优选考研数学二试题及答案
2023考研数学二真题+详解答案解析(超清版)
2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
2023年考研数学二真题及答案-完整版
且喜平常度,切忌神慌乱。
畅游题海后,金榜题君名。
考试在即,祝你成功。
2023年考研数学二真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlim ln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦ 1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小 【答案】B. 【解析】在0,2π⎛⎫ ⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444n nn n nn n n y y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭L , 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eea a x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t =+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf x t t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-,故(0)f ''不存在.故选C.6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( ) A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2- D.ln 2【答案】A. 【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)a a a ax f a x x x x x aa +∞+∞+∞-++===-=⎰⎰,则 2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a af a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e x f x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1)B.[1,)+∞C.[1,2)D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e x f x x x a '=++有两个相等的实根或者没有实根,2()(42)e x f x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A B C.****||||⎛⎫- ⎪⎝⎭B A B A O A BD.****|||⎛⎫- ⎪⎝⎭A B A B O B |A【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E A B O O B O B OA B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B. 9.222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫ ⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上. 11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-. 12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2= 2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=+13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =. 方程e 2z xz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32xz∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,20()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(ln )y x x C x =-,其中C 为任意常数.又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--, 则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭, 由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=,由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积.【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t t tππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y +⎰⎰.【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰ 32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x在[,]a a-上有二阶连续导数.(1)证明:若(0)0f=,存在(,)a aξ∈-,使得21()[()()]f f a f aaξ''=+-;(2)若()f x在(,)a a-上存在极值,证明:存在(,)a aη∈-,使得21|()||()()|2f f a f aaη''≥--.【证明】(1)将()f x在x=处展开为22()()()(0)(0)(0)2!2!f x f xf x f f x f xδδ''''''=++=+,其中δ介于0与x之间.分别令x a=-和x a=,则21()()(0)()2!f af a f aξ'''-=-+,1aξ-<<,22()()(0)()2!f af a f aξ'''=+,20aξ<<,两式相加可得212()()()()2f ff a f a aξξ''''+-+=,又函数()f x在[,]a a-上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a aξξ⊂-,使得12()()()2f ffξξξ''''+=,即21()[()()]f f a f aaξ=-+.(2)设()f x在x处取得极值,则()0f x'=.将()f x在x处展开为22000000()()()() ()()()()()2!2!f x x f x xf x f x f x x x f xδδ''''--'=+-+=+,其中δ介于0x与x之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A .(1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A ,即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫⎪==- ⎪⎪⎝⎭P ααα ,则1200020001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭P AP Λ.。
2023年全国硕士研究生招生考试考研《数学二》真题及详解【完整版】
2023年全国硕士研究生招生考试考研《数学二》真题及详解一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.曲线1ln 1y x e x ⎛⎫=+ ⎪-⎝⎭的渐近线方程为( )。
A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【正确答案】B【参考解析】由已知1ln 1y x e x ⎛⎫=+⎪-⎝⎭,则可得: 1ln 11lim lim lim ln 11x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e 。
2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。
A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【正确答案】D【参考解析】当x ≤0时,可得:()(1d ln f x x x C ==++⎰当x >0时,可得:()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx xx x x xx x x C =+=+=+-=+++⎰⎰⎰⎰在x =0处,有:(110lim ln x x C C -→+=,()22lim 1sin cos 1x x x x C C +→+++=+由于原函数在(-∞,+∞)内连续,所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧+++≤⎪=⎨⎪+++>⎩⎰令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩。
2023年考研《数学二》真题及详解【完整版】
2023年全国硕士研究生招生考试考研《数学二》真题及详解【完整版】一、选择题:1〜10小题,每小题5分,共50分。
在每小题给出的四个选项中, 合题目要求的,请将所选项前的字母填在答题纸指定位置上。
只有一个选项是最符1.曲线y = xln (e^-LA 的渐近线方程为()。
A. y=x+eB. y=x+l/eC. y=xD. y=x —1/e【试题答案】B【试题解析】由已知y = xln (e^ —\ JC 1xlnyk = lim — = lim ----X —00JQXTOO,则可得:limln e +X —00 I1=1b = lim (y-Ax) = lim XT8 ' / XToox-1扁仁上、—X=limxL|' 1、e +--------1_ l X-lyX —>00、x — l)1lim xln XToo1+limXToo所以斜渐近线方程为y=x+l/e 。
2.__,x<0函数 x/l +、2[(x + l)cosx,x > 0的原函数为(A.尸("In +— jv ) jv < 0(x + l)cos x - sin x, x > 0B.尸("In ^/1 + %2 —1, x V 0(x + l)cos x - sin x, x > 0C.In ^/1 + x 2 + x) x V 0(x + l)sin x + cos >In^|/1+%2+x1,jv V0D.F(x)=<(x+l)sin x+cos>0【试题答案】D【试题解析】当xWO时,可得:当x〉0时,可得:j f(x)ch=j(x+l)cos xdx=j(x+l)dsinx=(x+l)sin x-j sin xdx=(x+l)sin x+cos x+C2在x=O处,有:lim In@+J1+工2>G=G,lim(x+l)sin%+cos%+C2=1+C2由于原函数在(一8,+8)内连续,所以Ci=l+C2,令C2=C,则C1=1+C,故In1+%2+x1+C,x V0j/(x)dx=<(x+l)sin x+cos x+C,x>0In+x2+1,x<0令C=0,则f(x)的一个原函数为F(x)=<(x+l)sin x+cos>03.设数列{Xn},{yn}满足xi=yi=l/2,x n+i=sinx n,yn+i=y「,当n—8时()。
考研数学二试题真题答案
考研数学二试题真题答案考研数学二试题真题答案考研数学二试题一直以来都是考生们备战考研的重点和难点,因为数学二试题的难度相对较大,需要考生有扎实的数学基础和解题能力。
在备考过程中,掌握数学二试题的真题答案对于提高解题能力和应对考试非常重要。
下面将为大家提供一些数学二试题的真题答案,供大家参考。
1. 解析几何真题:已知点A(1,2,3)和点B(4,5,6),求AB的中点坐标。
答案:根据解析几何的知识,我们知道两点的中点坐标可以通过分别求出两点坐标的平均值得到。
所以,AB的中点坐标为[(1+4)/2, (2+5)/2, (3+6)/2],即(2.5, 3.5, 4.5)。
2. 概率论真题:有一枚均匀的硬币,抛掷10次,求出现正面的次数为5的概率。
答案:根据概率论的知识,我们知道抛掷硬币是一个二项分布的问题。
在这个问题中,每次抛掷硬币的结果是独立的,并且出现正面的概率为0.5。
所以,出现正面的次数为5的概率可以通过二项分布的公式计算得到。
具体计算过程如下:P(X=5) = C(10,5) * (0.5)^5 * (1-0.5)^5其中,C(10,5)表示从10次抛掷中选取5次出现正面的组合数。
计算得到C(10,5) = 252。
所以,P(X=5) = 252 * (0.5)^5 * (0.5)^5 = 0.246。
所以,出现正面的次数为5的概率为0.246。
3. 数学分析真题:求函数f(x) = x^2在区间[-1,1]上的最大值和最小值。
答案:根据数学分析的知识,我们知道在闭区间上的连续函数一定可以取到最大值和最小值。
对于给定的函数f(x) = x^2,在区间[-1,1]上,函数是连续的。
所以,我们只需要找出函数在区间端点和驻点处的函数值,并比较它们的大小即可。
