2014年普通高等学校招生全国统一考试高考数学教师精校版含详解辽宁文

合集下载

14年高考真题——文科数学(辽宁卷)-推荐下载

14年高考真题——文科数学(辽宁卷)-推荐下载


6

(D) c a b

(D) p q
辽宁
(D)
2014 年高考真题文科数学(解析版) 卷
8.已知点 A2, 3在抛物线 C : y2 2 px 的准线上,记 C 的焦点为 F ,则直线
AF 的斜率为( )
(A) 4 3
(B) 1
9.设等差数列an的公差为 d ,若数列2a1an 为递减数列,则( )
⑴根据表中数据,问是否有 95%的把握认为
“南方学生和北方学生在选用甜品的饮食习惯
,求:⑴
a

方面有差异”; ⑵已知在被调查的北方学生中有 5 名数学系的学生,其中 2 名喜欢甜品,
现在从这 5 名学生中随机抽取 3 人,求至多有 1 人喜欢甜品的概率。
附: 2 n n11n22 n12n21 2 ,

(A)5, 3
(D)4, 3
(B)6, 9 8
二.填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.执行右侧的程序框图,若输入 n 3 ,则输出T

Page 2 of 8
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)

2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)


1





(2)求二面角
的正弦值.
8. 圆
的切线与 x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为 P
( 如 图 ), 双 曲 线
过点 P 且离心率为
.

1






(2)椭圆 过点 P 且与 有相同的焦点,直线 过 的右焦点且与 交于 A,B 两点,若以线段 AB
为直径的圆心过点 P,求 的方程.

,C.
D.
2. 设复数 满足
,则 ( )
A.
B.
C.
D.
3. 已知全集


A.
B.
,则集合
C.
()
D.
4. 已知 m,n 表示两条不同直线, 表示平面,下列说法正确的是()
A.若 C.若
则 , ,则
B.若 , ,则 D.若 , ,则
5. 设
是非零向量,已知命题 P:若

,则
;命题 q:若
满足:
答案第 2页,总 9页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
图 2­3­1
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续 3 天里,有连续 2 天的日销售量都不低于 100 个且另 1 天的日销售量低于 50 个的概率; (2)用 X 表示在未来 3 天里日销售量不低于 100 个的天数,求随机变量 X 的分布列,期望 E(X)及方差 D(X).

2014年(辽宁卷)普通高等学校招生全国统一考试(文科)数学(含解析)

2014年(辽宁卷)普通高等学校招生全国统一考试(文科)数学(含解析)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = ( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.设,,a b c是非零向量,已知命题P :若0a b ⋅= ,0b c ⋅= ,则0a c ⋅=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π7. 某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12- 【答案】C 【解析】9. 设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >10.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 执行右侧的程序框图,若输入3n =,则输出T = .14.已知x,y满足条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y=+的最大值为.15. 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16. 对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G分别为AC、DC、AD的中点. (Ⅰ)求证:EF⊥平面BCG;(Ⅱ)求三棱锥D-BCG的体积.附:椎体的体积公式13V Sh=,其中S为底面面积,h为高.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.【考点定位】1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式. 21. (本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证明:(Ⅰ)存在唯一0(0,)2x π∈,使0()0f x =;(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+>.22. (本小题满分10分)选修4-1:几何证明选讲,连接DG并延长交圆于点A,作如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且PG PD弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (Ⅰ)写出C 的参数方程;(Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(Ⅰ)求M ;(Ⅱ)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.。

