初一解一元一次方程应用60-学生用卷

合集下载

初一数学一元一次方程应用题复习练习及答案

初一数学一元一次方程应用题复习练习及答案

初一数学一元一次方程应用题复习练习及答案列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。

(2)根据题意找出能够表示应用题全部含义的一个相等关系。

(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。

(4)解方程:求出未知数的值。

(5)检验后明确地、完整地写出答案。

检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。

2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。

(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。

(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。

(4)商品利润率问题:商品的利润率 ,商品利润=商品售价-商品进价。

(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。

(6)行程类应用题基本关系:路程=速度×时间。

相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。

追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。

环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。

(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为: 。

1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?甲处乙处原有人数2718现有人数27+18-相等关系2变题 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析 设应调往甲处人,题目中涉及的有关数量及其关系可以用下表表示:甲处乙处原有人数2718增加人数20-现有人数27+18+20-等量关系+23某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?6某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?7一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。

中考数学专题《一元一次方程的应用》专题讲练原卷

中考数学专题《一元一次方程的应用》专题讲练原卷

专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。

1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。

在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。

长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。

我们称这类关系为约定型数量关系。

3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。

我么把这类数量关系称为基本数量关系。

单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。

3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。

初一数学一元一次方程应用题

初一数学一元一次方程应用题

初一数学一元一次方程应用题
题目:
小明距离学校的直线距离为5公里,他骑自行车的速度是
20公里/小时,他步行的速度是5公里/小时,如果他骑自
行车去上学需要20分钟,那么他步行去上学需要多少时间?
解题思路:
设步行时间为x小时,则步行距离为5x公里。

根据题意,骑自行车去上学需要20分钟,即1/3小时,并且骑自行车速度为20公里/小时,则自行车行驶距离为
20/3公里。

由于步行距离+自行车行驶距离=5公里,可得出方程:5x + 20/3 = 5。

通过解一元一次方程,求得x的值即可得到答案。

解题步骤:
将方程5x + 20/3 = 5化简为整数形式:15x + 20 = 15。

移动常数项,得到15x = 15 - 20,即15x = -5。

两边都除以15,得到x = -1/3。

由于时间不能为负数,所以所以小明步行去上学需要的时间为0小时。

初一上数学一元一次方程经典应用题(较难)

初一上数学一元一次方程经典应用题(较难)

初一上数学一元一次方程经典应用题(较难)1.(9分)“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费:(1)某用户1月份共交水费65元,问1月份用水多少吨?(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43. 2元,该用户2月份实际应交水费多少元?(1))∵40×1+0.2×40=48<65,∴用水超过40吨,设1月份用水x吨,由题意得:40×1+(x-40)×1.5+0.2x=65,解得:x=50,答:1月份用水50吨.(2)∵40×1+0.2×40=48>43.2,∴用水不超过40吨,理工作。

假设每个人的工作效率相同那么先安排整理的人员有多少人等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.【解析】设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.3公园推出集体购票优惠票价的办法其门票价目如下表七(1)、(2)两班共104人其中七(1)班人数多于七(2)班,但都不超过70人),准备周末去公园玩若两班都以班为单位购票一共要支付1140元.(1)如果两班联合起来作为一个团体购票那么比以班为单位购票节约几元(2)试问两班各有多少名学生(3)如果七(1)班有10人不能前往旅游那么又该如何购票才最省钱【解析过程】(1)570-104×4=570-416=154(元);所以比以班为单位购票可以节约154元钱.(2)设七(1)班有学生x人,七(2)班有学生y 人.根据不同的票价,可以得到x+y=104,①x=53时,5×104=520(元)舍去,②54≤x<100时,,5x+6(104-x)=570,解得:x=54③100<x<104时,4x+6(104-x)=570,x=27(舍去),综上所述:七(1)班有学生54人,七(2)班有学生50人.(3)若少10人,则购买94张票,即5×94=470(元);若购买101张票,则为101×4=404(元).所以购买101张票合算.4.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产 3 种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?(1)两种方案:一是购A,B两种电视机各25台;二是购A种电视机35台,C种电视机15台;(2)第二种方案分析:(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:AB组合,AC组合,BC组合;等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.(1)解分三种情况计算:①设购A种电视机x台,B种电视机y台②设购A种电视机x台,C种电视机z台③设购B种电视机y台,C种电视机z台(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购A种电视机25台,B种电视机25台;或购A种电视机35台,C种电视机15台.购买A种电视机35台,C种电视机15台获利最多.(1)、只购进AB两种型号时设购进A型x台,B型50-x台1500x+2100(50-x)=90000解得 x=25则购进A型25台,B型25台(2).只购进BC两种型号时设购进B型x台,C型50-x台2100x+2500(50-x)=90000解得 x=87.5 (舍去)(3).只购机AC两种型号时设购进A型x台,C型50-x台1500x+2500(50-x)=90000解得 x=35此时买进A型35台,B型15台(4).当只购进AB两种型号时利润=25×150+25×200=8750 元当只购进AC两种型号时利润=35×150+15×250=9000 元所以选择购进 AC 两种型号的电视机1)两种方案:一是购A,B两种电视机各25台;二是购A种电视机35台,C种电视机15台;(2)第二种方案【解析】试题分析:(1)设购进A种电视机x台,B种电视机y台,分①当选购A,B两种电视机时,②当选购A,C两种电视机时,③当购B,C两种电视机时,这三种情况分析即可;(2)分别计算出(1)中求得两种的方案的利润,再比较即可作出判断.(1)设购进A种电视机x台,B种电视机y 台①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000,解得x=25,50-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000,解得x=35,50-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=90000 4y=350,不合题意可选两种方案:一是购A,B两种电视机各25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)①,可获利150×25+250×15=8750(元)若选择(1)②,可获利150×35+250×15=9000(元)故为了获利最多,选择第二种方案.5.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.这一天有6名工人加工甲种零件【解析】【解析】设这一天有名工人加工甲种零件,则这一天加工甲种零件个,乙种零件个.根据题意,得,解得.答:这一天有6名工人加工甲种零件.6.某工厂计划生产一种新型豆浆机,每台豆浆机需要3个A种零件和5个B种零件正好配套,已知车间每天能生产A种零件4个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应该安排多少天生产甲种零件,多少天生产乙种零件?解:设x天生产甲种零件,21-x天生产乙种零件使所生产的零件全部配套。