首先,计算函数在区间端点的函数值:f(-1) = (-1)^2 = 1f(1) = 1^2 = 1然后,计算函数的导数,并求出导数为0的驻点:f'(x) = 2x令f'(x) = 0,解得x = 0。
考研数学2真题及答案
考研数学2真题及答案一.选择题1. 方程y = 3x - 2的图象是:A. 一条直线B. 一条抛物线C. 一个圆D. 一个椭圆解析:选项A2. 函数y = x^3的图象经过点(1, 1),那么函数y = x^3 - 1的图象经过的点是:A. (1, 1)B. (1, 0)C. (0, -1)D. (-1, 0)解析:选项D二.填空题1. 已知A为5阶矩阵,B为5元向量,则对于线性方程组Ax = B,以下哪项是其解集:A. 只有零解B. 唯一解C. 无穷解D. 既有零解又有无穷解解析:选项C2. 设f(x) = e^x,那么f'(x) = ?解析:f'(x) = e^x三.计算题1. 设a = (2, -1, 3),b = (1, 4, -2),则a与b的数量积为:解析:a · b = 2 * 1 + (-1) * 4 + 3 * (-2) = 2 - 4 - 6 = -82. 已知三阶行列式D = |1 2 3||2 3 1||3 1 2|计算D的值:解析:D = 1 * 3 * 2 + 2 * 1 * 3 + 3 * 2 * 1 - 3 * 3 * 3 - 2 * 1 * 1 - 1 * 2 * 2 = 6 + 6 + 6 - 27 - 2 - 4 = -15四.证明题证明:存在一个无穷多项式f(x),其中f(1) = 1,且对于任意正整数n,f(n) = n。
证明过程:考虑多项式f(x) = x,则显然满足f(1) = 1。
对于任意正整数n,有f(n) = n,因此f(x)满足题设条件。
综上所述,我们证明了存在一个无穷多项式f(x),其中f(1) = 1,且对于任意正整数n,f(n) = n。
以上是考研数学2真题及答案的相关内容,希望对您的学习有所帮助。
加油!。
2023年全国硕士研究生招生考试试题及答案解析(数学二)
2023年全国硕士研究生招生考试数学试题(数学二)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置.(1)1ln 1y x e x ⎛⎫=+⎪-⎝⎭的斜渐近线方程是()(A)y x e =+(B)1y x e =+(C)yx=(D)1y x e=-(2)函数0()(1)cos ,0x f x x x x≤=+>⎩的原函数为()(A))ln ,0()(1)cos sin ,0x x F x x x x x⎧-≤⎪=⎨⎪+->⎩(B))ln 1,0()(1)cos sin ,0x x F x x x x x⎧+≤⎪=⎨⎪+->⎩(C))ln ,0()(1)sin cos ,0x x F x x x x x⎧≤⎪=⎨⎪++>⎩(D))ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩(3)设数列{}n x ,{}n y 满足211111,sin ,2n n n n x y x x y y ++====,当n →∞时()(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 是n y 的等价无穷小(D)n x 是n y 的同阶但非等价无穷小(4)已知微分方程0y ay by '''++=的解在(,)-∞+∞上有界,则,a b 的取值范围为()(A)0,0a b <>(B)0,0a b >>(C)0,0a b =>(D)0,0a b =<(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则()(A)()f x 连续,'(0)f 不存在(B)'(0)f 不存在,()f x 在0x =处不连续(C)'()f x 连续,(0)f "不存在(D)(0)f "存在,()f x "在0x =处不连续(6)若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α()(A)1ln(ln 2)-(B)ln(ln 2)-(C)1ln 2-(D)ln 2(7)设函数2()()xf x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是()(A)[)0,1(B)[)1,+∞(C)[)1,2(D)[)2,+∞(8)设,A B 为n 阶可逆矩阵,E 为n 阶单位矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭()(A)*****0A B B A A B ⎛⎫-⎪⎝⎭(B)****0A B A B B A ⎛⎫-⎪ ⎪⎝⎭(C)****0B A B A A B ⎛⎫-⎪ ⎪⎝⎭(D)****0B A A B A B ⎛⎫-⎪ ⎪⎝⎭(9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为()(A)2212y y +(B)2212y y -(C)2221234y y y +-(D)222123y y y +-(10)已知向量12121221=2=1=5=03191ααββ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,若γ既可由12αα,线性表示,也可由12ββ,线性表示,则γ=()(A)33,4k k R ⎛⎫⎪∈ ⎪⎪⎝⎭(B)35,10k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭(C)11,2k k R -⎛⎫ ⎪∈ ⎪⎪⎝⎭(D)15,8k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭二、填空题:11~16小题,每小题5分,共30分.(11)当0x →时,函数2()ln(1)=+++f x ax bx x 与2()cos x g x ex =-是等价无穷小,则ab =_______.(12)曲线y =⎰的弧长为________.(13)设函数(,)=z z x y 由2ze xz x y +=-确定,则22(1,1)zx ∂=∂________.(14)曲线35332=+x y y 在1x =对应点处的法线斜率为________.(15)设连续函数()f x 满足:(2)()f x f x x +-=,2()0f x dx =⎰,则31()f x dx =⎰________.(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其,a b 为常数,若0111412a a a=则,11120a a ab =________.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线L :()()y x x e y =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x .(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积.(18)(本题满分12分)求函数2cos (,)2yx f x y xe=+的极值.(19)(本题满分12分)已知平面区域(,)01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭,(Ⅰ)求D 的面积.(Ⅱ)求D 绕x 轴旋转所成旋转体的体积.(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰.(21)(本题满分12分)设函数()f x 在[],a a -上具有2阶连续导数,证明:(Ⅰ)若(0)0f =,则存在(,)a a ξ∈-,使得[]21()()()ξ''=+-f f a f a a .(Ⅱ)若()f x 在(,)a a -内取得极值,则存在(,)a a η∈-使得21()()()2f f a f a aη''≥--.(22)(本题满分12分)设矩阵A 满足:对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(Ⅰ)求A ;(Ⅱ)求可逆矩阵P 与对角矩阵Λ,使得1-=ΛP AP .2023年答案及解析(数学二)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置.(1)【答案】(B)【解析】1ln()11limlim limln()11→∞→∞→∞+-===+=-x x x x e yx k e x x x 11lim()lim[ln()]lim [ln()1]11→∞→∞→∞=-=+-=+---x x x b y kx x e x x e x x 11lim ln[1lim .(1)(1)→∞→∞=+==--x x x x e x e x e所以斜渐近线方程为1.=+y x e(2)【答案】(D)【解析】当0≤x 时,1()ln(==++⎰f x dx x C当0>x时,()(1)cos(1)sin(1)sin sin=+=+=+-⎰⎰⎰⎰f x dx x xdx x d x x x xdx2(1)sin cos=+++x x x C原函数在(,)-∞+∞内连续,则在0=x处11lim ln(-→+=xx C C,22lim(1)sin cos1+→+++=+xx x x C C所以121=+C C,令2=C C,则11=+C C,故ln(1,0()(1)sin cos,0⎧⎪++≤=⎨+++>⎪⎩⎰x C xf x dxx x x C x,结合选项,令=C,则()f x的一个原函数为)1,0().(1)sin cos,0⎧⎪+≤=⎨++>⎪⎩x xF xx x x x(3)【答案】(B)【解析】在0,2π⎛⎫⎪⎝⎭中,2sinx xπ<故12sinn n nx x xπ+=>112n ny y+<1111122444n nn n nn n ny y y yx x x xππππ++⎛⎫⎛⎫⇒<⋅=⋅===⎪ ⎪⎝⎭⎝⎭Llim0nnnyx→∞⇒=.故n y是n x的高阶无穷小.(4)【答案】(C)【解析】微分方程0'''++=y ay by的特征方程为20++=a bλλ,当240∆=->a b时,特征方程有两个不同的实根12,λλ,则12,λλ至少有一个不等于零,若12,C C都不为零,则微分方程的解1212--=+x xy C e C eλλ在(,)-∞+∞无界;当240∆=-=a b时,特征方程有两个相同的实根,1,22=-aλ,若20≠C ,则微分方程的解2212--=+a x a x y C eC xe 在(,)-∞+∞无界;当240∆=-<a b 时,特征方程的根为1,222=-±a b a i λ,则通解为212(cos sin )22-=+ax y eC x C x ,此时,要使微分方程的解在(,)-∞+∞有界,则0=a ,再由240∆=-<a b ,知0.>b (5)【答案】(C)【解析】1)当0t >时,3sin cos ,sin 3x t dy t t ty t t dx =⎧+=⎨=⎩;当0t <时,sin cos ,sin 1x t dy t t ty t t dx =⎧--=⎨=-⎩;当0t =时,因为()()()000sin '0lim lim 03x t f x f t tf x t+++→→-===;()()()000sin '0lim lim 0x t f x f t tf x t---→→--===所以()'00f =.2)()()()()000sin cos sin cos lim 'lim 0'0;lim 'lim 0'0;33x t x t t t t t t t f x f f x f ++--→→→→+--======所以()()0lim ''00x f x f →==,即()'f x 在0x =连续.3)当0t =时,因为()()()00''0sin cos 2''0lim lim 339x t f x f t t t f x t +++→→-+===⋅;()()()00''0sin cos ''0lim lim 2x t f x f t t tf x t---→→---===-所以()''0f 不存在.(6)【答案】(A)【解析】当0α>时()()()12211111()ln ln ln 2f dx x x x αααααα+∞+∞+==-⋅=⋅⎰所以()()()211ln ln 21111'()ln ln 20ln 2ln 2ln 2f αααααααα⎛⎫=-⋅-⋅=-⋅+= ⎪⎝⎭,即01ln ln 2α=-.(7)【答案】(C)【解析】()()()222(),'()2'()42xxxf x x a e f x x a x e f x x x a e =+=++=+++,,由于()f x 无极值点,所以440a -≤,即1a ≥;由于()f x 有拐点,所以()16420a -+>,即2a <;综上所述[)1,2a ∈.(8)【答案】(D)【解析】结合伴随矩阵的核心公式,代入(D)计算知*********A EB A A B B AA AA B A B O B OA B O A BB ⎛⎫⎛⎫--+⎛⎫= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭**2⎛⎫⎛⎫-+=== ⎪ ⎪ ⎪⎝⎭⎝⎭n B A EOB A E A B A B A B E OA B E O A B E ,故(D)正确.(9)【答案】(B)【解析】由已知()222123123121323,,233228f x x x x x x x x x x x x =--+++,则其对应的矩阵211134143A ⎛⎫⎪=- ⎪⎪-⎝⎭由()()211134730143E A λλλλλλλ----=-+-=+-=--+,得A 的特征值为3,7,0-故选(B).