=--,所以()03()ln 22G x G x ≥>--. 【变式2.1】已知函数()()322361f x x ax a x =++-(a ∈R ).(1)讨论函数()f x 的单调性;(2)若()15f =,4m <,求证:当1x >时,()()2ln 1mx x f x +≤.【答案】(1)见解析;(2)证明见解析. 【解析】(1)函数()f x 的定义域为(),-∞+∞,且()()()()26661611f x x ax a x x a '=++-=++-⎡⎤⎣⎦.①若2a =,则()0f x '≥,因而()f x 在(),-∞+∞上单调递增;②若2a <,则当(),1x ∈-∞-及()1,x a ∈-+∞时,()0f x '>,()f x 单调递增, 当()1,1x a ∈--时,()0f x '<,()f x 单调递减;③若2a >,则当(),1x a ∈-∞-及()1,x ∈-+∞时,()0f x '>,()f x 单调递增, 当()1,1x a ∈--时,()0f x '<,()f x 单调递减, 综上,当2a =时,()f x 在(),-∞+∞上单调递增;当2a <时,()f x 在(),1-∞-,()1,a -+∞上单调递增;在()1,1a --上单调递减; 当2a >时,()f x 在(),1-∞-a ,()1,-+∞上单调递增,在()1,1a --上单调递减. (2)由题意知()()123615f a a =++-=,∴1a =,故()3223f x x x +=.欲证当1x >时,()()2ln 1mx x f x +≤,∵当1x >时,21x >,ln 11x +>. ∴只需证:()()2ln 1f x m x x ≤+,即23ln 1x m x +≤+在()1,+∞上恒成立,设()()()123,ln 1x h x x x +=∈++∞,则()()()()()22132ln 1232ln ln 1ln 1x x x x x h x x x +-+⨯-'==++.设()32ln x x x ϕ=-,则()223x x xϕ'=+,故当()1,x ∈+∞时,()0x ϕ'>,()x ϕ单调递增. 又()3ln16322ln 2022ϕ-=-=<,()320e eϕ=->,∴()0h x '=有且只有一个根0x ,且02x e <<,0032ln x x =. ∴在()01,x 上,()0h x '<,()h x 单调递减;在()0,x +∞上,()0h x '>,()h x 单调递增, ∴函数()h x 的最小值()0000002323243ln 112x x h x x x x ++===>++. 又∵4m <,∴23ln 1x m x +≤+在()1,+∞上恒成立, 故()()2ln 1mx x f x +≤成立.利用导数证明不等式恒成立的两种情形(1)若函数最值可以通过研究导数求得,则可先利用导数研究函数单调性,将不等式恒成立问题转化成函数最值问题来解决:()()min f x a f x a >⇒>;()()max f x a f x a <⇒<.(2)若函数最值无法通过研究导数求得,即导函数的零点无法精确求出时,可以利用“虚设和代换”的方法求解.“虚设和代换”法当导函数()f x '的零点无法求出显性的表达式时,我们可以先证明零点存在,再虚设为0x ,接下来通常有两个方向:(1)由()0f x '=得到一个关于0x 的方程,再将这个关于0x 的方程的整体或局部代入()0f x ,从而求得()0f x ,然后解决相关问题.(2)根据导函数()f x '的单调性,得出0x两侧导函数的正负,进而得出原函数的单调性和极值,使问题得解.【例3】已知函数()()ln 1f x x =+,()()g x kx k =∈R . (1)证明:当0x >时,()f x x <;(2)证明:当1k <时,存在00x >,使得任意()00,x x ∈,恒有()()f x g x >;(3)确定k 的所有可能取值,使得存在0t >,对任意的()0,x t ∈,恒有()()2f xg x x -<.【答案】(1)证明见解析;(2)证明见解析;(3)1k =. 【解析】(1)证明:令()()()[)ln 1,0,F x f x x x x x =-=+-∈+∞, 所以()1111xF x x x-'=-=++. 当[)0,x ∈+∞时,()0F x '<,所以()F x 在()0,+∞上单调递减. 又因为()00F =,所以当0x >时,()0F x <,即()0f x x -<, 所以()f x x <.(2)证明:令()()()()ln 1G x f x g x x kx =-=+-,[)0,x ∈+∞,()()1111kx k G x k x x-+-'=-=++. 当0k ≤时,()0G x '>,所以()G x 在()0,+∞上单调递增, 所以()()00G x G >=,即()()f x g x >, 故对任意的正实数0x 均满足题意. 当01k <<时,令()0G x '=,得1110k x k k-==->, 取011x k=-,对任意()00,x x ∈,恒有()0G x '>, 所以()G x 在()00,x 上单调递增,()()00G x G >=,即()()f x g x >.综上,当1k <,总存在00x >,使得对任意()00,x x ∈,恒有()()f x g x >. (3)当1k >时,由(1)知,对于任意()0,x ∈+∞,()()g x x f x >>, 故()()g x f x >.此时()()()()()ln 1f x g x g x f x kx x -=-=-+.令()()[)2ln 1,0,M x kx x x x =-+-∈+∞,则有()()22211211x k x k M x k x x x-+-+-'=--=++. 令()0M x '=,得()22210x k x k -+-+-=,x =(另一根为负,舍去),故当x ⎛ ∈ ⎝⎭时,()0M x '>,即()M x 在⎛ ⎝⎭上单调递增, 故()()00M x M >=,即()()2f xg x x ->.所以满足题意的t 不存在.当1k <时,由(2)知,存在00x >,使得对任意的()00,x x ∈,恒有()()f x g x >, 此时()()()()()ln 1f x g x f x g x x kx -=-=+-.令()()[)2ln 1,0,N x x kx x x =+--∈+∞,则有()()22211211x k x k N x k x x x--+-+'=--=++. 令()0N x '=,即()22210x k x k --+-+=,得x =(另一根为负,舍去),故当x ⎛ ∈ ⎝⎭时,()0N x '>,即()N x 在⎛ ⎝⎭上单调递增, 故()()00N x N >=,即()()2f xg x x -=.记0x 中较小的为1x ,则当()10,x x ∈时,恒有()()2f xg x x ->,故满足题意的t 不存在.当1k =时,由(1)知,当()0,x ∈+∞时,()()()()()ln 1f x g x g x f x x x -=-=-+.令()()[)2ln 1,0,H x x x x x =-+-∈+∞,则有()2121211x xH x x x x--'=--=++. 当0x >时,()0H x '<,即()H x 在()0+∞,上单调递减, 故()()00H x H <=.故当0x >时,恒有()()2f xg x x -<,此时任意正实数t 满足题意,综上,k 的取值为1.【变式3.1】已知函数()xf x e x =-. (1)求函数()xf x e x =-的极值;(2)求证:对任意给定的正数a ,总存在正数x ,使得不等式11x e a x--<成立. 【答案】(1)()1f x =极小值,无极大值;(2)证明见解析.【解析】(1)因为()x f x e x =-,所以()1x f x e '=-,令()0f x '=,则0x =,当0x >时,()0f x '>,即()f x 在()0,∞+上单调递增; 当0x <时,()0f x '<,即()f x 在(),0-∞上单调递减,所以0x =时,()f x 取得极小值,()()01f x f ==极小值,无极大值.(2)由(1)知当0x >时,110x e x -->,要证11x e a x --<,即11x e a x--<,即证当0a >时,不等式1x e x ax -<-,即10x e ax x ---<在(0,)+∞上有解. 令()1x H x e ax x =---,即证min ()0H x <, 由()10x H x e a '=--=,得ln(1)0x a =+>. 当0ln(1)x a <<+时,()0H x '<,()H x 单调递减; 当ln(1)x a >+时,()0H x '>,()H x 单调递增,min ()(ln(1))1ln(1)ln(1)1H x H a a a a a ∴=+=+-+-+-,令()ln 1V x x x x =--,其中11x a =+>,则()1(1ln )ln 0V x x x '=-+=-<,()V x ∴递减,()()10V x V ∴<=, 综上得证.【例4】已知函数()2ln ()f x ax x a =-+∈R .(1)讨论()f x 的单调性;(2)若存在()(),1,x f x a ∈+∞>-,求a 的取值范围.【答案】(1)分类讨论,答案见解析;(2)1,2⎛⎫-∞ ⎪⎝⎭.【解析】(1)函数()f x 的定义域为()0,+∞,()21122ax f x ax x x-='=-+,当0a ≤时,()0f x '>,则()f x 在()0,+∞上递增, 当0a >时,由()0f x '=,得x =由()0f x '>,得x ⎛∈ ⎝;由()0f x '<,得x ⎫∈+∞⎪⎭,于是有()f x 在⎛ ⎝上递增,在⎫+∞⎪⎭上递减.(2)由()f x a >-,得()21ln 0a x x --<,(1,)x ∈+∞, 2ln 0,10x x -<->,当0a ≤时,()21ln 0a x x --<,满足题意;当12a ≥时,令()()21()ln 1g x a x x x =-->,()2210ax x xg '=->,()g x 在()1,+∞上递增,则()()10g x g >=,不合题意; 当12a <<时,由()0g x '>,得x ⎫∈+∞⎪⎭;由()0g x '<,得x ⎛∈ ⎝,于是有()g x 在⎛ ⎝上递减,在⎫+∞⎪⎭上递增,()()min 10g g g x <==, 则102a <<时,()()1,,0x g x ∃∈+∞<,综上,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭.【变式4.1】已知函数()()()21222x f x xe a x x a =-+-∈R .(1)当1a e≤时,讨论函数()f x 的极值;(2)若存在()00,x ∈+∞,使得()()00001ln 222f x x x a ax <+--,求实数a 的取值范围.【答案】(1)答案不唯一,具体见解析;(2)(),1-∞-.【解析】(1)由题意,函数()()21222x f x xe a x x =-+-,可得()()()()()111x xf x e a x x e a x '=+-+=+-.①当0a ≤时,若1x <-,则()0f x '<;若1x >-,则()0f x '>, 所以()f x 在区间(),1-∞-上是减函数,在区间()1,-+∞上是增函数,所以当1x =-时,()f x 取得极小值()1312f e a --=-+,无极大值;②当10a e<<时,若ln x a <或1x >-,则()0f x '>;若ln 1a x <<-,则()0f x '<,()f x 在区间(),ln a -∞上是增函数,在区间()ln ,1a -上是减函数,在区间()1,-+∞上是增函数,所以当ln x a =时,()f x 取得极大值()()21ln ln 2f a a a a =-,当1x =-时,()f x 取得极小值()1312f e a --=-+;③当1a e =时,()0f x '≥,∴()f x 在区间(),-∞+∞上是增函数,∴()f x 既无极大值又无极小值,综上所述,当0a ≤时,()f x 有极小值()1312f e a --=-+,无极大值;当10a e <<时,()f x 有极大值()()21ln ln 2f a a a a =-,极小值()1312f e a --=-+; 当1a e=时,()f x 既无极大值又无极小值.(2)由题知,存在()00,x ∈+∞,使得0000ln 0xx e x x a --+<,设()ln xh x xe x x a =--+,则()()()11111x x h x x e x e x x ⎛⎫'=+--=+- ⎪⎝⎭, 设()()10xm x e x x=->,∴()m x 在区间()0,∞+上是增函数,又1202m ⎛⎫=< ⎪⎝⎭,()110m e =->,∴存在11,12x ⎛⎫∈ ⎪⎝⎭,使得()10m x =,即111x e x =,∴11ln x x =-, 当10x x <<时,()0m x <,即()0h x '<;当1x x >时,()0m x >,即()0h x '>, ∴()h x 在区间()10,x 上是减函数,在区间()1,x +∞上是增函数,∴()()11111111min 11ln 1x h x h x x e x x a x x x a a x ==--+=⨯+-+=+, ∴10a +<,∴1a <-,∴实数a 的取值范围为(),1-∞-.【例5】已知函数()22ln 1f x x x x ax =+-+.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式()02f x ≥-成立,求实数a 的取值范围.【答案】(1)320x y --=;(2)1,23e e ⎛⎤-∞-++⎥⎝⎦. 【解析】(1)当1a =时,()22ln 1f x x x x x =+-+,则()2ln 2212ln 21f x x x x x '=++-=++,所以()13f '=,而()11f =,所以曲线()y f x =在点()()1,1f 处的切线方程为()131y x -=-,即320x y --=.(2)若存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式()02f x ≥-成立,即存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式200002ln 12x x x ax +-+≥-成立,存在01,x e e ⎡⎤∈⎢⎥⎣⎦,不等式00032ln a x x x ≤++成立, 设()32ln h x x x x =++,1,x e e ⎡⎤∈⎢⎥⎣⎦,则()2(3)(1)x x h x x +-'=,当1[,1)x e ∈时,()0h x '<,()h x 在1[,1)e上单调递减;当(]1,x e ∈时,()0h x '>,()h x 在(]1,e上单调递增,又1123h e e e ⎛⎫=-++ ⎪⎝⎭,()32h e e e =++,()12240h e h e e e ⎛⎫-=-++< ⎪⎝⎭, 即()max 1123h x h e e e ⎛⎫==-++ ⎪⎝⎭,故()max 123a h x e e ≤-++=,所以实数a 的取值范围为1,23e e⎛⎤-∞-++ ⎥⎝⎦.【变式5.1】已知e 是自然对数的底数,函数()cos xf x x me =+,[]π,πx ∈-.(1)若曲线()y f x =在点()()0,0f 处的切线斜率为1,求()f x 的最小值;(2)若当[]π,πx ∈-时,()xf x e >有解,求实数m 的取值范围.【答案】(1)π11e -;(2)π41,e ⎛⎫+∞ ⎪ ⎪⎝⎭. 