2014年普通高等学校招生全国统一考试数学(辽宁卷)文

2014年普通高等学校招生全国统一考试数学(辽宁卷)文

2014年普通高等学校招生全国统一考试(辽宁卷)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014辽宁,文1)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=().A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案:D解析:∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.2.(2014辽宁,文2)设复数z满足(z-2i)(2-i)=5,则z=().A.2+3iB.2-3iC.3+2iD.3-2i答案:A解析:∵(z-2i)(2-i)=5,∴z-2i=52-i=2+i.∴z=2+3i.故选A.3.(2014辽宁,文3)已知a=2-13,b=log213,c=lo g1213,则().A.a>b>cB.a>c>bC.c>b>aD.c>a>b 答案:D解析:∵0<a=2-13<20=1,b=log213<log21=0,c=lo g1213>lo g1212=1,∴c>a>b.故选D.4.(2014辽宁,文4)已知m,n表示两条不同直线,α表示平面,下列说法正确的是().A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α答案:B解析:对A:m,n还可能异面、相交,故A不正确.对C:n还可能在平面α内,故C不正确.对D:n还可能在α内,故D 不正确.对B:由线面垂直的定义可知正确.5.(2014辽宁,文5)设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是().A.p∨qB.p∧qC.( p)∧( q)D.p∨( q)答案:A解析:对命题p中的a与c可能为共线向量,故命题p为假命题.由a,b,c为非零向量,可知命题q为真命题.故p∨q 为真命题.故选A.6.(2014辽宁,文6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是().A.π2B.π4C.π6D.π8答案:B解析:所求概率为S半圆S长方形=12π·122×1=π4,故选B.7.(2014辽宁,文7)某几何体三视图如图所示,则该几何体的体积为().A.8-π4B.8-π2C.8-πD.8-2π答案:C解析:由几何体的三视图可知,原几何体为棱长是2的正方体挖去两个底面半径为1,高为2的14圆柱,故该几何体的体积是正方体的体积减去半个圆柱,即V=23-12π·12·2=8-π.故选C.8.(2014辽宁,文8)已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为().A.-43B.-1 C.-34D.-12答案:C解析:由已知,得准线方程为x=-2, ∴F的坐标为(2,0).又A(-2,3),∴直线AF的斜率为k=3-0-2-2=-34.故选C.9.(2014辽宁,文9)设等差数列{a n}的公差为d.若数列{2a1a n}为递减数列,则().A.d>0B.d<0C.a1d>0D.a1d<0答案:D解析:∵{2a1a n}为递减数列,∴2a1a n+12a1a n=2a1a n+1-a1a n=2a1(a n+1-a n)=2a1d<1.∴a1d<0.故选D.10.(2014辽宁,文10)已知f(x)为偶函数,当x≥0时,f(x)={cosπx,x∈[0,12],2x-1,x∈(12,+∞),则不等式f(x-1)≤12的解集为().A.[14,23]∪[43,74]B.[-34,-13]∪[14,23]C.[13,34]∪[43,74]D.[-34,-13]∪[13,34]答案:A解析:令t=x-1.当t∈[0,12]时,πt∈[0,π2],由f(t)≤12,即cosπt≤12,得π3≤πt≤π2,解得13≤t≤12.当t∈(12,+∞)时,由f(t)≤12,即2t-1≤12,解得12<t≤34.综上,t∈[0,+∞)时,f(t)≤12的解集为[13,34].∵f(x)为偶函数,∴f(|x|)=f(x).故t∈R时,由f(t)≤12可得13≤|t|≤34,即-34≤t≤-13或13≤t≤34.∴由f(x-1)≤12得-34≤x-1≤-13或13≤x-1≤34,解得14≤x≤23或43≤x≤74.故选A.11.(2014辽宁,文11)将函数y=3sin(2x+π3)的图象向右平移π2个单位长度,所得图象对应的函数().A.在区间[π12,7π12]上单调递减B.在区间[π12,7π12]上单调递增C.在区间[-π6,π3]上单调递减D.在区间[-π6,π3]上单调递增答案:B解析:由题意知,平移后的函数f(x)=3sin[2(x-π2)+π3]=3sin(2x-π+π3)=-3sin(2x+π3).令2kπ-π2≤2x+π3≤2kπ+π2,k∈Z,解得f(x)的递减区间为[kπ-5π12,kπ+π12],k∈Z.令2kπ+π2≤2x+π3≤2kπ+32π(k∈Z),解得f(x)的递增区间为[kπ+π12,kπ+712π],k∈Z.从而可判断选项B正确.12.(2014辽宁,文12)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是().A.[-5,-3]B.[-6,-98]C.[-6,-2]D.[-4,-3]答案:C解析:∵当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,即当x∈[-2,1]时,不等式ax3≥x2-4x-3(*)恒成立.(1)当x=0时,a∈R.(2)当0<x≤1时,由(*)得a≥x 2-4x-3x3=1x−4x2−3x3恒成立.设f(x)=1x −4x2−3x3,则f'(x)=-1x2+8x3+9x4=-x2+8x+9x4=-(x-9)(x+1)x4.当0<x≤1时,x-9<0,x+1>0,∴f'(x)>0, ∴f(x)在(0,1]上单调递增.当0<x≤1时,可知a≥f(x)max=f(1)=-6.(3)当-2≤x<0时,由(*)得a≤1x −4x2−3x3.令f'(x)=0,得x=-1或x=9(舍).∴当-2≤x<-1时,f'(x)<0,当-1<x<0时,f'(x)>0,∴f(x)在[-2,-1)上递减,在(-1,0)上递增.∴x∈[-2,0)时,f(x)min=f(-1)=-1-4+3=-2.∴可知a≤f(x)min=-2.综上所述,当x∈[-2,1]时,实数a的取值范围为-6≤a≤-2.故选C.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2014辽宁,文13)执行下面的程序框图,若输入n=3,则输出T=.答案:20解析:由程序框图可知,当i=0≤3时,i=1,S=1,T=1;当i=1≤3时,i=2,S=3,T=4;当i=2≤3时,i=3,S=6,T=10;当i=3≤3时,i=4,S=10,T=20;可知i=4>3,退出循环.故输入n=3时,输出T=20.14.(2014辽宁,文14)已知x,y满足约束条件{2x+y-2≥0,x-2y+4≥0,3x-y-3≤0,则目标函数z=3x+4y的最大值为.答案:18解析:画出x,y满足约束条件的可行域如图阴影部分.由{3x-y-3=0,x-2y+4=0得{x=2,y=3,∴A点坐标为(2,3).作直线l0:3x+4y=0,可知当平移l0到l(l过点A)时,目标函数有最大值,此时z max=3×2+4×3=18.15.(2014辽宁,文15)已知椭圆C:x 29+y24=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=.答案:12解析:如图,设MN的中点为P,则由F1是AM的中点,可知|AN|=2|PF1|.同理可得可知|BN|=2|PF2|.∴|AN|+|BN|=2(|PF1|+|PF2|).根据椭圆定义得|PF1|+|PF2|=2a=6,∴|AN|+|BN|=12.16.(2014辽宁,文16)对于c>0,当非零实数a ,b 满足4a 2-2ab+b 2-c=0且使|2a+b|最大时,1a +2b +4c的最小值为 . 答案:-1解析:要求|2a+b|的最大值,只需求(2a+b )2的最大值.∵4a 2-2ab+b 2-c=0,∴4a 2+b 2=c+2ab ,∴(2a+b )2=4a 2+b 2+4ab=c+2ab+4ab=c+6ab ≤c+3(2a+b 2)2,即(2a+b )2≤4c ,当且仅当2a=b 时,取得等号,即(2a+b )2取到最大值,即2a=b 时,|2a+b|取到最大值.把2a=b 代入4a 2-2ab+b 2-c=0,可得c=4a 2. ∴1a+2b+4c=1a+22a +44a 2=2a +1a 2=(1a+1)2-1. ∴当1a =-1时,1a +2b +4c取到最小值-1.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(2014辽宁,文17)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a>c.已知BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2,cos B=13,b=3,求: (1)a 和c 的值; (2)cos(B-C )的值.分析:(1)由数量积定义及余弦定理,可列出a ,c 的方程组,解方程组即可求出a ,c 的值.(2)由已知及正弦定理可分别求出B ,C 角的正、余弦值,再利用两角差的余弦公式可求出cos(B-C )的值.解:(1)由BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =2得c ·a cos B=2. 又cos B=13,所以ac=6.由余弦定理,得a 2+c 2=b 2+2ac cos B.又b=3,所以a 2+c 2=9+2×2=13.解{ac =6,a 2+c 2=13,得a=2,c=3或a=3,c=2. 因为a>c ,所以a=3,c=2. (2)在△ABC 中,sin B=√1-cos 2B=√1-(13)2=2√23,由正弦定理,得sin C=c b sin B=23·2√23=4√29. 