初中一元一次方程应用题

初中一元一次方程应用题

初中一元一次方程应用题
初中一元一次方程应用题示例:
1. 甲、乙两人在东西方向的公路上行走,甲在乙的西边300m处.若甲、
乙两人同时向东走30min后,甲正好追上乙;若甲、乙两人同时相向而行,2min后相遇,问甲、乙两人的速度各是多少?
2. 甲、乙两地相距280km,一辆汽车从甲地开往乙地用了6小时,返回时
用了4小时,这辆汽车往返的平均速度是每小时多少千米?
3. 小王在超市用若干元钱买了某种品牌的牛奶18盒,过一段时间再去该超市,发现这种牛奶进行让利销售,每盒让利元,他同样用若干元钱买这种牛奶20盒,比上次多花了4元钱,小王第一次买这种牛奶花了 _______ 元.
4. 某地为了保持水土资源实行退耕还林,如果2018年退耕a万亩,以后每年比上一年增加10%,那么到2025年一共退耕 ( )
A. 10a(^8 - 1)
B. a(^8 - 1)
C. 10a(^7 - 1)
D. a(^7 - 1)
5. 小明在求一个多项式减去$2x^{2} - 3x + 5$时,因一时疏忽把减号写成
了加号,并且错把$x = 2$代入式子中,结果得到$7$.你能帮助小明求出
原来的多项式吗?并求出当$x = - 1$时,多项式的值是多少?。

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.B.1C.-2D.-10.方程│3x│=18的解的情形是().A.有一个解是6B.有两个解,是±6C.无解D.有没有数个解11.若方程2ax-3=5x+b无解,则a,b应满意().A.a≠,b≠3B.a=,b=-3C.a≠,b=-3D.a=,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某阛阓在统计本年第一季度的贩卖额时发觉,仲春份比一月份增长了10%,三月份比仲春份削减了10%,则三月份的贩卖额比一月份的贩卖额().A.增长10%B.削减10%C.不增也不减D.削减1%15.在梯形面积公式S=(a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1B.5C.3D.416.甲组有28人,乙组有20人,则以下分配办法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球竞赛的划定规矩为胜一场得3分,平一场得1分,负一场是分,•一个队打了14场竞赛,负了5场,共得19分,那么这个队胜了()场.A.3B.4C.5D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-120.解方程:(x-1)-(3x+2)= -(x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据相识,火车票价按“”的办法来肯定.A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名ABCDEF G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0比方:要肯定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客XXX乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到XXX手中的票价是66元,马上说下一站就到了.请问XXX是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元4.5元4元某校初一甲、乙两班共103人(个中甲班人数多于乙班人数)去游该公园,如果两班都以班为单元划分购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)谜底:一、1.32.-3(点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=-,得x=)4.x+3x=2x-65.y= - x6.525(点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4[点拨:设需x天完成,则x(+)=1,解得x=4]21.解:设卡片的长度为x厘米,按照图意和题意,得5x=3(x+10),解得x=15以是需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.二、9.D10.B(点拨:用分类讨论法:当x≥时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故此题应选B)11.D(点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必需使2a-5=0,a=,b+3≠,b≠-3,故本题应选D.)12.B(点拨;在变形的进程当中,使用分式的性子将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变成整数方程)13.C(点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B(点拨:由公式S=(a+b)h,得b= -3=5厘米)16.D17.C18.A(点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=336,2837,28dhgghsaqy数学题要细心,慢慢做,要做对。

初一一元一次方程:行程问题应用题专题

初一一元一次方程:行程问题应用题专题

《一元一次方程:行程问题》解答题【基本知识】路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.行程问题:解行程问题的关键是抓住时间关系或路程关系,借助草图分析来解决问题.路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2一、【求距离】1、七年级列队以每小时6千米的速度去甲地,小刚从队尾以每小时10千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长。

【解】设队伍长度x 千米 ,等量:时间81164=+x x 52=∴x 答:略 2、队伍以每小时4千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了4.5分钟,求队伍的长。

【解】605.4168=+x x x = 0.4千米 3、队伍以每小时6千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了5分钟,求队伍的长。