【解析】(1)由()cos x f x x me =+,得()sin xf x x me '=-+.曲线()y f x =在点()()0,0f 处的切线斜率为1,()01f m '∴==,()cos x f x x e ∴=+,()sin x f x x e '=-+.当[)π,0x ∈-时,sin 0x -≥,0x e >,()0f x '∴>, 当[0,π]x ∈时,01x e e ≥=,sin 1x ≤,则()0f x '≥,()f x ∴在[]π,π-上单调递增,()()πmin 1π1f x f e∴=-=-. (2)()cos 1xx x f x e m e >⇔>-,设()cos 1xxg x e =-,[]π,πx ∈-,则当[]π,πx ∈-时,()xf x e >有解()min mg x ⇔>.()cos 1x x g x e=-,()πsin cos 4x xx x x g x e e ⎛⎫+ ⎪+⎝⎭'∴==. 当[]π,πx ∈-时,π3π5π,444x ⎡⎤+∈-⎢⎥⎣⎦,解()0g x '=,可得04πx +=或π4πx +=,解得14πx =-,23π4x =. 当ππ4x -≤<-时,()0g x '<,此时函数()g x 单调递减; 当π3π44x -<<时,()0g x '>,此时函数()g x 单调递增; 当3ππ4x <≤时,()0g x '<,此时函数()g x 单调递减.4π14πg e ⎛⎫-= ⎪⎝⎭,()π1π1g e =+,且()π4πg g ⎛⎫-< ⎪⎝⎭,()nπ4mi 142πg x g e ⎛⎫∴=-=- ⎪⎝⎭,m ∴的取值范围为π41,2e ⎛⎫-+∞ ⎪ ⎪⎝⎭. 【例6】已知函数()2ln f x x x ax a =+-(a ∈R ).(1)当1a =时,求函数()f x 在点()()1,1f 处的切线方程; (2)当1x ≥时,不等式()0f x ≥恒成立,求实数a 的取值范围.【答案】(1)330x y --=;(2)[)0,+∞. 【解析】(1)当1a =时,()2ln 1f x x x x =+-,()ln 21f x x x +'=+.则曲线()f x 在点()()1,1f 处的切线的斜率为()13f '=. 又()10f =,所以切线方程为330x y --=.(2)由函数()()2ln 10f x x x a x =+-≥,等价于ln 0ax ax x+-≥恒成立, 则()ln a g x x ax x =+-,其中1x ≥,()2221a ax x ag x a x x x ++=++=',当0a ≥时,因为1x ≥,所以0g x ,()g x 在[)1,+∞上单调递增,则()()10g x g ≥=,符合题意;当0a <时,令()2t x ax x a =++,214Δa =-,当2140Δa =-≤时,解得12a ≤-,()0g x '≤,()g x 在[)1,+∞上单调递减,则()()10g x g <=,对于任意1x >恒成立,不合题意;当2140Δa =->时,102a -<<,设()2t x ax x a =++的两个零点为12,x x ,设12x x <,12121,1x x x x a+=-=,则1201x x <<<,当[)21,x x ∈,()()0,0t x g x '>>,()g x 单调递增; 当()2,x x ∈+∞时,()0t x <,0g x,()g x 单调递减,又∵当x →+∞时,对数函数ln x 的增长速度远不如aax x-的减小速度, ∴()g x →-∞,所以不合题意,综上所述,实数a 的取值范围是[)0,+∞. 【变式6.1】函数()()ln 1,f x a x a =+∈R .(1)当1a =时,求曲线()y f x =在3x =处的切线方程; (2)若对任意的[)0,x ∈+∞,都有()212f x x x ≥-恒成立,求实数a 的取值范围. 附:()1[ln 1]1x x '+=+. 【答案】(1)48ln230x y -+-=;(2)[)1,+∞.【解析】(1)当1a =时,()ln(1)f x x =+,得出切点(3,ln 4), 因为1()1f x x '=+,所以切线的斜率为()143k f ='=,所以曲线()y f x =在3x =处的切线方程为1ln 4(3)4y x -=-,化简得48ln 230x y -+-=.(2)对任意的[)0,x ∈+∞,都有()212f x x x ≥-恒成立, 即()21ln 102a x x x -+≥+恒成立,令()()()21ln 102h x a x x x x =+-+≥,()()211011a x a h x x x x x +-=-+=+'≥+.①当1a ≥时,()0h x '≥恒成立,∴函数()h x 在[)0,x ∈+∞上单调递增,()()00h x h ∴≥=,1a ∴≥时符合条件.②当1a <时,由()0h x '=,及0x ≥,解得x =.当(x ∈时,()0h x '<;当)x ∞∈+时,()0h x '>,()()min 00h x hh =<=,这与()0h x ≥相矛盾,应舍去.综上可知,1a ≥,所以a 的取值范围为[)1,+∞.【例7】已知函数()1xf x e ax --=.(1)当1a =时,求证:()0f x ≥;(2)当0x ≥时,()2f x x ≥,求实数a 的取值范围.【答案】(1)证明见解析;(2)(,2]e -∞-.【解析】(1)证明:当1a =时,()1x f x e x =--,定义域为R ,则()1x f x e '=-,由()0f x '>,得0x >;由()0f x '<,得0x <, 所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以0x =是()f x 的极小值点,也是()f x 的最小值点,且min ()(0)0f x f ==, 所以()0f x ≥.(2)解:由()2f x x ≥(0x ≥),得21x ax e x ≤--(0x ≥),当0x =时,上述不等式恒成立,当0x >时,21x e x a x--≤,令21()x e x g x x--=(0x >),则222(2)(1)(1)(1)()x x x e x x e x x e x g x x x-------'==, 由(1)可知,当0x >时,10x e x -->,所以由()0g x '<,得01x <<;由()0g x '>,得1x >, 所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以1x =是()g x 的极小值点,也是()g x 的最小值点,且min ()(1)2g x g e ==-, 所以2a e ≤-,所以实数a 的取值范围为(,2]e -∞-.【变式7.1】已知函数2()2ln ,()f x x ax x a =+++∈R . (1)讨论()f x 的单调性;(2)若()x f x e ≤恒成立,求a 的最大值. 【答案】(1)答案见解析;(2)3e -.【解析】(1)2121()2,(0,)x ax f x x a x x x∞'++=++=∈+,当a -≤≤()0f x '≥恒成立,()f x 在(0,)+∞上单调递增;当a <-时,在0,,,,()0,()44a a f x f x ∞⎛⎛⎫--+> ⎪ ⎪ ⎪⎝⎭⎝'⎭单调递增;在,()0,()f x f x <'⎝⎭单调递减;当a >(0,),()0,()f x f x ∞+>'单调递增,综上所述:当a ≥-时,()f x 在(0,)+∞上单调递增;当a <-时,()f x 在0,,44a a ∞⎛⎫⎛⎫--++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭单调递增,在⎝⎭单调递减. (2)2()2ln xf x x ax x e =+++≤在(0,)+∞恒成立,可得2ln 2x e x x a x---≤恒成立;设2ln 2()x e x x g x x ---=,则22(1)ln 1()x e x x x g x x-'+-+=, 令2()(1)ln 1x h x e x x x =-+-+,则1()2xh x xe x x+'=-, 令()1x x e x μ=--,则()1x x e μ=-',因为0x >,所以()0x μ>,()x μ∴在(0,)+∞上单调递增,2211122x xe x x x x x x x x x ∴+->++-=+-,211()2x h x xe x x x x x∴=+->-'+,令21()j x x x x =-+,则3222121()21x x j x x x x-='-=--, 易知在(0,1),()0,()j x j x <'单调递减;在(1,),()0,()j x j x ∞+>'单调递增,()(1)1j x j ∴≥=,可得()0h x '>,所以()h x 在(0,)+∞上单调递增,又因为(1)0h =,所以在(0,1)上,()0h x <;在(1,)+∞上,()0h x >,所以在(0,1)上,()0,()g x g x '<单调递减;在(1,)+∞上,()0,()g x g x '>单调递增, 所以在(0,)+∞上,()(1)3g x g e ≥=-,所以3a e ≤-, 所以a 的最大值为3e -.(1)解决“已知不等式恒成立或能成立求参数”问题常用方法之一是“分离参数法”,即将参数k 与含有变量的式子分离,转化成()k h x <或()k h x >的形式,利用“()k h x <恒成立()min k h x ⇔<,()k h x >恒成立()max k h x ⇔>,()k h x <能成立()max k h x ⇔<,()k h x >能成立()min k h x ⇔>”把不等式恒成立或能成立问题转化成利用导数求函数值问题. (2)在恒成立或能成立问题中,若参数无法分离,可以尝试带着参数对原函数求导,然后令导数得零,得出极值点,根据极值点与区间端点的大小对参数进行分类讨论,然后再从正面证明或者从反面找反例来说明每一类是否符合条件,最后取并集.【例8】已知函数2()ln (0,1)x f x a x x a a a =+->≠. (1)当1a >时,求()f x 的单调区间;(2)若对任意的[]12,1,1x x ∈-,使得12()()1f x f x e -≤-,求实数a 的取值范围(e 为自然对数的底数).【答案】(1)()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞;(2)1[,1)(1,]e e.【解析】(1)()ln 2ln (1)ln 2x x f x a a x a a a x '=+-=-+(x ∈R ), 由于1a >,则ln 0a >,当0x >时,10x a ->,则()0f x '>; 当0x <时,10x a -<,则()0f x '<,所以()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞. (2)对任意的[]12,1,1x x ∈-,都有12()()1f x f x e -≤-, 则12max ()()1f x f x e -≤-,即max min ()()1f x f x e -≤-, 当01a <<时,ln 0a <,当0x >时,10x a -<,则()0f x '>,当0x <时,10x a ->,则()0f x '<,所以此时()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞,结合第(1)问知,当0,1a a >≠时,()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞, 所以min ()(0)1f x f ==,{}max ()max (1),(1)f x f f =-, 由1(1)1ln f a a-=++,(1)1ln f a a =+-,则1(1)(1)2ln f f a a a --=--,令1()2ln g x x x x =--,则22212(1)()10x g x x x x -'=+-=≥, 所以()g x 在(0,)+∞上是增函数, 又(1)0g =,故当1x >时,()0g x >;当01x <<时,()0g x <, 即当1a >时,(1)(1)f f >-;当01a <<时,(1)(1)f f <-, ①当1a >时,max min ()()(1)(0)ln 1f x f x f f a a e -=-=-≤-, 令()ln (1)h x x x x =->,则()()h a h e ≤,又11()10x h x x x-'=-=>,即()h x 在(1,)+∞上是增函数,所以1a e <≤; ②当01a <<时,有1(1)(0)ln 1f f a e a --=+≤-,则11ln 1e a a -≤-,即1()()h h e a≤,所以1e a≤,即11a e ≤<,综上可知,实数a 的取值范围是1[,1)(1,]e e.【变式8.1】设a ∈R ,已知函数()()()6x f x e x x a +-=-,函数()ln 1xx g x e x x=--.(注:e 为自然对数的底数)(1)若5a =-,求函数()f x 的最小值;(2)若对任意实数1x 和正数2x ,均有()()1248f x g x a +≥-,求a 的取值范围.【答案】(1)29-;(2)35,e ⎡⎤-⎣⎦.【解析】(1)当5a =-时,()21xf x e x '=+-为增函数,且()00f '=,所以()f x 在,0递减,在0,递增,所以()()min 01629f x f a ==+=-.(2)因为()2ln 111ln ln x x xx g x e e e x x x x ⎛⎫'=+=- ⎪⎝⎭, 由于函数2ln xy x e x =+在0,上单增,且1210e g e e e ⎛⎫'=-< ⎪⎝⎭,()10g e '=>, 所以存在唯一的01,1x e ⎛⎫∈ ⎪⎝⎭使得()00g x '=,且()()0min g x g x =.再令()ln u x x x =,()1ln u x x '=+,可知()u x 在1,单增,而由()00g x '=可知()001xu e u x ⎛⎫= ⎪⎝⎭,01x e >,011x >,所以001x e x =.于是()000001ln 11x x g x e x x ⎛⎫ ⎪⎛⎫⎝⎭=-+= ⎪⎝⎭,所以()min 1g x =.又()26xf x e x a '=+--为增函数,当0a ≥时,()050f a '=--<,当0a <时,2602aa f e ⎛⎫'=-< ⎪⎝⎭;又当6a ≥时,2602aa f e ⎛⎫'=-> ⎪⎝⎭, 当6a <时,()330f e a '=->,所以对任意a ∈R ,存在唯一实数3x , 使得()30f x '=,即3326xa e x =+-,且()()3min f x f x =.由题意,即使得()()min min 48f x g x a ≥+-,也即()()3333333626148248x x xe x x e x e x +---++≥+--, 即()()333310xx e x -+-≤,又由于()1xv x e x =+-单调递增且()00v =,所以3x 的值范围为[]0,3,代入3326xa e x =+-求得a 的取值范围为35,e ⎡⎤-⎣⎦.【例9】已知函数()1ln a a x xf x ++=,(),0a a ∈≠R . (1)求函数()f x 的单调区间;(2)设函数()()()()223,0g x x f x xf x a a '=--<,存在实数212,1,x x e ⎡⎤∈⎣⎦,使得不等式()()122g x g x <成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析;(2)3,026a e ⎛⎫∈⎪-⎝⎭. 