(10)【答案】(D)【解析】设11221122r x x y y ααββ=+=+则112211220x x y y ααββ+--=又()121212211003,,,2150010131910011ααββ--⎛⎫⎛⎫ ⎪ ⎪--=-→- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭故()()1212,,,3,1,1,1,TTx x y y c c R=--∈所以()()()121,5,81,5,81,5,8,TTTr c c c c k k R ββ=-+=---=-=∈.二、填空题:11~16小题,每小题5分,共30分.(11)【答案】2-【解析】由2200()ln(1)lim lim ()cos x x x f x ax bx x g x e x →→+++=-22222221()211()1()2ax bx x x x x x x x οοο++-+=⎡⎤++--+⎢⎥⎣⎦1=可得10a +=,1322b -=,即1,2a b =-=,2ab =-.(12)43π【解析】y '=由弧长公式可得l ==2sin x t =23024cos tdtπ⎰30441cos 23ππ=+=⎰tdt .(13)【答案】23-【解析】两边同时对x 求导得:02e z-=∂∂⋅++∂∂⋅xzx z x z ①两边再同时对x 求导得:2222e e 0zz z z z z z z x x x x x x x∂∂∂∂∂∂⋅⋅+⋅+++⋅=∂∂∂∂∂∂②将1,1x y ==代入原方程得10ze z z +=⇒=,代入①式得1200=∂∂⇒=∂∂++∂∂⋅xz x z x z e .代入②式得2301112222220-=∂∂⇒=∂∂+++∂∂⋅+⋅x z x z x z e e .(14)【答案】119-【解析】两边对x 求导:242956''=⋅+⋅x y y y y ①当1=x 时,代入原方程得12335=⇒+=y y y 将1,1==x y 代入①式得(1,1)995y 6y y |11'''=+⇒=,所以曲线在1=x 处的法线斜率为119-.(15)【答案】21【解析】⎰⎰⎰+=312132)()()(dxx f dx x f dx x f ⎰⎰++=211)2()(dxx f dx x f⎰⎰++=211])([)(dxx x f dx x f ⎰⎰⎰++=21101)()(xdxdx x f dx x f ⎰⎰+=201)(xdxdx x f 210+=21=(16)【答案】8【解析】由已知()(),34r A r A b =≤<,故,0A b =即()()1444011110111110,1112211112240120012002a a a a a Ab a a a a a baa ba b++==⋅-+⋅-=-+⋅=故111280a a a b=.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)【解析】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()Y y y X x '-=-,令0X =,则切线在y 轴上的截距为Y y xy '=-,则x y xy '=-,即11y y x'-=-,解得()(ln )y x x C x =-,其中C 为任意常数.又2()0y e =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--,则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32x e =.当32e x e <<时,()0S x '<;当32x e >时,()0S x '>,故()S x 在32x e =处取得极小值,同时也取最小值,且最小值为332()S e e =.(18)【解析】cos cos 0(sin )0y x yy f e x f xe y '⎧=+=⎪⎨'=-=⎪⎩,得驻点为:1(,)e k π--,其中k 为奇数;(,)e k π-,其中k 为偶数.则cos cos 2cos 1(sin )sin (cos )xxy xyy y yy f f e y f xe y xe y ''⎧=⎪''=-⎨⎪''=+-⎩代入1(,)e k π--,其中k 为奇数,得210xxxyyyA fB fC f e -''⎧==⎪''==⎨⎪''==-⎩,20AC B -<,故1(,)e k π--不是极值点;代入(,)e k π-,其中k 为偶数,得210xxxyyy A f B f C f e ''⎧==⎪''==⎨⎪''==⎩,20AC B ->且0A >,故(,)e k π-是极小值点,2(,)2e f e k π-=-为极小值.(19)【解析】(Ⅰ)由题设条件可知:+++2111=1)(1)2tt S dt t t ∞∞∞===+-⎰⎰;(Ⅱ)旋转体体积22222111111(1(1)(1)4πππππ+∞+∞+∞⎡⎤====-⎢⎥++⎣⎦⎰⎰⎰V y dx dx dx x x x x .(20)【解析】本题目采用极坐标进行计算2ln 383tan arctan 312ln 21tan )ta 3(12ln cos )ta 3(12ln 212ln )sin cos 3(1ln )sin cos 3(11)sin cos 3(1)sin cos 3(131303023022302230cos sin 12cos sin 1122cos sin 12cos sin 112230cos sin 12cos sin 112223022πθθθθθθθθθθθθθθθθθθθθσπππππθθθθθθθθπθθθθπ=⋅=+⋅=⋅+⋅=⋅+=⋅+=+=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰------d n d n d d r d r d rd r d d y x D(21)【解析】(Ⅰ)证明:22()()()(0)(0)(0),02!2!f f f x f f x x f x x x ηηη''''''=++=+介于与之间,则211()()(0),02!f f a f a a a ηη'''=+<<①()222()()(0),02!f f a f a a a ηη'''-=-+-<<②①+②得:[]212()()()()2a f a f a f f ηη''''+-=+③又()f x ''在[]21,ηη上连续,则必有最大值M 与最小值m ,即()()12;;m f M m f M ηη''''≤≤≤≤从而()()12;2f f m M ηη''''+≤≤由介值定理得:存在[]()21,,ξηη∈⊂-a a ,有()()()122f f f ηηξ''''+''=,代入③得:()()22()()()(),f a f a f a f a a f f a ξξ+-''''+-==即(Ⅱ)证明:设()0(),f x x x a a =∈-在取极值,且0()f x x x =在可导,则0()0f x '=.又()()()22000000()()()()()(),02!2!f f f x f x f x x x x x f x x x x γγγ'''''=+-+-=+-介于与之间,则()21001()()(),02!f f a f x a x a γγ''-=+---<<()22002()()(),02!f f a f x a x a γγ''=+-<<从而()()()()22020111()()22f a f a a x f a x f γγ''''--=--+()()()()2202011122a x f a x f γγ''''≤-++又()f x ''连续,设(){}()12max,M f f γγ''''=,则()()()222200011()()22f a f a M a x M a x M a x --≤++-=+又()0,x a a ∈-,则()2220()()2f a f a M a x Ma --≤+≤,则21()()2M f a f a a ≥--,即存在()12,a a ηγηγ==∈-或,有()21()()2f f a f a aη''≥--(22)【解析】(I)因为112312123232331112211011x x x x x A x x x x x x x x x ++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=-+=- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭对任意的1x ,2x ,3x 均成立,所以111211011A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭(II)1111111211(1)21111011E A λλλλλλλλ---+----=-+-=-⋅+⋅-+-+-+2(1)(2)2(2)(2)(2)(1)0λλλλλλλ=-+-+=+-+=.所以A 的特征值为1232,2,1λλλ=-==-.12λ=-时,1311100211011011000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=---→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,可得特征向量1(0,1,1)T α=-;22λ=时,2111104231013013000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,可得特征向量2(4,3,1)T α=;31λ=-时,3211201201010010000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,可得特征向量3(1,0,2)T α=-;令123041(,,)130112P ααα⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,则1200020001P AP --⎛⎫ ⎪= ⎪ ⎪-⎝⎭.。
2023年考研数学二真题及其答案解析
2023年全国硕士研究生招生考试数学二 试题及其答案解析一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlim ln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦ 1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小【答案】B. 【解析】在0,2π⎛⎫⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444n nn n nn n ny y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭, 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e()a x y x C x C -=+;②若240a b ->,则通解为2212()eeaax x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e ax y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t=+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf xt t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-, 故(0)f ''不存在.故选C. 6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( ) A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2- D.ln 2【答案】A.【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)a a a ax f a x x x x x aa +∞+∞+∞-++===-=⎰⎰,则2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a a f a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e xf x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1) B.[1,)+∞ C.[1,2) D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e xf x x x a '=++有两个相等的实根或者没有实根,2()(42)e xf x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A BC.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B , 故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E A B O O B O B OA B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B.9. 