人教B版高中数学必修二模块检测题2
人教版高中数学必修二第二章单元测试(二)- Word版含答案
2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。
(人教版B版2017课标)高中数学必修第二册 全册综合测试卷二(附答案)
(人教版B 版2017课标)高中数学必修第二册 全册综合测试卷二(附答案)第四章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数()3x y f =的定义域为[1,1]-,则函数()3log y f x =的定义域为( ) A .[1,1]-B .1,23⎡⎤⎢⎥⎣⎦C .[1,2]D .2.已知函数1()2)2f x x =+,则1(lg 2)lg 2f f ⎛⎫+= ⎪⎝⎭( ) A .1-B .0C .1D .2 3.设函数2()log f x x =,若(1)2f a +<,则实数a 的取值范围为( ) A .(1,3)-B .(,3)-∞C .(,1)-∞D .(1,1)-4.已知函数2||()e x f x x =+,若()2a f =,121log 4b f ⎛⎫= ⎪ ⎪⎝⎭,2log c f ⎛= ⎝⎭,则,,a b c 的大小关系为( ) A .a b c >>B .a c b >>C .b a >>cD .c a b >>5.已知(31)4,1,()log ,1aa x a x f x x x -+⎧=⎨⎩<≥,是R 上的减函数,那么实数a 的取值范围是( )A .(0,1)B .11,73⎡⎫⎪⎢⎣⎭C .10,3⎛⎫ ⎪⎝⎭D .11,93⎛⎫ ⎪⎝⎭6.已知,(1,)m n ∈+∞,且m n >,若26log log 13m n n m +=,则函数2()m nf x x =的图像为( )ABCD7.给出下列命题:①函数e e 2x xy -+=为偶函数;②函数e 1e 1x x y -=+在x ∈R 上单调递增;③函数lg y x =在区间(0,)+∞上单调递减;④函数13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称。
其中正确命题的个数是( ) A .1B .2C .3D .48.设函数()2ln 1y x x =-+,则下列命题中不正确的是( ) A .函数的定义域为RB .函数是增函数C .函数的图像关于直线12x =对称D .函数的值域是3ln ,4⎡⎫+∞⎪⎢⎣⎭9.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100℃,水温()y ℃与时间(min)t 近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度()y ℃与时间(min)t 近似满足函数关系式101802t ay b -⎛⎫=+ ⎪⎝⎭(,a b 为常数).通常这种热饮在40℃时,口感最佳,某天室温为20℃,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35minB .30minC .25minD .20min10.已知函数22log ,02,()43,2,x x f x x x x ⎧⎪=⎨-+-⎪⎩<≤>若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( ) A .[2,3]B .(2,3)C .[2,3)D .(2,3]二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分) 11.给出下列结论,其中正确的结论是( ) A .函数2112x y -+⎛⎫= ⎪⎝⎭的最大值为12B .已知函数log (2)a y ax =-(0a >且1a ≠)在(0,1)上是减函数,则实数a 的取值范围是(1,2)C .在同一平面直角坐标系中,函数2x y =与2log y x =的图像关于直线y x =对称D .已知定义在R 上的奇函数()f x 在(,0)-∞内有1 010个零点,则函数()f x 的零点个数为2 02112.定义“正对数”:0,01,ln ln , 1.x x x x +⎧=⎨⎩<<≥若0a >,0b >,则下列结论中正确的是( )A .()ln ln b a b a ++=B .ln ()ln ln ab a b +++=+C .ln ()ln ln a b a b +++++≥D .ln ()ln ln ln 2a b a b ++++++≤三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知()y f x =为定义在R 上的奇函数,且当0x >时,()e 1x f x =+,则(ln2)f -的值为________.14.某新能源汽车公司为激励创新,计划逐年加大研发资金投入,若该公司2018年(记为第1年)全年投入研发资金5 300万元,在此基础上,以后每年投入的研发资金比上一年增长8%,则该公司全年投入的研发资金开始超过7 000万元的年份是________年.(参考数据:lg1.080.03≈,lg5.30.72≈,lg70.85≈)15.已知函数()log (1)a f x x =-+(0a >且1a ≠)在[2,0]-上的值域是[1,0]-.若函数()3x m g x a +=-的图像不经过第一象限,则m 的取值范围为________.16.若不等式()21212xxm m ⎛⎫-- ⎪⎝⎭<对一切(,1]x ∈-∞-恒成立,则实数m 的取值范围是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(1()231251log 227-⎛⎫--+ ⎪⎝⎭的值;(2)计算:1324lg 2493-18.(12分)已知幂函数()221()1m f x m m x --=--⋅在(0,)+∞上单调递增,函数()22x x m g x =+. (1)求实数m 的值,并简要说明函数()g x 的单调性; (2)若不等式(13)(1)0g t g t -++≥恒成立,求实数t 的取值范围.19.(12分)目前,我国一些高耗能低效产业(煤炭、钢铁、有色金属、炼化等)的产能过剩将严重影响生态文明建设,“去产能”将是一项重大任务.某企业从2018年开始,每年的产能比上一年减少的百分比为(01)x x <<. (1)设n 年后(2018年记为第1年)年产能为2017年的a 倍,请用a ,n 表示x ; (2)若10%x =,则至少要到哪一年才能使年产能不超过2017年的25%?(参考数据:lg20.301≈,lg30.477≈)20.(12分)已知函数2()lg 2lg(10)3f x x a x =-+,1,10100x ⎡⎤∈⎢⎥⎣⎦. (1)当1a =时,求函数()f x 的值域;(2)若函数()y f x =的最小值记为()m a ,求()m a 的最大值.21.(12分)已知函数()log a f x x b =+(其中,a b 均为常数,0a >且1a ≠)的图像经过点()2,5与点()8,7.(1)求,a b 的值;(2)设函数2()x x g x b a +=-,若对任意的1[1,4]x ∈,存在[]220,log 5x ∈,使得()()12f x g x m =+成立,求实数m 的取值范围.22.(12分)已知函数()4()log 41()x f x kx k =++∈R 是偶函数. (1)求k 的值;(2)设44()log 23x g x a a ⎛⎫=⋅- ⎪⎝⎭,若函数()f x 与()g x 的图像有且只有一个公共点,求实数a 的取值范围; (3)若函数[]1()22()421,0,log 3f x xx h x m x +=+⋅-∈,是否存在实数()h x 使得最小值为0,若存在,求出m 的值;若不存在,请说明理由.第四章综合测试答案解析一、 1.【答案】D【解析】由[1,1]x ∈-,得13,33x ⎡⎤∈⎢⎥⎣⎦,所以31log ,33x ⎡⎤∈⎢⎥⎣⎦,所以x ∈.2.【答案】C1()2)2f x x =-+,11()()2)2)2)2)122f x f x x x x x ∴+-=+++=++22lg(144)1lg111x x =+-+=+=,1(lg 2)lg (lg 2)(lg 2)12f f f f ⎛⎫∴+=+-= ⎪⎝⎭.3.【答案】A 【解析】函数2()log f x x =在定义域内单调递增,2(4)log 42f ==,∴不等式(1)2f a +<等价于014a +<<,解得13a -<<,故选A .4.【答案】C【解析】2||2||()()e e ()x x f x x x f x --=-+=+=知函数()f x 为偶函数,且在(0,)+∞为增函数,()02(1)a f f ==,121log (2)4b f f ⎛⎫== ⎪ ⎪⎝⎭,211log 22f f f c ⎛⎛⎫⎛⎫=-= ⎪ ⎪ ⎭⎝⎝⎭=⎝⎭,所以1(2)(1)2f f f ⎛⎫⎪⎝⎭>>,即b a c >>.5.【答案】B【解析】由题意得310,3140,01,a a a a -⎧⎪-+⎨⎪⎩<≥<<解得1173a ≤<,故选B .6.【答案】A【解析】由题意,得26log log 2log 6log 13m m n n n m n m +=+=,令log (1)m t n t =<,则6213t t +=,解得12t =或6t =(舍去),所以n =21m n=,所以2()mn f x x =的图像即为()f x x =的图像,故选A .7.【答案】C【解析】由e e ()()2x x f x f x -+-==,知e 2e x xy -+=为偶函数,因此①正确;由11e e 221111e e e x x x x x y -+-===-+++知1e e 1x x y -=+在R 上单调递增,因此②正确;当0x >时,lg lg y x x ==,它在(0,)+∞上是增函数,因此③错误;由313log log y x x =-=知13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称,因此④正确,故选C .8.【答案】B【解析】A 中命题正确,22131024x x x ⎛⎫-+=-+ ⎪⎝⎭>恒成立,∴函数的定义域为R ;B 中命题错误,函数()2ln 1y x x =-+在12x >时是增函数,在12x <时是减函数;C 中命题正确,函数的图像关于直线12x =对称:D 中命题正确,由221331244x x x ⎛⎫-+=-+ ⎪⎝⎭≥可得()23ln 1ln 4y x x =-+≥,∴函数的值域为3ln ,4⎡⎫+∞⎪⎢⎣⎭.故选B .9.【答案】C【解析】由题图知,当05t ≤<时,函数图像是一条线段,当5t ≥时,因为函数的解析式为101802t a y b -⎛⎫=+ ⎪⎝⎭,所以将(5,100)和(15,60)代入解析式,得5101510110080,216080,2aa b b --⎧⎛⎫⎪=+ ⎪⎪⎪⎝⎭⎨⎪⎛⎫⎪=+ ⎪⎪⎝⎭⎩解得5,20,a b =⎧⎨=⎩故函数的解析式为51018020,52t y t -⎛⎫=+ ⎪⎝⎭≥.令40y =,解得25t =,所以最少需要的时间为25min . 10.B 根据已知画出函数()f x 的草图如下。
(人教版B版2017课标)高中数学必修第二册 全册综合测试卷二(附答案)
(人教版B 版2017课标)高中数学必修第二册 全册综合测试卷二(附答案)第四章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数()3x y f =的定义域为[1,1]-,则函数()3log y f x =的定义域为( ) A .[1,1]-B .1,23⎡⎤⎢⎥⎣⎦C .[1,2]D .2.已知函数1()2)2f x x =+,则1(lg 2)lg 2f f ⎛⎫+= ⎪⎝⎭( ) A .1-B .0C .1D .2 3.设函数2()log f x x =,若(1)2f a +<,则实数a 的取值范围为( ) A .(1,3)-B .(,3)-∞C .(,1)-∞D .(1,1)-4.已知函数2||()e x f x x =+,若()2a f =,121log 4b f ⎛⎫= ⎪ ⎪⎝⎭,2log c f ⎛= ⎝⎭,则,,a b c 的大小关系为( ) A .a b c >>B .a c b >>C .b a >>cD .c a b >>5.已知(31)4,1,()log ,1aa x a x f x x x -+⎧=⎨⎩<≥,是R 上的减函数,那么实数a 的取值范围是( )A .(0,1)B .11,73⎡⎫⎪⎢⎣⎭C .10,3⎛⎫ ⎪⎝⎭D .11,93⎛⎫ ⎪⎝⎭6.已知,(1,)m n ∈+∞,且m n >,若26log log 13m n n m +=,则函数2()m nf x x =的图像为( )ABCD7.给出下列命题:①函数e e 2x xy -+=为偶函数;②函数e 1e 1x x y -=+在x ∈R 上单调递增;③函数lg y x =在区间(0,)+∞上单调递减;④函数13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称。
其中正确命题的个数是( ) A .1B .2C .3D .48.设函数()2ln 1y x x =-+,则下列命题中不正确的是( ) A .函数的定义域为RB .函数是增函数C .函数的图像关于直线12x =对称D .函数的值域是3ln ,4⎡⎫+∞⎪⎢⎣⎭9.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100℃,水温()y ℃与时间(min)t 近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度()y ℃与时间(min)t 近似满足函数关系式101802t ay b -⎛⎫=+ ⎪⎝⎭(,a b 为常数).通常这种热饮在40℃时,口感最佳,某天室温为20℃,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35minB .30minC .25minD .20min10.已知函数22log ,02,()43,2,x x f x x x x ⎧⎪=⎨-+-⎪⎩<≤>若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( ) A .[2,3]B .(2,3)C .[2,3)D .(2,3]二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分) 11.给出下列结论,其中正确的结论是( ) A .函数2112x y -+⎛⎫= ⎪⎝⎭的最大值为12B .已知函数log (2)a y ax =-(0a >且1a ≠)在(0,1)上是减函数,则实数a 的取值范围是(1,2)C .在同一平面直角坐标系中,函数2x y =与2log y x =的图像关于直线y x =对称D .已知定义在R 上的奇函数()f x 在(,0)-∞内有1 010个零点,则函数()f x 的零点个数为2 02112.定义“正对数”:0,01,ln ln , 1.x x x x +⎧=⎨⎩<<≥若0a >,0b >,则下列结论中正确的是( )A .()ln ln b a b a ++=B .ln ()ln ln ab a b +++=+C .ln ()ln ln a b a b +++++≥D .ln ()ln ln ln 2a b a b ++++++≤三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知()y f x =为定义在R 上的奇函数,且当0x >时,()e 1x f x =+,则(ln2)f -的值为________.14.某新能源汽车公司为激励创新,计划逐年加大研发资金投入,若该公司2018年(记为第1年)全年投入研发资金5 300万元,在此基础上,以后每年投入的研发资金比上一年增长8%,则该公司全年投入的研发资金开始超过7 000万元的年份是________年.(参考数据:lg1.080.03≈,lg5.30.72≈,lg70.85≈)15.已知函数()log (1)a f x x =-+(0a >且1a ≠)在[2,0]-上的值域是[1,0]-.若函数()3x m g x a +=-的图像不经过第一象限,则m 的取值范围为________.16.若不等式()21212xxm m ⎛⎫-- ⎪⎝⎭<对一切(,1]x ∈-∞-恒成立,则实数m 的取值范围是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(1()231251log 227-⎛⎫--+ ⎪⎝⎭的值;(2)计算:1324lg 2493-18.(12分)已知幂函数()221()1m f x m m x --=--⋅在(0,)+∞上单调递增,函数()22x x m g x =+. (1)求实数m 的值,并简要说明函数()g x 的单调性; (2)若不等式(13)(1)0g t g t -++≥恒成立,求实数t 的取值范围.19.(12分)目前,我国一些高耗能低效产业(煤炭、钢铁、有色金属、炼化等)的产能过剩将严重影响生态文明建设,“去产能”将是一项重大任务.