【解析】(1)∵()()1ln ,0a f x a x x x +=+>,∴()()21ax a f x x -+'=, ①当0a >时,∵10a a +>,∴10,a x a +⎛⎫∈ ⎪⎝⎭,()0f x '<,∴()f x 单减,∴减区间是10,a a +⎛⎫⎪⎝⎭;1,a x a +⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,∴()f x 单增,∴增区间是1,a a +⎛⎫+∞ ⎪⎝⎭. ②当10a -<<时,∵10a a+<,∴()0f x '<,∴()f x 的减区间是()0,∞+. ③当1a =-时,∵()10f x x'=-<,∴()f x 的减区间是()0,∞+. ④当1a <-时,10,a x a +⎛⎫∈ ⎪⎝⎭,∴()0f x '>,∴()f x 的增区间是10,a a +⎛⎫ ⎪⎝⎭; 1,a x a +⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,∴()f x 的减区间是1,a a +⎛⎫+∞ ⎪⎝⎭. (2)()()()2ln 63,0g x ax ax x a a =--+<,因为存在实数212,1,x x e ⎡⎤∈⎣⎦,使得不等式()()122g x g x <成立,∴()()min max 2g x g x <,()()1ln g x a x '=-,∵0a <,[)1,x e ∈,()0g x '<,()g x 单减;(2,x e e ⎤∈⎦,()0g x '>,∴()g x 单增, ∴()()min 63g x g e ae a =--=,()()(){}2max max 1,63g x g g e a ==--.∴212663ae a a --<--,∴326a e >-, ∵0a <,∴3,026a e ⎛⎫∈⎪-⎝⎭. 【变式9.1】已知函数()x f x xe =,()||g x a x e =-.(1)若0x ≥,求证:当2a e =时,函数()||g x a x e =-与()x f x xe =的图象相切; (2)若1[2,1]x ∃∈-,对2[2,1]x ∀∈-,都有()()12f x g x ≥,求a 的取值范围. 【答案】(1)证明见解析;(2)(,]e -∞.【解析】(1)证明:∵()x f x xe =,∴()(1)x x x f x e xe e x ='=++, 当0x ≥时,()2g x ax e ex e =-=-,设点()000,xP x x e 为函数()f x 图象上的一点,令()()000()12xg x f x e x k e '=+==,设()(1)x h x e x =+,∴()(2)0x h x e x '=+>,所以()h x 单调递增, 又(1)2h e =,∴01x =,此时()0(1)f x f e ==,()0(1)g x g e ==, 即当2a e =时,结论成立,切点为()1,e . (2)解:由已知得max max ()()f x g x ≥, ∵()x f x xe =,∴()(1)x x x f x e xe e x ='=++, 可知,当[2,1)x ∈--时,()0f x '<,()f x 单调递减; 当[1,1]x ∈-时,()0f x '>,()f x 单调递增,又∵22(2)f e-=-;(1)f e =, ∴当[2,1]x ∈-时,max ()f x e =,又∵当0a ≤时,||a x e e -≤-,∴max ()g x e =-, ∴max max ()()g x f x ≤,∴0a ≤①;若0a >,当[2,1]x ∈-时,max ()(2)2g x g a e e a e -=-≤⇒≤=, 又∵0a >,∴0a e <≤②;由①②可得a e ≤,∴a 的取值范围为(,]e -∞. 【例10】已知函数()ln 2f x a x x =-+,其中0a ≠. (1)求()f x 的单调区间;(2)若对任意的[]11,x e ∈,总存在[]21,x e ∈,使得12()()4f x f x +=,求实数a 的值. 【答案】(1)见解析;(2)1e +. 【解析】(1)∵()1a a xf x x x-'=-=,0x >, 当0a <时,对()0,x ∀∈+∞,()0f x '<, 所以()f x 的单调递减区间为()0,∞+. 当0a >时,令()0f x '=,得x a =,∵()0,x a ∈时,()0f x '>;(),x a ∈+∞时,()0f x '<, 所以()f x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.综上所述,0a <时,()f x 的单调递减区间为()0,∞+;0a >时,()f x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.(2)讨论:①当1a ≤且0a ≠时,由(1)知,()f x 在[]1,e 上单调递减, 则()()max 11f x f ==,因为对任意的[]11,x e ∈,总存在[]21,x e ∈,使得()()()122124f x f x f +≤=<, 所以对任意的[]11,x e ∈,不存在[]21,x e ∈,使得()()124f x f x +=;②当1a e <<时,由(1)知,在[]1,a 上()f x 是增函数,在[],a e 上()f x 是减函数, 则()()max ln 2f x f a a a a ==-+, 因为对11x =,对[]21,x e ∀∈,()()()()()1211ln 2ln 133f x f x f f a a a a a a +≤+=+-+=-+<, 所以对[]111,x e =∈,不存在[]21,x e ∈,使得()()124f x f x +=; ③当a e ≥时,令()()()4[1,]g x f x x e =-∈,由(1)知,()f x 在[]1,e 是增函数,进而知()g x 是减函数, 所以()()min 11f x f ==,()()max 2f x f e a e ==-+,()()()max 141g x g f ==-,()()()min 4g x g e f e ==-,因为对任意的[]11,x e ∈,总存在[]21,x e ∈,使得()()124f x f x +=,即()()12f x g x =,故有()()()()11f g e f e g ⎧≥⎪⎨≤⎪⎩,即()()()()1414f f e f e f ⎧+≥⎪⎨+≤⎪⎩,所以()()134f f e a e +=-+=,解得1a e =+, 综上,a 的值为1e +.【变式10.1】已知函数()()3222f x x x m x =-+-+,223()x m g x x m+=-,m ∈R .(1)当2m =时,求曲线()y f x =在1x =处的切线方程; (2)求()g x 的单调区间;(3)设0m <,若对于任意[]00,1x ∈,总存在[]10,1x ∈,使得()()10f x g x =成立,求m 的取值范围.【答案】(1)1y x =+;(2)见解析;(3)[]2,1--.【解析】(1)当2m =时,()322f x x x =-+,所以()232f x x x '=-,所以()()12,11f f '==,所以曲线()y f x =在1x =处的切线方程为21y x -=-,即1y x =+.(2)()223x m g x x m+=-的定义域是{}|x x m ≠,()()()()23x m x m g x x m +-'=-, 令()0g x '=,得12,3x m x m =-=,①当0m =时,()(),0g x x x =≠,所以函数()g x 的单调增区间是(,0),(0,)-∞+∞; ②当0m <时,()(),,x g x g x '变化如下:所以函数()g x 的单调增区间是()(),3,,m m -∞-+∞,单调减区间是()()3,,,m m m m -; ③当0m >时,()(),,x g x g x '变化如下:所以函数()g x 的单调增区间是()(),,3,m m -∞-+∞,单调减区间是()(),,,3m m m m -.(3)因为()()3222f x x x m x =-+-+,所以()()2322f x x x m '=-+-,当0m <时,()412212200Δm m =--=-<,所以()0f x '>在()0,1上恒成立,所以()f x 在()0,1上单调递增, 所以()f x 在[]0,1上的最小值是()02f =,最大值是()14f m =-,即当[]0,1x ∈时,()f x 的取值范围为[]2,4m -,由(2)知,当10m -<<时,01m <-<,()g x 在()0,m -上单调递减,在(),1m -上单调递增,因为()22g m m -=-<,所以不合题意; 当1m ≤-时,1m ->,()g x 在[]0,1上单调递减,所以()g x 在[]0,1上的最大值为()03g m =-,最小值为()21311m g m+=-,所以当[]0,1x ∈时,()g x 的取值范围为213,31m m m ⎡⎤+-⎢⎥-⎣⎦, “对于任意[]00,1x ∈,总存在[]10,1x ∈,使得()()10f x g x =成立”等价于213,3[2,4]1m m m m ⎡⎤+-⊆-⎢⎥-⎣⎦,即2132134m m m m⎧+≥⎪-⎨⎪-≤-⎩,解得21m -≤≤-, 所以m 的取值范围为[]2,1--.不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.一、解答题.1.已知函数()()2ln 21f x x ax a x =+-+,(0a ≥).(1)当0a =时,求函数()f x 的极值;(2)函数()f x 在区间()1,+∞上存在最小值,记为()g a ,求证:()124g a a<-. 【答案】(1)极大值为1-,无极小值;(2)证明见解析. 【解析】(1)当0a =时,()ln f x x x =-,0x >,则()11f x x'=-, 当()0,1x ∈,()0f x '>;当[)1,x ∈+∞,所以()0f x '≤. 所以当1x =时,()f x 取得极大值为()11f =-,无极小值.(2)由题可知()()()()()222112111221ax a x ax x f x ax a x x x-++--'=+-+==. ①当0a =时,由(1)知,函数()f x 在区间()1,+∞上单调递减,所以函数()f x 无最小值,此时不符合题意; ②当12a ≥时,因为()1,x ∈+∞,所以210ax ->,此时函数()f x 在区间()1,+∞上单调递增,所以函数()f x 无最小值,此时亦不符合题意; ③当102a <<时,此时112a<, 函数()f x 在区间11,2a ⎛⎫ ⎪⎝⎭上单调递减,在区间1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 111ln1224f x f a a a ⎛⎫==-- ⎪⎝⎭,即()11ln 124g a a a =--, 要证()111ln 12244a a a g a =--<-,只需证当102a <<时,11ln 1022a a-+<成立, 设12t a=,()()ln 11h t t t t =-+>, 由(1)知()()10h t h <=,所以()124g a a<-. 2.已知函数()2ln ()f x a x a x =-∈R .(1)讨论函数()f x 的单调性;(2)若()1f x ≥恒成立,求a 的取值范围. 【答案】(1)答案见解析;(2){}2.【解析】(1)()()2220a x a f x x x x x-=-=>',当0a ≤时,()0f x '>,所以函数()f x 在区间(0,)+∞上单调递增;当0a >时,由()0f x '>,得x >()0f x '<,得0x <≤,所以函数()f x 在区间⎛ ⎝上单调递减,在区间⎫+∞⎪⎪⎭上单调递增, 综上所述,当0a ≤时,函数()f x 在区间(0,)+∞上单调递增;当0a >时,函数()f x 在区间⎛ ⎝上单调递减﹐在区间⎫+∞⎪⎪⎭上单调递增. (2)由(1)可得:当0a ≤时,()f x 在区间(0,)+∞上单调递增; 又()11f =,所以当01x <<时,()1f x <,不满足题意;当0a >时,函数()f x 在区间⎛ ⎝上单调递减﹐在区间⎫+∞⎪⎪⎭上单调递增;所以()min ln 2222a a a af x f a ==-=-, 为使()1f x ≥恒成立,只需()min ln 1222a a af x =-≥, 令2at =,()ln g t t t t =-,则只需()1g t ≥恒成立, 又()1ln 1ln g t t t '=--=-,由()0g t '>,得01t <<;由()0g t '<,得1t >, 所以()g t 在()0,1上单调递增,在()1,+∞上单调递减, 则()()max 11g t g ==; 又()1g t ≥,所以只有1t =,即12a=,则2a =, 综上,a 的取值范围为{}2.3.设3x =是函数23()()()x f x x ax b e x -=++∈R 的一个极值点. (1)求a 与b 之间的关系式,并求当2a =时,函数()f x 的单调区间;(2)设0a >,225()()4xg x a e =+.若存在12,[0,4]x x ∈使得12()()1f x g x -<成立,求实数a 的取值范围.【答案】(1)由23b a =--,()f x 在()3,3-上单调递增,在(),3-∞-和()3,+∞单调递减;(2)3(0,)2a ∈.【解析】(1)()()()232x f x x a x b a e -=-+-+-',由题意知()30f '=,解得23b a =--.当2a =,则7b =-,故令()()2390xf x x e -=-->',得33x -<<,于是()f x 在()3,3-上单调递增,在(),3-∞-和()3,+∞单调递减.(2)由(1)得()()()23233xf x x a x a e -=-+---',令()0f x '>,得13a x --<<(0a >),所以()f x 在()0,3上单调递增,在(]3,4单调递减,于是()()max 36f x f a ==+,()()(){}()3min min 0,423f x f f a e ==-+;另一方面()g x 在[]0,4上单调递增,()2242525,44g x a a e ⎡⎤⎛⎫∈++ ⎪⎢⎥⎝⎭⎣⎦.根据题意,只要()225614a a ⎛⎫+-+< ⎪⎝⎭,解得1322a -<<,所以30,2a ⎛⎫∈ ⎪⎝⎭.4.已知函数()2ln f x x ax x =+-,()3ln 12xx g x x e =-++.(1)讨论函数()f x 的单调性;(2)若()()f x g x ≥恒成立,求实数a 的取值范围.【答案】(1)答案见解析;(2)27,4e ⎡⎫-+∞⎪⎢⎣⎭. 【解析】(1)函数()2ln f x x ax x =+-的定义域为()0,∞+,且()212121ax x f x ax x x-+=+='-.①当0a =时,()1xf x x-'=,若01x <<,则()0f x '>;若1x >,则()0f x '<, 此时,函数()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞;②当0a <时,180Δa =->,令()0f x '=,可得14x a =(舍)或14x a=.若104x a <<,则()0f x '>;若14x a>,则()0f x '<, 此时,函数()f x的单调递增区间为0⎛ ⎝⎭,单调递减区间为+⎫⎪∞⎪⎝⎭; ③当0a >时,18Δa =-.(i )若180Δa =-≤,即当18a ≥时,对任意的0x >,()0f x '≥,。