因为a=b>c ,所以C 为锐角, 因此cos C=√1-sin 2C=√1-(4√29)2=79.于是cos(B-C )=cos B cos C+sin B sin C =13×79+2√23×4√29=2327. 18.(本小题满分12分)(2014辽宁,文18)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2.分析:(1)由表中数据及χ2公式可求出χ2值,再与3.841比较即可.(2)可用列举法写出基本事件总数及“3人中至多有1人喜欢甜品”的基本事件数.再由古典概型的概率公式计算即可.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n(n11n22-n12n21)2n1+n2+n+1n+2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b2,b3),(a1,b1,b3),(a2,b1,b2),(a2,b2,b3),(a2,b1,b3),(b1,b2,b3)}.其中a i表示喜欢甜品的学生,i=1,2,b j表示不喜欢甜品的学生,j=1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b2,b3),(a1,b1,b3),(a2,b1,b2),(a2,b2,b3),(a2,b1,b3),(b1,b2,b3)}.事件A是由7个基本事件组成,因而P(A)=710.19.(本小题满分12分)(2014辽宁,文19)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D-BCG的体积.附:锥体的体积公式V=13Sh,其中S为底面面积,h为高.分析:(1)由三角形全等证出AC=DC,再由等腰三角形的性质(三线合一)得线线垂直,最后由线面垂直的判定定理及推论可证得结论.(2)由面面垂直得线面垂直,从而确定出点到平面的距离,即三棱锥G-BCD的高,由等体积法可求三棱锥D-BCG的体积.(1)证明:由已知得△ABC≌△DBC,因此AC=DC.又G为AD中点,所以CG⊥AD;同理BG⊥AD;因此AD⊥面BGC.又EF∥AD,所以EF⊥面BCG.(2)解:在平面ABC内,作AO⊥CB,交CB延长线于O.由平面ABC⊥平面BCD,知AO⊥面BDC.又G为AD中点,因此G到平面BDC距离h是AO长度的一半.在△AOB中,AO=AB·sin60°=√3,所以V D-BCG=V G-BCD=13·S△DBC·h=13·12·BD·BC·sin120°·√32=12.20.(本小题满分12分)(2014辽宁,文20)圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y=x+√3交于A ,B 两点.若△PAB 的面积为2,求C 的标准方程. 分析:(1)设出切点P 的坐标,用此坐标表示三角形的面积.又由切点P 在圆上,利用基本不等式求最值的方法,可求出点P 的坐标.(2)设出椭圆C 的标准方程,由点P 在椭圆C 上,及直线l 与C 相交于A ,B 两点且S △PAB =2,可求出a ,b 的值.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y-y 0=-x0y 0(x-x 0),即x 0x+y 0y=4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S=12·4x 0·4y 0=8x 0y 0, 由x 02+y 02=4≥2x 0y 0知当且仅当x 0=y 0=√2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(√2,√2).(2)设C 的标准方程为x 2a 2+y 2b2=1(a>b>0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a 2+2b2=1,并由{x 2a 2+y 2b2=1,y =x +√3,得b 2x 2+4√3x+6-2b 2=0, 又x 1,x 2是方程的根, 因此{x 1+x 2=-4√3b2,x 1x 2=6-2b2b 2,由y 1=x 1+√3,y 2=x 2+√3, 得|AB|=√2|x 1-x 2|=√2·√48-24b 2+8b 4b2.由点P 到直线l 的距离为√3√2及S △PAB =12√3√2|AB|=2得b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6.从而所求C 的方程为x 26+y 23=1.21.(本小题满分12分)(2014辽宁,文21)已知函数f (x )=π(x-cos x )-2sin x-2,g (x )=(x-π)√1-sinx 1+sinx +2xπ-1,证明: (1)存在唯一x 0∈(0,π2),使f (x 0)=0;(2)存在唯一x 1∈(π2,π),使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.分析:(1)利用求导数方法判断函数f (x )在(0,π2)上的单调性,再利用函数零点的存在性定理进行判断,证出结论.(2)先化简函数g (x )在[π2,π]上的解析式,再用求导法判断函数单调性,结合函数零点的存在性定理,即可证明. 证明:(1)当x ∈(0,π2)时,f'(x )=π+πsin x-2cos x>0,所以f (x )在(0,π2)上为增函数, 又f (0)=-π-2<0,f (π2)=π22-4>0, 所以存在唯一x 0∈(0,π2),使f (x 0)=0. (2)当x ∈[π2,π]时,化简得g (x )=(π-x )·cosx 1+sinx +2xπ-1. 令t=π-x ,记u (t )=g (π-t )=-tcost 1+sint −2πt+1,t ∈[0,π2], 则u'(t )=f (t )π(1+sint ).由(1)得,当t ∈(0,x 0)时,u'(t )<0, 当t ∈(x 0,π2)时,u'(t )>0. 在(x 0,π2)上u (t )为增函数, 由u (π2)=0知,当t ∈[x 0,π2)时,u (t )<0, 所以u (t )在[x 0,π2)上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.),使u(t0)=0.于是存在唯一t0∈(0,π2,π),设x1=π-t0∈(π2则g(x1)=g(π-t0)=u(t0)=0,,π),使g(x1)=0,因此存在唯一的x1∈(π2由于x1=π-t0,t0<x0,所以x0+x1>π.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)(2014辽宁,理22)选修4—1:几何证明选讲如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.分析:(1)证明AB是直径,即证明∠BDA=90°.由∠PFA=90°,从而寻求∠BDA=∠PFA就可证明.(2)要证AB=DE,即证DE为直径,连DC,即证∠DCE=90°,从而只需证明AB∥DC即可.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA.又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.由于AF⊥EP,所以∠PFA=90°.于是∠BDA=90°.故AB是直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.23.(本小题满分10分)(2014辽宁,理23)选修4—4:坐标系与参数方程将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.分析:(1)利用相关点法先求出直角坐标方程,再写出参数方程.(2)先联立方程求出P1,P2两点的坐标,进而求出P1P2的中点坐标,得到与l垂直的直线方程,再化为极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得{x =x 1,y =2y 1.由x 12+y 12=1,得x 2+(y 2)2=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为{x =costy =2sint (t 为参数).(2)由{x 2+y24=1,2x +y -2=0,解得{x =1,y =0,或{x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为(12,1),所求直线斜率为k=12, 于是所求直线方程为y-1=12(x -12), 化为极坐标方程,并整理得 2ρcos θ-4ρsin θ=-3,即ρ=34sinθ-2cosθ.24.(本小题满分10分)(2014辽宁,理24)选修4—5:不等式选讲设函数f (x )=2|x-1|+x-1,g (x )=16x 2-8x+1.记f (x )≤1的解集为M ,g (x )≤4的解集为N. (1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.分析:(1)分类讨论去绝对值符号即可.(2)在x ∈M ∩N 的条件下,先化简x 2f (x )+x [f (x )]2,再配方求其最大值即可.解:(1)f (x )={3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1),当x ≥1时,由f (x )=3x-3≤1得x ≤43,故1≤x ≤43;当x<1时,由f (x )=1-x ≤1得x ≥0,故0≤x<1. 所以f (x )≤1的解集为M={x |0≤x ≤43}. (2)证明:由g (x )=16x 2-8x+1≤4, 得16(x -14)2≤4,解得-14≤x ≤34. 因此N={x |-14≤x ≤34}.故M ∩N={x |0≤x ≤34}.当x ∈M ∩N 时,f (x )=1-x ,于是 x 2f (x )+x ·[f (x )]2=xf (x )[x+f (x )] =x ·f (x )=x (1-x )=14−(x -12)2≤14.。