某企业从2018年开始,每年的产能比上一年减少的百分比为(01)x x <<. (1)设n 年后(2018年记为第1年)年产能为2017年的a 倍,请用a ,n 表示x ; (2)若10%x =,则至少要到哪一年才能使年产能不超过2017年的25%?(参考数据:lg20.301≈,lg30.477≈)20.(12分)已知函数2()lg 2lg(10)3f x x a x =-+,1,10100x ⎡⎤∈⎢⎥⎣⎦. (1)当1a =时,求函数()f x 的值域;(2)若函数()y f x =的最小值记为()m a ,求()m a 的最大值.21.(12分)已知函数()log a f x x b =+(其中,a b 均为常数,0a >且1a ≠)的图像经过点()2,5与点()8,7.(1)求,a b 的值;(2)设函数2()x x g x b a +=-,若对任意的1[1,4]x ∈,存在[]220,log 5x ∈,使得()()12f x g x m =+成立,求实数m 的取值范围.22.(12分)已知函数()4()log 41()x f x kx k =++∈R 是偶函数. (1)求k 的值;(2)设44()log 23x g x a a ⎛⎫=⋅- ⎪⎝⎭,若函数()f x 与()g x 的图像有且只有一个公共点,求实数a 的取值范围; (3)若函数[]1()22()421,0,log 3f x xx h x m x +=+⋅-∈,是否存在实数()h x 使得最小值为0,若存在,求出m 的值;若不存在,请说明理由.第四章综合测试答案解析一、 1.【答案】D【解析】由[1,1]x ∈-,得13,33x ⎡⎤∈⎢⎥⎣⎦,所以31log ,33x ⎡⎤∈⎢⎥⎣⎦,所以x ∈.2.【答案】C1()2)2f x x =-+,11()()2)2)2)2)122f x f x x x x x ∴+-=+++=++22lg(144)1lg111x x =+-+=+=,1(lg 2)lg (lg 2)(lg 2)12f f f f ⎛⎫∴+=+-= ⎪⎝⎭.3.【答案】A 【解析】函数2()log f x x =在定义域内单调递增,2(4)log 42f ==,∴不等式(1)2f a +<等价于014a +<<,解得13a -<<,故选A .4.【答案】C【解析】2||2||()()e e ()x x f x x x f x --=-+=+=知函数()f x 为偶函数,且在(0,)+∞为增函数,()02(1)a f f ==,121log (2)4b f f ⎛⎫== ⎪ ⎪⎝⎭,211log 22f f f c ⎛⎛⎫⎛⎫=-= ⎪ ⎪ ⎭⎝⎝⎭=⎝⎭,所以1(2)(1)2f f f ⎛⎫⎪⎝⎭>>,即b a c >>.5.【答案】B【解析】由题意得310,3140,01,a a a a -⎧⎪-+⎨⎪⎩<≥<<解得1173a ≤<,故选B .6.【答案】A【解析】由题意,得26log log 2log 6log 13m m n n n m n m +=+=,令log (1)m t n t =<,则6213t t +=,解得12t =或6t =(舍去),所以n =21m n=,所以2()mn f x x =的图像即为()f x x =的图像,故选A .7.【答案】C【解析】由e e ()()2x x f x f x -+-==,知e 2e x xy -+=为偶函数,因此①正确;由11e e 221111e e e x x x x x y -+-===-+++知1e e 1x x y -=+在R 上单调递增,因此②正确;当0x >时,lg lg y x x ==,它在(0,)+∞上是增函数,因此③错误;由313log log y x x =-=知13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称,因此④正确,故选C .8.【答案】B【解析】A 中命题正确,22131024x x x ⎛⎫-+=-+ ⎪⎝⎭>恒成立,∴函数的定义域为R ;B 中命题错误,函数()2ln 1y x x =-+在12x >时是增函数,在12x <时是减函数;C 中命题正确,函数的图像关于直线12x =对称:D 中命题正确,由221331244x x x ⎛⎫-+=-+ ⎪⎝⎭≥可得()23ln 1ln 4y x x =-+≥,∴函数的值域为3ln ,4⎡⎫+∞⎪⎢⎣⎭.故选B .9.【答案】C【解析】由题图知,当05t ≤<时,函数图像是一条线段,当5t ≥时,因为函数的解析式为101802t a y b -⎛⎫=+ ⎪⎝⎭,所以将(5,100)和(15,60)代入解析式,得5101510110080,216080,2aa b b --⎧⎛⎫⎪=+ ⎪⎪⎪⎝⎭⎨⎪⎛⎫⎪=+ ⎪⎪⎝⎭⎩解得5,20,a b =⎧⎨=⎩故函数的解析式为51018020,52t y t -⎛⎫=+ ⎪⎝⎭≥.令40y =,解得25t =,所以最少需要的时间为25min . 10.B 根据已知画出函数()f x 的草图如下。
新教材高中数学模块测评含解析新人教B版必修第二册
模块综合测评(时间:120分钟 满分:150分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算lg 4+lg 25=( ) A .2 B .3 C .4D .10A 〖lg 4+lg 25=lg(4×25)=lg 100=2.〗 2.下列等式中正确的是( ) A .OA →-OB →=AB → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →D 〖起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0才对,故选D .〗3.甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A .13B .14C .15D .16A 〖因为甲、乙两人参加学习小组的所有事件有(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9个,其中两人参加同一个小组事件有(A ,A ),(B ,B ),(C ,C ),共3个,所以两人参加同一个小组的概率为39=13.选A .〗4.设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1D 〖当x <0时,-x >0,∵当x ≥0时,f (x )=e x -1,∴f (-x )=e -x -1. 又∵f (x )为奇函数,∴f (x )=-f (-x )=-e -x +1. 故选D .〗5.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=( )A .23B .-23C .25D .13A 〖由题意知CD →=CA →+AD →,① CD →=CB →+BD →,② 且AD →+2BD →=0.①+②×2得3CD →=CA →+2CB →, ∴CD →=13CA →+23CB →,∴λ=23.〗6.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .15B 〖设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.故选B .〗7.质点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)C 〖设(-10,10)为A ,设5秒后P 点的坐标为A 1(x ,y ),则AA 1→=(x +10,y -10),由题意有AA 1→=5v .即(x +10,y -10)=(20,-15),所以⎩⎪⎨⎪⎧ x +10=20,y -10=-15⇒⎩⎪⎨⎪⎧x =10,y =-5.〗8.设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1〗B .(0,+∞)C .(-1,0)D .(-∞,0)D 〖当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图像如图所示,结合图像可知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,所以x <0,故选D .〗 二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A .AD →与AB →B .DA →与BC → C .CA →与DC →D .OD →与OB →AC 〖平面内任意两个不共线的向量都可以作为基底,如图: 对于A ,AD →与AB →不共线,可作为基底; 对于B ,DA →与BC →为共线向量,不可作为基底; 对于C ,CA →与DC →是两个不共线的向量,可作为基底;对于D ,OD →与OB →在同一条直线上,是共线向量,不可作为基底.〗10.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),当f (x )=2-x 时,下列结论中正确的是( ) A .f (x 1+x 2)=f (x 1)f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2)C .(x 1-x 2)〖f (x 1)-f (x 2)〗<0D .f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2 ACD 〖f (x )=2-x ,f (x 1+x 2)=2-(x 1+x 2),f (x 1)f (x 2)=2-x 1·2-x 2=2-(x 1+x 2),故A 对; f (x 1·x 2)=2-(x 1+x 2)≠2-x 1+2-x 2=f (x 1)+f (x 2),故B 错; ∵f (x )=2-x =⎝⎛⎭⎫12x为减函数,所以(x 1-x 2)〖f (x 1)-f (x 2)〗<0,故C 对;f ⎝⎛⎭⎪⎫x 1+x 22=2-(x 1+x 2),f (x 1)+f (x 2)2=2-x 1+2-x 22,由基本不等式,所以f ⎝⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2,故D 对. 故选ACD .〗11.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中正确的是( ) A .建设后,种植收入减少B .建设后,其他收入增加了一倍以上C .建设后,养殖收入增加了一倍D .建设后,养殖收入与第三产业收入的总和超过了经济收入的一半BCD 〖设建设前经济收入为a ,则建设后经济收入为2a ,则由饼图可得建设前种植收入为0.6a ,其他收入为0.04a ,养殖收入为0.3a .建设后种植收入为0.74a ,其他收入为0.1a ,养殖收入为0.6a ,养殖收入与第三产业收入的总和为1.16a ,所以建设后,种植收入减少是错误的.故选BCD .〗12.若把定义域不同,但值域相同的函数叫作“同族函数”,其中与函数g (x )=x +1x,x ∈(0,+∞)为“同族函数”的是( )A .f (x )=2x -1x ,x ∈(1,+∞)B .f (x )=11+x 2,x ∈RC .f (x )=log 2(2|x |+1),x ∈RD .f (x )=4x +2x +1+1,x ∈RAD 〖函数g (x )=x +1x =1+1x ,定义域是(0,+∞),值域是(1,+∞).对于A ,f (x )=2x -1x,当x ∈(1,+∞)时,f (x )是单调增函数,且f (x )>2-1=1,∴f (x )的值域是(1,+∞),值域相同,是“同族函数”;对于B ,f (x )=11+x 2,当x ∈R时,f (x )的值域是(0,1〗,值域不同,∴不是“同族函数”;对于C ,f (x )=log 2(2|x |+1),当x ∈R 时,2|x |≥1,∴log 2(2|x |+1)≥1,∴f (x )的值域是〖1,+∞),值域不同,不是“同族函数”;对于D ,f (x )=4x +2x +1+1=(2x +1)2,当x ∈R 时,f (x )的值域是(1,+∞),值域相同,是“同族函数”.〗三、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中的横线上. 13.已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. -7 〖由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7.〗14.某学校举行课外综合知识比赛,随机抽取400名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成五组.第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……;第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则400名同学中成绩优秀(大于等于80分)的学生有________名.100 〖成绩优秀的频率为1-(0.005+0.025+0.045)×10=0.25,所以成绩优秀的学生有0.25×400=100(名).〗15.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,且2f (x )-e x -m ≥0在x ∈〖1,2〗上恒成立,则实数m 的取值范围为________.(-∞,e -2〗 〖由f (x )+g (x )=e x ,①可得f (-x )+g (-x )=e -x , 即f (x )-g (x )=e -x ,② 由①②,解得f (x )=e x +e -x2.2f (x )-e x -m ≥0在x ∈〖1,2〗上恒成立, 即m ≤2f (x )-e x =e -x 在x ∈〖1,2〗上恒成立. 又函数y =e -x 在〖1,2〗上单调递减,所以y min =e -2, 所以m ≤e -2,即实数m 的取值范围为(-∞,e -2〗.〗16.已知平面向量a ,b ,c 满足|a|=|b|=|a -b|=|a +b -c|=1,则|c|的最大值M =________,|c|的最小值m =________.(本题第一空2分,第二空3分)3+13-1 〖因为|a|=|b|=|a -b|=1.所以a ,b ,a -b 可构成等边三角形,且|a+b|=3,因为|a +b -c|=1,所以如图所示,c 的终点在以a +b 的终点为圆心、半径为1的圆上,故M =3+1,m =3-1.〗四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知向量a =(2,0),b =(1,4). (1)求2a +3b ,a -2b ;(2)若向量k a +b 与a +2b 平行,求k 的值. 〖解〗 (1)∵a =(2,0),b =(1,4),∴2a +3b =2(2,0)+3(1,4)=(4,0)+(3,12)=(7,12),a -2b =(2,0)-2(1,4)=(2,0)-(2,8)=(0,-8). (2)依题意得k a +b =(2k,0)+(1,4)=(2k +1,4), a +2b =(2,0)+(2,8)=(4,8).∵向量k a +b 与a +2b 平行, ∴8(2k +1)-4×4=0,解得k =12.18.(本小题满分12分)为了了解中学生的体能情况,抽取了某校七年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图如图,已知第1组的频数为5.(1)求第4组的频率;(2)参加这次测试的学生有多少人?(3)若次数在75以上(含75次)为达标,试估计该年级跳绳测试的达标率是多少? 〖解〗 (1)第4组频率为0.008×(149.5-124.5)=0.2. (2)设参加这次测试的人数为x , 则5x=0.004×(74.5-49.5)=0.1, ∴x =50,故参加这次测试的学生有50人.(3)估计这次跳绳测试的达标率为〖1-0.004×(74.5-49.5)〗×100%=90%. 19.(本小题满分12分)已知函数f (x )=a x +b (a >0,a ≠1).(1)若f (x )的图像如图①所示,求a ,b 的值; (2)若f (x )的图像如图②所示,求a ,b 的取值范围;(3)在①中,若|f (x )|=m 有且仅有一个实数解,求出m 的取值范围. 〖解〗 (1)由图像知,f (0)=1+b =-2,所以b =-3.又f (2)=a 2-3=0,所以a =3(负值舍去),因此a =3,b =-3. (2)f (x )单调递减,所以0<a <1,又f (0)<0,即a 0+b <0,所以b <-1.(3)由(1)得f (x )=(3)x -3,在同一坐标系中画出函数y =|f (x )|和y =m 的图像.观察图像可知,当m =0或m ≥3时,两图像仅有一个交点,故|f (x )|=m 有且仅有一个实数解时,m 的取值范围是{m |m =0或m ≥3}.20.(本小题满分12分)如图所示,在△ABC 中,BC =4BD ,AC =3CE .