222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为 A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫ ⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上. 11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-.12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2=2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =.方程e 2zxz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32x z ∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,2()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a a b =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(ln )y x x C x =-,其中C 为任意常数.又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--,则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭,由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=, 由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积. 【解】(1)222144sec 1d d tan sec sin t S x t t t t t ππππ+∞===⎰⎰⎰222244sin 1d dcos sin 1cos t t t t tππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y+⎰⎰. 【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a aξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a a η''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a aξ=-+.(2)设()f x 在0x 处取得极值,则0()0f x '=. 将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+,其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<,2200()()()()2!f a x f a f x η''-=+,02x a η<<,两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-,所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A .(1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A , 即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .(2)111101||211(2)211011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.。
2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】
2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.1ln 1y x e x ⎛⎫=+ ⎪-⎝⎭曲线的渐近线方程为( )。
A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【参考答案】B【参考解析】1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。
A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【参考答案】D【参考解析】当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时( )。
考研数学二(高等数学)历年真题试卷汇编9(题后含答案及解析)
考研数学二(高等数学)历年真题试卷汇编9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设函数f(x)在x=0处可导,且f(0)=0,则A.一2f’(0).B.一f’(0).C.f’(0).D.0正确答案:B解析:2.函数f(x)=ln|(x一1)(x一2)(x一3)|的驻点个数为A.0B.1C.2D.3正确答案:C解析:令3x2—12x+11=0由于△= 122一12x+11>0,则该方程有两个实根,f(x)有两个驻点.3.曲线y=渐近线的条数为A.0B.1C.2D.3正确答案:C解析:由于=1,则该曲线有水平渐近线y=1.又=∞,则x=1为该曲线的一条垂直渐近线,故应选(C).4.设函数f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)= A.(一1)n一1(n一1)!.B.(一1)n(n一1)!.C.(一1)n1n!.D.(一1)nn!.正确答案:A解析:排除法:当n=2时,f(x)=(ex一1)(e2x一2)f’(x)=ex(e2x一2)+2e2x(ex一1)f’(0)=一1显然,(B)(C)(D)都不正确,故应选(A).5.设函数y=f(x)由方程cos(xy)+lny一x=1确定,则A.2B.1C.一1D.一2正确答案:A解析:由方程cos(xy)+lny一x=1知,当x=0时,y=1,即f(0)=1,以上方程两端对x求导得将x=0,y=1代入上式得y’|x=0=1,即f’(0)=1,6.下列曲线中有渐近线的是A.y=x+sinxB.y=x2+sinxC.y=x+sinD.y=x2+sin正确答案:C解析:由于所以曲线y=x+有斜渐近线y=x,故应选(C).7.设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上A.当f’(x)≥0时,f(x)≥g(x)B.当f’(x)≥0时,f(x)≤g(x)C.当f”(x)≥0时,f(z)≥g(x)D.当f”(x)≥0时,f(x)≤g(x)正确答案:D解析:由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1一x)+f(1)x过点(0,f(0))和(1,f(1)),当f”(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1一x)+f(1)x的下方,即f(x)≤g(x) 故应选(D).8.曲线上对应于t=1的点处的曲率半径是A.B.C.D.正确答案:C解析:故应选(C).9.设函数f(x)=arctanx,若f(x)=xf’(ξ),则A.B.C.D.正确答案:D解析:由f(x)= arctanx,及f(x)=xf’(ξ)得故应选(D).10.设函数f(x)=(α>0,β>0).若f’(x)在x=0处连续,则A.α一β>1.B.0<α一β≤1.C.α一β>2.D.0<α一β≤2.正确答案:A解析:f一’(0)=0,f+’(0)=该极限存在当且仅当α一1>0,即α>1.此时,α>1,f+’(0)=0,f’(0)=0.当x>0时,f’(x)=axα一1+βxα一β一1cos要使上式的极限存在且为0,当且仅当α一β一1>0.则α一β>1.故应选(A).11.设函数f(x)在(一∞,+∞)内连续,其2阶导函数f”(x)的图形如右图所示,则曲线y=f(x)的拐点个数为A.0B.1C.2D.3正确答案:C解析:由右图知f”(x1)=f”(x2)=0,f”(0)不存在,其余点上二阶导数f”(x)存在且非零,则曲线y=f(x)最多三个拐点,但在x=x1两侧的二阶导数不变号,因此不是拐点,而在x=0和x=x2两侧的二阶导数变号,则曲线y=f(x)有两个拐点,故应选(C).12.设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则A.函数f(x)有2个极值点,曲线y=f(x)有2个拐点.B.函数f(x)有2个极值点,曲线y=f(x)有3个拐点.C.函数f(x)有3个极值点,曲线y=f(x)有1个拐点.D.函数f(x)有3个极值点,曲线y=f(x)有2个拐点.正确答案:B解析:x1,x3,x5为驻点,而在x1和x3两侧一阶导数f’(x)变号,则为极值点,在x5两侧一阶导数f’(x)不变号,则不是极值点,在x2处一阶导数不存在,但在x2两侧f’(x)不变号,则不是极值点.在x2处二阶导数不存在,在x4和x5处二阶导数为零,在这三个点两侧一阶导函数的增减性发生变化,则都为拐点,故应选(B).13.设函数fi(x)(i=1,2)具有二阶连续导数,且fi”(x0)<0(i=1,2).若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有A.f1(x)≤f2(x)≤g(x).B.f2(x)≤f1(x)≤g(x).C.f1(x)≤g(x)≤f2(x).D.f2(x)≤g(x)≤f1(x).正确答案:A解析:由函数fi(x)(i=1,2)具有二阶连续导数,且fi”(x0)<0(i=1,2)可知,在x0某邻域内曲线y =fi(x)(i=1,2)是凸的,而两曲线y=fi(x)(i=1,2)在点(x0,y0)处有公共切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某邻域内三条曲线如图所示,故在x0点的该邻域内f1(x)≤f2(x)≤g(x)故应选(A).填空题14.曲线y=的渐近线方程为________.正确答案:y=2x.解析:显然曲线y=无水平渐近线和垂直渐近线,则原曲线有斜渐近线y=2x.15.函数y=ln(1一2x)在x=0处的n阶导数y(n)(0)=________.正确答案:一2n(n一1)!.解析:利用ln(l+x)的麦克劳林展开式16.已知一个长方形的长l以2cm/s的速率增加,宽ω以3 cm/s的速率增加,则当l=12 cm,ω=5 cm时,它的对角线增加的速率为________.正确答案:3.解析:设l=x(t),ω=y(t),其对角线长为z(t),则z2(t)=x2(t)+y2(t),2z(t)z’(t)=2x(t)x’(t)+2y(t)y’(t)将x(t)=12,y(t)=5,x’(t)=2,y’(t)=3,z(t)==13代入上式得z’(t)=3.17.设y=y(x)是由方程x2一y+1=ey所确定的隐函数,则|x=0=________.正确答案:1.解析:在方程x2一y+1=ey中令x=0,得y=0,该方程两端对x求导得2x 一y’=eyy’将x=0,y=0代入上式得y’(0)=0,上式再对x求导2一y”=eyy’2+eyy”将x=0,y=0,y’(0)代入上式得y”(0)=1.18.曲线y=x2+x(x<0)上曲率为的点的坐标是________.正确答案:(一1,0).解析:由y=x2+x得,y’=2x+1,y”=2,代入曲率计算公式得由K=得(2x+1)2=1解得x=0或x=一1,又x<0,则x=一1,这时y=0,故所求点的坐标为(一1,0).19.曲线上对应于t=1的点处的法线方程为________.正确答案:y+x=解析:而t=1时,x=则t=1处的法线方程为20.设f(x)是周期为4的可导奇函数,且f’(x)=2(x 一1),x∈[0,2],则f(7)=________.正确答案:1.解析:由f’(x)=2(x一1),x∈[0,2]知,f(x)=(x一1)2+C.又f(x)为奇函数,则f(0)=0,C=一1.f(x)=(x一1)2一1.由于f(x)以4为周期,则f(7)=f[8+(一1)]=f(一1)=一f(1)=1.21.曲线L的极坐标方程是r=θ,则L在点(r,θ)=处的切线的直角坐标方程是________.正确答案:解析:22.=________.正确答案:48.解析:23.函数f(x)=x22x在x=0处的竹阶导数f(n)(0)=________.正确答案:n(n一1)(ln2)n一2.解析:24.曲线y=+arctan(1+x2)的斜渐近线方程为________.正确答案:y=x+解析:则该曲线的斜渐近线方程为y=x+25.已知函数f(x)在(一∞,+∞)上连续,且f(x)=(x+1)2+2∫0xf(t) dt,则当n≥2时,f(n)(0)=________.正确答案:5.2n一1.解析:等式f(x)=(x+1)2+2∫0xf (t)dt两边对x求导得f’(x)=2(x+1)+2f(x),f’(0)=2+2f(0)=4f”(x)=2+2f’(x),f”(0)=2+2f’(0)=10f”‘(x)=2f”(x)f(n)(x)=2f(n一1)(x)=22f(n一2)(x)=…=2n一2f”(x) (n>2)f(n)(0)=2n一22f”(0) (n>2)= 2n一2.10=2n一1.5.26.已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l.若点P的横坐标对时间的变化率为常数υ0,则当点P运动到点(1,1)时,l对时间的变化率是________.正确答案:解析:由题设知解答题解答应写出文字说明、证明过程或演算步骤。