高中数学解题方法系列:函数中恒成立问题解题策略

高中数学解题方法系列:函数中恒成立问题解题策略

高中数学解题方法系列:函数中恒成立问题解题策略函数的内容作为高中数学知识体系的核心,也是历年高考的一个热点.函数类问题的解决最终归结为对函数性质、函数思想的应用.恒成立问题,在高中数学中较为常见.这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.恒成立问题在解题过程中有以下几种策略:①赋值型;②一次函数型;③二次函数型;④变量分离型;⑤数形结合型.现在我们一起来探讨其中一些典型的问题.策略一、赋值型——利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4定义映射f:(a 1,a 2,a 3,a 4)→b 1+b 2+b 3+b 4,则f:(4,3,2,1)→()A.10B.7C.-1D.0略解:取x=0,则a 4=1+b 1+b 2+b 3+b 4,又a 4=1,所以b 1+b 2+b 3+b 4=0,故选D例2.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π-对称,那么a=().A .1B .-1C .2D .-2.略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想.策略二、一次函数型——利用单调性求解给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a ,或ⅱ)⎩⎨⎧><0)(0n f a 可合并定成⎩⎨⎧>>0)(0)(n f m f 同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f 例3.对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x的取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一n m o x y nm o x y个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x 2-2x+1>0在|a|≤2时恒成立,设f(a)=(x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3.即x∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x 轴上方(或下方)即可.策略三、二次函数型——利用判别式,韦达定理及根的分布求解对于二次函数f(x)=ax 2+bx+c=0(a≠0)在实数集R 上恒成立问题可利用判别式直接求解,即f(x)>0恒成立⇔⎩⎨⎧<∆>00a ;f(x)<0恒成立⇔⎩⎨⎧<∆<00a .若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解.例4.若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R,求实数a 的取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立,所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a 有,91,09101{22≤<⇒≤+->a a a a 综上所述,f(x)的定义域为R 时,]9,1[∈a 例5.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围.分析:()y f x =的函数图像都在X 轴及其上方,如右图所示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值范围.分析:要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥a g 即可.解:22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥73a ∴≤又4a > a ∴不存在.⑵当222a -≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥62a ∴-≤≤又44a -≤≤ 42a ∴-≤≤⑶当22a ->,即4a <-时,()(2)70g a f a ==+≥7a ∴≥-又4a <- 74a ∴-≤<-综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0的问题.略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立.⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:(运用根的分布)⑴当22a -<-,即4a >时,()(2)732g a f a =-=-≥()54,3a ∴≤∉+∞a ∴不存在.⑵当222a -≤-≤,即44a -≤≤时,2()()3224a a g a f a ==--+≥,222222-≤≤-a -2224-≤≤-∴a ⑶当22a ->,即4a <-时,()(2)72g a f a ==+≥,5a ∴≥-54a ∴-≤<-综上所述25≤≤-a 2-2.此题属于含参数二次函数,求最值时,轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法(如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题策略四、变量分离型——分离变量,巧妙求解运用不等式的相关知识不难推出如下结论:若对于x 取值范围内的任何一个数都有f(x)>g(a)恒成立,则g(a)<f(x)min ;若对于x 取值范围内的任何一个数,都有f(x)<g(a)恒成立,则g(a)>f(x)max .(其中f(x)max 和f(x)min 分别为f(x)的最大值和最小值)例 6.已知三个不等式①0342<+-x x ,②0862<+-x x ,③0922<+-m x x .要使同时满足①②的所有x 的值满足③,求m 的取值范围.略解:由①②得2<x<3,要使同时满足①②的所有x 的值满足③,即不等式0922<+-m x x 在)3,2(∈x 上恒成立,即)3,2(922∈+-<x x x m 在上恒成立,又,上大于在9)3,2(922∈+-x x x 所以9≤m 例7.函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,若12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立,求t 的取值范围.解:据奇函数关于原点对称,,1)1(=f 又1)1()(]1,1[)(max ==-f x f x f 上单调递增在 12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立.因此,只需122+-at t 大于或等于上在]1,1[)(-x f 的最大值1,0211222≥-⇒≥+-∴at t at t 都成立对所有又]1,1[-∈a ,即关于a 的一次函数在[-1,1]上大于或等于0恒成立,⇒t ≥2或t =0或t ≤-2002-2∴{t t 22≥≥+t t 即:t ∈(-∞,-2] {0} [2,+∞)利用变量分离解决恒成立问题,主要是要把它转化为函数的最值问题.策略五、数形结合——直观求解例8.x -2>a 恒成立,求实数a 的取值范围.对任意实数x ,不等式x +1-分析:设y=|x+1|-|x-2|,x -2>a 恒成立即转对任意实数x ,不等式x +1-化为求函数y=|x+1|-|x-2|的最小值,画出此函数的图象即可求得a 的取值范围.解:令y =⎪⎩3x -2=⎨⎪2x -1-1<x <2⎧-3x ≥2x ≤-1x +1-在直角坐标系中画出图象如图所示,由图象可看出,要使x -2>a 恒成立,只对任意实数x ,不等式x +1-需a <-3.故实数a 的取值范围是(-∞,.-3)本题中若将x -2>a 恒成立,求实数a 改为①对任意实数x ,不等式x +1-x -2<a 恒成立,求实数a ,同样由图象可得a>3;对任意实数x ,不等式x +1-②x -2>a 恒成立,求实数a ,构造函数,画出图象,对任意实数x ,不等式x +1+得a<3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.恒成立的题型和解法还有很多,只要我们充分利用所给定的函数的特点和性质,具体问题具体分析,选用恰当的方法,对问题进行等价转化,就能使问题获得顺利解决.只有这样才能真正提高分析问题和解决问题的能力.。