(1)用AB →,AC →表示AD →,BE →;(2)M 为△ABC 内一点,且AM →=23AB →+29AC →,证明:B ,M ,E 三点共线.〖解〗 (1)因为BC =4BD ,所以BD →=14BC →=14(AC →-AB →)=14AC →-14AB →,所以AD →=AB →+BD →=AB →+14AC →-14AB →=34AB →+14AC →.因为AC =3CE ,所以AE →=23AC →,所以BE →=AE →-AB →=23AC →-AB →.(2)证明:因为AM →=23AB →+29AC →,所以BM →=AM →-AB →=-13AB →+29AC →.因为BE →=23AC →-AB →=3⎝⎛⎭⎫-13AB →+29AC →,所以BE →=3BM →,即BE →与BM →共线. 又因为BE →与BM →有公共点B , 所以B ,M ,E 三点共线.21.(本小题满分12分)某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测试,该班的A ,B 两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中B 组一同学的分数已被污损,但知道B 组学生的平均分比A 组学生的平均分高1分.(1)若在B 组学生中随机挑选1人,求其得分超过85分的概率;(2)现从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,求|m -n |≤8的概率.〖解〗 (1)A 组学生的平均分为94+88+86+80+775=85(分),∴B 组学生平均分为86分.设被污损的分数为x ,则91+93+83+x +755=86,解得x =88,∴B 组学生的分数分别为93,91,88,83,75,其中有3人的分数超过85分, ∴在B 组学生随机选1人,其所得分超过85分的概率为35.(2)A 组学生的分数分别是94,88,86,80,77,在A 组学生中随机抽取2名同学,其分数组成的基本事件(m ,n )有(94,88),(94,86),(94,80),(94,77),(88,86),(88,80),(88,77),(86,80),(86,77),(80,77),共10个.随机抽取2名同学的分数m ,n 满足|m -n |≤8的基本事件有(94,88),(94,86),(88,86),(88,80),(86,80),(80,77),共6个.∴|m -n |≤8的概率为610=35.22.(本小题满分12分)已知a ∈R ,函数f (x )=log 2⎝⎛⎭⎫1x +a . (1)当a =1时,解不等式f (x )>1;(2)若关于x 的方程f (x )+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈⎣⎡⎦⎤12,1,函数f (x )在区间〖t ,t +1〗上的最大值与最小值的差不超过1,求a 的取值范围.〖解〗 (1)由log 2⎝⎛⎭⎫1x +1>1,得1x+1>2,解得{x |0<x <1}.(2)log 2⎝⎛⎭⎫1x +a +log 2(x 2)=0有且仅有一解,等价于⎝⎛⎭⎫1x +a x 2=1有且仅有一解,等价于ax 2+x -1=0有且仅有一解. 当a =0时,x =1,符合题意; 当a ≠0时,Δ=1+4a =0,a =-14.综上,a =0或a =-14.(3)当0<x 1<x 2时,1x 1+a >1x 2+a ,log 2⎝⎛⎭⎫1x 1+a >log 2⎝⎛⎭⎫1x 2+a , 所以f (x )在(0,+∞)上单调递减.函数f (x )在区间〖t ,t +1〗上的最大值与最小值分别为f (t ),f (t +1). f (t )-f (t +1)=log 2⎝⎛⎭⎫1t +a -log 2⎝ ⎛⎭⎪⎫1t +1+a ≤1,即at 2+(a +1)t -1≥0对任意t ∈⎣⎡⎦⎤12,1成立.因为a >0,所以函数y =at 2+(a +1)t -1在区间⎣⎡⎦⎤12,1上单调递增,所以t =12时,y 有最小值34a -12,由34a -12≥0,得a ≥23.故a 的取值范围为⎣⎡⎭⎫23,+∞.。
2018-2019高中数学必修2人教B版模块综合测试题卷二及答案解析
必修2人教B 版模块综合测试题卷二(满分150分;考时120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是()A .圆锥的侧面展开图是一个等腰三角形B .棱柱的两个底面全等且其余各面都是矩形C .任何一个棱台的侧棱必交于同一点D .过圆台侧面上一点有无数条母线2.在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是()A .4π B.9π2C .6π D.32π33.直线ax +by =1(ab ≠0)与两坐标轴围成的面积是()A.12abB.12|ab |C.12abD.12|ab |4.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于()A.33B .-33C .±33D .-35.以(2,1)为圆心且与直线y +1=0相切的圆的方程为()A .(x -2)2+(y -1)2=4B .(x -2)2+(y -1)2=2C .(x +2)2+(y +1)2=4D .(x +2)2+(y +1)2=26.在长方体ABCD -A 1B 1C 1D 1的十二条棱中,与面对角线AC 垂直且异面的棱的条数是()A .8B .4C .6D .27.用斜二测画法得到一个水平放置的平面图形的直观图为如图所示的直角梯形,其中梯形的上底是下底的12,若原平面图形的面积为32,则OA 的长为()A .2 B.2C.3D.3228.已知m ,l 是两条不同的直线,α,β是两个不同的平面,且m ⊥α,l ∥β,则下列说法正确的是()A .若m ∥l ,则α∥βB .若α⊥β,则m ∥lC .若m ⊥l ,则α∥βD .若α∥β,则m ⊥l9.过点P (-1,1)的直线l 与圆C :x 2+y 2=4在第一象限的部分有交点,则直线l 斜率k 的取值范围是()A.-14,1 B.-14,2 C.-13,2 D.-13,110.过点A (3,1)的直线l 1:3x +ay -2=0与过点B (3,4)的直线l 2交于点C ,若△ABC 是以AB 为底边的等腰三角形,则l 2的方程为()A.3x +y -7=0B.3x -y +7=0C .x +3y -7=0D .x -3y -7=011.《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,则它的体积是()A .4立方丈B .5立方丈C .6立方丈D .8立方丈12.在平面直角坐标系xOy 中,设直线l :kx -y +1=0与圆C :x 2+y 2=4相交于A ,B 两点,以OA ,OB 为邻边作平行四边形OAMB ,若点M 在圆C 上,则实数k 等于()A .1B .2C .0D .-1二、填空题(本大题共4小题,每小题5分,共20分)13.一个圆锥的表面积是底面积的4倍,则轴截面的面积是底面积的________倍.14.已知圆C:x2+y2+6y-a=0的圆心到直线x-y-1=0的距离等于圆C半径的12,则a=______. 15.已知l1,l2是分别经过点A(1,1),B(0,-1)的两条平行直线,则当l1,l2间的距离最大时,直线l1的方程是________________________.16.如图,在棱长为4的正方体ABCD-A1B1C1D1中,E,F分别是AB,DD1的中点,点P是DD1上一点,且PB∥平面CEF,则四棱锥P-ABCD外接球的表面积为______.三、解答题(本大题共6小题,共70分)17.(10分)已知直线l1:y=k(x+1)-1,k∈R.(1)证明:直线l1过定点;(2)若直线l1与直线l2:3x-(k-2)y+2=0平行,求k的值并求此时两直线之间的距离.18.(12分)已知两条直线l1:mx+8y+n=0和l2:2x+my-1=0,试确定m,n的值,使(1)l1与l2相交于点(m,-1);(2)l1∥l2;(3)l1⊥l2,且l1在y轴上的截距为-1.19.(12分)如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F分别是AP,AC 的中点,点D在棱AB上,且AD=AC.求证:(1)EF∥平面PBC;(2)DF⊥平面P AC.20.(12分)已知圆心为N(3,4)的圆被直线x=1截得的弦长为25.(1)求圆N的方程;(2)点B(3,-2)与点C关于直线x=-1对称,求以C为圆心且与圆N外切的圆的方程.21.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE.22.(12分)已知圆M:x2+(y-4)2=1,直线l:2x-y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点分别为A,B.(1)若∠APB=60°,求P点的坐标;(2)若点P的坐标为(1,2),过点P作一条直线与圆M交于C,D两点,当|CD|=2时,求直线CD的方程;(3)求证:经过A,P,M三点的圆与圆M的公共弦必过定点,并求出此定点的坐标.【解析卷】必修2人教B 版模块综合测试题卷二(满分150分;考时120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是()A .圆锥的侧面展开图是一个等腰三角形B .棱柱的两个底面全等且其余各面都是矩形C .任何一个棱台的侧棱必交于同一点D .过圆台侧面上一点有无数条母线考点空间几何体题点空间几何体结构应用答案C解析在A 中,圆锥的侧面展开图是一个扇形,不是等腰三角形,故A 错误;在B 中,棱柱的两个底面全等且其余各面都是平行四边形,故B 错误;在C 中,由棱台的定义得任何一个棱台的侧棱必交于同一点,故C 正确;在D 中,过圆台侧面上一点有且只有1条母线,故D 错误.故选D.2.在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是()A .4π B.9π2C .6π D.32π3答案B解析由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.3.直线ax +by =1(ab ≠0)与两坐标轴围成的面积是()A.12abB.12|ab |C.12abD.12|ab |考点直线的斜截式方程题点直线斜截式方程的应用答案D解析由ab ≠0,得到a ≠0且b ≠0,所以令x =0,解得y =1b ;令y =0,解得x =1a ,则直线与两坐标轴围成的面积S =12×|1b |×|1a |=12|ab |.故选D.4.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于()A.33B .-33C .±33D .-3答案B解析∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12.当∠AOB =π2时,△AOB 的面积最大.此时O 到AB 的距离d =22.设AB 的方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22,得k =-33.k =-tan ∠OPH5.以(2,1)为圆心且与直线y +1=0相切的圆的方程为()A .(x -2)2+(y -1)2=4B .(x -2)2+(y -1)2=2C .(x +2)2+(y +1)2=4D .(x +2)2+(y +1)2=2考点圆的标准方程题点求与某直线相切的圆的标准方程答案A解析∵圆心到切线的距离d =r ,即r =d =1+1=2,圆心C (2,1),∴圆C 方程为(x -2)2+(y -1)2=4.故选A6.在长方体ABCD -A 1B 1C 1D 1的十二条棱中,与面对角线AC 垂直且异面的棱的条数是()A .8B .4C .6D .2考点异面直线的判定题点异面直线的判定答案D解析如图,在长方体ABCD -A 1B 1C 1D 1的十二条棱中,与面对角线AC 垂直且异面的棱有BB 1和DD 1,∴与面对角线AC 垂直且异面的棱的条数是2.故选D.7.用斜二测画法得到一个水平放置的平面图形的直观图为如图所示的直角梯形,其中梯形的上底是下底的12,若原平面图形的面积为32,则OA 的长为()A .2 B.2C.3D.322考点平面图形的直观图题点与直观图有关的计算答案B解析由题意知,原平面图形与斜二测画法得到的直观图的面积比为1∶24,设OA =x ,则直观图的面积为12x ·x +x2=34x 2,∴22×34x 2=32,∴x = 2.故选B.8.已知m ,l 是两条不同的直线,α,β是两个不同的平面,且m ⊥α,l ∥β,则下列说法正确的是()A .若m ∥l ,则α∥βB .若α⊥β,则m ∥lC .若m ⊥l ,则α∥βD .若α∥β,则m ⊥l考点线、面平行、垂直的综合应用题点平行与垂直的判定答案D解析若m ∥l ,m ⊥α,则l ⊥α,又l ∥β,则α⊥β,即A 不正确;若α⊥β,则m ,l 位置不确定,即B 不正确;若m ⊥l ,则α∥β或α,β相交,即C 不正确;若m ⊥α,α∥β,则m ⊥β,又l ∥β,则m ⊥l ,即D 正确,故选D.9.过点P (-1,1)的直线l 与圆C :x 2+y 2=4在第一象限的部分有交点,则直线l 斜率k 的取值范围是()-14,-14,-13,-13,考点直线与圆的位置关系题点已知直线与圆的位置关系求参数的值或范围答案D解析如图,圆C :x 2+y 2=4与x 轴的正半轴的交点为A (2,0),与y 轴正半轴的交点为B (0,2),∵直线l 与圆C :x 2+y 2=4在第一象限的部分有交点,∴k P A <k <k PB ,即1-0-1-2<k <1-2-1-0,∴-13<k <1.故选D.10.过点A (3,1)的直线l 1:3x +ay -2=0与过点B (3,4)的直线l 2交于点C ,若△ABC 是以AB 为底边的等腰三角形,则l 2的方程为()A.3x +y -7=0 B.3x -y +7=0C .x +3y -7=0D .x -3y -7=0考点数形结合思想的应用题点数形结合思想的应用答案A解析∵直线过点A(3,1),∴3+a-2=0,解得a=-1;∴直线l1的斜率为3;∵△ABC是以AB为底边的等腰三角形,∴直线l2的斜率为-3;∴直线l2的方程为y-4=-3(x-3),化为一般式为3x+y-7=0.故选A.11.《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD=3丈,长AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF与平面ABCD的距离为1丈,则它的体积是()A.4立方丈B.5立方丈C.6立方丈D.8立方丈考点组合几何体的表面积与体积题点柱、锥、台、球切割的几何体的表面积与体积答案B解析过E作EG⊥平面ABCD,垂足为G,过F作FH⊥平面ABCD,垂足为H,过G作PQ∥AD,交AB于Q,交CD于P,过H作MN∥BC,交AB于N,交CD于M,则它的体积V =V 四棱锥E -AQPD +V 三棱柱EPQ -FMN +V 四棱锥F -NBCM=13×EG ×S AQPD +S △EPQ ·NQ +13×FH ×S NBCM =13×1×1×3+12×3×1×2+13×1×1×3=5(立方丈).12.在平面直角坐标系xOy 中,设直线l :kx -y +1=0与圆C :x 2+y 2=4相交于A ,B 两点,以OA ,OB 为邻边作平行四边形OAMB ,若点M 在圆C 上,则实数k 等于()A .1B .2C .0D .-1考点直线和圆的位置关系题点直线和圆的位置关系答案C解析∵四边形OAMB 为平行四边形,且OA =OB ,∴四边形OAMB 为菱形,∴△OAM 为等边三角形,且边长为2,解得弦AB 的长为23,又直线过定点N (0,1),且过N 的弦的弦长最小值为23,此时此弦平行x 轴,即k =0.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.一个圆锥的表面积是底面积的4倍,则轴截面的面积是底面积的________倍.考点柱体、锥体、台体的表面积题点锥体的表面积答案22π解析设圆锥的底面半径为r ,母线长为l ,高为h ,依题意πr 2+πrl =4πr 2,∴l =3r ,圆锥的高h =l 2-r 2=(3r )2-r 2=22r ,故S 轴=122r ×22r =22r 2,∴S 轴S 底=22r 2πr 2=22π.14.已知圆C :x 2+y 2+6y -a =0的圆心到直线x -y -1=0的距离等于圆C 半径的12,则a =______.考点直线和圆的位置关系题点直线和圆的位置关系答案-1解析把圆的方程化为标准方程得x 2+(y +3)2=a +9,∴圆心坐标为(0,-3),则圆心到直线x -y -1=0的距离d =|3-1|2=12a +9,∴a =-1.15.已知l 1,l 2是分别经过点A (1,1),B (0,-1)的两条平行直线,则当l 1,l 2间的距离最大时,直线l 1的方程是________________________.