2023年全国硕士研究生考试数学二真题及解析
2023年全国硕士研究生入学统一考试数学(二)试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.函数1ln()1y x e x =+-的斜渐近线为().A .y x e =+B .1y x e =+C .y x =D .1y x e=-【答案】B解析:1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢--⎣⎦所以斜渐近线方程为1y x e=+.2.函数0,()(1)cos ,0,x f x x x x ≤=+>⎩的原函数为().A.),0,()(1)cos sin ,0,x x F x x x x x ⎧⎪≤=⎨+->⎪⎩B.)1,0,()(1)cos sin ,0,x x F x x x x x ⎧⎪+≤=⎨+->⎪⎩C.),0,()(1)sin cos ,0,x x F x x x x x ⎧⎪≤=⎨++>⎪⎩D.)1,0,()(1)sin cos ,0,x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩【答案】D当0x ≤时,1()ln(F x x C ==++(常用积分公式)当0x >时,2()(1)cos (1)sin cos F x x xdx x x x C =+=+++⎰由于()F x 在0x =处可导,则()F x 在0x =处连续,即0lim ()lim ()x x F x F x +-→→=10lim ln(x x C -→+20lim (1)sin cos x x x x C +→=+++1C ⇒21C =+因此仅有选项D 满足条件。
数学二真题及答案解析
2014年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)(5) 设函数()arctan f x x =,若()()f x x f '=ξ,则22l i m x x→=ξ ( )(A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得(D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000ab a bcd c d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a dbc -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组123,,ααα线性无关的 ( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y ∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.(19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明: (I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,1()(()),n n f x f f x -=,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.(21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y yy =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积. (22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.2014年全国硕士研究生入学统一考试数学二试题答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2x x -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C 【解析】1112'21122432212t t t t t dy t dxtd y dy tdx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x x f '=ξ,则22l i m x x→=ξ ( )(A)1(B)23(C)12(D)13【答案】D 【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ22222200011()arctan 11limlimlim lim ()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得 【答案】A【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7) 行列式0000000ab a bcd c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a d b c - (D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列00000000000000a b a b a b a b a c dc b cd dc dc d=-- ()()a d a d b c b c a d b c =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的 ( )(A)必要非充分条件(B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)12125dx x x -∞=++⎰__________.【答案】38π【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.【答案】1【解析】()()[]'210,2f x x x =-∈,且为偶函数 则()()[]'212,0f x x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x 的周期为4,()()711f f ∴=-=(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导 22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z =故1111(,)(,)222211,22z z xy∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________. 【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)limlim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………① 此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'><所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0. (17)(本题满分10分)设平面区域(){}22,14,0,0,D x y xy x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=12D D I dxdy ∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰π 2201211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ 34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.【解析】由()cos ,x z f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x xz f e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x x z zz e y e x y∂∂=+∂∂,代入得, ()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =-则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤,()()()0g x a x a ∴≤-≤-ξ()()0xag t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0uag t dt u a ≤≤-⎰()uaa a g t d t u∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立. (20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞. 【解析】123(),(),(),,(),112131n x x x xf x f x f x f x x x x nx====++++ 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰ 1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)l n ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数. 又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdxx xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭, (I)0Ax =的基础解系为()1,2,3,1T=-ξ(II)()()()1231,0,0,0,1,0,0,0,1TTTe e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ3Ax e =的通解为()()333331,1,1,01,12,13,T Tx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似. 【解析】已知()1111A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,()12001B n ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵=0n ⎛⎫⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .。
2023年考研数学二真题与答案解析
2023年考研数学二真题与答案解析一、考研数学二真题1. 题目1考研数学题目1的题干为:某企业开发了一款新型手机,预计每月销售量Q(台)和价格P(元)之间存在关系 P = 2000 - 0.2Q。
该企业在第一个月售出了1000台手机,请问价格是多少?A. 200元B. 800元C. 1200元D. 1800元2. 题目2考研数学题目2的题干为:已知函数 f(x) = 2x^2 + 3x + 5,求使得 f(x) = 0 成立的 x 的值。
A. x = -5/2B. x = 1/2C. x = 5/2D. x = -1/23. 题目3考研数学题目3的题干为:已知集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求 A 与 B 的交集。
A. {3, 4}B. {1, 2}C. {5, 6}D. {1, 2, 3, 4, 5, 6}二、考研数学二答案解析1. 题目1考研数学题目1的答案解析:根据题干中给出的关系 P = 2000 - 0.2Q,当销售量 Q =1000 时,代入关系式可以得到价格 P 的值:P = 2000 - 0.2 * 1000 = 2000 - 200 = 1800 (元)因此,答案选项为 D. 1800元。
2. 题目2考研数学题目2的答案解析:已知函数 f(x) = 2x^2 + 3x + 5,要使得 f(x) = 0 成立,需要求解方程 2x^2 + 3x + 5 = 0。
通过使用求根公式可以求解二次方程的解,即:x = (-b ± sqrt(b^2 - 4ac)) / (2a)其中,a = 2,b = 3,c = 5。
代入参数计算可得:x = (-3 ± sqrt(3^2 - 425)) / (2*2)x = (-3 ± sqrt(9 - 40)) / 4x = (-3 ± sqrt(-31)) / 4由于方程无实数解,因此答案为空集。
2023年考研《数学二》真题及答案【解析版】
一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.y x ln e 1。
曲线的渐近线方程为()x 1A .y =x +eB .y =x +1/eC .y =xD .y =x -1/e1,x 0 22.函数f x 1 x的原函数为()。
x 1 cos x ,x 0ln 1 x 2x ,x 0A .F xx 1 cos x sin x ,x 0 ln 1 x 2x 1,x 0B .F xx 1 cos x sin x ,x 0 ln 1 x 2x ,x 0C .F xx 1 sin x cos x ,x 0 ln 1 x 2 x 1,x 0D .F xx 1 sin x cos x ,x 03.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时()。