恒成立问题基本题型及解题方法

恒成立问题基本题型及解题方法

恒成立问题基本题型及解题方法恒成立问题一直以来都有是数学中的一个重点、难点,这类问题也没有一个固定的思想方法去处理,各类考试以及高考中都屡见不鲜。

如何更好地简单,准确,快速解决这类问题并更好地认识把握,本文通过举例说明这类问题的一些常规解题方法。

一 转化为二次函数,利用分类讨论思想解题例1. 已知函数f(x)=x 2-2ax+4在区间[-1,2] 上都不小于2,求a 的值。

解:由函数f(x)=x 2-2ax+4的对称轴为x=a所以必须考察a 与-1,2的大小,显然要进行三种分类讨论1.当a ≥2时f(x)在[-1,2]上是减函数此时min )(x f = f(2)=4-4a+42≥ 即a 23≤ 结合a ≥2,所以a 的解集为φ 2.当a 1-≤ 时 f(x)在[-1,2]上是增函数, min )(x f = f(-1)=1+2a+42≥结合a 1-≤ 即123-≤≤-a 3.当-1<a<2时 m i n )(x f = f(a)=a 2-2a 2+4 2≥ 即≤-2a 2≤ 所以21≤<-a综上1,2,3满足条件的a 的范围为:223≤≤-a 二 确定主元,构造函数,利用单调性解题 例2.对于满足0≤a ≤4的所有实数a 求使不等式x 2+ax>4x+a-3都成立的x 的取值范围。

解:不等式变形为x 2+(x-1)a-4x+3>0设f(a)= (x-1)a+x 2-4x+3,则其是关于a 的一个一次函数:是单调函数结合题意有⎩⎨⎧>>0)0(0)4(f f 即 得1-<x 或3>x 三 利用不等式性质解题例3.若关于x 的不等式|x-2|+|x+3|≥a 恒成立,试求a 的范围 解:由题意知只须min )32(++-≤x x a 由5)3(232=+--≥++-x x x x 所以 5≤a四 构造新函数,利用导数求最值:例4.已知)1lg(21)(+=x x f )2lg()(t x x g +=若当]1,0[∈x 时)()(x g x f ≤在[0,1]恒成立,求实数t 的取值范围。

恒成立能成立问题总结(详细)

恒成立能成立问题总结(详细)

恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。

这类问题在各类考试以及高考中都屡见不鲜。

感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。

在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。

1、函数法(1)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数有:],[),0()(n m x k b kx x f ∈≠+=⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立 例1 若不等式对满足的所有都成立,求的范 围。

m mx x ->-21222≤≤-m m x解析:将不等式化为:,0)12()1(2<---x x m 构造一次型函数:)12()1()(2---=x m x m g 原命题等价于对满足的,使恒成立。

22≤≤-m m 0)(<m g由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g 解得,所以的范围是。

231271+<<+-x x )231,271(++-∈x 小结:解题的关键是将看来是解关于的不等式问题转化为以为变量,为参数x m x 的一次函数恒成立问题,再利用一次函数的图象或单调性解题。

练习:(1)若不等式对恒成立,求实数的取值范围。

01<-ax []2,1∈x a (2)对于的一切实数,不等式恒成立,求40≤≤p 342-+>+p x px x 的取值范围。

(答案:或)x (二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。

(完整版)高考数学一轮复习-导数中恒成立问题总结

(完整版)高考数学一轮复习-导数中恒成立问题总结

姓名学生姓名填写时间学科数学年级高三教材版本人教A版课题名称导数中的恒成立问题课时计划 4 上课时间教学目标同步教学知识内容个性化学习问题解决教学重点教学难点教学过程教师活动一、要点精讲1.导数的概念函数y=f(x),如果自变量x在x处有增量x∆,那么函数y相应地有增量y∆=f(x+x∆)-f(x0),比值xy∆∆叫做函数y=f(x)在x到x+x∆之间的平均变化率,即xy∆∆=xxfxxf∆-∆+)()(0。

如果当0→∆x时,xy∆∆有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|xx=。

即f(x)=lim→∆x xy∆∆=lim→∆x xxfxxf∆-∆+)()(0。

说明:(1)函数f(x)在点x处可导,是指0→∆x时,xy∆∆有极限。

如果xy∆∆不存在极限,就说函数在点x处不可导,或说无导数。

(2)x∆是自变量x在x处的改变量,0≠∆x时,而y∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f(x)在点x处的导数的步骤(可由学生来归纳):(1)求函数的增量y∆=f(x+x∆)-f(x0);(2)求平均变化率xy∆∆=xxfxxf∆-∆+)()(0;2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.常见函数的导出公式.(1)0)(='C (C 为常数) (2)1)(-⋅='n nxn x(3)x x cos )(sin =' (4)x x sin )(cos -=' (5)xx 1)(ln '=(6)x x e e =')(4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。

2019版高考数学一轮复习 专题讲座三课件 文

2019版高考数学一轮复习 专题讲座三课件 文
专题讲座三 不等式恒成立问题
专题讲座三 不等式恒成立问题
ppt精选
1
含参不等式恒成立问题是高考中的热点内容,它以各种形 式出现在高中数学的各部分内容中,扮演着重要的角色.解 决含参不等式恒成立问题的关键是转化与化归思想的运 用,从解题策略的角度看,一般而言,针对不等式的表现 形式,有如下四种策略.
是否存在实数 a,使得关于 x 的不等式 3x2-
logax<0 在 0<x<13时恒成立?若存在,求出 a 的取值范围;
若不存在,请说明理由.
[解]
由题意知,“关于
x
的不等式
3x2-logax<0

1 0<x<3
时 恒 成 立 ” 等 价 于 “3x2<logax 在 x∈ 0,13 内 恒 成
立”.若 a>1,在同一平面直角坐标系内,分别作出函数 y=3x2 和 y=logax 的大致图象,
又∵f(cos 2θ-3)+f(4m-2mcos θ)>0, ∴f(cos 2θ-3)>-f(4m-2mcos θ)=f(2mcos θ-4m),
∴cos 2θ-3>2mcos θ-4m,
ppt精选
8
即 2m(2-cos θ)>3-cos 2θ,
∵2-cos θ∈[1,3],
∴2m>3ss2θθ,
∴m 的取值范围为(4-2 2,+∞).
ppt精选
10
[规律方法] 这类问题经常用到下面的结论:若函数 f(x) 存在最小值,则 a≤(<)f(x)恒成立⇔a≤(<)f(x)min;若函数 f(x)存在最大值,则 a≥(>)f(x)恒成立⇔a≥(>)f(x)max.

高考数学恒成立问题---最值分析法知识讲解与例题讲解

高考数学恒成立问题---最值分析法知识讲解与例题讲解

高考数学恒成立问题---最值分析法知识讲解与例题讲解最值法求解恒成立问题是三种方法中最为复杂的一种,但往往会用在解决导数综合题目中的恒成立问题。

此方法考研学生对所给函数的性质的了解,以及对含参问题分类讨论的基本功。

是导数中的难点问题。

一、基础知识: 1、最值法的特点:(1)构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参 (2)参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论2、理论基础:设()f x 的定义域为D(1)若x D ∀∈,均有()f x C ≤(其中C 为常数),则()max f x C ≤ (2)若x D ∀∈,均有()f x C ≥(其中C 为常数),则()min f x C ≥ 3、技巧与方法:(1)最值法解决恒成立问题会导致所构造的函数中有参数,进而不易分析函数的单调区间,所以在使用最值法之前可先做好以下准备工作:① 观察函数()f x 的零点是否便于猜出(注意边界点的值) ② 缩小参数与自变量的范围:通过代入一些特殊值能否缩小所求参数的讨论范围(便于单调性分析)观察在定义域中是否包含一个恒成立的区间(即无论参数取何值,不等式均成立),缩小自变量的取值范围(2)首先要明确导函数对原函数的作用:即导函数的符号决定原函数的单调性。

如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号。

(3)在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内。

二、典型例题:例1:设()222f x x mx =−+,当[)1,x ∈−+∞时,()f x m ≥恒成立,求m 的取值范围思路:恒成立不等式为2220x mx m −+−≥,只需()2min220x mx m−+−≥,由于左端是关于x 的二次函数,容易分析最值点位置,故选择最值法解:恒成立不等式为2220x mx m −+−≥,令()222g x x mx m =−+−则对称轴为x m =(1)当1m ≤−时,()g x 在[)1,−+∞单调递增,()()min 11220g x g m m ∴=−=++−≥ 3m ∴≥−即[]3,1m ∈−−(2)当1m >−时,()g x 在()1,m −单调递减,在(),m +∞单调递增 ()()22min 22021g x g m m m m m ∴==−+−≥⇒−≤≤(]1,1m ∴∈− 终上所述:[]3,1m ∈−小炼有话说:二次函数以对称轴为分解,其单调性与最值容易分析。