【解】605186=+x x x = 0.375千米 4、一队学生从学校出发去部队军训,以每小时5千米的速度行进4.5千米时,一名通讯员以每小时14千米的速度从学校出发追赶队伍,他在离部队6千米处追上了队伍,设学校到部队的距离是x 千米,求x . 【解】565.4146--=-x x ∴ 13=x 5、已知某铁路桥长500m ,现在一列火车匀速通过该桥,火车从开始上桥到过完桥共用了30s ,整列火车完全在桥上的时间为20s ,则火车的长度为多少m ?【解】设火车的长度为x m ,根据火车的速度不变可得方程:2050030500x x -=+ 2(500+x )=3(500﹣x ) x =100. 答:火车的长度为100m .6、王先生计划骑车以每小时10千米的速度由A 地到B 地,这样便可在规定时间到达B 地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B 地,求A 、B 两地间的路程.【解】设由A 、B 两地的路程是 x 千米,则60560101210++=x x 解得:x=15,答:A 、B 两地间的路程是15千米 7、李明和王华步行同时从A 、B 两地出发,相向而行,在离A 地52米处相遇,到达对方出发点后,两人立即以原来的速度原路返回,又在离A 地44米处相遇,求A 、B 两地距离多少米?解:(行程问题,全是路程比与比例)设AB 相距x 千米李明 王华 路程和52 x -52 x2x -44 3x31344252==-∴x x x 8、某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【解答】设小明家到西湾公园距离x 千米, 根据题意得:6.1408=-x x 解得:x =16. 答:小明家到西湾公园距离16千米.9、小张和父亲预定搭乘家门口的公交汽车赶往火车站,去家乡看望爷爷。

初一上册数学解一元一次方程练习题

初一上册数学解一元一次方程练习题

2021-2022学年度 秋季 七年级上学期 人教版数学解一元一次方程练习题1.解方程(1)162=+x (2)7233+=+x x 2.解方程:22141+-=x x 3. 解方程:17)5.0(4=++x x4. 解方程:4)1(2=--x5. 解方程:)20(41)14(71+=+x x6. 解方程:)7(3121)15(51--=+x x 7. 解方程:x x x 65)2132(342=⎥⎦⎤⎢⎣⎡--8. 解方程:3.05.03.02.03.05.0x x -=- 9. 解方程:3)7(2235)3(2--=+x x x10. 解方程:)2(512)1(21+-=-x x 11. 解方程: 1615312=--+x x人教版七年级数学上册必须要记、背的知识点1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

一元一次方程的解法及其应用(含答案)初中数学

一元一次方程的解法及其应用(含答案)初中数学

一元一次方程的解法及其应用[教学目标]1. 经历从具体问题中的数量相等关系,列出方程的过程,体会并认识到方程是刻画现实世界的一个有效的数学模型。

2. 了解方程、一元一次方程以及方程的解等基本概念,了解方程的基本变形及其在解方程中的作用。

3. 会解一元一次方程,并经历和体会解方程中“转化”的过程和思想,了解一元一次方程解法的一般步骤,并能正确、灵活运用。

4. 会根据具体问题中的数量关系列出一元一次方程并求解,能根据问题的实际意义检验所得结果是否合理。

5. 通过实践与探索过程,体会数学建模思想,提高分析和解决实际问题的能力。

【典型例题】例1. 已知()||m x m +=-320032是关于x 的一元一次方程,求m 的值。

解:由一元一次方程的定义可知: ||m m -=+2130,且≠由||||m m m -===2133,得,则± 又由m m +-303≠,得≠ ∴m =3小结:方程ax b a a b +=00()≠,且、为已知数是关于x 的一元一次方程,这里包含有(1)未知数只有一个,且未知数的最高次数是“1”。

(2)未知数的系数合并后不能为零。

(3)它必须是等式。

例2. 已知x =23是一元一次方程334325()m x x m-+=的解,则m 的值是多少? 解:因为x =23是方程334325()m x x m-+=的解,所以3342332235()m m -+=××即33215m m -+=解得m =-14小结:方程的解是指满足方程两边相等的未知数的值,x =23是原方程的解,则把原方程中的x 换成23后等式仍然成立。

从而可以得到另一个关于m 的方程求解。

例3. 解下列方程:(1)5263x x +=-(2)0408613...x x -=- (3)30%70%(440%x x x ++=-)(4)32234122[()]xx ---= (5)97352775x x +=-(6)21431233436()()()x x x -+-=-+ (7)x x +--=-40230516...解:(1)5263x x +=-移项得: 2365+=-x x 合并同类项得:5=x ∴x =5(2)由方程0408613...x x -=-两边同时乘以10得: 486013x x -=-413608x x +=+ 1768x = x =4(3)30%70%(440%x x x ++=-) 方程两边都乘以100得: 3070440x x x ++=-()3744x x x ++=-() 372840x x x +++= 1428x =- x =-2(4)32234122[()]xx ---=去中括号得:()xx 4132---=xx 4132---= x x --=1648 -=324x x =-8 (5)97352775x x +=-97273575x x -=--x =-2(6)21431233436()()()x x x -+-=-+ 21431233436()()()x x x -----=()()x ---=321412346436()x -=4126x -= 418x =x =92(7)x x +--=-40230516...545022320516().()..x x +--=-××5202616x x +-+=-. 3276x =-. x =-92.例 4. 如果关于x 的方程23523331432x x n x n n -=--=+-与()的解相同,求()n -3582的值。

人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)

人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)