A .x n 是y n 的高阶无穷小B .y n 是x n 的高阶无穷小C .x n 是y n 的等价无穷小D .x n 是y n 的同阶但非等价无穷小4.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则a ,b 的取值范围为(A .a <0,b >0B .a >0,b >0C .a =0,b >0D .a =0,b <0)。
2023年考研《数学二》真题及答案【解析版】5.设函数y =f (x )由x 2t t 确定,则()。
y t sin tA .f (x )连续,f ′(0)不存在B .f ′(0)存在,f ′(x )在x =0处不连续C .f ′(x )连续,f ′′(0)不存在D .f ′′(0)存在,f ′′(x )在x =0处不连续6.若函数f1x ln x12。
d x 在α=α0处取得最小值,则α0=()A .1ln ln 2B .-ln (ln2)C .1ln 2D .ln27.设函数f (x )=(x 2+a )e x ,若f (x )没有极值点,但曲线y =f (x )有拐点,则a 的取值范围是()。
优选考研数二真题及解析
1993年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1) lim xlnx= ______________ .x_0 '⑵函数y = y(x)由方程sin(x2+ y2) +e x—xy2 =0所确定,则业= __________________________dxx 1⑶设F(x) = T (2 —〒)dt(XA0),则函数F(X)的单调减少区间是____________________________(4)='、COS X1 2(5)已知曲线y二f (x)过点(0,),且其上任一点(x, y)处的切线斜率为xln(1 x ),则f (x)二2二、选择题(本题共5小题,每小题3分,满分15分.每小题给岀的四个选项中把所选项前的字母填在题后的括号内.)1 1(1)当x—0时,变量—sin 是()x x(A)无穷小(B)无穷大(C)有界的,但不是无穷小(D)有界的,但不是无穷大I 2, x =1,(A)不连续(B)连续,但不可导(C)可导,但导数不连续(D)可导,且导数连续—x2,0 二x ::1,、工x(3)已知f(x)二设F(x) f(t)dt (0 EX 乞2),则F(x)J1, 1 - x - 2,ij 『11x3,0 _ x : 1 x3,0 _ x :: 1(A) 3 (B) 3 3x,1冬x乞2 x,1乞x乞2 ,只有一项符合题目要求2XX式1'则在点x=1处函数f(x)为()1 1 1—x3,0 乞x :1 —x3——,0 空x :1(C) 3 (D) 3 3X—1,1 Ex 乞2 x—1,1^x 乞2x(4)设常数k 0,函数f(x)=lnx k在(0「:)内零点个数为()e(A)3(B)2(C)1(D)0(5)若f(x) (_x),在(0,::)内f (x) 0, f (x) 0,则f (x)在内()(A) f (x) ::: 0, f (x) <0(B) f (x) <0, f (x) .0(C) f (x) . 0, f (x) ::: 0 (D) f (x) . 0, f (x) 0三、(本题共5小题,每小题5分,满分25分.)、2d2 y⑴ 设y二sin[ f (x )],其中f具有二阶导数,求2.dx⑵求lim x( .X2100 x).X—严x⑶求4dx .1 +cos2x(5)求微分方程(x2—1)dy +(2xy —cosx)dx =0满足初始条件y x=0 =1的特解•四、(本题满分9分)设二阶常系数线性微分方程e x的一个特解为y = e2x■ (1 ■ x)e x,试确定常数五、(本题满分9分)2 2设平面图形A由x y <2x与y_ x所确定,求图形A绕直线x二2旋转一周所得旋转体的体积.六、(本题满分9分)作半径为r的球的外切正圆锥,问此圆锥的高h为何值时,其体积V最小,并求岀该最小值.七、(本题满分6分)设x 0,常数a e,证明(a x)a ::: a a x.八、(本题满分6分)设f (x)在[0,a]上连续,且f (0) =0,证明: f0 f(x)dx <曲,其中M =max|f (x)|.2 0」_a1993年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.)(1)【答案】0【解析】这是个 0 •::型未定式,可将其等价变换成 二型,从而利用洛必达法则进行求解□01lim xln x = lim 洛 lim —xlim x = 0.x _0 •x _0 • 1x _0 '1x —0 '~2xcos(x 2 y 2) (2x 2yy ) e x - y 2 -2xyy = 0 ,2 x/ 22、化简得八y -e -2严笃(xy )2 y cos(x + y ) _2xy【相关知识点】复合函数求导法则:如果u = g(x)在点x 可导,而y = f (x)在点u = g(x)可导,则复合函数 y = f lg(x) 1在点x 可导,且其导数为1⑶【答案】0 ::: x 乞一4【解析】由连续可导函数的导数与x11将函数F(x) =(2 • r)dt,两边对x 求导,得F (x) =2-=.1V t V x若函数F (x)严格单调减少,则F (x) =2 --- ::: 0 ,即,x ::-.J x2所以函数F(x)单调减少区间为 OcxE14⑵【答案】y2—ex —2xcos (x2 y 2)2 22y cos(x y )「2xy【解析】这是一个由复合函数和隐函数所确定的函数,将方程sin( x 2 y 2)e x - xy 2 = 0两边对x 求dydx…)g(x)或誉刖 0的关系判别函数的单调性【相关知识点】函数的单调性:设函数y = f (x)在[a,b]上连续,在(a, b)内可导.(1)如果在(a,b)内f(x)・0,那么函数y = f(x)在[a,b]上单调增加;⑵ 如果在(a,b)内f (x) :::0,那么函数y = f(x)在[a,b]上单调减少. ⑷【答案】2cos ^/2 x C31=-cos"2 xd cosx 二 2cos^ x C .(5)【答案】1(1 x 2)ln(1 x 2)—[x 2-丄2 2 2【解析】这是微分方程的简单应用.由题知 一=xln(1・x 2),分离变量得dy = xln(1 - x 2 )dx ,两边对x 积分有 dx21 2 2 y = xln(1 x )dx ln(1 x )d(x 1).由分部积分法得11因为曲线y = f(x)过点(0,),故C,所以所求曲线为2 21 2 2 1 2 1 y (1 x )ln(1 X )-二X --. 2 2 2二、选择题(本题共5小题,每小题3分,满分15分.)(1)【答案】(D)1【解析】因为当 x > 0时,sin 是振荡函数,所以可用反证法.x【解析】tanidx 二 cos xsin x cosx * cos x3dx 二 sin xcos 2xdx 若取x 1k =,则[sin 丄xx2=(k 二)sin k ; = 0 , 11 11x 2k1 ,则 2sin(2 k)心,(k= 1,2, " I J .(2k 亠—)ix 2kx 2k221 1 因此,当k 》::时,有x 1k —• 0及x 2k —• 0,但变量 —sin —或等于0或趋于xx,这表明当由题可知lim f (x) = lim f(x) = f (x 0).Xx >—■lim f (x) = lim |-x —Rim ◎x 1 x —1二抑(x 1)=2,lim f(x) = lim |-x—11x _1 —x —1 — x_ 1= lim —x —1_x -1--lim( x 1) 一 -2.因f (x)在X =1处左右极限不相等,故在X =1处不连续,因此选(A).⑶【答案】(D)【解析】这是分段函数求定积分.当 0 _x :::1 时,0 _x _t _1,故 f (t) =t 2,所以xF(x)f(t)dt 「:t 2dt 二 $ =扣3一1).3 3当1乞x 乞2时,1乞t 乞x 乞2,故f (t) = 1,所以Xxr TXF(x)=] f(t)dt = J 1dt = R]X=x —1.应选(D). ⑷【答案】(B)【解析】判定函数 f (x)零点的个数等价于判定函数y = f (x)与x 的交点个数x对函数f(X)= In X k 两边对x 求导,得f (x) e 令f (x) = 0,解得唯一驻点 x =e ,即f (x) 0,0 ::: x :: e; f(x)严格单调增加,:f "(x) c0,e ex £畑;f (x)严格单调减少,e所以x =e 是极大值点,也是最大值点,最大值为f (e ) = In e + k = k > 0 .elim f (x)二 lim(lnx )0 x )0由连续函数的介值定理知在(0, e)与(e, •::)各有且仅有一个零点(不相同).x故函数f (x) = In X k 在(0, •::)内零点个数为2,选项(B)正确. e(5)【答案】(C)【解析】方法一:由几何图形判断.由f(X)- - f ( -X),知f (x)为奇函数,图形关于原点对称;在(0, •::)内f (x) 0, f (x) 0, f (x)图形单调增加且向上凹根据图可以看岀f(x)在(-::,0)内增加而凸,f (x)・0,「(x) :::0,选(C).方法二:用代数法证明.x-仝 k)= e又因为对恒等式f (x) = -f (-x)两边求导,得f (x) = f (_x), f (x) = -f (_x).当 x • (-::,0)时,有-X • (0, •::),所以f (x)二 f ( -x) • 0, f (x)二-f (-x) ::: 0,故应选(C).三、(本题共5小题,每小题5分,满分25分.)⑴【解析】y = :sin[ f (x 2)p =cos[ f (x 2)] f (x 2) 2x , cos[ f (x 2)] f (x 2) 2.【相关知识点】复合函数求导法则:如果u =g(x)在点x 可导,而y = f (x)在点u = g(x)可导,则复合函数 y = f lg(x) 1在点x 可 导,且其导数为齐「(叽&)或齐签dx(2)【解析】应先化简再求函数的极限,100 ——-lim _x x门―、x 2 100-1 x因为x : 0,所以100x 二 lim __________ x 心.x 2 100 lim1 100100lim 1、x^00—1 八::一"100x'—1x x >::迴「50. 一1 一1:■. i 1二二1 [ln(cos )—l n(cos0)]ln兀 1 ln 2 .8 4(4)【解析】用极限法求广义积分lim7 —0 1』 i2(b1)2222(5)【解析】所给方程是一阶线性非齐次微分方程,丄2xy 厂,其标准形式是cos ^ , x 2 -¥^e£dx dx C] x -1光严'曲C 才生1C_"p(x)dxp(x)dxy =e ( q(x)e dx C),其中 C 为常数.四、(本题满分9分)【解析】要确定常数 :•,一 ,只需将特解代入原微分方程后,用比较系数法即得对于特解y = e 2x 亠(1亠x)e x ,有y = 2e 2x e x (1 x)e x = 2e 2x (2 x)e x ,fy = 2e 2x (2 x)e x= 4e 2x e x (2 x)e x = 4e 2x(3 x)e x,代入方程y 亠黒y : :[ ... y = e x ,得恒等式4e 2x (3x)e x j 」2e 2x (2 x)e x “ j e 2x (1 x)e x = e x,化简得(4 2一亠 l :,)e 2x - (3 2卅亠『■ )e x (1 亠:筈亠))xe x 三 e x ,比较同类项系数,得4 2〉 : = 03 2,〕1 • : : = 0解之得:.二 -3「: =2,= -1.于是原方程为 y -3y * 2y = -e x ,所对应的齐次微分方程 y-3y 、2y = 0的特征方程为r 2 -3r 2 =0,解之得几=1卫=2所以微分方程 y "‘—3y 亠2y = -e x 的通解为X 丄2x 丄 *X 丄2x 丄 2x I / JL I \y =0^ qey = c 1e c 2e e (1 x)e五、(本题满分9分)【解析】利用定积分求旋转体的体积,用微元法.解法一:考虑对y 的积分,则边界线为代入初始条件yx^1,得S n^C【相关知识点】一阶线性非齐次微分方程=1,所以C--1.所求特解为丫=勺;二-x -1y 1::;'p(x)y = q(x)的通解公式为:x x “ 2x n xc e c e xe .x 2 y 2 - 2x 等价于(x -1)2 y 2<1.为=1 一J 一y2与X2 = y(0 乞y 辽1),如右图所示•当y 「. y " dy 时,对于 ° y dy ,令 y =sint ,则 dy = costdt ,所以i2 i2对于 0(1 一 y) dy = - 0(1 - y) d (1 - y)=所以 V =2江 f J 1 -y 2 -(1-y)2 dy=2兀 解法二:取x 为积分变量,则边界线为5 二,2x -X 2 与 y 2 = x(0 乞 x 冬1), 如右图所示.当 Xr X • dx 时,所以 V =2二;(2 _x)( ,2x _X 2 -x)dx . 令 x -1 二 t ,则 x = 1 • t,dx 二 dt ,所以=i (1—t)*2(1+t)—(1+t)2 —(1+t)"dt再令 t = sin v ,贝U dt 二 cos^d J ,所以 J 』J 1 —t 2 —t J 1 —t 2 +t 2 T dt = J 兀(cos 日-sin 日 cos 日 +sin 2 日—1)cos^d 日-1六、(本题满分9分)【解析】这是一个将立体几何问题转化为函数求最值的问题 设圆锥底半径为 R ,如图,BC = R, AC 二h, 0D = r . 由 BC =坐,人。