考点直线的一般式方程与直线的平行关系题点根据平行求直线方程答案x +2y -3=0解析当直线AB 与l 1,l 2均垂直时,l 1,l 2间的距离最大.∵A (1,1),B (0,-1),∴k AB =-1-10-1=2,∴kl 1=-12.∴直线l 1的方程为y -1=-12(x -1),即x +2y -3=0.16.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,DD 1的中点,点P 是DD 1上一点,且PB ∥平面CEF ,则四棱锥P -ABCD 外接球的表面积为______.考点球的表面积题点其他球的表面积计算问题答案41π解析连接BD 交CE 于O ,则BO OD =BE CD =12,连接OF ,则当BP ∥OF 时,PB ∥平面CEF ,则PF FD =12,∵F 是DD 1的中点,DD 1=4,∴DP =3,又四棱锥P -ABCD 外接球就是三棱锥P -ABC 的外接球,∴四棱锥P -ABCD 外接球的半径为32+42+422=412.外接球的表面积为4π=41π.三、解答题(本大题共6小题,共70分)17.(10分)已知直线l 1:y =k (x +1)-1,k ∈R .(1)证明:直线l 1过定点;(2)若直线l 1与直线l 2:3x -(k -2)y +2=0平行,求k 的值并求此时两直线之间的距离.考点两条平行直线间的距离公式及应用题点求两条平行直线间的距离(1)证明由直线l 1:y =k (x +1)-1(k ∈R ),令x =-1,可得y =-1,∴直线l 1过定点(-1,-1).(2)解∵直线l 1与直线l 2:3x -(k -2)y +2=0平行,∴3k -2=k ,解得k =-1或k =3,经检验k =-1满足条件,此时l 1:y =-x -2,l 2:y =-x -23,∴两直线之间的距离d =223.18.(12分)已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使(1)l 1与l 2相交于点(m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.考点两条直线平行和垂直的综合应用题点有关平行和垂直的综合问题解(1)因为l 1与l 2相交于点(m ,-1),所以点(m ,-1)在l 1,l 2上,将点(m ,-1)代入l 2,得2m -m -1=0,解得m =1.又因为m =1,把(1,-1)代入l 1,所以n =7.故m =1,n =7.(2)要使l 1∥l 22-16=0,×(-1)-2n ≠0,=4,≠-2=-4,≠2.(3)要使l 1⊥l 2,则有m ·2+8·m =0,得m =0.则l 1为y =-n 8,由于l 1在y 轴上的截距为-1,所以-n 8=-1,即n =8.故m =0,n =8.19.(12分)如图,在三棱锥P -ABC 中,平面PAC ⊥平面ABC ,∠BAC =60°,E ,F 分别是AP ,AC 的中点,点D 在棱AB 上,且AD =AC .求证:(1)EF ∥平面PBC ;(2)DF ⊥平面P AC .考点线、面平行、垂直的综合应用题点平行、垂直综合问题的证明证明(1)在△PAC 中,因为E ,F 分别是AP ,AC 的中点,所以EF ∥PC .又因为EF ⊄平面PBC ,PC ⊂平面PBC ,所以EF ∥平面PBC .(2)连接CD.因为∠BAC=60°,AD=AC,所以△ACD为正三角形.因为F是AC的中点,所以DF⊥AC.因为平面P AC⊥平面ABC,DF⊂平面ABC,平面PAC∩平面ABC=AC,所以DF⊥平面PAC.20.(12分)已知圆心为N(3,4)的圆被直线x=1截得的弦长为25.(1)求圆N的方程;(2)点B(3,-2)与点C关于直线x=-1对称,求以C为圆心且与圆N外切的圆的方程.考点直线和圆的位置关系题点直线和圆的位置关系解(1)由题意得,圆心N(3,4)到直线x=1的距离等于3-1=2.∵圆N被直线x=1截得的弦长为25,∴圆N的半径r=(5)2+22=3.∴圆N的方程为(x-3)2+(y-4)2=9.(2)∵点B(3,-2)与点C关于直线x=-1对称,∴点C的坐标为(-5,-2),设所求圆的方程为(x+5)2+(y+2)2=r2(r>0),∵圆C与圆N外切,∴r +3=(3+5)2+(4+2)2=10,得r =7.∴圆C 的方程为(x +5)2+(y +2)2=49.21.(12分)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE .考点线、面平行、垂直的综合应用题点平行、垂直综合问题的证明证明(1)由题设知,B 1B ⊥AB ,又AB ⊥BC ,B 1B ,BC ⊂平面B 1BCC 1,B 1B ∩BC =B ,所以AB ⊥平面B 1BCC 1.因为AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)取AB 中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1,所以四边形FGEC 1为平行四边形,所以C 1F ∥EG .又因为C 1F ⊄平面ABE ,EG ⊂平面ABE ,所以C 1F ∥平面ABE .22.(12分)已知圆M :x 2+(y -4)2=1,直线l :2x -y =0,点P 在直线l 上,过点P 作圆M 的切线PA ,PB ,切点分别为A ,B .(1)若∠APB =60°,求P 点的坐标;(2)若点P 的坐标为(1,2),过点P 作一条直线与圆M 交于C ,D 两点,当|CD |=2时,求直线CD 的方程;(3)求证:经过A ,P ,M 三点的圆与圆M 的公共弦必过定点,并求出此定点的坐标.考点直线和圆的位置关系题点直线和圆的位置关系解(1)由条件可知|PM |=2,设P 点坐标为(a,2a ),则|PM |=a 2+(2a -4)2=2,解得a =2或a =65,所以P (2,4)或(2)由条件可知圆心到直线CD 的距离d ==22.易知直线CD 的斜率存在,设直线CD 的方程为y -2=k (x -1),则由点到直线的距离公式得|k +2|k 2+1=22,解得k =-7或k =-1.所以直线CD 的方程为x +y -3=0或7x +y -9=0.(3)设P (a,2a ),过A ,P ,M 三点的圆即以PM 为直径的圆,其方程为x (x -a )+(y -4)(y -2a )=0,整理得x 2+y 2-ax -4y -2ay +8a =0,与x 2+(y -4)2-1=0相减得公共弦的方程为(4-2a )y -ax +8a -15=0,即(-x -2y +8)a +4y -15=0.2018-2019高中数学必修2人教B 版模块综合测试题卷二及答案解析21y -15=0,x -2y +8=0,=12,=154,。
高中数学 综合模块测试1 新人教B版必修2
高中数学 综合模块测试1 新人教B 版必修2一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1.“{1,1,0},210x x ∀∈-+>”是 ▲ 命题.(填写“真”或“假”)2. 若平面α与平面β相交于直线l ,直线m 与直线l 相交于点P ,则直线m 与平面α的公共点的个数可能为 ▲ .3. 直线1y =+的倾斜角大小为 ▲ .4. 若点B 是(1,3,4)A -关于坐标平面xOz 的对称点,则AB = ▲ .5. 过(0,4),(2,0)-两点的直线的方程的一般式为 ▲ .6. 已知圆C 的圆心坐标为(2,3)-,一条直径的两个端点分别在x 轴和y 轴上,则圆C 的标准方程为 ▲ .7. “(0)0f =”是“函数()f x 是R 上的奇函数”的 ▲ 条件.(填写“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)8. 空间三条直线,,a b c .下列正确命题的序号是 ▲ .①若,a c b c ⊥⊥,则//a b ;②若//,a b //b c ,则//a c ;③过空间一点P 有且只有一条直线与直线a 成60°角;④与两条异面直线,a b 都垂直的直线有无数条.9. 与直线210x y +-=切于点(1,0)A ,且经过点(2,3)B -的圆的方程为 ▲ .10. 下列命题正确..的序号是 ▲ .(其中,l m 表示直线,,,αβγ表示平面) ①若,,,l m l m αβαβ⊥⊥⊥⊥则;②若,,,l m l m αβαβ⊥⊂⊂⊥则;③若,//,αγβγαβ⊥⊥则;④若//,,,l m l m αβαβ⊥⊂⊥则.11. 已知点(1,3)A 和点(5,2)B 分别在直线320x y a ++=的两侧,则实数a 的取值范围为 ▲ .12. 正方体1111ABCD A B C D -的棱长为a ,若过AC 作平面1//D B α,则截面三角形的面积为▲ .13. 在三棱锥S ABC -中,侧棱SA 、SB 、SC 两两垂直且长度均为a ,点H 在BC 上,且SH BC ⊥,则sin HAS ∠的值为 ▲ . 14. 若△ABC 的一个顶点(3,1)A -,,B C ∠∠的平分线分别为0,x y x ==,则直线BC 的方程为▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)已知直线1:80l mx y n ++=和2:210l x my +-=.(1)若1l 和2l 相交于点(,1)P m -,求m 、n 的值;(2)若12//l l ,求m 、n 的值;(3)若点(0,1)Q 到直线2l 的距离为1,求m 的值.16.(本题满分14分)如图,已知一个圆锥的底面半径为R ,高为h ,在其中有一个高为x 的内接圆柱(其中,R h均为常数).(1)当23x h =时,求内接圆柱上方的圆锥的体积V ; (2)当x 为何值时,这个内接圆柱的侧面积最大?并求出其最大值。
必修二高中数学人教B版模块综合测试(附答案)
必修二高中数学人教B 版模块综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在某几何体的三视图中,主视图、左视图、俯视图是三个全等的圆,圆的半径为R ,则这个几何体的体积是( ) A.31πR 3 B.32πR 3 C.πR 3 D.334R π 解析:由题意,这个几何体是球,故体积为34πR 3. 答案:D2.在空间直角坐标系中,方程x 2-4(y-1)2=0表示的图形是( )A.两个点B.两条直线C.两个平面D.一条直线和一个平面解析:由原方程可得(x+2y-2)(x-2y+2)=0,∴x+2y-2=0或x-2y+2=0.答案:C3.长方体各面上的对角线所确定的平面个数是( )A.20B.14C.12D.6解析:相对两平行平面中有两组平行对角线,可以确定两个平面,这样有6个平面.又因为每个顶点对应一个符合条件的平面,这样又有8个平面,共有14个平面.答案:B4.与直线2x+3y-6=0关于点(1,-1)对称的直线方程是( )A.3x-2y+2=0B.2x+3y+7=0C.3x-2y-12=0D.2x+3y+8=0解:设(x 0,y 0)是直线2x+3y-6=0上任一点,其关于点(1,-1)的对称点的坐标是(x,y),则2x 0+3y 0-6=0.(*) 又由对称性知⎪⎪⎩⎪⎪⎨⎧-=+=+.12,1200y y x x∴⎩⎨⎧--=-=.2,200y y x x 代入(*)式得2(2-x)+3(-2-y)-6=0,即2x+3y+8=0. 答案:D5.与圆C:x 2+(y+5)2=3相切,且纵截距和横截距相等的直线共有( )A.2条B.3条C.4条D.6条解析:原点在圆C 外,过原点的两条切线在坐标轴上的截距也是相等的;若切线不过原点,设为x+y=a,圆心为(0,-5),半径为3, ∴32|50|=--a .∴a=-5±6.∴在两轴上截距相等、斜率为-1的直线又有两条,共有4条.答案:C6.(2020高考天津卷,文7)若l 为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题:①α⊥γ,β⊥γ⇒α⊥β;②α⊥γ,β∥γ⇒α⊥β;③l ∥α,l ⊥β⇒α⊥β.其中正确的命题有( )A.0个B.1个C.2个D.3个 解析:本题考查线面和面面的垂直平行垂直关系.①中可由长方体的一角证明是错误的;②③易证明是正确的.答案:C7.(2020高考全国卷Ⅰ,理7文9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π 解析:本题考查长方体和正四棱柱的关系以及球的表面积的计算.由题意可得该正四棱柱的底面面积为4,边长为2.因正四棱柱属于长方体,因此所求球的球心在该长方体的中心即球的直径为62,根据球的表面积公式,可得球的表面积为24π. 答案:C 8.将若干毫升水倒入底面半径为4 cm 的圆柱形器皿中,量得水面高度为8 cm,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )A.36B.6C.3184D.398 解:设水面高度为h.由42×8π=31×(33h)2πh , ∴h=3184.故选C. 答案:C9.已知点P(2,-3)、Q(3,2),直线ax-y+2=0与线段PQ 相交,则a 的取值范围是( )A.a≥34 B.a≤34- C.25-≤a≤0 D.a≤34-或a≥21 解析:直线ax-y+2=0可化为y=ax+2,斜率k=a,恒过定点A(0,2).如图,直线与线段PQ 相交,0≥k≥k A P,即25-≤a≤0.答案:C10.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( )A.1个B.2个C.3个D.4个解:圆心(3,3)到直线3x+4y-11=0的距离为d=5|113433|-⨯+⨯=2,圆的半径是3. ∴圆上的点到直线3x+4y-11=0的距离为1的点有3个.答案:C11.直线l 与直线3x+4y-15=0垂直,与圆x 2+y 2-18x+45=0相切,则l 的方程是( )A.4x-3y-6=0B.4x-3y-66=0C.4x-3y-6=0或4x-3y-66=0D.4x-3y-15=0解:由直线l 与直线3x+4y-15=0垂直,则可设l 的方程是4x-3y+b=0.由圆x 2+y 2-18x+45=0,知圆心O′(9,0),半径r=6,∴5|0394|b +⨯-⨯=6,|36+b|=30. ∴b=-6或b=-66.故l 的方程为4x-3y-6=0或4x-3y-66=0.答案:C12.直线3x-2y+m=0和直线(m 2-1)x+3y-3m+2=0的位置关系是( )A.平行B.重合C.相交D.不能确定解析:因为3×3-2(m 2-1)=0,m 无解,可得3×3≠2(m 2-1),即两直线斜率不相等,所以这两条直线不平行或重合,由两直线相交的条件,可得两直线相交.答案:C二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.已知A(-1,-2,1)、B(2,2,2),点P 在z 轴上,且d(P,A)=d(P,B),则点P 的坐标为___________. 解:∵P 在z 轴上,∴设P 点坐标为(0,0,z).又∵|PA|=|PB|,∴利用距离公式得z=3.答案:(0,0,3)14.若P 在坐标平面xOy 内,A 点坐标为(0,0,4),且d(P,A)=5,则点P 组成的曲线为___________. 解析:考查两点距离公式的应用和探究问题的能力.设P(x,y,0),则d(P,A)=222)40()0()0(-+-+-y x ,因为|PA|=5,所以x 2+y 2+16=25,即x 2+y 2=9.所以P 点在xOy 坐标面上形成一个以(0,0)为圆心,以3为半径的圆.答案:以(0,0)为圆心,以3为半径的圆15.如图1,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是___________.图1解析:可以考虑用一个与原来全等的几何体,倒过来拼接到原几何体上,得到一个底面半径为r ,母线长为(a+b)的圆柱,其体积为πr 2(a+b),故所求体积为21πr 2(a+b).答案:21πr 2(a+b) 16.过圆x 2+y 2-6x+4y-3=0的圆心,且平行于x+2y+11=0的直线方程是___________. 解:圆x 2+y 2-6x+4y-3=0的圆心为(3,-2).设所求直线斜率为k,则k=21-. ∴方程为y+2=21-(x-3),即x+2y+1=0. 答案:x+2y+1=0三、解答题(共74分)17.(本小题12分)如图2,在正方体ABCD-A 1B 1C 1D 1中,求证:图2(1)A 1D ∥平面CB 1D 1;(2)平面A 1BD ∥平面CB 1D 1.证明:(1)∵A 1B 1∥CD 且A 1B 1=CD,∴四边形A 1B 1CD 是平行四边形,故A 1D ∥B 1C.又B 1C ⊂平面CB 1D 1且A 1D ⊂平面CB 1D 1,∴A 1D ∥平面CB 1D 1.(2)由(1)A 1D ∥平面CB 1D 1,同理可得A 1B ∥平面CB 1D 1,又A 1D∩A 1B=A 1,且A 1D 和A 1B 都在平面A 1BD 内,所以平面A 1BD ∥平面CB 1D 1.18.