高中数学恒成立的解题方法和思路

高中数学恒成立的解题方法和思路

高中数学恒成立的解题方法和思路作者:任辉来源:《高中生学习·高二版》2017年第10期高中数学在高考中所占的比分是非常大的,所以数学的学习必须得到我们的重视。

数学中的恒成立问题更是重中之重,所以学习并且掌握一些恒成立问题的解题思路和方法对我们高中生来说是非常重要的,掌握好这些也可以为我们以后数学的学习打好基础,我的这篇文章主要是我自己对恒成立学习过程中的一些心得体会,并且在解题方法和思路方面进行了一些总结。

解决恒成立问题的意义恒成立问题的含义就是在一定的条件之下,无论这里面的未知数的值是怎样变化的,方程或者不等式最终的结果都是能够成立的。

在高中恒成立的学习中,主要包括了一次函数、二次函数和函数导数等问题,这是数学高考中的一个非常重要的考点。

高中数学恒成立问题的一些解题方法和思路在高中数学中解决恒成立的方法主要有:运用变量分离、构建函数、数形结合还有就是可以根据函数的性质进行问题的解决,下面我主要通过举一些例子来说明这些方法如何使用。

1. 运用变量分离的方法解决恒成立问题例:“已知存在不等式a+cos2x在简单的变换位置之后,我们可以得到方程:f(x)=4sinx+cos2x,只要我们将这个方程的最值解出来就能得到未知实数a的取值范围,在遇到一个不等式中有两个未知数时,我们首先就要想到分离参数法,这种方法的中心思想就是分离,然后根据函数的最值规律变换出不等式,但是这种方法中需要注意的就是当这个不等式含有一些基本函数时,我们可以利用函数的单调性或者函数的导数进行求解。

2. 通过构建函数进行恒成立问题的求解例:“假设当x大于等于0时,函数f(x)=(x+1)ln(x+1)都有f(x)大于等于ax,试求未知实数a的取值范围?”,对于这道题如果我们强行套用分离参数法,那么就会加大这道题的求解难度,所以我们应该根据情况利用构造参数的方法进行求解。

当进行题意解读之后,我們可以知道函数大于等于0,进而我们就能构造出函数g(x)=(x+1)ln(x+1)-ax,并且该函数恒等于0,进而经过变换之后我们就可以知道g(x)恒大于g(0),然后我们求出这个函数的单调递减区间,经过分析即可求出a的取值范围。

2019高考数学一轮复习专题突破16【恒成立问题】

2019高考数学一轮复习专题突破16【恒成立问题】

数,再次运用导数求出最值,从而计算出结果,本题导数的运用性较强、综合性强,需要掌握其解答
方法。
【例 3】【河南省中原名校 2018 届高三高考预测金卷】定义在 R 上的函数 f(x)的导函数为 f'(x),
且 f(x) = f'(1) ex + f(0) x2 − x,若存在实数 x 使不等式 f(x) ≤ m2 − am − 3 对于 a ∈ [0,2]恒成立,
2
A. 0,1 ∪ 1, + ∞ B. 0, + ∞ C. 1, + ∞ D. 0,1
【答案】A
∴ fxmin =
fa
=
a2 2
+
a

a2

alna
∴ a2 + a − a2 − alna > 2a − 3 a2,
2
2
令 ga = a2 − a − alna > 0,a > 0
3

ha
=
a

alna
【详解】
f(x) = f'1 e2x−2 + x2 − 2f(0) ⋅ x
2

x
=
0,则
f(0)
=
f'(1) 2e2
∵ f'x = f'1 ∙ e2x−2 + 2x − 2f(0),
令 x = 1,则f'1 = f'1 + 2 − 2 f(0),解得 f0 = 1
∴ f'1 = 2e2,
则 fx = e2x + x2 − 2x,f2 = e4
∴ g(2016) > f(2) ⋅ g(2018)

2019年上海高考数学·第一轮复习讲义 第09讲 函数中恒成立问题

2019年上海高考数学·第一轮复习讲义 第09讲 函数中恒成立问题

2019年上海高考数学·第一轮复习(第09讲 函数中的恒成立问题)一、知识梳理函数是整个高中知识体系的核心之一,而函数中的绝大多数问题最终归结为函数性质、函数思想在具体解题过程中的应用。

恒成立问题,涉及到一次函数、二次函数等函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

因此也成为历年高考的一个热点。

恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图像。

现在我们一起来探讨其中一些典型的问题二、例题解析1、一次函数型给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图像(直线)可得上述结论等价于(ⅰ)⎩⎨⎧>>0)(0m f a 或(ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f 同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f例1 对于满足|a|≤2的所有实数a ,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围。

2、二次函数对于二次函数f(x)=ax 2+bx+c=0(a ≠0)在实数集R 上恒成立问题可利用判别式直接求解,即f(x)>0恒成立⇔⎩⎨⎧<∆>00a ; f(x)<0恒成立⇔⎩⎨⎧<∆<00a 。

若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。

例2 若函数y =R 上恒成立,求m 的取值范围。

例3 已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围。

变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值范围。

完整版高考数学一轮复习导数中恒成立问题总结

完整版高考数学一轮复习导数中恒成立问题总结

讲课方案方案XueDa PPTS Learning Center 姓名学生姓名填写时间学科数学年级高三教材版本人教 A版课题名称导数中的恒成立问题课时计划4上课时间同步讲课知识内容讲课目标个性化学习问题解决讲课重点讲课难点教师活动一、重点精讲1.导数的看法函数 y=f(x), 假如自变量 x 在 x0处有增量x,那么函数 y 相应地有增量y=f( x+x)-(x 0),f比值y叫做函数 y=f (x)在 x 0到 x 0 +x 之间的均匀变化率,即y =f (x0x) f (x0 ) 。

x x x假如当 x0 时,y有极限,我们就说函数y=f(x) 在点 x0 处可导,并把这个极限叫做f( x)x在点 x0处的导数,记作 f ’( x)或 y’| 。

x x0即 f( x 0) = lim ylimf ( x0x) f ( x0 )。

=x0x x0x 讲课过程说明:( 1)函数 f( x)在点 x 0处可导,是指x0 时,y有极限。

假如y不存在极限,就说函数x x在点 x 0处不可以导,或说无导数。

( 2)x是自变量 x 在 x 0处的改变量,x0 时,而y是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f ( x)在点 x 0处的导数的步骤(可由学生来归纳):( 1)求函数的增量y =f(x0+x )-f(x0);( 2)求均匀变化率y=f ( x0x)f ( x);x x( 3)取极限,得导数 f ’(x0 )= lim y 。

讲课方案方案XueDa PPTS Learning Center2.导数的几何意义函数 y=f ( x)在点 x 0处的导数的几何意义是曲线y=f ( x)在点 p( x 0, f ( x 0))处的切线的斜率。

也就是说,曲线y=f (x)在点 p( x 0,f( x 0))处的切线的斜率是 f ’( x 0)。

相应地,切线方程为 y- y 0 =f /( x 0)( x- x 0)。

恒成立问题 2019高考绝密资料

恒成立问题 2019高考绝密资料

不等式恒成立问题 主标题:不等式恒成立问题副标题:为学生详细的分析不等式恒成立的高考考点、命题方向以及规律总结。

关键词:不等式,不等式恒成立,知识总结 难度:3 重要程度:5考点剖析:会已知一个变量的取值范围,求另一个变量的取值范围. 命题方向:“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考命题者的青睐。

另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。

规律总结:解决不等式恒成立问题常见的方法: 一、 分离参数在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m a x a f x≥;若()a f x ≤恒成立,只须求出()min f x ,则()m i na f x ≤,转化为函数求最值。

二、分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。

三、确定主元在给出的含有两个变量的不等式中,学生习惯把变量x 看成是主元(未知数),而把另一个变量a 看成参数,在有些问题中这样的解题过程繁琐。

如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。

四、利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ⊂⎡⎤⎣⎦,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围。

五、数形结合数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。

知识点总结:1.()a f x ≥恒成立[]max )(x f a ≥⇔ ()a f x ≤恒成立[]min )(x f a ≤⇔2.一元二次不等式02≥++c bx ax 恒成立⎩⎨⎧≤∆>⇔0a一元二次不等式02≤++c bx ax 恒成立⎩⎨⎧≤∆<⇔00a 一元二次不等式02>++c bx ax 恒成立⎩⎨⎧<∆>⇔0a一元二次不等式02<++c bx ax 恒成立⎩⎨⎧<∆>⇔00a 3.[]()(),,m n f a g a ⊂⎡⎤⎣⎦⇔()f a m ≤且()g a n ≥导数在研究函数中的应用 主标题:导数在研究函数中的应用备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。

高三数学剖析高考中的恒成立问题

高三数学剖析高考中的恒成立问题

剖析高考数学中的恒成立问题某某省某某市坡头区第一中学 X 友玉新课标下的高考越来越注重对学生的综合素质的考察,恒成立问题便是一个考察学生综合素质的很好途径,它主要涉及到一次函数、二次函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用。

这三年的数学高考中频频出现恒成立问题,其形式逐渐多样化,但都与函数、导数知识密不可分。

解决高考数学中的恒成立问题常用以下几种方法:①函数性质法;②主参换位法;③分离参数法;④数形结合法。

下面我就以近三年高考试题为例加以剖析: 一、函数性质法1、二次函数:①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >⎧⎨∆<⎩(或00a <⎧⎨∆<⎩); ②.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。

例1(08年某某卷理12).已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值X 围是(A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)分析:()f x 与()g x 的函数类型,直接受参数m 解析:当0m =时,()810f x x =-+>在1(,)8-∞上恒成立,而()g x 在R 上恒成立,显然不满足题意;(如图1)当0m <时,()g x 在R 上递减且()0g x mx =>只在(,0)-∞而()f x 是一个开口向下且恒过定点(0,1当0m >时,()g x 在R 上递增且()0g x mx =>在(0,)+∞上恒成立,而()f x 是一个开口向上且恒过定点(0,1)的二次函数,要使对任一实数()f x 与()g x 的值至少有一个为正数则只需()0f x >在(,0]-∞则有24024(4)80m m m m -⎧<⎪⎨⎪∆=--<⎩或402m m -≥解得48m <<或04m <≤, 综上可得08m <≤即(0,8)m ∈。