人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)一、单选题1.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x 折,由题意列方程,得( )A.()3000x 200015%=-B.3000x 20005%2000-= C.()x 3000200015%10⋅=⋅- D.()x 3000200015%10⋅=⋅+ 2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏5.某商店购进甲、乙两种商品共160件,甲每件进价为15元,售价20元;乙每件进价为35元,售价45元;售完这批商品利润为l100元,设甲为x 件,则购进甲商品的件数满足方程( )A.30x+15(160-x)=1100B.5(160-x)+10x=1100C.20x+25(160-x)=1100D.5x+10(160-x)=l1006.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款( )A .288元B .332元C .288元或316元D .332元或363元二、填空题7.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是_____.8.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.三、解答题9.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?10.某水果批发市场苹果的价格如表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)11.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?12.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:⑴超市如何进货,进货款恰好为46000元.⑴为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?13.13.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折,乙超市购物⑴不超过200元,不给予优惠;⑴超过200元而不超过500元,打9折;⑴超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少?(2)当标价总额是多少元时,甲乙超市实付款一样?14.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?15.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?16.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.17.列方程解应用题:“双十一”期间,某电商决定对网上销售的商品一律打8折销售,黄芳购买一台某种型号的手机时发现,每台手机比打折前少支付400元,求每台该种型号的手机打折前的售价.18.列方程解应用题某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?19.列方程...解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中购进甲种商品的件数不变,购进的乙种商品的件数是第一次购进乙种商品件数的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?20.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克?(2)当天卖完这些番茄和长豆角能盈利多少元?21.某文教店购进一批钢笔,按进价提高40%后标价,为了增加销量,文教店决定按标价打八折出售,这时每支钢笔的售价为28元.(1)求每支钢笔的进价为多少元;(2)该文教店卖出这批钢笔的一半后,决定将剩下的钢笔以每3支80元的价格出售,很快销售完毕,销售这批钢笔文教店共获利2800元,求该文教店共购进这批钢笔多少支?22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款___元.(用含x的代数式表示)若该客户按方案二购买,需付款___元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.23.“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点。

初一数学《一元一次方程解应用题》典型例习题及答案

初一数学《一元一次方程解应用题》典型例习题及答案

《一元一次方程解应用题》典型例习题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织七年级师生春游,若单独租用45座的客车若干辆正好坐满,租金每辆250元,若单独租用60座的客车可少租1辆,且有30个空余座位,租金每辆300元.(1)该校参加春游的师生共有多少人?(2)如果这两种车都租用了,且60座的车比45座的车多租了一辆,这样租车的总费用要比单独某一种车辆更省钱,求按这种方案租车需要租金多少元?2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、5个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?3、利润问题例3 、一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式1:一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______;一件衣服的进价为x元,若要利润率是20%,应把售价定为________.变式2:一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式3:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.;一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?4、工程问题:例4. 一件工作,甲单独做20小时完成,乙单独做12小时完成。

初一一元一次方程应用题八种类型解析与练习

初一一元一次方程应用题八种类型解析与练习

初一一元一次方程应用题八种类型解析与练习初一一元一次方程应用题的八种类型解析与练解一元一次方程应用题的一般步骤如下:1.审题:弄清题意。

2.找出等量关系:找出能够表示本题含义的相等关系。

3.设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程。

4.解方程:解所列的方程,求出未知数的值。

5.检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。

1.和、差、倍、分问题:1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

3)增长量=原有量×增长率;现在量=原有量+增长量。

2.等积变形问题:等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。

①圆柱体的体积公式V=底面积×高=πr²h。

②长方体的体积V=长×宽×高=abc。

3.劳力调配问题:这类问题要搞清人数的变化,常见题型有:1)既有调入又有调出;2)只有调入没有调出,调入部分变化,其余不变;3)只有调出没有调入,调出部分变化,其余不变。

4.数字问题:1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,1≤b≤9,1≤c≤9),则这个三位数表示为:100a+10b+c。

2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n-1表示。

然后抓住数字间或新数、原数之间的关系找等量关系列方程。

5.商品销售问题:1)商品利润=商品售价-商品成本价。

2)商品利润率=商品利润/商品成本价×100%。

七年级一元一次方程常见应用题

七年级一元一次方程常见应用题

七年级一元一次方程常见应用题一元一次方程常见应用题一、课本上常用等量关系:常见等量关系有总量=各部分量的和,暗示同一个量的两个不同的式子相等。

1、某人共用142元买了两种水果共20千克。

已知甲种水果每千克8元,乙种水果每千克6元,问这两种水果各有多少千克?2、解放军战士在一次施工中,要运回75吨砂子。

现出动大、小两种汽车17辆,大小汽车每辆各运砂5吨/次、3吨/次。

这些砂子正好一次运完。

问大、小汽车各几辆?3、把一些图书分给某班学生。

如果每人分4本,则剩余12本;如果每人分5本,则还缺30本。

问该班有多少学生?4、一宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住。

那么这宿舍有多少间,人有多少个?二、行船问题:常用等量关系有顺流路程=逆流路程,顺流速度=静水速度+水流速度,逆水速度=静水速度-水流速度。

1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离?2、一架飞机飞舞在两个城市之间,风速为每小时24千米。