(本小题12分)如图3,在直三棱柱ABC —A 1B 1C 1中,AB 1⊥BC 1,AB=CC 1=1,BC=2.图3(1)求证:A 1C 1⊥AB ;(2)求点B 1到平面ABC 1的距离.(1)证明:连结A 1B ,则A 1B ⊥AB 1.又∵AB 1⊥BC 1,∴AB 1⊥平面A 1BC 1.∴AB 1⊥A 1C 1.又∵A 1C 1⊥BB 1,∴A 1C 1⊥平面ABB 1.∴A 1C 1⊥AB.(2)解:由(1)知AB ⊥AC ,∵AB ⊥AC 1,又∵AB=1,BC=2,∴AC=3,AC 1=2.∴1ABC S ∆=1.设所求距离为d ,∴1111ABB C ABC B V V --=. ∴31S △ABC 1·d=131ABB S ∆·A 1C 1. ∴31·1·d=31·21·3. ∴d=23. 19.(本小题12分)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为22,求圆的方程.解:设圆的方程为(x-a)2+(y-b)2=r 2.∵圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,∴圆心在x+2y=0上.∴a+2b=0. ① ∵圆被直线截得的弦长为22,∴(2|1|+-b a )2+(2)2=r 2. ② 由点A(2,3)在圆上,得(2-a)2+(3-b)2=r 2. ③联立①②③,解得⎪⎩⎪⎨⎧=-==⎪⎩⎪⎨⎧=-==.244,7,1452,3,622r b a r b a 或∴圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.20.(本小题12分)已知圆C :(x-1)2+y 2=9内有一点P(2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,写出直线l 的方程;(3)当直线l 的倾斜角为45°时,求弦AB 的长.解:(1)已知圆C :(x-1)2+y 2=9的圆心为C(1,0),因直线过点P 、C ,所以直线l 的斜率为2,直线l 的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为y-2=21-(x-2),即x+2y-6=0. (3)当直线l 的倾斜角为45°时,斜率为1,直线l 的方程为y-2=x-2,即x-y=0.圆心到直线l 的距离为21,圆的半径为3,弦AB 的长为34. 21.(本小题12分)如图4,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是AA 1、D 1C 1的中点,过D 、M 、N 三点的平面与正方体的下底面相交于直线l ;图4(1)画出直线l ;(2)设l∩A 1B 1=P,求PB 1的长;(3)求D 到l 的距离.解:(1)连结DM 并延长交D 1A 1的延长线于Q.连结NQ ,则NQ 即为所求的直线l.(2)设QN∩A 1B 1=P,△A 1MQ ≌△MAD,∴A 1Q=AD=A 1D 1,A 1是QD 1的中点.∴A 1P=21D 1N=4a .∴PB 1=43a. (3)作D 1H ⊥l 于H ,连结DH ,可证明l ⊥平面DD 1H ,则DH ⊥l,则DH 的长就是D 到l 的距离.在Rt △QD 1N 中,两直角边D 1N=2a ,D 1Q=2a,斜边QN=a 217,∴D 1H·QN=D 1N·D 1Q,即D 1H=a 17172,DH=a a a 17357)17172(22=+,∴D 1到l 的距离为a 17357. 22.(本小题14分)设有半径为3 km 的圆形村落,A 、B 两人同时从村落中心出发,B 向北直行,A 先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B 相遇,设A 、B 两人速度一定,其速度比为3∶1,问两人在何处相遇.解:如图,建立平面直角坐标系,由题意可设A 、B 两人速度分别为3V 千米/小时、V 千米/小时,再设出发x 0小时,在点P 改变方向,又经过y 0小时,在点Q 处与B 相遇,则P 、Q 两点坐标为(3Vx 0,0)、(0,Vx 0+y 0).由|OP|2+|OQ|2=|PQ|2,知(3Vx 0)2+(Vx 0+y 0)2=(3Vy 0)2,即(x 0+y 0)(5x 0-4y 0)=0.∵x 0+y 0>0,∴5x 0=4y 0. ① 将①代入k PQ =0003x y x +-,得k PQ =43-. 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两人相遇的位置. 设直线y=43-x+b 与圆O :x 2+y 2=9相切,则有2243|4|+b =3, ∴b=415.。
人教版数学高一-B版必修2模块综合测评
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为() A.6 B.1C.2 D.4【解析】由题意知k AB=m+4-2-3=-2,∴m=6.【答案】 A2.在x轴、y轴上的截距分别是-2、3的直线方程是() A.2x-3y-6=0 B.3x-2y-6=0C.3x-2y+6=0 D.2x-3y+6=0【解析】由直线的截距式得,所求直线的方程为x-2+y3=1,即3x-2y+6=0.【答案】 C3.已知正方体外接球的体积是323π,那么正方体的棱长等于()A.2 2 B.22 3C.423 D.433【解析】设正方体的棱长为a,球的半径为R,则43πR3=323π,∴R=2.又∵3a=2R=4,∴a=43 3.【答案】 D4.关于空间直角坐标系Oxyz中的一点P(1,2,3)有下列说法:①点P 到坐标原点的距离为13; ②OP 的中点坐标为⎝ ⎛⎭⎪⎫12,1,32;③与点P 关于x 轴对称的点的坐标为(-1,-2,-3); ④与点P 关于坐标原点对称的点的坐标为(1,2,-3); ⑤与点P 关于坐标平面xOy 对称的点的坐标为(1,2,-3). 其中正确的个数是( ) A .2 B .3 C .4D .5【解析】 点P 到坐标原点的距离为12+22+32=14,故①错;②正确;与点P 关于x 轴对称的点的坐标为(1,-2,-3),故③错;与点P 关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确,故选A.【答案】 A5.如图1,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱BB 1、B 1C 1的中点,若∠CMN =90°,则异面直线AD 1和DM 所成角为( ) 【导学号:60870092】图1A .30°B .45°C .60°D .90°【解析】 因为MN ⊥DC ,MN ⊥MC , 所以MN ⊥平面DCM . 所以MN ⊥DM .因为MN ∥AD 1,所以AD 1⊥DM . 【答案】 D6.(2015·福建高考)某几何体的三视图如图2所示,则该几何体的表面积等于( )图2A.8+2 2 B.11+2 2C.14+2 2 D.15【解析】由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.【答案】 B7.已知圆x2+y2+2x+2y+k=0和定点P(1,-1),若过点P的圆的切线有两条,则k的取值范围是()A.(-2,+∞) B.(-∞,2)C.(-2,2) D.(-∞,-2)∪(2,+∞)【解析】因为方程x2+y2+2x+2y+k=0表示一个圆,所以4+4-4k>0,所以k<2.由题意知点P(1,-1)在圆外,所以12+(-1)2+2×1+2×(-1)+k>0,解得k>-2,所以-2<k<2.【答案】 C8.在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【解析】如图,取BC的中点E,连接DE、AE、AD.依题设知AE⊥平面BB1C1C.故∠ADE为AD与平面BB1C1C所成的角.设各棱长为2,则AE=32×2=3,DE=1.∵tan∠ADE=AEDE =31=3,∴∠ADE=60°,故选C.【答案】 C9.(2015·开封高一检测)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法中正确的是()①若直线m、n都平行于平面α,则m、n一定不是相交直线;②若直线m、n都垂直于平面α,则m、n一定是平行直线;③已知平面α、β互相垂直,且直线m、n也互相垂直,若m⊥α,则n⊥β;④若直线m、n在平面α内的射影互相垂直,则m⊥n.A.②B.②③C.①③D.②④【解析】对于①,m与n可能平行,可能相交,也可能异面;对于②,由线面垂直的性质定理可知,m与n一定平行,故②正确;对于③,还有可能n∥β;对于④,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面α,则m与n在α内的射影分别为AB与BC,且AB⊥BC.而m与n所成的角为60°,故④错.因此选A.【答案】 A10.(2015·全国卷Ⅱ)已知三点A(1,0),B(0,3),C(2,3),则△ABC外接圆的圆心到原点的距离为()A.53 B.213C.253 D.43【解析】在坐标系中画出△ABC(如图),利用两点间的距离公式可得|AB|=|AC|=|BC|=2(也可以借助图形直接观察得出),所以△ABC为等边三角形.设BC的中点为D,点E为外心,同时也是重心.所以|AE|=23|AD|=233,从而|OE|=|OA|2+|AE|2=1+43=213,故选B.【答案】 B11.(2016·重庆高一检测)已知P(x,y)是直线kx+y+4=0(k>0)上一点,PA 是圆C:x2+y2-2y=0的一条切线,A是切点,若PA长度的最小值为2,则k 的值是()A.3 B.21 2C.2 2 D.2【解析】圆C:x2+y2-2y=0的圆心是(0,1),半径是r=1,∵PA是圆C:x2+y2-2y=0的一条切线,A是切点,PA长度的最小值为2,∴圆心到直线kx+y+4=0的最小距离为5,由点到直线的距离公式可得|1+4|k2+1=5,∵k>0,∴k=2,故选D.【答案】 D12.(2016·德州高一检测)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积为()A.212a3 B.a312C.24a3 D.a36【解析】 取AC 的中点O ,如图, 则BO =DO =22a , 又BD =a ,所以BO ⊥DO , 又DO ⊥AC , 所以DO ⊥平面ACB , V D -ABC=13S △ABC ·DO =13×12×a 2×22a =212a 3. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知两条平行直线的方程分别是2x +3y +1=0,mx +6y -5=0,则实数m =________.【解析】 由于两直线平行,所以2m =36≠1-5,∴m =4.【答案】 414.一个横放的圆柱形水桶,桶内的水漫过底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为________.【解析】 设圆柱形水桶的底面半径为R ,高为h ,桶直立时,水的高度为x .横放时水桶底面在水内的面积为⎝ ⎛⎭⎪⎫14πR 2-12R 2,水的体积为V 水=⎝ ⎛⎭⎪⎫14πR 2-12R 2h .直立时水的体积不变,则有V 水=πR 2x , ∴x ∶h =(π-2)∶4π. 【答案】 (π-2)∶4π15.已知一个等腰三角形的顶点A (3,20),一底角顶点B (3,5),另一顶点C的轨迹方程是________.【解析】设点C的坐标为(x,y),则由|AB|=|AC|得(x-3)2+(y-20)2=(3-3)2+(20-5)2,化简得(x-3)2+(y-20)2=225.因此顶点C的轨迹方程为(x-3)2+(y-20)2=225(x≠3).【答案】(x-3)2+(y-20)2=225(x≠3)16.(2015·湖南高考)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B 两点,且∠AOB=120°(O为坐标原点),则r=__________. 【导学号:60870093】【解析】如图,过点O作OD⊥AB于点D,则|OD|=5=1.32+(-4)2∵∠AOB=120°,OA=OB,∴∠OBD=30°,∴|OB|=2|OD|=2,即r=2.【答案】 2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2且l1与l2的距离为5,求l1,l2的方程.【解】若直线l1,l2的斜率都不存在,则l1的方程为x=0,l2的方程为x =5,此时l1,l2之间距离为5,符合题意;若l1,l2的斜率均存在,设直线的斜率为k,由斜截式方程得直线l1的方程为y=kx+1,即kx-y+1=0,由点斜式可得直线l2的方程为y=k(x-5),即kx-y-5k=0,在直线l1上取点A(0,1),则点A到直线l2的距离d=|1+5k|1+k2=5,∴25k2+10k+1=25k2+25,∴k=125.∴l1的方程为12x-5y+5=0,l2的方程为12x-5y-60=0.综上知,满足条件的直线方程为l1:x=0,l2:x=5或l1:12x-5y+5=0,l2:12x-5y-60=0.18.(本小题满分12分)已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y -4=0.(1)求证:两圆相交;(2)求两圆公共弦所在直线的方程.【解】(1)证明:圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0化为标准方程分别为圆C1:(x-2)2+(y+1)2=5与圆C2:x2+(y-1)2=5,则圆心坐标分别为C1(2,-1)与C2(0,1),半径都为5,故圆心距为(2-0)2+(-1-1)2=22,又0<22<25,故两圆相交.(2)将两圆的方程作差即可得出两圆的公共弦所在直线的方程,即(x2+y2-4x +2y)-(x2+y2-2y-4)=0,得x-y-1=0.19.(本小题满分12分)如图3,在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.图3(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.【证明】 (1)∵M 为AB 的中点,D 为PB 的中点, ∴MD ∥AP .又∵DM ⊄平面APC ,AP ⊂平面APC , ∴DM ∥平面APC .(2)∵△PMB 为正三角形,D 为PB 中点, ∴MD ⊥PB .又∵MD ∥AP ,∴AP ⊥PB .又∵AP ⊥PC ,PC ∩PB =P ,∴AP ⊥平面PBC . ∵BC ⊂平面PBC ,∴AP ⊥BC .又∵AC ⊥BC ,且AC ∩AP =A ,∴BC ⊥平面APC . 又∵BC ⊂平面ABC ,∴平面ABC ⊥平面APC .20.(本小题满分12分)已知△ABC 的顶点A (0,1),AB 边上的中线CD 所在的直线方程为2x -2y -1=0,AC 边上的高BH 所在直线的方程为y =0.(1)求△ABC 的顶点B 、C 的坐标;(2)若圆M 经过A 、B 且与直线x -y +3=0相切于点P (-3,0),求圆M 的方程.【解】 (1)AC 边上的高BH 所在直线的方程为y =0,所以AC 边所在直线的方程为x =0,又CD 边所在直线的方程为2x -2y -1=0, 所以C ⎝ ⎛⎭⎪⎫0,-12,设B (b,0),则AB 的中点D ⎝ ⎛⎭⎪⎫b 2,12,代入方程2x -2y -1=0, 解得b =2,所以B (2,0).(2)由A (0,1),B (2,0)可得,圆M 的弦AB 的中垂线方程为4x -2y -3=0,① 由与x -y +3=0相切,切点为(-3,0)可得,圆心所在直线方程为y +x +3=0,②①②联立可得,M ⎝ ⎛⎭⎪⎫-12,-52,半径|MA |=14+494=502,所以所求圆方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y +522=252.21.(本小题满分12分)如图4,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.图4(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ;(3)求三棱锥E -ABC 的体积. 【导学号:60870094】【解】 (1)证明:在三棱柱ABC -A 1B 1C 1中, BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC , 所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)证明:取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1,所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33. 22.(本小题满分12分)已知圆M 过两点A (1,-1),B (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PC 、PD 是圆M 的两条切线,C 、D 为切点,求四边形PCMD 面积的最小值.【解】 (1)法一 线段AB 的中点为(0,0),其垂直平分线方程为x -y =0.解方程组⎩⎪⎨⎪⎧x -y =0,x +y -2=0.所以圆M 的圆心坐标为(1,1),半径r =(1-1)2+(-1-1)2=2. 故所求圆M 的方程为(x -1)2+(y -1)2=4.法二 设圆M 的方程为(x -a )2+(y -b )2=r 2,(r >0),根据题意得⎩⎪⎨⎪⎧ (1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题知,四边形PCMD 的面积为S =S △PMC +S △PMD =12|CM |·|PC |+12|DM |·|PD |.又|CM |=|DM |=2,|PC |=|PD |,所以S =2|PC |,而|PC |=|PM |2-|CM |2 =|PM |2-4,即S =2|PM |2-4. 因此要求S 的最小值,只需求|PM |的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3, 所以四边形PCMD 面积的最小值为S =2|PM |2-4=232-4=2 5.。