2014年高考文科数学辽宁卷及答案解析

2014年高考文科数学辽宁卷及答案解析

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U =R ,{|0}A x x =≤,{|}B x x =≥1,则集合()UAB =ð( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21log 3b =,121log 3c =,则( ) A .b a c >>B .a c b >>C .c b a >>D .c a b >>4.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( )A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥5.设a ,b ,c 是非零向量.已知命题p :若a b 0=,b c 0=,则a c 0=; 命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .π2B .π4C .π6D .π87.某几何体三视图如图所示,则该几何体的体积为( )A .π84-B .π82-C .8π-D .82π-8.已知点(2,3)A -在抛物线C :22ypx =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12-9.设等差数列{}n a 的公差为d .若数列1{2}na a 为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <10.已知()f x 为偶函数,当0x ≥时,1cos π,[0,],2()121,(,),2x x f x x x ⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间π7π[,]1212上单调递减B .在区间π7π[,]1212上单调递增C .在区间ππ[,]63-上单调递减D .在区间ππ[,]63-上单调递增12.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是 ( ) A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)13.执行右侧的程序框图,若输入3n =,则输出T =________. 14.已知x ,y 满足约束条件220240330x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤ 则目标函数34z x y =+的最大值为________.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=________.16.对于0c >,当非零实数a ,b 满足22420a ab b c -+-=且使|2|a b +最大时,124a bc++的最小值为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC =,1cos 3B =,3b =.求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18.(本小题满分12分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19.(本小题满分12分)如图,ABC △和BCD △所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=,E ,F ,G 分别为AC ,DC ,AD 的中点.(Ⅰ)求证:EF ⊥平面BCG ; (Ⅱ)求三棱锥D BCG -的体积.附:锥体的体积公式13V Sh =,其中S 为底面面积,h 为高.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线l :y x =+交于A ,B 两点.若PAB △的面积为2,求C 的标准方程.21.(本小题满分12分)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πxg x x =--. 证明:(Ⅰ)存在唯一0π(0,)2x ∈,使0()0f x =; (Ⅱ)存在唯一1π(,π)2x ∈,使1()0gx =,且对(Ⅰ)中的0x ,有01πx x +>.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题附:22112212211212()+n n n n n n n n n χ++-=+,数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)号下方的方框涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC BD =,求证:AB ED =.23.(本小题满分10分)选修4—4:坐标系与参考方程 将圆221xy +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :220x y +-=与C 的交点为1P ,2P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4—5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+.记()1f x ≤的解集为M ,()4g x ≤的解集为N .(Ⅰ)求M ; (Ⅱ)当x M N ∈时,证明:221()[()]4x f x x f x +≤.2014年普通高等学校招生全国统一考试(辽宁卷){|AB x x =){|0AB x =【提示】先求A B ,再根据补集的定义求)AB ð.【考点】交、并、补集的混合运算【解析】(2i)(2z -【提示】把给出的等式两边同时乘以B 运用线面垂直的性质,即可判断;C 运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D 运用线面平行的性质和线面垂直的判定,即可判断.【考点】空间中直线与直线之间的位置关系A【解析】若0a b =,0b c =,则a b b c =,即()0a c b -=,则0a c =不一定成立,故命题p 为假命题.若a b ∥,b c ∥,则a c ∥,故命题q 为真命题.则p q ∨,命题,故选A.的真假,利用复合命题之间的关系即可得到结论.数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)【解析】等差数列(123)++++++的值,当输入(123i)++++++的值,距最大,即最大.max .,Q数学试卷 第13页(共21页)数学试卷 第14页(共21页)数学试卷 第15页(共21页)【解析】242a ab -不等式得,23232b ⎤⎛⎫⎤=⎥⎦(Ⅰ)由2B A B C =得2cos ac B .2c =232+2sin c B b ⨯=C 1⎛=- 2BA BC =1cos 3B =代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到22(Ⅱ)利用古典概型概率公式,即可求解.【考点】独立性检验的应用,古典概型及其概率计算公式Ⅰ)AB BC =G 为AD 的中点,CG ∴.CG BG G =,BGC .EF AD ∥EF ∴⊥平面BCG (Ⅱ)在平面,∆.G 6B=11sin1203322BD BC ︒=00014482x y x y =再根据2200x y +=数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)122d AB =,解得()221k ⎡=+⎣2232b b -,代入上式得2231683b b -= 或26b =,所以椭圆方程为:P 00(,)x y 切线与x 轴正半轴,y 轴正半轴围成的三角形的面积008S x y =.再利用基122d AB =,求出【考点】直线与圆锥曲线的综合问题(Ⅰ)()πf x =.()πf x '=上单调递增.(Ⅱ)()(g x =cos (π)1sin x x x --++cos 1sin x x ++cos )1sin x x -++由导数法可得函数的零点,可得不等式【考点】函数零点的判定定理 )PD PG PDG PGD PD=∴∠=∠为切线,PDA DBA ∴∠=∠,PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠,NDA PFA ∴∠=∠.9090AF EP PFA BDA AB ⊥∴∠=︒∴∠=︒∴为圆的直径.(Ⅱ)连接BC ,DC .90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA △与Rt ACB △中,AB BA AC BD ==,, Rt BDA Rt ACB ∴△≌△,DAB CBA DCB DAB ∴∠=∠∠=∠,DCB CBA ∴∠=∠,DC AB ∴∥.AB EP DC EP DCE ⊥∴⊥∠,为直角,∴ED 为圆的直径,AB 为圆的直径,AB ED ∴=.(Ⅱ)由214220x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设1(1,0)P 、2(0,2)P , 则线段12P P 的中点坐标为1,12⎛⎫ ⎪⎝⎭,再根据与l 垂直的直线的斜率为12, 故所求的直线的方程为111y x ⎛⎫-=- ⎪,即3220x y -+=.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)【提示】(Ⅰ)在曲线C 上任意取一点(,)x y ,再根据点,2y x ⎛⎫⎪⎝⎭在圆221x y +=上,求出C 的方程,化为参数方程.(Ⅱ)由2()16814g x x x =-+≤,求得1344x -≤≤,,44N ⎡⎤∴=-⎢⎥⎣⎦,M N ∴=30,4⎡⎤⎢⎥⎣⎦. 当x MN ∈时,()1f x x =-,22()[()]()[x ()]x f x x f x xf x f x +=+2111424x ⎛⎫=--≤ ⎪⎝⎭,故要证的不等式成立.【提示】(Ⅰ)由所给的不等式可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②,分别求得①、②的解集,再取并集,即得所求.N =30,4⎡⎢⎣MN 时,f ,显然它小于或等于14,要证的不等式。

10.2014年普通高等学校招生全国统一考试(辽宁卷)(答案版)

10.2014年普通高等学校招生全国统一考试(辽宁卷)(答案版)