顺风飞舞需要2小时50分钟,逆风飞舞需要3小时,求两城市间距离。

3、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。

已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。

4、轮船在静水中的速度为每小时20千米,水流速度为每小时4千米。

从甲码头顺流航行到一码头,再返回到甲码头,共用5小时。

求甲乙两个码头的距离。

三、工程问题:常用等量关系有工作总量=工作效率×工作时间,一般设工作总量为单位1.1、一件工程,甲独做需15天完成,乙独做需12天完成。

现先由甲、乙合作5天后,甲有其他任务,剩下工程由乙单独完成。

问乙还要几天才能完成全部工程?2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、已知某水池有进水管与出水管各一根。

人教版初一数学一元一次方程应用题及答案

人教版初一数学一元一次方程应用题及答案

人教版初一数学一元一次方程应用题及答案精心整理一元一次方程经典应用题知能点1:市场经济、打折销售问题在市场经济中,商品的利润率和销售额是重要的指标。

根据商品利润和利润率的计算公式,可以得到以下应用题:1.某商店开张,所有商品按八折出售。

一种皮鞋进价60元一双,八折出售后商家获利润率为40%,求该种皮鞋的标价和优惠价。

2.一家商店将某种服装按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利15元,求该种服装每件的进价。

3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,求该种自行车每辆的进价。

可以列出方程进行求解。

4.某商品的进价为800元,出售时标价为1200元,商店准备打折出售,但要保持利润率不低于5%,求至多打几折。

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中打八折优惠,结果被投诉并罚款,求该种彩电的原售价。

知能点2:方案选择问题在方案选择问题中,需要考虑各种方案的获利情况和可行性。

以下是一个例子:6.某蔬菜公司有一种绿色蔬菜,经过不同程度的加工后,每吨的利润不同。

当地一家公司收购140吨蔬菜,但加工能力有限,公司需要在15天内完成销售或加工任务。

为此,公司研制了三种可行方案,需要选择获利最多的方案。

方案一:将蔬菜全部进行粗加工。

方案二:尽可能多地进行粗加工,剩余蔬菜直接销售。

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并在15天内完成任务。

需要综合考虑加工能力、获利情况和时间限制,选择最优方案。

7.XXX提供两种通讯业务。

使用“全球通”的用户需先缴纳50元的月基础费,之后每通话1分钟需要支付0.2元的电话费。

而使用“神州行”的用户则不需要缴纳月基础费,但每通话1分钟需要支付0.4元的电话费(这里均指市内电话)。

如果一个月内通话x分钟,那么两种通话方式的费用分别为y1元和y2元。

我们可以得到以下函数关系式:y1 = 50 + 0.2xy2 = 0.4x如果要求两种通话方式的费用相同,我们可以得到以下等式:50 + 0.2x = 0.4x解方程可得:x = 125因此,当一个月内通话125分钟时,两种通话方式的费用相同。