高中数学人教B版必修二 模块综合测评 Word版含答案
模块综合测评(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).过点(,-),(-,)的直线的斜率为-,则的值为( )....【解析】由题意知==-,∴=.【答案】.在轴、轴上的截距分别是-、的直线方程是( ).--=.--=.-+=.-+=【解析】由直线的截距式得,所求直线的方程为+=,即-+=.【答案】.已知正方体外接球的体积是π,那么正方体的棱长等于( ).【解析】设正方体的棱长为,球的半径为,则π=π,∴=.又∵==,∴=.【答案】.关于空间直角坐标系中的一点()有下列说法:①点到坐标原点的距离为;②的中点坐标为;③与点关于轴对称的点的坐标为(-,-,-);④与点关于坐标原点对称的点的坐标为(,-);⑤与点关于坐标平面对称的点的坐标为(,-).其中正确的个数是( )....【解析】点到坐标原点的距离为=,故①错;②正确;与点关于轴对称的点的坐标为(,-,-),故③错;与点关于坐标原点对称的点的坐标为(-,-,-),故④错;⑤正确,故选.【答案】.如图,在长方体-中,、分别是棱、的中点,若∠=°,则异面直线和所成角为( ) 【导学号:】图.°.°.°.°【解析】因为⊥,⊥,所以⊥平面.所以⊥.因为∥,所以⊥.【答案】.(·福建高考)某几何体的三视图如图所示,则该几何体的表面积等于( )图.+.+..+【解析】由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为=,所以底面周长为+,侧面积为×(+)=+,两底面的面积和为×。
高中数学新教材人教B版必修第二册训练:模块综合测试
模块综合测试(时间:120分钟 满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示,向量a -b 等于( C )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2[解析] 由题干图可得a -b =BA →=e 1-3e 2.2.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =( B )A .54B .90C .45D .126[解析] 依题意有33+5+7×n =18,由此解得n =90,即样本容量为90.3.函数y =log 13(x -1)的定义域是( D ) A .(1,+∞) B .(2,+∞) C .(-∞,2]D .(1,2][解析] 由log 13(x -1)≥0,得0<x -1≤1, ∴1<x ≤2.4.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( C )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 [解析] 由条形统计图知:甲射靶5次的成绩分别为:4,5,6,7,8; 乙射靶5次的成绩分别为:5,5,5,6,9;所以x 甲=4+5+6+7+85=6;x 乙=5+5+5+6+95=6.所以x 甲=x 乙.故A 不正确.甲的成绩的中位数为6,乙的成绩的中位数为5,故B 不正确.s 2甲=15[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=15×10=2,s 2乙=15[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=15×12=125,因为2<125,所以s 2甲<s 2乙.故C 正确. 甲的成绩的极差为:8-4=4, 乙的成绩的极差为:9-5=4, 故D 不正确.故选C .5.设a =log 0.50.6,b =log 1.10.6,c =1.10.6,则( C ) A .a <b <c B .b <c <a C .b <a <cD .c <a <b[解析] ∵log 0.51<log 0.50.6<log 0.50.5,∴0<a <1, log 1.10.6<log 1.11=0,即b <0,1.10.6>1.10=1,即c >1, ∴b <a <C .6.设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( D )A .|a |=|b |且a ∥bB .a =-bC .a ∥bD .a =2b[解析] ∵a |a |表示与a 同向的单位向量,∴a 与b 必须方向相同才能满足a |a |=b|b |.7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( D )A .23B .25C .35D .910[解析] 记事件A :甲或乙被录用.从五人中录用三人,基本事件有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种可能,而A 的对立事件A 仅有(丙,丁,戊)一种可能,∴A 的对立事件A 的概率为P (A )=110,∴P (A )=1-P (A )=910.8.函数y =a x -2(a >0且a ≠1,-1≤x ≤1)的值域是[-53,1],则实数a =( C )A .3B .13C .3或13D .23或32[解析] 当a >1时,y =a x -2在[-1,1]上为增函数, ∴⎩⎪⎨⎪⎧a -2=1,1a-2=-53,解得a =3; 当0<a <1时,y =a x -2在[-1,1]上为减函数,∴⎩⎨⎧a -2=-53,1a -2=1,解得a =13.综上可知a =3或13.二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.设a 0为单位向量,下列命题是假命题的为( ABC ) A .若a 为平面内的某个向量,则a =|a |a 0 B .若a 与a 0平行,则a =|a |a 0 C .若a 与a 0平行且|a |=1,则a =a 0 D .若a 为单位向量,则|a |=|a 0|[解析] 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故A 是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,当|a |=1时,a =-a 0,故B ,C 也是假命题;D 为真命题.10.总体由编号为01,02,…,60的60个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第8列和第9列数字开始由左至右选取两个数字,则选出的第1个个体和第5个个体的编号分别为( AC )50 44 66 44 29 67 06 58 03 69 80 34 27 18 83 61 46 42 23 91 67 43 25 74 58 83 11 03 30 20 83 53 12 28 47 73 63 05 35 99 A .42 B .36 C .22D .14[解析] 由随机数表可得:从随机数表第1行的第8列和第9列数字开始由左至右选取两个数字,选出的5个个体的编号为42,36,03,14,22,即选出的第1个个体和第5个个体的编号分别为42,22.11.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论,当f (x )=lg x 时,上述结论中正确结论的序号是( BC )A .f (x 1+x 2)=f (x 1)·f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2)C .f (x 1)-f (x 2)x 1-x 2>0D .f (x 1+x 22)<f (x 1)+f (x 2)2[解析] 因为f (x )=lg x ,且x 1≠x 2, 所以f (x 1+x 2)=lg (x 1+x 2)≠lg x 1·lg x 2. 所以A 不正确.f (x 1·x 2)=lg (x 1·x 2)=lg x 1+lg x 2=f (x 1)+f (x 2). 因此B 正确.因为f (x )=lg x 是增函数, 所以f (x 1)-f (x 2)与x 1-x 2同号. 所以f (x 1)-f (x 2)x 1-x 2>0.因此C 正确.因为f (x 1+x 22)>f (x 1)+f (x 2)2,因此D 是不正确的,综上,选BC . 12.下列命题为真命题的是( BD )A .将一枚硬币抛两次,设事件M :“两次出现正面”,事件N :“只有一次出现反面”,则事件M 与N 互为对立事件B .若事件A 与B 互为对立事件,则事件A 与B 为互斥事件C .若事件A 与B 为互斥事件,则事件A 与B 互为对立事件D .若事件A 与B 互为对立事件,则事件A ∪B 为必然事件[解析] 对A ,一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M 与N 是互斥事件,但不是对立事件,故A 错;对B ,对立事件首先是互斥事件,故B 正确;对C ,互斥事件不一定是对立事件,如A 中两个事件,故C 错;对D ,事件A ,B 为对立事件,则一次试验中A ,B 一定有一个要发生,故D 正确.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.从编号分别为1,2,3,4的四个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为__12__.[解析] 从编号为1,2,3,4的四个大小完全相同的小球中,随机取出三个小球,共有4种不同的取法,恰好有两个小球编号相邻的有:(1,2,4),(1,3,4),共有2种,所以概率为12.14.线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =__-2或6__.[解析] 由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ). 由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →时,有⎩⎪⎨⎪⎧1-x =6,-4=2-2y .解得⎩⎪⎨⎪⎧x =-5,y =3.此时x +y =-2;当AC →=-2BC →时,有⎩⎪⎨⎪⎧1-x =-6,-4=-2+2y .解得⎩⎪⎨⎪⎧x =7,y =-1.此时x +y =6.综上可知,x +y =-2或6.15.已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =__-3__. [解析] 由题意知f (x )是奇函数,且当x <0时,f (x )=-e ax ,又因为ln 2∈(0,1), f (ln 2)=8,所以-e-a ln 2=-8,两边取以e 为底数的对数,得-a ln 2=3ln 2,所以-a =3,即a =-3.16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__130__元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__15__.[解析] (1)价格为60+80=140元,达到120元,少付10元,所以需支付130元. (2)设促销前总价为a 元,a ≥120,李明得到金额l (x )=(a -x )×80%≥0.7a ,0≤x ≤120,即x ≤a 8恒成立,又a 8最小值为1208=15,所以x 的最大值为15. 四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC →=2AB →,求点C 的坐标.[解析] (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),因为A ,B ,C 三点共线,所以AB →∥AC →.所以2(b -1)+2(a -1)=0,即a +b =2. (2)因为AC →=2AB →,所以(a -1,b -1)=2(2,-2).所以⎩⎪⎨⎪⎧ a -1=4,b -1=-4.解得⎩⎪⎨⎪⎧a =5,b =-3.所以点C 的坐标为(5,-3).18.(本小题满分12分)2019年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对每天的空气污染情况进行调查研究后发现,每一天中空气污染指数f (x )与时刻x (时)的函数关系为:f (x )=|log 25(x +1)-a |+2a +1,x ∈[0,24],其中a 为空气治理调节参数,且a ∈(0,1).(1)若a =12,求一天中哪个时刻该市的空气污染指数最低;(2)若规定一天中f (x )的最大值作为当天的空气污染指数,要使该市每天的空气污染指数均不超过3,则调节参数a 应控制在什么范围内?[解析] (1)若a =12,则f (x )=|log 25(x +1)-12|+2≥2.当f (x )=2时,log 25(x +1)-12=0,得x +1=2512 ,即x =4.所以一天中凌晨4点该市的空气污染指数最低. (2)设t =log 25(x +1),则当0≤x ≤24时,0≤t ≤1. 设g (t )=|t -a |+2a +1,t ∈[0,1],则g (t )=⎩⎪⎨⎪⎧-t +3a +1,0≤t ≤a ,t +a +1,a <t ≤1,显然g (t )在[0,a ]上是减函数,在(a ,1]上是增函数, 则f (x )max =max {g (0),g (1)}.因为g (0)=3a +1,g (1)=a +2,由g (0)-g (1)=2a -1>0,得a >12,所以f (x )max=⎩⎨⎧a +2,0<a ≤12,3a +1,12<a <1.当0<a ≤12时,2<a +2≤52<3,符合要求;当12<a <1时,由3a +1≤3,得12<a ≤23.故调节参数a 应控制在(0,23]内.19.(本小题满分12分)近年来,郑州经济快速发展,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1 000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中a =4B .(1)求a ,b 的值;(2)求被调查的市民的满意程度的平均数,众数,中位数;(3)若按照分层抽样从[50,60),[60,70)中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[50,60)的概率.[解析] (1)依题意得(a +b +0.008+0.027+0.035)×10=1,所以a +b =0.03, 又a =4b ,所以a =0.024,b =0.006.(2)平均数为55×0.08+65×0.24+75×0.35+85×0.27+95×0.06=74.9, 中位数为70+0.5-0.08-0.240.035≈75.14,众数为70+802=75.(3)依题意,知从分数在[50,60)的市民中抽取了2人,记为a ,b ,从分数在[60,70)的市民中抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人的所有的情况为(a ,b),(a,1),(a,2),(a,3),(a,4),(a,5),(a,6),(b,1),(b,2),(b,3),(b,4),(b,5),(b,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共28种.其中满足条件的为(a ,b),(a,1),(a,2),(a,3),(a,4),(a,5),(a,6),(b,1),(b,2),(b,3),(b,4),(b,5),(b,6),共13种.