2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12πD .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=︒,E 、F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x ππ=--+⋅-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x M N ∈时,证明:221()[()]4x f x x f x +≤.参考答案【选择题】1.D2.A3.C4.B5.A6.D7.B8.C9.B 10.D 11.C 12.B【填空题】 13.299 14.23 15.12 16.-2【解答题】17.解:(1)2,3.2,3∴5,6c ∴2-cos 23cos ,3,31cos 222====>=+=+====•==c a c a c a c a a acb c a B ac B ca BC BA b B 所以,解得,且 (2)2723)-cos(.2723sin sin cos cos )-cos(924sin ,972c -cos ,2,3,3322sin 31cos 222==+=∴==+=====∴=C B C B C B C B C ab b a C c b a B B 所以,18.解:(1)108.0.108.02)(501002.15.050003.0)50(,6.050)002.0004.0006.0()100≥(2所以,所求事件概率为,则且一日销量低于日销量不低于表示连续表示日销售量,则用==+==•=<==•++==b a baa aab A p A Y p b Y p a Y(2).72.08.1.72.0)-1(,8.16.0*3.216.0)-1()3(.432.0)-1()2(.288.0)-1()1(.064.0)-1()0(∴).6.0,3(~,6.0100)1(.3,2,1,00333122321133003和分别为和方差望的分布列如下,数学期的概率知,日销量不低于由可取DX EX X a na DX na EX a a C x p a a C x p a a C x p a a C x p B X a X ==================19.解: (1)BCBC BC H EH FH EH FH EH FH BC H BCE BCF BE RT BCE ABC EC AE BA BC BF RT BCF CBD FC DF BD BC ⊥EF EF ⊥∴EFH ⊥∴∩BC,⊥BC,⊥21BH BC,⊥BC,⊥ΔΔ∴EC⊥,Δ∴120∠,,FC ⊥,Δ∴120∠,,所以,面则上,且在全等,设与三角形为且同理三角形为且==°===°=== (2)552θsin CD --552,sin 55113100100||||,cos ∴)1,1,3-(002321230210),,()0,23,21(),23,0,21(),0,0,21-(),0,23,0(),23,0,0()1,0,0(2.,,,HF ,∴HF ⊥⊥,12121212122221=>=<=++++++<==++=++========的正弦值所以,二面角,解出一个法向量,即满足:的法向量面的一个法向量显然,面轴建立坐标系为分别以)知由(BF E n n n n n n n n n y x z x BF n BE n z y x n BEF BF BE B F E n BCF BF BE z y x EH HC HC EH 20.解: (1)12-1231-)2,2(,,3).2,2(2,168211682116)(4214421,,4,,,222222222222242242242222====∴=+====++=++≥+++=++===y x a b c by a x P a b c a c P s n m r r n m r n m r n m s mn r r n m P r 所以,双曲线方程为,,中代入双曲线方程把点取最大值,这时时,仅当三角形面积由射影定理得为点上下两段线段长分别设圆半径(2)222222222222222211221121313 6.1630.(,),(,).0(P x y a b c c a bx y P b a a bx y l PA PB x my A x y B x y PA PB x y x +==+=+===+=•===•=椭圆过,焦点为设椭圆方程,,把点代入椭圆方程中,解得,所以,椭圆方程为由题知,直线过右焦点为,且设直线方程212121212221212121221212222212(((())2(1))0163(2)-30,yx x y y mymy y y m yy y y y y yy m y yy y x ym y y y =+=+=++++++=+++++=++=+=与椭圆方程联立得:由韦达定理得1222121222222222-32(1))0-3(1)0-3-30(-3-30-2m02m 0y y m m y yy y m m m m m =+++++=∴+++=++++=++++=++=+=∴=即12m m x y x y =======+所以,所求直线方程为或21.解:(1)上仅有一个零点,在所以,单调递减单调递减,且单调递减单调递增,单调递增上,,在上有零点,在,)2π0()(↓)1(sin 38-)2π)(-(cos )(∴↓)1(sin 38-↓)2π)(cos -(-∴↑0cos -↑02π)2π0()2π0()(∴0)2(38-)π2)(2π-()2π(,038-π)0(∴)1(sin 38-)2π)(-(cos )(x f x x x x x f y x y x x x y x x y x y x f f f x x x x x f ++==+=++=>+=>+=<=>=++= (2)(II )考虑 ].,2[),23ln(4sin 1cos )(3)(ππππ∈--+-=x x x x x h 令,x t -=π则],2[ππ∈x 时,]2,0[π∈t 记)sin 1)(2()(3)(),21ln(4sin 1cos 3-)('t t t f t u t t t t t h t u ++=+-+==πππ则)( 由(I )得,当0)()2,(,0)(),0('0'0〈∈〉∈t u x t t u x t 时,当时,π在(0,0x )上)(t u 是增函数,又)00(=u ,从而当),0(0x t ∈时,)(t u 0〉,所以)(t u 在],0(0x 上无零点。

2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45-3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .16 B .36 C .13D .335.函数3ln(1)(1)y x x =+>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)xy e x =->- C .3(1)()x y e x R =-∈ D .3(1)()xy e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814π B .16π C .9π D .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为23,则C的焦距等于( )A .2B .22C .4D .4212.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答)14.函数cos 22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为.16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是111()(21)nnk k k k a a k +==-=-∑∑于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=13,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA, 所以3tanAcosC=2sinC.因为tanA=13,所以cosC=2sinC.tanC=1 2 .所以tanB=tan[180︒-(A+C)]=-tan(a+c)=tan tan1tan tanA CA C+--=-1,即B=135︒.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90︒,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1的距离为3,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D⊂平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC⊂平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A13,因为A1C为∠ACC1的平分线,故A1D=A13作DF⊥AB,F为垂足,连结A1F,由三垂线定理得A1F⊥AB,故∠A1FD为二面角A1-AB-C的平面角,由AD=1=,得D 为AC 的中点,DF=125AC BC AB ⨯⨯=,tan ∠A 1FD=1A DDF=,所以二面角A 1-AB-C 的大小为解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则AF =(-2,1,0),1(2,0,0),(2,0,)AC AA a c =-=-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-,由12AA =2=,即2240a a c -+=,于是11AC BA ⋅=2240a a c -+=①,所以11AC BA ⊥.(2)设平面BCC 1B 1的法向量(,,)m x y z =,则m CB ⊥,1,m CB m BB ⊥⊥,即10,0m CB m BB ⋅=⋅=,因11(0,1,0),(2,0,)CB BB AA a c ==-,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,(,0,2)m c a =-,点A到平面BCC 1B 1的距离为cos ,CA m CA m CA c mc ⋅⋅<>===,又依题设,点A 到平面BCC 1B 1的距c= .代入①得a=3(舍去)或a=1.于是1(1AA =-,设平面ABA 1的法向量(,,)n p q r =,则1,n AA n AB⊥⊥,即10,0n AA n AB ⋅=⋅=.0p-=且-2p +q =0,令p =,则q =2,r=1,(3,2n =,又(0,0,1)p =为平面ABC 的法向量,故cos 1,4n p n p n p⋅<>==,所以二面角A 1-AB-C 的大小为arccos 1420. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2·B ·CP(B)=0.6,P(C)=0.4,P(A i )=220.5,0,1,2i C i ⨯=.所以P(D)=P(A 1·B ·C+A 2·B+A 2·B ·C )= P(A 1·B ·C)+P(A 2·B)+P(A 2·B ·C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p (B )·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ). (i )若a ≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.(ii )由于a ≠0,故当a<1时,()0f x '=有两个根:1211x x a a---==, 若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数.若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞. 22. (本小题满分12分)已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由22(0)y px p =>中得x 0=8p, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2.所以C 的方程为24y x =.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1x my =+,(m ≠0)代入24y x =中得2440y my --=,设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,故AB 的中点为D (2m 2+1,2m ),2124(1)AB y m =-=+,有直线l '的斜率为-m ,所以直线l '的方程为2123x y m m=-++,将上式代入24y x =中,并整理得2244(23)0y y m m+-+=. 设M(x 3,y 3),N(x 4,y 4),则234344,4(23)y y y y m m+=-=-+. 故MN的中点为E(223422224(23,),m m MN y m m m+++-=-=). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=,化简得m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=0.。