2023考研数学二真题及解析答案
2023考研数学二真题及解析一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.曲线1ln e 1y x x=+ −的斜渐近线方程为( ). (A )e y x =+(B )1ey x =+(C )yx = (D )1ey x =−【答案】(B )【解析】方法1. 1ln e 11limlim x x y k x x →∞→∞=+==− ()()11lim lim ln e 1lim ln e ln 111e 1x x x b y x x x x x →∞→∞→∞=−=+−=++− −−()11lim e 1ex x x →∞=− 故曲线的斜渐近线方程为1ey x =+.故选(B ) 方法2. ()()11ln e 11ln 1e 1e 1y x x x x=+=++−−()11ln 1e 1e x x x x α =++=++ −,其中lim 0x α→∞=,故1e y x =+为曲线的斜渐近线. 【评注】由()11lim ln 1e 1e x x x →∞+= − ,知()11ln 1e 1ex x α +=+ − 【评注】1.由()11lim ln 1e 1e x x x →∞ += − ,知()11ln 1e 1e x x α +=+ −2.本题属于常规题:《基础班》《强化班》的例子不再对应列举,《答题模版班》思维定势19【例13】2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A) ), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤= +−>(C) ), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤= ++>【答案】 (D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C ==++∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫ 由于()F x 在0x =处可导性,故()F x 在0x =处必连续 因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln ,1.x x f x x x −< = ≥ 则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<=−≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= +−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.设数列{}{},n n x y 满足211111,sin ,2n n n n x y x x y y ++====()1,2,n = ,则当n →∞时( ) (A )n x 是n y 的高阶无穷小(B )n y 是n x 的高阶无穷小(C )n x 是n y 的等阶无穷小 (D )n x 是n y 的同阶但不等价无穷小 【答案】(B )【解析】由2111,,2n n y y y +==知2112nn y + =,则有112n n y y +<利用12sin n n n x x x π+=>,则1112n nx x π+<故21111111224444n n nn nn n n n n y y y y y x x x x x πππππ+−+− ≤=≤≤≤= 于是1110lim lim 04nn n n n y x +→∞→∞+ ≤≤= ,由夹逼准则lim 0nn ny x →∞=,选(B ) 【评注】本题属于今年难度较大的题,涉及到两个递推数列确定的无穷小的比较,涉及到不等式的放缩,有一定的综合性.4.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+.只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题5.设()y f x =由2,sin ,x t t y t t =+=确定,则( ) (A )()f x 连续,(0)f ′不存在 (B )(0)f ′存在,()f x ′在0x =不连续 (C )()f x ′连续,(0)f ′′不存在 (D )(0)f ′′存在,()f x ′′在0x =不连续 【答案】(C ) 【解析】0t ≥时3,sin ,x t y t t == ,即有sin 33x xy =.0t <时,sin ,x t y t t = =−,即有sin y x x =−.sin ,033sin ,0x x x y x x x ≥= −< ,显然有()f x 在0x =不连续,且(0)0f = 0x >时,sin cos 33(3)9x x x xf x =+′;0x <时,sin ()cos x f x x x ′=−−, 利用导数定义可得()0sin 0330lim 0x x xf x ++→−′==,()0sin 0lim 0x x x f x+−→−′==,即得(0)0f ′= 易验证()0lim ()lim ()00x x f x f x f +−→→′′===,即()f x ′在0x =连续()01sin cos 233930lim 9x x x xf x ++→+′′=,()0sin cos 0lim 2x x x x f x+−→−−′′==−,故(0)f ′′不存在 ,选(C ) 【评注】此题考查参数方程确定的分段函数,只要在参数方程中去掉绝对值的过程,就成了我们常规的分段函数求导的问题,无论是《基础班》第二讲例24,《强化班》第二讲例17. 6.若函数()()121d ln f x x x αα+∞+=∫在0αα=处取得最小值,则0α=( )(A )()1ln ln 2−(B )()ln ln 2−(C )1ln 2−(D )ln 2【答案】(A )【解析】反常积分的判别规律知11α+>,即0α>时反常积分()121d ln x x x α+∞+∫收敛此时()()()212111d ln ln f x x x x αααα+∞+∞+==−∫()11ln 2αα=令()()()2111ln ln 2ln 2ln 2f ααααα′=−−()2111ln ln 20ln 2ααα =−+= 得唯一驻点()1ln ln 2α=−,故选(A )【评注】此题是属于由反常积分确定的函数求最值的问题,积分本身不难,积分结果再求导,找驻点得结果.难度不大,只要基本计算能力过关,可轻松应对.《基础班》《强化班》相应问题得组合而已. 7.设函数()()2e xf x xa =+,若()f x 没有极值点,但曲线()f x 有拐点,则a 的取值范围是( )(A )[)0,1(B )[)1,+∞ (C )[)1,2 (D )[)2,+∞【答案】(C )【解析】()()2e xf x xa =+,()()22e x f x xa x ′=++,()()242e x f x xa x ′′=+++由()()211e x f x x a ′=++−,知10a −≥时,()0f x ′≥,此时()f x 无极值点.由()()222e x f x x a ′′=++−,知20a −<时,()f x ′′在2x =±的左右两侧变号,依题意有[)1,2a ∈,选(C )【评注】本题考查了极值点、拐点的必要条件与判定,题目本身是常规的,分开对这两个考点出题,在《基础班》和《强化班》都讲过,但这种问法有些学生可能会觉得很别扭.8.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B O B A(C )****−B A B A O A B (D )**** −B A A B O A B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− − ==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B ,选(D ) 【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B9.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y +(B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B ) 【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143=− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+222222322332323126616222x x x x x x x x x x x +++++− =+− ()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−,故选(B )【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型 123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ). (A)21y (B)2212y y + (C) 2212y y − (D) 222123y y y ++10.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k−(D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可 即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β = − ,2343β−=−时,求所有既可由21,αα线性表出, 又可21,ββ线性表出的向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、设cos 1sin ()x x x α-=⋅,()2x πα<,当0x →时,()x α()(A )比x 高阶的无穷小(B )比x 低阶的无穷小(C )与x 同阶但不等价的无穷小(D )与x 是等价无穷小【答案】(C )【考点】同阶无穷小 【难易度】★★【详解】cos 1sin ()x x x α-=⋅Q ,21cos 12x x --:21sin ()2x x x α∴⋅-:,即1sin ()2x x α-:∴当0x →时,()0x α→,sin ()()x x αα:1()2x x α∴-:,即()x α与x 同阶但不等价的无穷小,故选(C ).2、已知()y f x =由方程cos()ln 1xy y x -+=确定,则2lim [()1]n n f n→∞-=()(A )2(B )1(C )-1(D )-2 【答案】(A )【考点】导数的概念;隐函数的导数 【难易度】★★【详解】当0x =时,1y =.方程cos()ln 1xy y x -+=两边同时对x 求导,得 将0x =,1y =代入计算,得(0)(0)1y f ''==所以,2lim [()1]2n n f n→∞-=,选(A ).3、设sin [0,)()2[,2]x f x πππ⎧=⎨⎩,0()()x F x f t dt =⎰,则()(A )x π=为()F x 的跳跃间断点(B )x π=为()F x 的可去间断点 (C )()F x 在x π=处连续不可导(D )()F x 在x π=处可导 【答案】(C )【考点】初等函数的连续性;导数的概念 【难易度】★★【详解】202(0)sin sin sin 2F tdt tdt tdt πππππ-==+=⎰⎰⎰Q ,(0)2F π+=,(0)(0)F F ππ∴-=+,()F x 在x π=处连续.()()()lim 0xx f t dt f t dtF x ππππ--→-'==-⎰⎰Q ,0()()()lim 2xx f t dt f t dtF x ππππ++→-'==-⎰⎰,()()F F ππ-+''≠,故()F x 在x π=处不可导.选(C ).4、设函数1111(1)()1ln x e x f x x e x x αα-+⎧<<⎪-⎪=⎨⎪≥⎪⎩,若反常积分1()f x dx +∞⎰收敛,则()(A )2α<-(B )2α>(C )20α-<<(D )02α<<【答案】(D )【考点】无穷限的反常积分 【难易度】★★★ 【详解】11()()()e ef x dx f x dx f x dx +∞+∞=+⎰⎰⎰由1()f x dx +∞⎰收敛可知,1()e f x dx ⎰与()ef x dx +∞⎰均收敛.1111()(1)eef x dx dx x α-=-⎰⎰,1x =是瑕点,因为111(1)e dx x α--⎰收敛,所以112αα-<⇒< 111()(ln )ln eeef x dx dx x x x ααα+∞+∞+∞-+==-⎰⎰,要使其收敛,则0α>所以,02α<<,选D. 5、设()yz f xy x=,其中函数f 可微,则x z z y x y ∂∂+=∂∂() (A )2()yf xy '(B )2()yf xy '-(C )2()f xy x (D )2()f xy x- 【答案】(A )【考点】多元函数的偏导数 【难易度】★★【详解】22()()z y y f xy f xy x x x ∂'=-+∂,1()()z f xy yf xy y x∂'=+∂11()()()()2()f xy yf xy f xy yf xy yf xy x x'''=-+++=,故选(A ). 