11一元一次方程的应用(一)-学生版

11一元一次方程的应用(一)-学生版

教学辅导教案1.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若﹣3x=5,则x=﹣C.若+=1,则2(x﹣1)+3(x+1)=1D.若﹣x=1,则x=﹣32.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b3.如果x=y,a为有理数,那么下列等式不一定成立的是()A.1﹣y=1﹣x B.x2=y2 C.=D.ax=ay 4.小华在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是y﹣=y﹣■,怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是:y=﹣6,小华很快补好了这个常数,并迅速完成了作业.这个常数是()A.﹣4B.3C.﹣4D.45.解方程:.第1页共12页6.我们规定吗,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x﹣4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.1.用7.8米长的铁丝做成一个长方形框架,使长比宽多1.2米,求这个长方形框架的宽是多少米?设长方形的宽是x米,可列方程为( ).A.x+(x+1.2)=7.8B.x+(x-1.2)=7.8C.2[x+(x+1.2)]=7.8D.2[x+(x-1.2)]=7.82.有一位工人师傅要锻造底面直径为40 cm的“矮胖”形圆柱,可他手上只有底面直径是10 cm,高为80 cm的“瘦长”形圆柱,试帮助这位师傅求出“矮胖”形圆柱的高.3.如图所示是用铁丝围成的一个梯形,将其改成一个长和宽比为2∶1的长方形,那么该长方形的长和宽分别为多少?4.(1)某商品成本100元,提高40%后标价,则标价为__________元;(2)500元的9折是__________元,__________元的八折是340元;(3)一件商品的进价是40元,售价是70元,这件商品的利润率是__________.5.在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?6.某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?7.某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?8.某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?1.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)2.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?3.A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)8.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?9.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.10.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?1.几何图形中常用的公式 (1)常用的体积公式长方体的体积=长×宽×高;正方体的体积=棱长×棱长×棱长;圆柱的体积=底面积×高=πr 2h ;圆锥的体积=13×底面积×高=13πr 2h . (2)常用的面积、周长公式长方形的面积=长×宽;长方形的周长=2×(长+宽);正方形的面积=边长×边长;正方形的周长=边长×4;三角形的面积=12×底×高; 平行四边形的面积=底×高;梯形的面积=12×(上底+下底)×高; 圆的面积=πr 2;圆的周长=2πr .2.形积变化问题中的等量关系形积变化问题中,物体的形状和体积会发生变化,但问题中一定有相等关系.分以下几种情况:(1)形状发生了变化,体积不变.其相等关系是:变化前物体的体积=变化后物体的体积.(2)形状、面积发生了变化,周长不变.其相等关系是:变化前图形的周长=变化后图形的周长.(3)形状、体积不同.根据题意找出体积之间的关系,即为相等关系.3.等长变形问题等长变形,是指用物体(一般用铁丝)围成不同的图形,图形的形状、面积发生了变化,但周长不变.解答此类问题,可以利用周长不变设未知数,寻找相等关系列出方程.面积问题中常常会用到特殊图形的周长和面积公式.如三角形、平行四边形、长方形、正方形、梯形、圆等;记住常见的几何图形的面积公式,抓住周长不变的特征是解决等长变形问题的关键.4.商品销售中与打折有关的概念及公式(1)与打折有关的概念∶进价:也叫成本价,是指购进商品的价格.∶标价:也称原价,是指在销售商品时标出的价格.∶售价:商家卖出商品的价格,也叫成交价.∶利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润.∶利润率:利润占进价的百分比.∶打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.(2)利润问题中的关系式∶售价=标价×折扣;售价=成本+利润=成本×(1+利润率).∶利润=售价-进价=标价×折扣-进价.∶利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价. 5.列方程解应用题的一般步骤及注意事项(1)列方程解应用题步骤∶审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系. ∶找:找出能够表示应用题全部含义的一个相等关系.∶设:设未知数(一般求什么就设什么).∶列:根据相等关系列出方程.∶解:解所列的方程,求出未知数的值.∶验:检验所求出的解是否符合实际意义.∶答:写出答案.(2)列方程解应用题应注意∶列方程时,要注意方程两边应是同一类量,并且单位要统一.∶解、答时必须写清单位名称.∶求出的方程的解要判断是否符合实际意义,即必须检验.6.利用一元一次方程确定商品的利润与商品的利润有关的实际问题主要有以下三类:(1)确定商品的打折数利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.(2)确定商品的利润根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.(3)优惠问题中的打折销售商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.1.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54-x=20%×108 B.54-x=20%(108+x)C.54+x=20%×162 D.108-x=20%(54+x)2.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A.22+x=2×26 B.22+x=2(26-x)C.2(22+x)=26-x D.22=2(26-x)3.甲数是2013,甲数是乙数的14还多1.设乙数为x,则可列方程为()A.4(x-1)=2013 B.4x-1=2013C.14x+1=2013 D.14(x+1)=20134.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,设有x辆汽车,可列方程()A.45x-28=50(x-1)-12 B.45x+28=50(x-1)+12C.45x+28=50(x-1)-12 D.45x-28=50(x-1)+125.我校初一所有学生参加2012年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A.30x-8=31x+26 B.30x+8=31x+26C.30x-8=31x-26 D.30x+8=31x-266.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.327.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台9.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:0010.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.1001.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为______元.2.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省______元.3.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了______千克.4.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票______张.5.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是______元.6.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为______.7.小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程______.8.“比a的2倍小3的数等于a的3倍”可列方程表示为:______.9.一台电脑的进价为2000元,原标价为3000元,现打折销售,要使利润率保持20%,那么需要在原标价的基础上打几折?设需要打x折.可列方程为______.10.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为______.。

初一数学一元一次方程试题答案及解析

初一数学一元一次方程试题答案及解析

初一数学一元一次方程试题答案及解析1.(1)解不等式:5(x-2)+8<7-6(x-1)(2)若(1)中的不等式的最大整数解是方程2x-ax=3的解,求a的值.【答案】(1)x<;(2)a=-1.【解析】(1)根据不等式的解法:先去括号移项,然后合并同类项,系数化为1,求出不等式的解;(2)根据(1)所求的不等式的解,可得方程2x-ax=3的解为1,代入求a的值.试题解析:(1)去括号得:5x-10+8<7-6x+6,移项合并同类项得:11x<15,系数化为1得:x<;(2)由(1)得,方程2x-ax=3的解为1,将x=1代入得:2-a=3,解得:a=-1.【考点】1.解一元一次不等式;2.一元一次方程的解;3.一元一次不等式的整数解.2.初一(19)班有48名同学,其中有男同学名,将他们编成1号、2号、…,号。

在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,号同学给一半同学打过电话,由此可知该班女同学的人数是()A.22B.24C.25D.26【答案】D.【解析】已知初一(19)班有48名同学,则一半学生数为24,根据1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,求解即可.∵初一(19)班有48名同学,∴一半学生数为24,∵1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,∴,则该班女同学的人数是48-22=26人,故选D.【考点】应用类问题.3.的倒数与互为相反数,那么的值是()A.B.C.3D.-3【答案】C【解析】由题意可知,解得,故选C.4.若方程的解为,则的值为( )A.B.C.D.【答案】C【解析】将代入中,得,解得故选C.5.江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.【答案】【解析】解:设粗加工的该种山货质量为,根据题意,得,解得.答:粗加工的该种山货质量为.6.右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.【答案】28.8【解析】设出洗发水的现价是x元,直接得出有关原价的一元一次方程,再进行求解.设洗发水的现价为x元,由题意得:0.8×36=x,解得:x=28.8(元).故答案为:28.8元.7.若当时,代数式的值为,那么当时,该代数式的值是_______.【答案】5.【解析】∵代入可得,解得:.把,代入代数式得:=.故答案为:5.【考点】1.解一元一次方程;2.代数式求值.8.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【答案】(1)购买一块A型小黑板需要l00元,购买一块8型小黑板需要l20元;(2)有两种购买方案:方案一:购买A型小黑板21块,购买8型小黑板39块;方案二:购买A型小黑板22块。