设“至少有1人的分数在[50,60)”为事件A ,则P (A )=1328.20.(本小题满分12分)设直线l :mx +y +2=0与线段AB 有公共点P ,其中A (-2,3),B (3,2),试用向量的方法求实数m 的取值范围.[解析] (1)P 与A 重合时,m ×(-2)+3+2=0,所以m =52.P 与B 重合时,3m +2+2=0,所以m =-43.(2)P 与A ,B 不重合时,设AP →=λPB →,则λ>0. 设P (x ,y ),则AP →=(x +2,y -3), PB →=(3-x ,2-y ).所以⎩⎪⎨⎪⎧x +2=λ(3-x ),y -3=λ(2-y ),所以⎩⎪⎨⎪⎧x =3λ-2λ+1,y =2λ+3λ+1,把x ,y 代入mx +y +2=0可解得λ=2m -53m +4,又因为λ>0,所以2m -53m +4>0.所以m <-43或m >52.由(1)(2)知,所求实数m 的取值范围是(-∞,-43]∪[52,+∞).21.(本小题满分12分)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.[解析] 设A k ,B k 分别表示甲、乙在第k 次投篮时投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,则P (C )=P (A 1B 1)+P (A1B1A 2B 2)+P (A1B1A2B2A3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3)=23×12+(23)2×(12)2+(23)3×(12)3=1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则 P (D )=P (A1B1A 2B 2)+P (A1B1A2B 2A 3)=P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3) =(23)2×(12)2+(23)2×(12)2×13=427. 22.(本小题满分12分)已知指数函数y =g(x)满足g(2)=4,定义域为R 的函数f (x )=-g (x )+n2g (x )+m是奇函数.(1)确定y =g (x )的解析式; (2)求m ,n 的值;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.[解析] (1)g (x )=2x . (2)由(1)知f (x )=-2x +n2x +1+m .∵f (x )在R 上是奇函数,∴f (0)=0,即n -12+m =0,∴n =1.∴f (x )=1-2x2x +1+m .又由f (1)=-f (-1)知1-24+m =-1-12m +1,解得m =2.(3)由(2)知f (x )=1-2x 2+2x +1=-12+12x+1, 易知f (x )在(-∞,+∞)上为减函数.又f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),∴t 2-2t >k -2t 2,即3t 2-2t -k >0.由判别式Δ=4+12k <0可得k <-13.由Ruize收集整理。
人教B版高中数学必修二高二数学检测题.doc
高中数学学习材料马鸣风萧萧*整理制作高二数学检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;满分为150分。
考试时间为120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上; 2、 每个小题选出答案后,用铅笔把答题卡上对应题目的答案涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标记。
3、 考生一律不准使用计算器,否则将视为作弊处理。
一.选择题(本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合{P y y =≤,又x =,则下列关系中正确的是( ) A.x P ⊂≠ B.x P ∉ C.{}x P ∈ D .{}x P ⊂≠2.下列四组函数中,表示同一个函数的是( )A .()f x x =与()g x = B. 0y x =与1y =C.1y x =+ 与211x y x -=- D.1y x =- 与y =3.设P 和Q 是两个集合,定义集合Q P -={}Q x P x x ∉∈且,|,如果{}1log 2<=x x P ,{}12<-=x x Q 那么Q P -等于A .{}01x x <<B . {}01x x <≤ C. {}12x x ≤< D. {}23x x ≤<4.已知全集{}0,1,2,3,4,5U =,集合{}0,3,5M =,(){}0,3U MN =ð,则满足条件的集合N 共有 ( )A. 4个B. 6个 C .8 个 D.16个5.设lg 2,lg3,a b ==则125log 等于( ) A.21a b a ++ B.21a b a ++ C .21a b a +- D.21a b a+- 6. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )7. 过点(),1A m 和()1,B m -的直线与直线350x y -+=垂直,则实数m 的值是( )A. 3- B . 2- C. 2 D. 38.下列命题中的真命题是( )A.平行于同一个平面的两条直线平行B.平行于同一个平面的一条直线与一个平面平行C .平行于同一个平面的两个平面互相平行D.平行于同一条直线的两个平面互相平行9. 设2()lg 1f x a x ⎛⎫=+⎪-⎝⎭是奇函数,则使()0f x <的x 的取值范围是( ) A.(10)-, B.(01), C.(0)-∞, D.(0)(1)-∞+∞,,10.已知函数()223f x x x =-+在闭区间[]0,m 上有最大值3,最小值2,则m 的取值范围为( )A. [)1,+∞B.[]0,2C.(],2-∞-D.[]1,211.如图为一个几何体的三视图,其中俯视图为正三角形,1112,4A B AA ==,则该几何体的表面积为( )A.6B.24C.24+D.3212.已知实数a 、b 满足等式,)31()21(b a =下列五个关系式:①0<b <a ②a <b <0 ③0<a <b ④b <a <0 ⑤a =b 其中不可能成立的关系式有 ( )A. 1个 B . 2个 C. 3个 D.4个第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将自己的姓名、考号、考试科目填写在答题纸上;2.考生需用用蓝色或黑色笔答题,相应答案写在答题纸对应题号位置 ;3.请认真书写,规范答题.二、填空题(共4个小题,每小题4分,共计16分)13.已知幂函数()af x x =的图象经过点⎛ ⎝⎭,则()4f =14.不论m 为何实数,直线()1210m x y m --++=恒过定点15.圆柱的侧面展开图是长12cm ,宽8cm 的矩形,则这个圆柱的体积为16.函数()321f x ax a =-+在[]1,1-上存在一个零点,则a 的取值范围是三、解答题(共6个小题,共计74分)17.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,求实数m 的取值范围.18.已知球的表面积为22500cm π,球内有两个平行截面,它们的面积分别为249cm π和2400cm π,求两平行截面之间的距离.19.已知两直线1:80l mx y n ++=和2:210l x my +-=.试确定,m n 的值,使(1)1l 与2l 相交于点(),1P m -;(2)12l l ;(3)12l l ⊥.20.在直三棱柱111ABC A B C -中,底面ABC ∆是直角三角形,090ABC ∠=,1BC BB =,且11A C AC D =,11BC B C E =.(1)求证:11A B ⊥平面11BB CC ;(2)求证:11A C BC ⊥;(3)求证:DE ⊥平面11BB CC .21.函数()x x e a f x a e=+()0,a a R >∈是R 上的偶函数. (1)求a 的值;(2)求()f x 在[]1,b -上的最大值.22.某市居民自来水收费标准如下:每户每月用水不超过4吨时每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲,乙两户共交水费y 元,已知甲,乙两户该月用水量分别为5,3x x 吨.(1)求y 关于x 的函数;(2)若甲,乙两户该月共交水费26.4元,分别求出甲,乙两户该月的用水量和水费.。
高中数学 精选模块测试02 新人教B版必修2
高中数学 精选模块测试02 新人教B 版必修2第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题的四个选项中,只有一项是符合题目要求的.注意:请在机读答题卡中作答,不要答在试题中(1)如果数轴上A 点的坐标是5,B 点的坐标是5-,那么AB 向量的坐标为(A )10 (B )10- (C )10± (D )0(2)给出以下命题,其中正确的有①在所有的棱锥中,面数最少的是三棱锥;②棱台上、下底面是相似多边形,并且互相平行;③直角三角形绕一边所在直线旋转得到的旋转体是圆锥;④夹在圆柱的两个平行截面间的几何体还是圆柱.(A )1个 (B )2个 (C )3个 (D )4个(3)如右下图所示,△A B C '''表示水平放置的△ABC 在斜二测画法下的直观图,A B ''在x '轴上,B C ''与x '轴垂直,且B C ''=3,则△ABC 的边AB 上的高为(A )62 (B )33 (C )32 (D )3(4)点M (1,4)关于直线:10l x y -+=对称的点N 的坐标是(A )(4 ,1) (B )(2,3) (C )(3,2) (D )(1-,6)(5)若直线l 与平面α不平行,则下列结论正确的是(A )α内的所有直线都与直线l 异面 (B )α内不存在与l 平行的直线(C )α内的直线与l 都相交 (D )直线l 与平面α有公共点(6)空间直角坐标系中,点A (3 , 2 ,5-)到x 轴的距离d 等于(A )2232+ (B )222(5)+- (C )223(5)+- (D )22232(5)++-(7)已知三条相交于一点的线段PA ,PB ,PC 两两垂直,且A ,B ,C 在同一平面内,P 在平面ABC 外,PH ⊥平面ABC 于H ,则垂足H 是△ABC 的(A )内心 (B )外心 (C )重心 (D )垂心(8)使方程 0mx ny r ++=与方程 2210mx ny r +++=表示两条直线平行(不重合)的等价条件是(A )2m n r === (B )220m n +≠,且1r ≠(C )0,mn >且1r ≠ (D )0,mn < 且1r ≠(9)设集合22A {(,)| 2,0}x y y a x a =->,222B {(,)|(1)(3),0}x y x y a a =-+=>,且A B ≠∅,则实数a 的取值范围是(A )[2,2]- (B )2,221] (C )[22] (D )[222,222](10)过点(1,2)的直线l 将圆 22(3)9x y -+=分成两段弧,当劣弧所对的圆心角最小时,直线l 的方程为(A )10x y -+= (B )30x y +-= (C )240x y +-= (D )230x y -+=(11)如右下图,是一个空间几何体的三视图,则这个几何体的外接球的表面积是(A )256cm π (B )277cm π(C )2722cm π (D )2852cm π (12)如图,正方体ABCD-A1B1C1D1的棱长为1,点M 是对角线A1B 上的动点,则AM+MD1的最小值为(A 22+ (B )22(C 26 (D )2第Ⅱ卷(非选择题 共90分)考生注意:第Ⅱ卷的解答请写在第Ⅱ卷答题纸的相应位置,不要答在试题中.二、填空题:本大题共4个小题,每小题5分,共20分.(13)若三点A (3,3)、B (a ,0)、C (0,b )(0ab ≠)共线,则11a b +=____ . (14)平面α、β相交,在α、β内各取两点,这四点都不在交线上,这四点最多能确定 _ 个平面.(15)若实数,m n 满足4310m n -=,则22m n +的最小值为_____ .(16)设l 、m 、n 是两两不重合的直线,α、β、γ是两两不重合的平面,A 为一点,下列命题:①若,, l l m m αα则;②若,A,A ,l m l αα⊂=∉ l m 则与必为异面直线;③,,, , l m l m l m αββααβ⊂⊂且与为异面直线,则;④若 αβ⊥,l α⊂, l β⊥则;⑤,l αβ= , , m n βγγα== , l m n γ则.其中正确的有: .(要求把所有正确的序号都填上)三、解答题:本大题共6个小题,共70分.(17)(本题满分10分)如图所示,直三棱柱ABC-A1B1C1的侧棱AA1 = 6,底面三角形的边AB = 3,BC = 4,AC = 5,以上、下底的内切圆为底面,挖去一个圆柱,求剩余部分形成的几何体的体积.(18)(本题满分12分)(Ⅰ)已知△ABC 的三个顶点坐标为A (0,5)、B (1,2-)、C (6-,4),求BC 边上的高所在直线的方程;(Ⅱ)设直线l 的方程为 (1)20 ()a x y a a R -+--=∈.若直线l 在两坐标轴上的截距相等,求直线l 的方程.(19)(本题满分12分)已知圆C 经过A (1,1-),B (5,3),并且被直线m :30x y -=平分圆的面积.(Ⅰ)求圆C 的方程;(Ⅱ)若过点D (0,1-),且斜率为k 的直线l 与圆C 有两个不同的公共点,求实数k 的取值范围.(20)(本题满分12分)如下图,矩形ABCD 中,已知AB=2AD ,E 为AB 的中点,将△AED 沿DE 折起,使AB=AC ,求证:平面ADE ⊥平面BCDE.(21)(本题满分12分)已知圆C:22410x y ax y ++-+=()a R ∈,过定点P(0 , 1)作斜率为1的直线交圆C 于A 、B 两点,P 为线段AB 的中点.(Ⅰ)求a 的值;(Ⅱ)设E 为圆C 上异于A 、B 的一点,求△ABE 面积的最大值;(Ⅲ)从圆外一点M 向圆C 引一条切线,切点为N ,且有|MN|=|MP| , 求|MN|的最小值,并求|MN|取最小值时点M 的坐标.(22)(本题满分12分)已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1.(Ⅰ)求证:AF ⊥平面FBC ;(Ⅱ)求证:OM ∥平面DAF ;(Ⅲ)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为VF-ABCD ,VF-CBE ,求VF-ABCD ∶VF-CBE 的值.参考答案一、选择题:1.B 2.B 3.A 4.C 5.D 6.B 7.D 8.B 9.D 10.A 11. B 12.A二、填空题:13. 13 14.4 15. 4 16. ②③⑤三、解答题:17.解:由已知AC2= AB2+BC2∴△ABC为直角三角形…… 2分设△ABC内切圆半径为R,则有1(345)3 4 , 122RR++=⨯⨯∴=…… 4分直三棱柱ABC-A1B1C1的体积V棱柱= S△ABC AA1 =13 42⨯⨯6⨯=36 …… 6分内切圆为底面的圆柱体积V圆柱=216R AAππ=…… 8分∴剩余部分形成的几何体的体积V=V棱柱-V圆柱 =36-6π……10分18.解:(Ⅰ)BC边所在直线的斜率kBC=2461(6)7--=---…… 2分∴BC边上的高所在直线的斜率k=76…… 4分∴ BC边上的高所在直线的方程为:756y x=+,即:76300x y-+=…… 6分(Ⅱ)令0,2 ;x y a==+令0y=,当1a≠时,21axa+=-…… 8分直线l在两坐标轴上的截距相等,221aaa+∴+=-20 1 1 , 2 2a a a a∴+=-=∴=-=或或……10分故所求的直线方程为40 30x y x y+-=-=或…… 12分19.解:(Ⅰ)线段AB的中点E(3,1),3(1)151ABk--==-故线段AB中垂线的方程为1(3)y x-=--,即40x y+-=……2分由圆C经过A、B两点,故圆心在线段AB的中垂线上又直线30x y-=平分圆的面积,所以直线m经过圆心由4030x y x y +-=⎧⎨-=⎩ 解得 13x y =⎧⎨=⎩ 即圆心的坐标为C(1,3), ……4分而圆的半径r =22(11)[3(1)]4-+--故圆C 的方程为22(1)(3)16x y -+-= ……6分(Ⅱ)由直线l 的斜率为k ,故可设其方程为1y kx =- ……8分由221(1)(3)16y kx x y =-⎧⎨-+-=⎩ 消去y 得22(1)(82)10k x k x +-++= 由已知直线l 与圆C 有两个不同的公共点故22(82)4(1)0k k ∆=+-+>,即21580k k +> 解得:815k <-或0k > ……12分20. 解:取DE 中点M ,BC 中点N ,连AM 、MN 、AN ……2分 AB=AC ,∴AN ⊥BC ,又MN ⊥BC ,MN AN=N∴BC ⊥平面AMN ,则BC ⊥AM ……6分 AD=AE ,∴AM ⊥DE ,而BC 与DE 相交,∴AM ⊥平面BCDE ……10分 AM ⊂平面ADE ,∴平面ADE ⊥平面BCDE ……12分21. 解:(Ⅰ)由题知圆心C(,22a -),又P (0,1)为线段AB 的中点,CP AB ∴⊥1PC k ∴=-,即12 1 , 20()2a a -=-∴=-- ……4分(Ⅱ)由(Ⅰ)知圆C 的方程为22(1)(2)4x y ++-=∴ 圆心C(-1, 2),半径R=2, 又直线AB 的方程是10x y -+=∴ 圆心C 到AB 得距离1| 2 , |AB |242222d ==-当EC AB ⊥时,△ABE 面积最大,max 122(22)2222S =+=+……8分(Ⅲ) 切线MN ⊥CN, 22|MN ||MC |4∴=-, 又 |MN|=|MP|,22|MP ||MC |4∴=- 设M(,x y ),则有2222(1)(1)(2)4x y x y +-=++--,化简得:0x y -=即点M在x y-=上,∴|MN|的最小值即为|MP|的最小值22 ||2d==,解方程组:2222(1)()x yx y-=⎧⎪⎨+-=⎪⎩得:1212xy⎧=⎪⎪⎨⎪=⎪⎩∴满足条件的M点坐标为11(,)22……12分22. 解:(Ⅰ)平面ABEF⊥平面ABCD ,平面ABEF平面ABCD=ABBC⊂平面ABCD,而四边形ABCD为矩形∴BC⊥AB ,∴BC⊥平面ABEF AF⊂平面ABEF ∴BC⊥AFBF⊥AF BC BF=B∴ AF⊥平面FBC ……4分(Ⅱ)取FD中点N,连接MN、AN,则MN∥CD,且MN=12CD,又四边形ABCD为矩形,∴MN∥OA,且MN=OA∴四边形AOMN为平行四边形,∴OM∥ON又OM⊄平面DAF,ON⊂平面DAF ∴ OM∥平面DAF ……8分(Ⅲ)过F作FG⊥AB与G ,由题意可得:FG⊥平面ABCD∴VF-ABCD =13S矩形ABCDE FG =23FGCF⊥平面ABEF∴VF-CBE = VC-BFE =13S△BFE CB =131EF FG CB2=16FG ……12分∴ VF-ABCD∶VF-CBE = 4∶1。