6、设k D 是圆域{}22(,)1D x y x y =+≤位于第k 象限的部分,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,则()(A )10I >(B )20I >(C )30I >(D )40I > 【答案】(B )【考点】二重积分的性质;二重积分的计算 【难易度】★★【详解】根据对称性可知,130I I ==.22()0D I y x dxdy =->⎰⎰(Q 0y x ->),44()0D I y x dxdy =-<⎰⎰(Q 0y x -<)因此,选B.7、设A 、B 、C 均为n 阶矩阵,若AB=C ,且B 可逆,则() (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的列向量组与矩阵B 的列向量组等价 【答案】(B )【考点】等价向量组 【难易度】★★【详解】将矩阵A 、C 按列分块,1(,,)n A αα=L ,1(,,)n C γγ=L由于AB C =,故111111(,,)(,,)n n n n nn b b b b ααγγ⎛⎫⎪= ⎪ ⎪⎝⎭L L MM L L 即1111111,,n n n n nn n b b b b γααγαα=++=++L L L 即C 的列向量组可由A 的列向量组线性表示.由于B 可逆,故1A CB -=,A 的列向量组可由C 的列向量组线性表示,故选(B ).8、矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件是()(A )0,2a b == (B )0,a b =为任意常数(C )2,0a b == (D )2,a b =为任意常数【答案】(B )【考点】矩阵可相似对角化的充分必要条件 【难易度】★★【详解】题中所给矩阵都是实对称矩阵,它们相似的充要条件是有相同的特征值.由20000000b ⎛⎫ ⎪ ⎪ ⎪⎝⎭的特征值为2,b ,0可知,矩阵1111a A a b a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值也是2,b ,0. 因此,221111220224011020aaE A a b a b a a a a a-----=---=---=-=---0a ⇒=将0a =代入可知,矩阵10100101A b ⎛⎫⎪= ⎪ ⎪⎝⎭的特征值为2,b ,0.此时,两矩阵相似,与b 的取值无关,故选(B ).二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、10ln(1)lim(2)x x x x→+-=. 【答案】12e【考点】两个重要极限 【难易度】★★ 【详解】其中,20000111ln(1)ln(1)11lim (1)lim lim lim 22(1)2x x x x x x x x x x x x x x x →→→→-+-++⋅-====+ 故原式=12e 10、设函数()x f x -=⎰,则()y f x =的反函数1()x f y -=在0y =处的导数y dx dy==.【考点】反函数的求导法则;积分上限的函数及其导数【难易度】★★【详解】由题意可知,(1)0f-=01()y xdy dx dx dxf xdx dy dy dy==-'==⇒=⇒==.11、设封闭曲线L的极坐标方程方程为cos3()66rππθθ=-≤≤,则L所围平面图形的面积是.【答案】12π【考点】定积分的几何应用—平面图形的面积【难易度】★★【详解】面积62266600611cos61sin6()cos3()222612 S r d d dπππππθθπθθθθθθ-+====+=⎰⎰⎰12、曲线arctan,x ty=⎧⎪⎨=⎪⎩1t=点处的法线方程为.【答案】ln204y xπ+--=【考点】由参数方程所确定的函数的导数【难易度】★★★【详解】由题意可知,12//1dy dy dttdx dx dtt-===+,故11tdydx==曲线对应于1t=点处的法线斜率为111k-==-.当1t=时,4xπ=,ln2y=.法线方程为ln2()4y xπ-=--,即ln204y xπ+--=.13、已知321x xy e xe=-,22x xy e xe=-,23xy xe=-是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件xy==,1xy='=的解为y=.【答案】32x x xy e e xe=--【考点】简单的二阶常系数非齐次线性微分方程【难易度】★★【详解】312x x y y e e -=-,23x y y e -=是对应齐次微分方程的解. 由分析知,*2x y xe =-是非齐次微分方程的特解.故原方程的通解为3212()x x x x y C e e C e xe =-+-,12,C C 为任意常数. 由00x y ==,01x y ='=可得11C =,20C =. 通解为32x x x y e e xe =--.14、设()ij A a =是3阶非零矩阵,A 为A 的行列式,ij A 为ij a 的代数余子式,若0(,1,2,3)ij ij a A i j +==,则A =.【答案】-1【考点】伴随矩阵 【难易度】★★★【详解】**0T T ij ij ij ij a A A a A A AA AA A E +=⇒=-⇒=-⇒=-= 等式两边取行列式得230A A A -=⇒=或1A =- 当0A =时,00T AA A -=⇒=(与已知矛盾) 所以1A =-.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)当0x →时,1cos cos2cos3x x x -⋅⋅与n ax 为等价无穷小,求n 和a 的值. 【考点】等价无穷小;洛必达法则 【难易度】★★★【详解】00cos6cos 4cos 2111cos cos 2cos34limlim n n x x x x x x x xaxax→→+++--⋅⋅= 故20n -=,即2n =时,上式极限存在. 当2n =时,由题意得 16、(本题满分10分) 设D 是由曲线13y x =,直线x a =(0)a >及x 轴所围成的平面图形,x V ,y V 分别是D 绕x 轴,y 轴旋转一周所得旋转体的体积,若10y x V V =,求a 的值. 【考点】旋转体的体积【难易度】★★【详解】根据题意,15523330033()55aax V x dx x a πππ===⎰177333066277a ay V x x dx xa πππ=⋅==⎰. 因10y x V V =,故7533631075a a a ππ=⨯⇒=17、(本题满分10分)设平面区域D 由直线3x y =,3y x =,8x y +=围成,求2Dx dxdy⎰⎰【考点】利用直角坐标计算二重积分【难易度】★★【详解】根据题意3286y x x x y y ==⎧⎧⇒⎨⎨+==⎩⎩,16328x y x y x y ⎧==⎧⎪⇒⎨⎨=⎩⎪+=⎩ 故2368222233xxx xDx dxdy dx x dy dx x dy -=+⎰⎰⎰⎰⎰⎰264340228132416()12833333x x x =+-=+=18、(本题满分10分)设奇函数()f x 在[1,1]-上具有二阶导数,且(1)1f =,证明: (Ⅰ)存在(0,1)ξ∈,使得()1f ξ'=; (Ⅱ)存在(1,1)η∈-,使得()()1f f ηη'''+=. 【考点】罗尔定理【难易度】★★★【详解】(Ⅰ)由于()f x 在[1,1]-上为奇函数,故(0)0f =令()()F x f x x =-,则()F x 在[0,1]上连续,在(0,1)上可导,且(1)(1)10F f =-=,(0)(0)00F f =-=.由罗尔定理,存在(0,1)ξ∈,使得()0F ξ'=,即()1f ξ'=.(Ⅱ)考虑()()1(()())(())x x x x f x f x e f x f x e e f x e ''''''''+=⇔+=⇔=令()()x x g x e f x e '=-,由于()f x 是奇函数,所以()f x '是偶函数,由(Ⅰ)的结论可知,()()1f f ξξ''=-=,()()0g g ξξ⇒=-=.由罗尔定理可知,存在(1,1)η∈-,使得()0g η'=,即()()1f f ηη'''+=.19、(本题满分10分)求曲线331(0,0)x xy y x y -+=≥≥上的点到坐标原点的最长距离和最短距离. 【考点】拉格朗日乘数法 【难易度】★★★【详解】设(,)M x y为曲线上一点,该点到坐标原点的距离为d =构造拉格朗日函数2233(1)F x y x xy y λ=++-+-由22332(3)02(3)010x y F x x y F y y x F x xy y λλλ'⎧=+-=⎪'=+-=⎨⎪'=-+-=⎩得11x y =⎧⎨=⎩点(1,1)到原点的距离为d ==,然后考虑边界点,即(1,0),(0,1),它们到原点的距离都是1.,最短距离为1. 20、(本题满分11分)设函数1()ln f x x x =+(Ⅰ)求()f x 的最小值; (Ⅱ)设数列{}n x 满足11ln 1n n x x ++<,证明lim n n x →∞存在,并求此极限.【考点】函数的极值;单调有界准则【难易度】★★★【详解】(Ⅰ)由题意,1()ln f x x x =+,0x >22111()x f x x x x -'⇒=-=令()0f x '=,得唯一驻点1x =当01x <<时,()0f x '<;当1x >时,()0f x '>.所以1x =是()f x 的极小值点,即最小值点,最小值为(1)1f =. (Ⅱ)由(Ⅰ)知1ln 1n n x x +≥,又由已知11ln 1n n x x ++<,可知111n n x x +>,即1n n x x +>故数列{}n x 单调递增. 又由11ln 1n n x x ++<,故ln 10n n x x e <⇒<<,所以数列{}n x 有上界. 所以lim n n x →∞存在,设为A.在11ln 1n n x x ++<两边取极限得1ln 1A A +≤ 在1ln 1n n x x +≥两边取极限得1ln 1A A+≥ 所以1ln 11A A A+=⇒=即lim 1n n x →∞=.21、(本题满分11分)设曲线L 的方程为211ln (1)42y x x x e =-≤≤满足(Ⅰ)求L 的弧长;(Ⅱ)设D 是由曲线L ,直线1x =,x e =及x 轴所围平面图形,求D 的形心的横坐标.【考点】定积分的几何应用—平面曲线的弧长;定积分的物理应用—形心 【难易度】★★★【详解】(Ⅰ)设弧长为S ,由弧长的计算公式,得 (Ⅱ)由形心的计算公式,得 422423311111()3(23)16164221114(7)12122e e e e e e e ---+--==---. 22、(本题满分11分)设110a A ⎛⎫= ⎪⎝⎭,011B b ⎛⎫= ⎪⎝⎭,当,a b 为何值时,存在矩阵C 使得AC CA B -=,并求所有矩阵C.【考点】非齐次线性方程组有解的充分必要条件 【难易度】★★★【详解】由题意可知矩阵C 为2阶矩阵,故可设1234xx C x x ⎛⎫= ⎪⎝⎭.由AC CA B -=可得 12123434101011011x x x x a x x x x b b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭整理后可得方程组2312413423011x ax ax a ax x x x x ax b-+=⎧⎪-++=⎪⎨--=⎪⎪-=⎩①由于矩阵C 存在,故方程组①有解.对①的增广矩阵进行初等行变换: 方程组有解,故10a +=,0b =,即1a =-,0b =.当1a =-,0b =时,增广矩阵变为10111011000000000000--⎛⎫⎪⎪⎪ ⎪⎝⎭34,x x 为自由变量,令341,0x x ==,代入相应齐次方程组,得211,1x x =-=令340,1x x ==,代入相应齐次方程组,得210,1x x ==故1(1,1,1,0)T ξ=-,2(1,0,0,1)T ξ=,令340,0x x ==,得特解(1,0,0,0)T η= 方程组的通解为112212112(1,,,)T x k k k k k k k ξξη=++=++-(12,k k 为任意常数)所以121121k k k C k k ++-⎛⎫= ⎪⎝⎭.23、(本题满分11分)设二次型2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++,记123a a a α⎛⎫ ⎪= ⎪ ⎪⎝⎭,123b b b β⎛⎫⎪= ⎪ ⎪⎝⎭(Ⅰ)证明二次型f 对应的矩阵为2T T ααββ+;(Ⅱ)若,αβ正交且均为单位向量,证明f 在正交变换下的标准形为22122y y +【考点】二次型的矩阵表示;用正交变换化二次型为标准形;矩阵的秩 【难易度】★★★【详解】(Ⅰ)证明:112323(,,)(2)T T T x x x x x x Ax x ααββ⎛⎫ ⎪=+= ⎪ ⎪⎝⎭,其中2T T A ααββ=+所以二次型f 对应的矩阵为2T T ααββ+. (Ⅱ)由于,αβ正交,故0T T αβαβ==因,αβ均为单位向量,故1α==,即1T αα=.同理1T ββ= 由于0α≠,故A 有特征值12λ=.(2)T T A βααββββ=+=,由于0β≠,故A 有特征值21λ=又因为()(2)(2)()()()1123T T T T T T r A r r r r r ααββααββααββ=+≤+=+=+=<, 所以0A =,故30λ=.三阶矩阵A 的特征值为2,1,0.因此,f 在正交变换下的标准形为22122y y +.。