【新】2019年高考数学大一轮复习热点聚焦与扩展专题17恒成立问题——数形结合法

【新】2019年高考数学大一轮复习热点聚焦与扩展专题17恒成立问题——数形结合法

专题17 恒成立问题——数形结合法【热点聚焦与扩展】不等式恒成立问题常见处理方法:① 分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 1、函数的不等关系与图象特征:(1)若x D ∀∈,均有()()()f x g x f x <⇔的图象始终在()g x 的下方 (2)若x D ∀∈,均有()()()f x g x f x >⇔的图象始终在()g x 的上方2、在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3、要了解所求参数在图象中扮演的角色,如斜率,截距等4、作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化)5、在作图时,要注意草图的信息点尽量完备6、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点: (1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图 (2)所求的参数在图象中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图象上的特征【经典例题】例1.【2018届浙江省金华十校4月模拟】若对任意的,存在实数,使恒成立,则实数的最大值为__________.【答案】9【解析】若对任意的,恒成立,可得:恒成立,令,,原问题等价于:,结合对勾函数的性质分类讨论:(1)当时,,,原问题等价于存在实数满足:,故,解得:,则此时;(2)当时,,,原问题等价于存在实数满足:,原问题等价于存在实数满足:,故,解得:,则此时;当时,,原问题等价于存在实数满足:,故,解得:,则此时;综上可得:实数的最大值为.点睛:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.例2.【2018届一轮训练】已知log12 (x+y+4)<log12(3x+y-2),若x-y≤λ恒成立,则λ的取值范围是______________.【答案】[10,+∞)点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.例3.已知函数在上不单调,则实数的取值范围是__________.【答案】【解析】已知函数定义域为,,,令,图象如图,∵函数在上不单调,∴区间在零点1或3的两侧,或,解得或.即实数的取值范围是.点睛:利用导数研究函数的单调性的关键在于准确判定导数的符号,注意单调函数的充要条件,尤其对于已知单调性求参数值(范围)时,隐含恒成立思想例4.【2018届二轮训练】对于0≤m≤4的任意m ,不等式x 2+mx>4x +m -3恒成立,则x 的取值范围是________________. 【答案】(-∞,-1)∪(3,+∞)【解析】不等式可化为m(x -1)+x 2-4x +3>0在0≤m≤4时恒成立. 令f(m)=m(x -1)+x 2-4x +3.结合二次函数的图象得()()00{40f f >>⇒22430{10x x x >>-+-⇒13{11x x x x -或或即x<-1或x>3.故答案为:(-∞,-1)∪(3,+∞)例5.已知不等式()21log a x x -<在()1,2x ∈上恒成立,则实数a 的取值范围是_________ 【答案】12a <≤可得:1log 22a a ≤⇒≤,综上可得:12a <≤.【名师点睛】(1)通过常系数函数图象和恒成立不等式判断出对数函数的单调性,进而缩小了参数讨论的取值范围.(2)学会观察图象时要抓住图象特征并抓住符合条件的关键点(例如本题中的2x =). (3)处理好边界值是否能够取到的问题.例6.若不等式log sin 2(0,1)a x x a a >>≠对于任意的0,4x π⎛⎤∈ ⎥⎝⎦都成立,则实数a 的取值范围是___________ 【答案】,14a π⎛⎫∈⎪⎝⎭【解析】本题选择数形结合,可先作出sin 2y x =在0,4x π⎛⎤∈ ⎥⎝⎦的图象,a 扮演的角色为对数的底数,决定函数的增减,根据不等关系可得01a <<,观察图象进一步可得只需4x π=时,log sin2a x x ≥,即log sin 21444aa πππ>⋅=⇒>,所以,14a π⎛⎫∈⎪⎝⎭例7. 已知函数()21f x x mx =+-,若对任意的[],1x m m ∈+,都有()0f x <成立,则实数m 的取值范围是_____________【答案】2⎛⎫-⎪⎝⎭【名师点睛】本题也可以用最值法求解:若()0f x <,则()max 0f x <,而()f x 是开口向上的抛物线,最大值只能在边界处产生,所以()()010f m f m <⎧⎪⎨+<⎪⎩,再解出m 的范围即可.例8.已知函数()22,1{ log ,1x x f x x x <=≥若直线y m =与函数()f x 的图象只有一个交点,则实数m 的取值范围是________.【答案】0m =或[2,m ∈+∞) 【解析】作出函数f(x)的图象如图,例9.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2221232f x x a x a a =-+-- ,若()(),1x R f x f x ∀∈-≤,则实数a 的取值范围是_____________【答案】66⎡-⎢⎣⎦【解析】()f x 是奇函数且在0x >时是分段函数(以22,2a a 为界),且形式比较复杂,恒成立的不等式()()1f x f x -≤较难转化为具体的不等式,所以不优先考虑参变分离或是最值法.从数形结合的角度来看,一方面()f x 的图象比较容易作出,另一方面()1f x -可看作是()f x 的图象向右平移一个单位所得,相当于也有具体的图象.所以考虑利用图象寻找a 满足的条件.先将()f x 写为分段函数形式:()2222223,2,2,0x a x a f x a a x a x x a ⎧-≥⎪=-≤<⎨⎪-<<⎩,作出正半轴图象后再根据奇函数特点,关于原点对称作出x 负半轴图象.()()1f x f x -≤恒成立,意味着()f x 的图象向右平移一个单位后,其图象恒在()f x 的下方.通过观察可得在平移一个单位至少要平移26a 个长度,所以可得:26166a a ≤⇒-≤≤答案:66⎡-⎢⎣⎦. 例10【2018届河南省高三4月考试】已知函数.(1)若在处取得极值,求的值;(2)若在上恒成立,求的取值范围.【答案】(1);(2)上恒成立,时再分两种情况讨论可得时,在上恒成立,当时,根据二次函数的性质可得不满足题意,进而可得结果. 试题解析:(1),∵在处取到极值, ∴,即,∴.经检验,时,在处取到极小值. (2),令,①当时,,在上单调递减.又∵,∴时,,不满足在上恒成立.时,,单调递增,∴.又∵,∴,故不满足题意.③当时,二次函数开口向下,对称轴为,在上单调递减,,∴,在上单调递减.又∵,∴时,,故不满足题意.综上所述,.【精选精练】1.【2018届东莞市高三毕业班第二次综合考试】已知函数若不等式恒成立,则实数的取值范围为( )A. B.C. D.【答案】C2.若函数有极大值点和极小值点,则导函数的大致图象可能为()A. B.C. D.【答案】C则导函数在区间上为正数,在区间上为负数,在区间上为正数;观察所给的函数图象可知,只有C 选项符合题意. 本题选择C 选项. 3.已知函数在区间上是增函数,则实数的取值范围是( )A.B.C.D.【答案】A 【解析】二次函数的对称轴为;∵该函数在上是增函数;∴,∴,∴实数的取值范围是,故选B.4. 若||2p ≤,不等式212x px p x ++>+恒成立,则x 的取值范围是______【答案】x <或x > 【解析】思路:本题中已知p 的范围求x 的范围,故构造函数时可看作关于p 的函数,恒成立不等式变形为 ()2210x p x x -+-+>,设()()()22122f x x p x x p =-+-+-≤≤,即关于p 的一次函数,由图象可得:无论直线方向如何,若要()0f x >,只需在端点处函数值均大于0即可,即()()2020f f >⎧⎪⎨->⎪⎩,解得:x <或x >答案:x <或x > 【名师点睛】(1)对于不等式,每个字母的地位平等,在构造函数时哪个字母的范围已知,则以该字母作为自变量构造函数.(2)线段的图象特征:若两个端点均在坐标轴的一侧,则线段上的点与端点同侧. (3)对点评(2)的推广:已知一个函数连续且单调,若两个端点在坐标轴的一侧,则曲线上所有点均与端点同侧.5.设a R ∈,若0x >时均有()21110a x x ax ⎡⎤----≥⎡⎤⎣⎦⎣⎦,则a =_________【答案】32a =32a =答案:32a =6.【2018届二轮训练】当实数x ,y 满足240{10 1x y x y y +-≤--≤≥时,ax +y≤4恒成立,则实数a 的取值范围是________. 【答案】3,2⎛⎤-∞ ⎥⎝⎦【解析】要使平面区域在直线4y ax =-+的下方,则只要B 在直线上或直线下方即可,即214a +≤,得302a <≤,综上32a ≤,所以实数a 的取值范围是3,2⎛⎤-∞ ⎥⎝⎦,故答案为3,2⎛⎤-∞ ⎥⎝⎦. 7.【2018届二轮训练】已知函数f 1(x)=|x -1|,f 2(x)=13x +1,g(x)=()()122f x f x ++()()122f x f x -,若a ,b∈[-1,5],且当x 1,x 2∈[a,b]时,()()1212g x g x x x -->0恒成立,则b -a 的最大值为________. 【答案】5 【解析】[]15a b ∈-,,, 且[]()()1212120g x g x x x a b a b x x -∈∴-,,,<,> 恒成立,g x ∴()在区间[]a b ,上单调第增, ∵函数()()()()121212111322f x f x f x f x f x x f x xg x -+=-=+=+(),(),(),()][()[]121035{03f x x g x f x x ⎡⎤∈-⋃⎣⎦∴=∈,,,(),, 当[10x ∈-,) 时, 1g x x =-(),单调减;当[]10313x g x x ∈=+,时,(), 单调增; 当[]35x ∈,时, 1g x x =-(),单调递增. 05a b b a ∴==-,.的最大值为505-=. 故答案为5.8.【2018届吉林省长春市高三监测(三)】已知函数,若,则实数的取值范围是___________. 【答案】9.【2018届吉林省长春市高三监测(三)】已知函数,若,则实数的取值范围是___________. 【答案】【解析】当,当, 故.故答案为:10.当1x >时,不等式11x a x +≥-恒成立,则实数a 的最大值是__________. 【答案】3【解析】令()1(1)1f x x x x =+>-,则由题意可知()min f x a ≥, ∵1x >,∴()11111311f x x x x x =+=-++≥=--, 当且仅当111x x -=-,即2x =时,等号成立, ∴()min 3f x =,从而3a ≤. 故实数a 的最大值是3. 故答案为:3.()1f x x x=+的图象向右、向上均平移1单位得到,结合图象可得解.11.【2018届宁夏银川高三4月模拟】已知函数是定义在上的奇函数,当时,,给出以下命题:①当时,;②函数有个零点;③若关于的方程有解,则实数的取值范围是;④对恒成立,其中,正确命题的序号是__________.【答案】①④若方程有解,则,且对恒成立,故③错误,④正确.故答案为①④.12.函数的定义域为(为实数).(1)若函数在定义域上是减函数,求的取值范围;(2)若在定义域上恒成立,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)利用单调性的定义,根据函数在定义域上是减函数,可得不等式恒成立,从而可求的取值范围;(2)利用分离参数思想原题意等价于恒成立,∵,∴函数在上单调减,∴时,函数取得最小值,即.。

恒成立问题的几种常见解法

恒成立问题的几种常见解法
遗传学是生物学科主干知识的重要部分特别是有关孟德尔遗传定律和伴性遗传的知识是历年也必将是今后高考命题的热点和重点关于这一方面的遗传实验设计实验分析的题目由于可很好地考查学生的理解能力综合分析应用能力和语言表达能力因此在近几年的高考试题中时常出现
恒 成 立 问 题 的 几 种 常 见 解 法
张 月欣

a x + x + 1 对 x ∈ R 恒 成 立 j ( 1 ) a = 0 不 成 立 ( 2 ) { 0




f a > - 0 4 a≤ 0

围为 f x l 一 二 ≤x ≤3 1 .