2014年全国高考辽宁省数学(理)试卷及答案【精校版】

2014年全国高考辽宁省数学(理)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,学科 网已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( ) A .p q ∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3] 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12π D .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = . 14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x=上,如图所示,若将一个质点随机投入正方形ABCD 中, 则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += . 16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x ππ=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的x 0有01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程. 24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤.2014年普通高等学校招生全国统一考试(辽宁卷)理科数学答案1. D2. A3. C4. B5. A6. D7. B8. C9. B 10. D 11. C 12. B 13.299C 14. 2315. 12 16. 2- 17.(Ⅰ)由2BA BC⋅=得,cos 2c a B ⋅=,又1cos 3B =,所以ac =6.由余弦定理,得2222cos a c b ac B +=+.又b =3,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得a =2,c =3或a =3,c =2. 因为a >c ,∴ a =3,c =2. (Ⅱ)在ABC ∆中,sin 3B ===由正弦定理,得2sin sin 339c CB b ==⋅=,又因为a b c =>,所以C 为锐角,因此7cos 9C ===. 于是cos()cos cos sin sin B C B C B C -=+=1723393927⋅+⋅=. 18.(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= . 2()0.003500.15P A =⨯=.()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为因为X ~B (3,0.6),所以期望为E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72 19.(Ⅰ)证明:(方法一)过E 作EO ⊥BC ,垂足为O ,连OF ,由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC =∠FOC =2π,即FO ⊥BC , 又EO ⊥BC ,因此BC ⊥面EFO , 又EF ⊂面EFO ,所以EF ⊥BC .(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 左垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.易得B (0,0,0),A (0,-1D ,C (0,2,0),因而11(0,,0)22E F ,所以33(,0,),(0,2,0)EF BC =-=,因此0EF BC ⋅=,从而EF BC ⊥,所以EF BC ⊥. (Ⅱ)(方法一)在图1中,过O 作OG ⊥BF ,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG ⊥BF ,由三垂线定理知EG 垂直BF . 因此∠EGO 为二面角E -BF -C 的平面角;在△EOC 中,EO =12EC =12BC ·cos 30°由△BGO ∽△BFC 知,BO OG FC BC =⋅=,因此tan ∠EGO =2EOOG=,从而sin ∠EGO,即二面角E -BF -C. (方法二)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量2(,,)n x y z =,又31(,,0),(,)2B F B E ==,由220n BF n BE ⎧⋅=⎪⎨⋅=⎪⎩ 得其中一个2(1,n =,设二面角E -BF -C 的大小为θ,且由题意知θ为锐角,则121212cos |cos ,|||||||5n nn n n n θ⋅=<>==⋅,因sin θ,即二面角E -BF -C 的正弦值为5. 20.(Ⅰ)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y+=≥知当且仅当00x y ==时00x y 有最大值,即S 有最小值,因此点P 得坐标为 , 由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (Ⅱ)由(Ⅰ)知2C 的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+, 解得b 12=3,因此C 2方程为22163x y +=显然,l 不是直线y =0.设l 的方程为x =my,点1122(,),(,)A x y B x y由22163x my x y ⎧=⎪⎨+=⎪⎩得22(2)30m y ++-=,又12,y y 是方程的根,因此1212232y y y y m ⎧+=⎪⎪⎨-⎪=⎪+⎩①②,由122,3x y m y=+得12122221212122()266()32x x m y y m m x x m y y y y m ⎧+=++=⎪⎪+⎨-⎪=+++=⎪+⎩③④因1122(2,2),(2)AP x y BP x y =--=-由题意知0A PB P ⋅=,所以1212112()2()40x x x x yy y ++++=⑤ ,将①,②,③,④代入⑤式整理得22110m -+=,解得1m =-或1m =,因此直线l 的方程为(1)02x y --=,或(1)02x y +-=. 21.(Ⅰ)当(0,)2x π∈时,2'()(1sin )(2)2cos 03f x x x x x π=-++--<,函数()f x 在(0,)2π上为减函数,又2816(0)0,()0323f f πππ=->=--<,所以存在唯一0(0,)2x π∈,使0()0f x =. (Ⅱ)考虑函数3()cos 2()4ln(3),[,]1sin 2x x h x x x x ππππ-=--∈+,令t x π=-,则[,]2x ππ∈时,[0,]2t π∈, 记3cos 2()()4ln(1)1sin t t u t h t t t ππ=-=-++,则3()'()(2)(1sin )f t u t t t π=++ ,由(Ⅰ)得,当0(0,)t x ∈时,'()0u t >,当0(,)2t x π∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点.在0(,)2x π上()u t 是减函数,由0()0,()4ln 202u x u π>=-<,存在唯一的10(,)2t x π∈ ,使1()0u t =.所以存在唯一的10(,)2t x π∈使1()0u t =.因此存在唯一的11(,)2x t πππ=-∈,使111()()()0h x h t u t π=-==.因为当(,)2x ππ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1(,)2x ππ∈,使1()0g x =.因1110,x t t x π=->,所以01x x π+<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(Ⅰ)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .由于AF 垂直EP ,所以∠PF A =90°,于是∠BDA =90°,故AB 是直径. (Ⅱ)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°, 在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA . 又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . 由于,,AB EP DC EP DCE ⊥⊥∠所以为直角 于是ED 是直径,由(Ⅰ)得ED =AB .23.(Ⅰ)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x ty t⎧⎨⎩== (t 为参数).(Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12P P 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-, 化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24.(Ⅰ)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<; 所以()1f x ≤的解集为4{|0}3M x x =≤≤.(Ⅱ)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4MN x x =≤≤.当x MN ∈时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+2111()(1)()424x f x x x x =⋅=-=--≤.。

(22)2014年普通高等学校招生全国统一考试辽宁卷数学试卷(文史类)

(22)2014年普通高等学校招生全国统一考试辽宁卷数学试卷(文史类)