新湘教版七年级数学上册一元一次方程的应用专项练习

新湘教版七年级数学上册一元一次方程的应用专项练习

新湘教版七年级数学上册一元一次方程的应用专项练习新湘教版七年级数学上册一元一次方程的应用专项练一、选择题(共12小题)1.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%。

设把x公顷旱地改为林地,则可列方程()A。

54-x=20%×108B。

54-x=20%(108+x)C。

54+x=20%×162D。

108-x=20%(54+x)2.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元。

A。

140B。

120C。

160D。

1003.某品牌自行车1月份销售量为100辆,每辆车售价相同。

2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元。

2月份与1月份的销售总额相同,则1月份的售价为()A。

880元B。

800元C。

720元D。

1080元4.XXX大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%。

现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A。

562.5元B。

875元C。

550元D。

750元5.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A。

25台B。

5台C。

75台D。

100台6.设有x个人共种m棵树苗,如果每人中8棵,则剩下2棵树苗未种,如果每人种1棵,则缺6棵树苗。

根据题意,列方程正确的是()A。

-2=+6B。

+2=-6C。

x=8m-2D。

x=m-67.某班分两组去两处植树,第一组22人,第二组26人。

现第一组在植树中遇到困难,需第二组支援。

问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程()A。

22+x=2×26B。

22+x=2(26-x)C。

2(22+x)=26-xD。

22=2(26-x)8.甲数是2013,甲数是乙数的还多1.设乙数为x,则可列方程为()A。

初一数学一元一次方程应用题

初一数学一元一次方程应用题

1一元一次方程的应用一、和、差、倍、分问题:1.某校初三年级甲、乙两班学生人数相等,甲班男女人数之比为4:5,乙班男生人数占全班人数的 60%,若把甲乙两班合成一个新团队,则新团队男生人数比女生人数多 4 人,求新团队总人数.2.一群学生前去位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽 .歇息时,他们坐在一同,大家发现了一个风趣的现象,每位男生看到白色的安全帽和红色的同样多,而每位女同学看到白色的安全帽是红色的安全帽的 2 倍.求这群学生的总人数 .3.当前广州市小学和初中在任校生共有约128 万人,此中小学生在校人数比初中生在校人数的2倍多 14 万人 (数据根源: 2005 学年度广州市教育统计手册).(1)求当前广州市在校的小学生人数和初中生人数;(2)假定今年小学生每人需交杂费500 元,初中生每人需交杂费1000 元,而这些花费所有由广州市政府拨款解决,则广州市政府要为此拨款多少?4.某城市现有 42 万人口 ,计划一年后城镇人口增添0.8%, 乡村人口增添 1.1%, 这样全市人口将增添1%, 求这个城市现有的城镇人口数和乡村人口数.二、劳力分配问题:1某公司有两个工程队 ,甲工程队人数比乙工程队人数的2多28人,因有紧迫任务,需从乙队抽调212 32三、配套问题:1.箭鹿服饰厂要生产某种型号学生服一批 ,已知每 3 米长的某种布料能够做上衣 2 件或裤子 3 条,一件上衣和一条裤子为一套 ,计划用 600 米长的这类布料生产学生服 ,应分别用多少布料生产上衣和裤子 ,才能恰巧配套 ?共能生产多少套 ?2.某车间有技术工人85人,均匀每人每日可加工甲种零件16个或乙种零件10个,两个甲种零件和三个乙种零件配成一套,问加工甲、乙零件各安排多少人材能使每日加工的甲、乙两种零件恰巧配套?四、等积变形问题:在一只底面直径为 30 厘米,高为 8 厘米的圆锥形容器中倒满水,而后将水倒入一只底面直径为 10 厘米的圆柱形空容器里,圆柱形容器中的水有多高?五、行程问题:1.某人从家里骑自行车到学校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一解一元一次方程应用601.某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打()A. 9折B. 8折C. 7折D. 6折2.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身 12 个,或制作盒底 18 个,1 个盒身与 2 个盒底配成一套.现有 42 张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A. 18(42 -x) =12xB. 2×18(42 -x) =12xC. 18(42 -x) =2×12xD. 18(21-x) =12x3.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x天相遇,可列方程为()A. (9﹣7)x=1B. (9+7)x=1C.D.4.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为()A. 26元B. 27元C. 28元D. 29元5.有一种足球是由32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形.设白皮有x块,则黑皮有(32﹣x)块,要求出黑皮、白皮的块数,列出的方程是()A.3x=32﹣xB.3x=5(32﹣x)C.5x=3(32﹣x)D.6x=32﹣x6.为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是A.赚了12元 B.亏了12元C.赚了20元 D.亏了20元7.为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元 B.亏了12元 C.赚了20元 D.亏了20元8.为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元 B.亏了12元 C.赚了20元 D.亏了20元9.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A. B.C. D.10.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44C.9(x+2)=44 D.9(x+2)﹣4×2=4411.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x公顷旱地改造为林地,则可列方程为()A.60﹣x=20%(120+x) B.60+x=20%×120C.180﹣x=20%(60+x) D.60﹣x=20%×12012.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x13.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2 B.518﹣x=2×106 C.518﹣x=2 D.518+x=214.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4 B.7x﹣2y=8x+4 C.7x+2=8x+4 D.7x﹣2y=8x﹣415.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元 B.875元 C.550元 D.750元16.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用l 0天。