变形4 : 已知函 ̄f ( x ) = l o g . ( a x ‘ + x + 1 ) 的 定 义 域 为 R, 求a 的 取 值 范 围. 总结 : 上述 经过 转 化 可 以 转 化 为题 型二 或题 型 三解 决 . 转化二 : 已 知 函数 的单 调 区间 , 求 参 数 的 范 围.

{ a △ > 0 ≤ 0 a ≤ 一 3 , 综 上 所 述 , a 的 取 值 范 围 为 { a l a ≤ 一 3 } .
变形5 : 已 知 函 数f ( x ) = x 一 3 x ‘ 十 a ) 【 , 在 x∈[ 一 1 , 2 ] 上 单 调 递 增, 求a 的取 值 范 围. 解: f ( x ) = x S - 3 x : + a x  ̄x ∈E - 12 ] 上单 调 递 增
要观察变量情况 , 灵 活 应 对 不 同情 况 , 做 到 可 以 随时 转 化 变量 。 千 万不 能钻 牛 角 尖. 题型二 : 二 次 函 数f ( x ) = a x + h x + c 对x ∈R恒 成立 问题 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考纲要求:1.理解不等式恒成立的基本概念,会根据不等式恒成立处理求参数范围的简单问题.2.通过自主学习与合作探究的教学过程,进一步提升学生自主学习的数学能力.3.通过本内容的教学,使学生掌握不等式恒成立与最值的关系,进一步了解数学各内容之间一种完美结合与渗透之美. 基础知识回顾:恒成立:关于x 的不等式f (x )≥0对于x 在某个范围内的每个值不等式都成立,就叫不等式在这个范围内恒成立。

若函数()f x 在区间D 上存在最小值min ()f x 和最大值max ()f x ,则: ①不等式()f x a >在区间D 上恒成立min ()f x a ⇔>; ②不等式()f x a ≥在区间D 上恒成立min ()f x a ⇔≥; ③不等式()f x b <在区间D 上恒成立max ()f x b ⇔<; ④不等式()f x b ≤在区间D 上恒成立max ()f x b ⇔≤;若函数()f x 在区间D 上不存在最大(小)值,且值域为(,)m n ,则: ①不等式()f x a >(或()f x a ≥)在区间D 上恒成立m a ⇔≥; ②不等式()f x b <(或()f x b ≤)在区间D 上恒成立n b ⇔≤; 应用举例【例1】【河南省2018年高考一模】已知定义在R 上的函数和分别满足,,则下列不等式恒成立的是A .B .C .D .【答案】C【详解】令,则,令,则,解得,则,令,,则函数在上单调递减,则,可得故选【点睛】本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题。

【例2】【河北省唐山一中2018届高三下学期强化提升考试(一)】设,当时,不等式恒成立,则的取值范围是()A. B. C. D.【答案】A,令则令,可得当时,递减;当时,递增;则当时,,故的解集为:且则的取值范围是故选【点睛】本题运用导数解答了恒成立问题,先通过导数求出不等式左边的最小值,然后代入不等式,构造新函数,再次运用导数求出最值,从而计算出结果,本题导数的运用性较强、综合性强,需要掌握其解答方法。

【例3】【河南省中原名校2018届高三高考预测金卷】定义在上的函数的导函数为,且,若存在实数使不等式对于恒成立,则实数的取值范围为()A. B.C. D.【答案】D【点睛】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.【例4】【河南省信阳高级中学2019届高三第一次大考】已知函数,,.(1)讨论的单调区间;(2)若恒成立,求的取值范围.【答案】(1)见解析;(2)(2)由题意,,恒成立,,综上,.点睛:(1)本题主要考查导数求函数的单调性、最值,考查导数证明不等式,意在考查学生对这些知识的掌握能力和分析推理能力转化能力. (2)解答本题的难点在于第2问中要构造新函数然后求函数的最大值,体现的主要是转化的思想.方法、规律归纳:上述例子剖析了数学高考中恒成立问题的常见题型及解法,解决这类题目要看清式子的特征,选择合适的方法,以便事半功倍.(1)对于含二次项恒成立的问题,注意讨论二次项系数是否为0,这是容易漏掉的地方.(2)恒成立问题一般需转化为最值,利用单调性证明在闭区间的单调性.(3)一元二次不等式在R上恒成立,看开口方向和判别式.(4)含参数的一元二次不等式在某区间内恒成立的问题通常有两种处理方法:一是利用二次函数在区间上的最值来处理;二是分离参数,再去求函数的最值来处理,一般后者比较简单.(5)值得一提的是,各种类型各种方法并不是完全孤立的,虽然方法表现的形式不尽相同,但其实质却往往与求函数的最值息息相关,从而在解数学函数与不等式恒成立的过程中,欣赏一下数学中的“统一美”,在努力攀登知识的高峰中,不要忘了多看身边的美景,度过有意义的时光.实战演练:1.【北京东城北京二中2018届高三上学期期中考试】已知函数,.()求函数的单调区间及最值.()若对,恒成立,求的取值范围.()求证:,.【答案】(1) 单调增区间是,单调减区间是,,无最小值.(2) (3)见解析令得,令,得,∴的单调增区间是,单调减区间是,,无最小值.()若对,恒成立,则对,恒成立,即对,恒成立,令,则,当时,显然,∴在上是减函数,∴当时,,∴,即的取值范围是.2.【江苏省南通市2018届高三最后一卷】已知函数,其中. (1)当时,求函数在处的切线方程;(2)若函数存在两个极值点,求的取值范围;(3)若不等式对任意的实数恒成立,求实数的取值范围.【答案】(1) .(2) .(3) .(2)由,可得因为函数存在两个极值点,所以是方程的两个正根,即的两个正根为所以,即所以令,故,在上单调递增,所以故得取值范围是(ii)若,即,令,得(舍去),,当时,,在上单调减;当时,,在上单调递增,所以存在,使得,与题意矛盾,所以不符题意.③若,令,得当时,,在上单调增;当时,,在上单调减.首先证明:要证:,即要证:,只要证:因为,所以,故所以其次证明,当时,对任意的都成立令,则,故在上单调递增,所以,则所以当时,对任意的都成立所以当时,即,与题意矛盾,故不符题意,综上所述,实数的取值范围是.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题. 3.【陕西省咸阳市2018年高考5月信息专递】已知函数(Ⅰ)当时,求函数在点处的切线方程;(Ⅱ)当时,求证:对任意的恒成立.【答案】(1)(2)见解析4.函数.(1)当时,求在区间上的最值;(2)讨论的单调性;(3)当时,有恒成立,求的取值范围.【答案】(1)(2)当时,在递增;当时,在递增,在上递减.当时,在递减.(3)【解析】试题分析:(1)在的最值只能在和区间的两个端点取到,因此,通过算出上述点并比较其函数值可得函数在的最值;(2)算出,对的取值范围分情况讨论即可;(3)根据(2)中得到的单调性化简不等式,从而求解不等式,解得的取值范围.试题解析:(1)当时,,∴,∵的定义域为,∴由,得.∴在区间上的最值只可能在取到,而,,,……4分(2),,①当,即时,,∴在上单调递减;②当时,,∴在上单调递增;③当时,由得,∴或(舍去)∴在上单调递增,在上单调递减;综上,当时,在单调递增;当时,在单调递增,在上单调递减.当时,在单调递减;5.【山东省肥城市2018届高三适应性训练】已知函数,. (1)当时,若关于的不等式恒成立,求的取值范围;(2)当时,证明:.【答案】(1);(2)见解析(2)由(1),当时,有,即.要证,可证,,即证,.构造函数.则.∵当时,.∴在上单调递增.∴在上成立,即,证得.∴当时,成立.构造函数.则.∵当时,,∴在上单调递减.∴,即.∴当时,成立.综上,当时,有.【点睛】解题时要学会用第一问己得到的结果或结论,如本题证明左边可由(1),当时,有,即.要证,只需证,,即证,.同时证明不等式恒成立时,要适当的为不等式变形。

6.【四川省南充高级中学2018届高三考前模拟考试】已知函数,. (1)当时,恒成立,试求实数的取值范围;(2)若数列满足:,,证明:.【答案】(1);(2)见解析则,令,则,在上单调递增,在上也单调递增,当时,,在上单调递增,恒成立,当时,在上单调递减,在上单调递增,而,所以在不恒成立,故实数的取值范围是;(2),所以,若,则,7.【郑州外国语学校2018届高三第十五次调研】已知.(1)求函数在点处的切线方程;(2)若时,若不等式对任意恒成立,求实数的取值范围.【答案】(1);(2)(2)由,原不等式即为记依题意有岁任意恒成立,求导得,当时,,则在上单调递增,有若,适合题意若,则,又,故存在使当时,,得在上单调递减,在,舍去,综上,实数的取值范围是.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件. 8.【四川省成都市第七中学2018届高三下学期三诊模拟考试】已知函数,其中;(Ⅰ)若函数在处取得极值,求实数的值,(Ⅱ)在(Ⅰ)的结论下,若关于的不等式,当时恒成立,求的值.(Ⅲ)令,若关于的方程在内至少有两个解,求出实数的取值范围. 【答案】(1)(2) (3)(Ⅱ)当时,整理得令,则,所以,即∴(Ⅲ)令,,构造函数即方程在区间上只少有两个解又,所以方程在区间上有解当时,,即函数在上是增函数,且,所以此时方程在区间上无解当时,,同上方程无解当时,函数在上递增,在上递减,且要使方程在区间上有解,则,即所以此时当时,函数在上递增,在上递减,且,此时方程在内必有解,当时,函数在上递增,在上递减,且所以方程在区间内无解综上,实数的范围是点睛:本题考查导数知识的综合运用,考查函数的极值,考查恒成立问题,考查学生分析解决问题的能力,难度大.9.【青海省西宁市2018届高三下学期复习检测二】已知函数.(Ⅰ)若曲线在处的切线方程为,求的单调区间;(Ⅱ)若时,恒成立,求实数的取值范围.【答案】(1)单调递增区间为:和,单调递减区间为:(2)在和上单调递增,在上单调递减;即的单调递增区间为和,单调递减区间为(Ⅱ)当时,恒成立,即,即,即构造函数,,;,;;,综上所述:实数的取值范围是点睛:本题考查导数的几何意义、利用导数研究函数的单调性、极值和最值等知识,意在考查学生的逻辑思维能力、转化能力和数学运算能力.10.【河北省石家庄二中2018届高三三模】已知函数,其中为实常数.(1)若是的极大值点,求的极小值;(2)若不等式对任意,恒成立,求的最小值.【答案】(1)(2).此时.则所以在上为减函数,在上为增函数.所以为极小值点,极小值.(Ⅱ)不等式即为,所以.(i)若,则,.当,时取等号;11.【吉林省吉大附中2018届高三第四次模拟考试】已知函数,.(I)若恒成立,求实数的取值范围;(Ⅱ)当取(I)中的最小值时,求证: .【答案】(1)(2)见解析【解析】分析:(1)根据,构造函数,求出导函数.根据导函数的情况分类讨论在不同范围时满足不等式的解,求出的取值范围。

相关文档
最新文档