4.已知 m,n 表示两条不同直线, α表示平面.下列说法正确的是(

A .若 m , n ,则 m n B.若 m , n ,则 m n
C.若 m , m n ,则 n
D.若 m , m n ,则 n
5.设 a, b, c是非零向量,已知命题 p:若 a b 0 , b c 0 ,则 a c 0;命题 q:若 a b , b c,则 a c .则下列
A .在区间7 ,源自上单调递减12 12
B.在区间
7 ,
上单调递增
12 12
C .在区间
, 上单调递减 D.在区间 63
, 上单调递增 63
12.当 x
2,1 时,不等式 ax 3 x2 4x 3 0 恒成立,则实数 a 的取值范围是(

A . 5,- 3
9 B . 6,
8
C. 6, 2
D. 4, 3
至多有 1 人喜欢甜品的概率.
附:
2 = n(n11n22 n12n21 )2 , n1 n2 n 1 n 2
| P( 2 k) k
0.100 0.050 0.010 2.706 3.841 6.635
19.(本小题满分 12 分)
如图, ABC 和 BCD 所在平面互相垂直,且
AB BC BD 2 , ABC
B.8 2
C. 8
D. 8 2
8.已知点 A( 2,3) 在抛物线 C: y 2 2 px 的准线上, 记 C 的焦点为 F,则直线 AF
的斜率为(

4
A.
3
B .- 1
3
C.
4
1
D.
2
9.设等差数列 an 的公差为 d.若数列 2a1an 为递减数列,则(

2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)答案解析

2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)答案解析

2014年全国普通高等学校招生统一考试文科(辽宁卷)数学答案解析1、【答案】D【解析】试题分析:由已知得,或,故.考点:集合的运算.2、【答案】A【解析】试题分析:由已知得,.考点:复数的运算.3、【答案】C【解析】试题分析:因为,,,故.考点:指数函数和对数函数的图象和性质.4、【答案】B【解析】试题分析:若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.考点:空间直线和平面的位置关系.5、【答案】A【解析】试题分析:若,,则,故,故命题是假命题;若,则,故命题是真命题,由复合命题真假判断知,是真命题,选A.考点:1、平面向量的数量积运算;2、向量共线.6、【答案】B【解析】试题分析:将一个质点随机投入长方形ABCD中,基本事件总数有无限多个,故可考虑几何概型求概率.由已知得,以AB为直径的半圆的面积为.又长方形ABCD的面积为,故质点落在以AB为直径的半圆内的概率是,选B.考点:几何概型.7、【答案】B【解析】试题分析:由三视图还原几何体,得该几何体是棱长为2的正方体,切去底面半径为1、高为4的两个四分之一圆柱得到的几何体,故体积为,选B.考点:三视图.8、【答案】C【解析】试题分析:由已知得,抛物线的准线方程为,且过点,故,则,,则直线AF的斜率,选C.考点:1、抛物线的标准方程和简单几何性质;2、直线的斜率.9、【答案】C【解析】试题分析:由已知得,,即,,又,故,从而,选C.考点:1、等差数列的定义;2、数列的单调性.10、【答案】A【解析】试题分析:先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.考点:1、分段函数;2、函数的图象和性质;3、不等式的解集.11、【答案】B【解析】试题分析:将函数的图象向右平移个单位长度,得到,令,解得,故递增区间为(),当时,得递增区间为,选B.考点:1、三角函数图象变换;2、三角函数的单调性.12、【答案】C【解析】试题分析:不等式变形为.当时,,故实数a的取值范围是;当时,,记,,故函数递增,则,故;当时,,记,令,得或(舍去),当时,;当时,,故,则.综上所述,实数a的取值范围是.考点:利用导数求函数的极值和最值.13、【答案】【解析】试题分析:输入,在程序执行过程中,的值依次为;;;;,程序结束.输出.考点:程序框图.14、【答案】【解析】试题分析:画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.考点:线性规划.15、【答案】【解析】试题分析:如图所示,由已知条件得,点分布是椭圆的左、右焦点,且,分别是线段的中点,则在和中,,,又由椭圆定义得,,故.16、【答案】【解析】试题分析:设,则,代入到中,得,即……①因为关于的二次方程①有实根,所以,可得,取最大值时,或,当时,,当时,,综上可知当时,的最小值为.考点:1、一元二次方程根的判别式;2、二次函数求值域.17、【答案】(1);(2)【解析】试题分析:(1)由及向量数量积的定义,得,从而,故再寻求关于的等式是解题关键.由,不难想到利用余弦定理,得,进而联立求;(2)利用差角余弦公式将展开,涉及的正弦值和余弦值.由可求,因为三角形三边确定,故可利用正弦定理或余弦定理求值,代入即可求的值.(1)由得,.又.所以.由余弦定理,得.又.所以.解得或.因为.所以.(2)在中,.由正弦定理得,.因,所以为锐角.因此.于是.考点:1、平面向量数量积定义;2、正弦定理;3、余弦定理.18、【答案】(1)有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)【解析】试题分析:(1)将列联表中的数据代入公式计算,得的值,然后与表格中的比较,若小于,则有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)从5名学生中随机抽取3人,有10种结果,构成基本事件空间,其中“至多有1人喜欢甜品”这个事件包含7个基本事件,代入古典概型的概率计算公式即可.(1)将列联表中的数据代入公式计算.得.由于.所以有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系的学生任取3人的一切可能结果所组成的基本事件空间,,,.其中表示喜欢甜品的学生,.表示不喜欢甜品的学生,.由10个基本事件组成,切这些基本事件出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则.事件A是由7个基本事件组成.因而.考点:1、独立性检验;2、古典概型.19、【答案】(1)详见解析;(2)【解析】试题分析:(1)由已知得,是的中位线,故,则可转化为证明平面BCG.易证,则有,则在等腰三角形和等腰三角形中,且是中点,故,.从而平面BCG,进而平面BCG;(2)求四面体体积,为了便于计算底面积和高,往往可采取等体积转化法.由平面平面,利用面面垂直的性质,易作出面的垂线,同时求出点到面的距离,从而可求出点到平面距离,即四面体的高,进而求四面体体积.(1)证明:由已知得.因此.又为中点,所以;同理;因此平面.又.所以平面BCG.(2)在平面内.作.交延长线于.由平面平面.知平面.又为中点,因此到平面距离是长度的一半.在中,.所以.考点:1、直线和平面垂直的判定;2、面面垂直的性质;3、四面体的体积.20、【答案】(1);(2)【解析】试题分析:(1)首先设切点,由圆的切线的性质,根据半径的斜率可求切线斜率,进而可表示切线方程为,建立目标函数.故要求面积最小值,只需确定的最大值,由结合目标函数,易求;(2)设椭圆标准方程为,点在椭圆上,代入点得①,利用弦长公式表示,利用点到直线距离公式求高,进而表示的面积,与①联立,可确定,进而确定椭圆的标准方程.(1)设切点坐标为.则切线斜率为.切线方程为.即.此时,两个坐标轴的正半轴于切线围成的三角形面积.由知当且仅当时,有最大值.即有最小值.因此点的坐标为.(2)设的标准方程为.点.由点在上知.并由得.又是方程的根,因此,由,,得.由点到直线的距离为及得.解得或.因此,(舍)或,.从而所求的方程为.考点:1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式.21、【答案】(1)详见解析;(2)详见解析【解析】试题分析:(1)依题意,只需证明函数在区间上存在唯一零点.往往转化为利用导数判断函数单调性、极值点,从而判断函数大致图象,进而说明零点分布情况.本题当时,,故在上为增函数,再说明端点函数值异号;(2)与(1)类似,只需证明函数在区间上存在唯一零点.但是不易利用导数判断函数大致图象,考虑到结论中,故需考虑第二问与第一问的关系,利用(1)的结论,设,则,,根据第一问中的符号,从而可判断函数的单调性,进而判断函数大致图象,确定函数的零点,寻求函数的零点与零点的关系,从而证明不等式.证明:(1)当时,,所以在上为增函数.又..所以存在唯一,使.(2)当时,化简得.令.记..则.由(1)得,当时,;当时,.从而在上为增函数,由知,当时,,所以在上无零点.在上为减函数,由及知存在唯一,使得.于是存在唯一,使得.设..因此存在唯一的,使得.由于,,所以.考点:1、函数的零点;2、利用导数判断函数单调性;3、利用导数求函数的最值.22、【答案】(1)详见解析;(2)详见解析【解析】试题分析:(1)要证明为圆的直径,只需证明,结合,在和中,只需证明,从而转化为证明,由弦切角定理以及很容易证明;(2)要证明,由(1)得,只需证明为圆的直径.连接,只需证明.只需证明.因为,故,根据同弧所对的圆周角相等得,故,从而.得证(1)因为.所以.由于为切线,所以.又由于,所以.由于,所以,.故为圆的直径.(2)连接.由于是直径,故.在和中,,.从而.于是.又因为,所以.又因为,所以.故.由于,所以,为直角.于是为直径.由(1)得,.考点:1、三角形全等;2、弦切角定理;3、圆的性质.23、【答案】(1)(为参数);(2)【解析】试题分析:(1)由平面直角坐标系中的伸缩变换得变换前后对应的坐标关系.即,反解并代入圆中,得曲线C的普通方程.进而写出参数方程;(2)将直线与圆联立,求的交点的坐标,从而可确定与垂直的直线方程.再利用化直线的直角坐标方程为极坐标方程.(1)设为圆上的点,经变换为上点.依题意,得由得.即曲线的方程为.故C的参数方程为(为参数).(2)由解得或不妨设.则线段的中点坐标为.所求直线的斜率为.于是所求直线方程为.化为极坐标方程为,即.考点:1、伸缩变换;2、曲线的参数方程;2、曲线的极坐标方程.24、【答案】(1);(2)详见解析.【解析】试题分析:(1)不等式变形为,然后分类讨论去绝对号解不等式得不等式解集;(2)解不等式,得.故.当时,,此时.代入中为二次函数,求其最大值即可.(1)当时,由得.故;当时,由得,故.所以的解集为.(2)由得.,故.当时,,故.考点:1、绝对值不等式解法;2、二次函数最值.。