且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项工程各需多少天?(2) 甲队施工一天,需付工程款2万元,乙队施工一天需付工程款3.5万元.若该工程计划在25天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?17.某校规划在一块长AD为18m,宽AB为13m上,设计分别与AD,AB,其余部分铺上草皮.(1)如图1,若设计两条通道,一条横向,一条纵向,4块草坪为全等的长方形,每块草坪的两边之比为3:4,并且纵向通道的宽度是横向通道宽度的2倍,问横向通道的宽是多少?(2)如图2,为设计得更美观,其中草坪①②③④为全等的正方形,草坪⑤⑥为全等的长方形(两边长BN:BM=2:3),通道宽度都相等,问:此时通道的宽度又是多少呢?18.甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?19.某校有一长方形花圃,里面有一些杂草需要处理.小聪单独完成这项杂草清除任务需要150分钟,小聪单独施工30分钟后,小明加入清理,两人又共同工作了15分钟,(1)小明单独完成这项清理任务需要多少分钟?(2)为了加快清理,二人各自提高工作效率,设小明提高后的工作效率是m,小聪提高后的工作效率是小明提高后的工作效率的k倍(1≤k≤2),若两人合作40分钟后完成剩余的杂草清除任务,则m的最大值为.20.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?21.一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2.小时时...甲车先到达服务区C地,此时两.车相距...20..千米..,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.(1)甲车的速度是米/小时,乙车的速度是千米/小时,B、C两地的距离是千米, A、C两地的距离是千米;(2)这一天,乙车出发多长时间,两车相距200千米?22.冬至过后,昼夜温差逐渐加大,山城的市民们已然感受到了深冬的寒意.在还未普遍使用地暖供暖设备的山城,小型电取暖器仍然深受市民的青睐.某格力专卖店销售壁挂式电暖器和卤素/石英式取暖器(俗称“小太阳”),其中壁挂式电暖器的售价是“小太阳”售价的5倍还多100元,2016年12月份壁挂式电暖器和“小太阳”共销售500台,壁挂式电暖器与“小太阳”销量之比是4∶1,销售总收入为58.6万元.(1)分别求出每台壁挂式电暖器和“小太阳”的售价;(2)随着“元旦、春节”双节的来临和气温的回升,销售进入淡季,2017年1月份,壁挂式电暖器的售价比2016年12月下调了4m﹪,根据经验销售量将比2016年12月下滑6m﹪,而“小太阳”的销售量和售价都维持不变,预计销售总收入将下降到16.04万元,求m的值.23.手机下单,随叫随走,每公里一元……继“共享单车”后,重庆、北京、上海、成都等多地开始流行起时尚、炫酷的“共享汽车”,只需下载手机APP,注册后就能用手机在附近找到汽车使用,到达目的地后可把车还到指定停车网点或任意的正规停车场.这种新兴出行方式越来越受到人们的青睐.在重庆,戴姆勒集团和力帆集团已经完成第一批共享汽车的投放,共计1400辆,戴姆勒集团投放的奔驰smart 汽车购买单价为15万元,力帆集团投放的AE 纯电动汽车购买单价为8万元;两家公司的汽车成本总投资额为1.54亿元.(1)求两集团公司在重庆第一批共享汽车的投放数量分别为多少?(2)这种共享的方式能够很好的整合社会资源,实现社会资源的优化配置,政府决定对后期投放的每辆汽车补贴成本价的%(050)a a <<,在此政策刺激下,戴姆勒集团公司决定再次购买并投放与第一次销售单价相同的第二批奔驰smart 共享汽车,数量在两家公司第一次投放总和的一半的基础上增加4%a ,并且享受完政府补贴后,购买成本为1.197亿元,求a 的值.24.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数?25.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去) .(1)下表给出了今年3月份A ,B 两用户的部分用电数据,请将表格数据补充完整,(2)若假定某月份C 用户比D 用户多缴电费38元,求C 用户该月可能缴的电费为多少?26.一张方桌由1个桌面、4条腿组成,如果1立方米木料可以做方桌的桌面50个或桌腿300条,现有5立方米木料,如何分配木料,使做出的桌面和桌腿恰好配成方桌?能配多少方桌?27.为实现国家“中部崛起”战略,全面提升长沙交通水平,长沙地铁总里程数从2015年起逐年增加。

2015年长沙地铁总里程达到64公里,2017年长沙地铁总里程将达到144公里。

(1)若前四年长沙地铁总里程数的年增长率相同,问2018年长沙地铁总里程将达到多少公里?(2)长沙“地铁1号线”将在2016年完工,它连接长沙南北,从高架站一直到汽车北站,建成后将极大的方便城北市民出行。

现“地铁1号线”还剩最后3公里,有甲、乙两个施工队,甲队工作效率为每天10米,乙队每天15米。

甲队先单独施工一段时间后两队再合作,要求完工时两队合作时间不超过80天,则甲队至少先单独施工多少天?28.宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?29.某同学在A 、B 两家超市发现他看中的学习机和书包的单价都相同,学习机和书包的单价之和为452元,且学习机的单价比书包单价的4倍少8元。

相关文档
最新文档