2019版高中数学人教B版必修2:模块综合检测 含解析
1 相交、平行或异面 B.相交或平行异面D.平行或异面解析:a 与c 可以相交、平行或异面,分别如图中的①,②,③.答案:A2已知直线l 1:(k-3)x+(4-2k )y+1=0与l 2:2(k-3)x-2y+3=0平行,则k 的值是( )或3 B.1或 C.3或 D.1或252523四棱台 D.三棱台解析:由三视图知该几何体为四棱锥,其中有一侧棱垂直于底面,底面为直角梯形.答案:B4在直线3x-4y-27=0上到点P (2,1)距离最近的点的坐标为( )A .(5,-3)B .(9,0)C .(-3,5)D .(-5,3)解析:过P (2,1)向此直线引垂线,其垂足即为所求的点,过点P 作直线3x-4y-27=0的垂线方程为4x+3y+m=0.因为点P (2,1)在此垂线上,所以4×2+3×1+m=0.所以m=-11.由联立求解,得所求的点的坐标为(5,-3).{3x -4y -27=0,4x +3y -11=0,答案:A5A.216C.108 cm3D.138 cm3此几何体是由长方体与三棱柱组合而成的,其体积为答案:B7若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是( B.3C.4D.62解析:圆的标准方程为(x+1)2+(y-2)2=2,则圆心为(-1,2),半径为.因为圆关于直线ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为d=+1)2+(b-2)2=(a+1)2+(a-3-2)2=2a2-8a+26=2(a-2)2+18.所以当182(32)2-(2)2=16时,d有最小值=3,此时切线长最小,为=4,故选C.答案:C8球的半径等于D.4石材为一个三棱柱(相对应的长方体的一半由题意可知主视图三角形的内切圆的半径即为球的半径=2.-10答案:B9垂直于直线y=x+1且与圆x 2+y 2=4相切于第三象限的直线方程是( )A.x+y+2=0 B.x+y+2=02x+y-2=0D.x+y-2=02解析:由题意设所求直线方程为y=-x+k (k<0),又圆心(0,0)到直线y=-x+k 的距离为2,即=2,∴k=±2,又k<0,∴k=-2.|k |1+122故直线方程为y=-x-2,即x+y+2=0.2210D 1中,AB=3,BB 1=为3R 在棱BB 1上移动11则这个球的表面积是A.16πB.20πC.12πD.8π解析:这四点可看作一个正方体的四个顶点,且该正方体的八个顶点都在球面上,即球为正方体的外接球,所以2=2R ,R=,S=4πR 2=12π,故选C .33答案:C12已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx=0上两个不同点,P 是圆x 2+y 2+kx=0上的动点,如果点M ,N 关于直线x-y-1=0对称,则△PAB 面积的最大值是( B.4C.3+D.622解析:依题意得圆x 2+y 2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,(-k2,0)k2此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB 的方程是=1,即x-y+2=2x-2+y21314解析:如图,因为|AB|=8,所以|OC|==2.当直线AB 的斜率存在时,设AB 所在直线方20-16程为y+3=k (x-2),即kx-y-2k-3=0,圆心O 到AB 的距离为=2,解得k=-.此时,AB所|-2k -3|k 2+(-1)2512在的直线方程为5x+12y+26=0.当直线AB 的斜率不存在时,可知AB 所在的直线方程为时,符合题意.故所求弦AB 所在直线的方程是5x+12y+26=0或x=2.答案:5x+12y+26=0或x=215设甲、乙两个圆柱的底面积分别为S ,S ,体积分别为V ,V .若它们的侧面积相等,且S 1=16锥的最大体积为距离最大时体积最大,此时平面PD=2 cm .所以V=×4×2(cm 3).23×42=63答案: cm 3263三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17(本小题满分10分)过点P (1,2)的直线l 被两平行线l 1:4x+3y+1=0与l 2:4x+3y+6=0得的线段长|AB|=,求直线l 的方程.2由题意可知l 与l 1,l 2不垂直,则设直线l 的方程为y-2=k (x-1).由{y =kx +2-k ,4x +3y +1=0,解得A ;(3k -73k +4,-5k +83k +4)18是圆柱的轴截面AA 1=AB=2.求证:平面A 1AC ⊥平面BA 1C ;求的最大值.V A1-ABC 证明∵C 是底面圆周上异于A ,B 的一点,且AB 为底面圆的直径,∴BC ⊥AC.又AA 1⊥底面ABC ,∴BC ⊥AA 1,又AC ∩AA 1=A ,∴BC ⊥平面A 1AC.又BC ⊂平面BA 1C ,∴平面A 1AC ⊥平面BA 1C.解在Rt △ACB 中,设AC=x ,19在四棱锥P-ABCD 中,AP ⊥平面PCD 分别为线段AD ,PC 的中点BE ⊥平面PAC.证明(1)设AC ∩BE=O ,连接OF ,EC.因为E 为AD 的中点,AB=BC=AD ,AD ∥BC ,12所以AE ∥BC ,AE=AB=BC ,所以O 为AC 的中点.又在△PAC 中,F 为PC 的中点,所以AP ∥OF.又OF ⊂平面BEF ,AP ⊄平面BEF ,20(1)求圆{-D2-E+1=0,4-2E+F=0,10+3D+E+F=0,则有{D=-6,E=4,F=4.故圆C的方程为x2+y2-6x+4y+4=0.(2)设符合条件的实数a存在,因为l垂直平分弦AB,故圆心C(3,-2)必在l上,所以l的斜率k PC=-2.21(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.求证:PC∥平面EBD;求三棱锥C-PAD的体积V C-PAD;在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.证明设AC,BD相交于点F,连接EF,为菱形,∵四棱锥P-ABCD的底面ABCD为菱形,∴AC⊥BD,∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.∵AC∩PA=A,∴BD⊥平面PAC,∴BD⊥PC.2在△PBC内,可求PB=PC=2,BC=2,在平面PBC内,作BM⊥PC,垂足为M,2设PM=x,则有8-x2=4-(2-x)2,22轴交于点设圆C 的方程是(x-t )2+=t 2+,(y -2t )24t 2令x=0,得y 1=0,y 2=;4t 令y=0,得x 1=0,x 2=2t ,∴S △OAB =OA ·OB=×|2t|=4,1212×|4t|即△OAB 的面积为定值.解∵OM=ON ,CM=CN ,∴OC 垂直平分线段MN.∵k MN =-2,∴k OC =.12圆C与直线y=-2x+4不相交,因此,t=-2不符合题意,舍去.故圆C的方程为(x-2)2+(y-1)2=5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料
(灿若寒星 精心整理制作)
必修2模块检测题(二)
一.选择题:
1.下列说法正确的是( )
(A )任何物体的三视图都与物体的摆放位置有关
(B )任何物体的三视图都与物体的摆放位置无关
(C )有的物体的三视图都与物体的摆放位置无关
(D )正方体的三视图一定是三个全等的正方形
2.若一个三角形采用斜二侧画法作出它的直观图,其直观图的面积是原三角形面积的( )
(A )24倍 (B )2
1倍 (C )22倍 (D )2倍 3.一个斜三棱柱,底面是边长为5的正三角形,侧棱长为4,一条侧棱与底面三角形两边所成的角都是60°,则这个斜三棱柱的侧面积是( )
(A )40 (B )20(1+3) (C )30(1+3) (D )303
4.如果AC <0,且BC <0,那么直线Ax +By +C =0不通过( )
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限
5.直线ax +by =1 (ab ≠0)与两坐标轴围成的面积是( )
(A )21ab (B )21|ab | (C )12ab
(D )12||ab 6.若圆台的上、下底面半径的比为3:5,则它的中截面分圆台上、下两部分侧面积的比为( )
(A )3:5 (B )9:25 (C )5:41 (D )7:9
7.两个半径为1的铁球熔化为一个球,这个大球的半径为( )
(A )2 (B )2 (C )32 (D )3142
8.方程x 2=y 2表示的图形是( )
(A )两条相交而不垂直的直线 (B )一个点 (C )两条垂直的直线 (D )两条平行线
9.下列四个命题中的真命题是( )
(A )经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示
(B )经过任意两个不同点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示
(C )不经过原点的直线都可以用方程1x y a b
+=表示 (D )经过定点A (0,b )的直线都可以用方程y =kx +b 表示
10.已知地球的半径为R ,球面上A 点位于东经30°,北纬60°处,B 点位于东经90°的赤道处,则A 、
B 两点的球面距离是( )
(A )3R (B )62R (C )R (arccos 41) (D )2R (arccos 4
3) 11.直线y =
33x 绕原点逆时针旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是( ) (A )直线过圆心 (B )直线与圆相交,不过圆心
(C )直线与圆相切 (D )直线与圆没有公共点
12.在三棱锥A -BCD 中,若AD ⊥BC ,BD ⊥AD ,△BCD 是锐角三角形,那么必有( )
(A )平面ABD ⊥平面ADC (B )平面ABD ⊥平面ABC
(C )平面ADC ⊥平面BCD (D )平面BCD ⊥平面ABC
二.填空题:
13.已知P (a ,b )是圆x 2+y 2=r 2外一点,PA 、PB 是过P 点的圆的切线,切点为
A 、
B ,则直线AB 的方程是 。
14.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 满足条件 时,A 1C ⊥B 1D 1. (填上一种情况即可,不必考虑所有可能) 15.过点(1,2),且在坐标轴上的截距互为相反数的直线l 的方程是 。
16.点M 是线段AB 的中点,若A 、B 到平面α的距离分别为4和6,则点M
到平面α的距离为 。
三.解答题:
17.求过直线2x +7y -4=0与7x -21y -1=0的交点且和A (-3,1),B (5,7)等距离的直线l 的方程。
18.在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1,CD 的中点,
求证:平面ADE ⊥平面A 1FD 1。
19.已知点P 到两个定点M (-1,0),N (1,0)距离的比等于2,点N 到直线PM 的距离为1,求直线PN 的方程。
20.如图,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且
AC =BC =BD =2AE ,M 是AB 的中点,
C A B
D A 1B 1C 1D 1
(1)求证:CM⊥EM;
(2)求CM与平面CDE所成的角.
必修2模块检测题(二)参考答案 一.选择题:
题号
1 2 3 4 5 6 7 8 9 10 11 12 答案 C A B C D D C C B C
C C 二.填空题:
13.ax +by -r 2=0 14.AC ⊥BD 15.y =2x 或y =x +1 16.5或1
三.解答题:
17.解:有274072110
x y x y +-=⎧⎨--=⎩解得交点坐标为(1,72), 当直线l 的斜率k 存在时,设l 的方程是y -7
2=k (x -1),即7kx -7y +(2-7k )=0, 由A 、B 两点到直线l 的距离相等得22|217(27)||3549(27)|49494949
k k k k k k --+--+-=++, 解得k =4
3,当斜率k 不存在时,即直线平行于y 轴,方程为x =1时也满足条件。
所以直线l 的方程是21x -28y -13=0或x =1.
18.证明:因为ABCD -A 1B 1C 1D 1是正方体,所以AD ⊥平面DC C 1D 1,
又D 1F ⊂平面DCC 1D 1,所以AD ⊥D 1F ,
取AB 中点G ,连接A 1G 、FG ,因为F 为CD 中点,所以FG //AD //A 1D 1,所以A 1G //D 1F , 因为E 是BB 1中点,所以Rt △A 1AG ≌Rt △ABE ,所以∠AA 1G =∠HAG ,∠AHA 1=90°, 即A 1G ⊥AE ,所以D 1F ⊥AE ,因为AD ∩AE =A ,所以D 1F ⊥平面ADE ,
所以D 1F ⊂平面A 1FD 1,所以平面A 1FD 1⊥平面ADE 。
19.设点P 的坐标为(x ,y ),有题设有||2||
PM PN =,即2222(1)2(1)x y x y ++=⋅-+, 整理得x 2+y 2-6x +1=0,因为点N 到PM 的距离等于1,|MN |=2,所以∠PMN =30°,
直线PM 的斜率为±
33,所以直线PM 的方程是y =±3
3(x +1),两式联立消元得 x 2-4x +1=0,解得x =2±3, 所以P 点的坐标是(2+3,1+3)或(2+3,-1-3)或(2-3,-1+3)或(2-3,1-3)。
20.(1)证明:因为AC =BC ,M 是AB 的中点,所以CM ⊥AB ,
有EA ⊥平面ABC ,所以EA ⊥CM ,所以CM ⊥平面ABDE ,
EM ⊂平面ABDE ,所以CM ⊥EM
(2)解:过点M 作MH ⊥平面CDE ,垂足是H ,连接CH 并延长角ED 于F ,连接MF 、MD , 则∠FCM 是直线CM 和平面CDE 所成的角,
因为MH ⊥平面CDE ,所以MH ⊥ED ,又因为CM ⊥平面EDM ,所以CM ⊥ED ,
则ED ⊥平面CMF ,因此ED ⊥MF ,设EA =a ,BD =BC =AC =2a ,
在直角梯形ABDE 中,AB =22a ,M 是AB 中点,所以DE =3a ,EM =3a ,MD =6a , 得△EMD 是直角三角形,其中∠EMD =90°,所以MF =
EM MD DE ⋅=2a , 在Rt △CMF 中,tan ∠FCM =1MF MC =,得∠FCM =45°,故CM 与平面CDE 所成的角是45°.。