2014年高考辽宁理科科数学试题及答案(word解析版)

2014年高考辽宁理科科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一测试(辽宁)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年辽宁,理1,5分】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合U ()A B =U ð( )(A ){|0}x x ≥ (B ){|1}x x ≤ (C ){|01}x x ≤≤ (D ){|01}x x << 【答案】D【分析】{}10A B x x x =≥≤U 或,∴{}U ()01A B x x =<<U ð,故选D .【点评】本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法. (2)【2014年辽宁,理2,5分】设复数z 满足(2i)(2i)5z --=,则z =( )(A )23i + (B )23i - (C )32i + (D )32i - 【答案】A【分析】由(2i)(2i)5z --=,得:()()()52i 52i 2i 2i 2i 2i z +-===+--+,∴23i z =+,故选A . 【点评】本题考查了复数代数形式的除法运算,是基础的计算题.(3)【2014年辽宁,理3,5分】已知132a -=,21log 3b =,121log 3c =,则( )(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >>【答案】C【分析】∵1030221a -<=<=,221log log 103b =<=,12221log log 3log 213c ==>=,∴c a b >>,故选C .【点评】本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.(4)【2014年辽宁,理4,5分】已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( ) (A )若//m α,//n α,则//m n (B )若m α⊥,n α⊂,则m n ⊥(C )若m α⊥,m n ⊥,则//n α (D )若//m α,m n ⊥,则n α⊥ 【答案】B【分析】A :若//m α,//n α,则m ,n 相交或平行或异面,故A 错;B .若m α⊥,n α⊂,则m n ⊥,故B 正确;C .若m α⊥,m n ⊥,则//n α或n α⊂,故C 错;D .若//m α,m n ⊥,则//n α或n α⊂或n α⊥,故D 错,故选B .【点评】本题考查空间直线和平面的位置关系,考查直线和平面的平行、垂直的判断和性质,记熟这些定理是迅速解题的关键,注意观察空间的直线和平面的模型.(5)【2014年辽宁,理5,5分】设,,a b c 是非零向量,已知命题p :若0=g a b ,0=g b c ,则0=g a c ;命题q :若a b P ,b c P ,则a c P ,则下列命题中真命题是( )(A )p q ∨ (B )p q ∧ (C )()()p q ⌝∧⌝ (D )()p q ∨⌝ 【答案】A【分析】若0=g a b ,0=g b c ,则g g a b =b c ,即()0-=g a c b ,则0g a c =不一定成立,故命题p 为假命题,若a b P ,b c P ,则a c P ,故命题q 为真命题,则p q ∨,为真命题,p q ∧,()()p q ⌝∧⌝,()p q ∨⌝都为假命题,故选A .【点评】本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p ,q 的真假是解决本题的关键.(6)【2014年辽宁,理6,5分】6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )(A )144 (B )120 (C )72 (D )24 【答案】D【分析】3人全排,有336A =种方法,形成4个空,在前3个或后3个或中间两个空中插入椅子,有4种方法,根据乘法原理可得所求坐法种数为6×4=24种,故选D .【点评】本题考查排列知识的运用,考查乘法原理,先排人,再插入椅子是关键. (7)【2014年辽宁,理7,5分】某几何体三视图如图所示,则该几何体的体积为( )(A )82π-(B )8π-(C )82π-(D )84π-【答案】B【分析】由三视图知:几何体是正方体切去两个14圆柱,正方体的棱长为2,切去的圆柱的底 面半径为1,高为2,∴几何体的体积321221284V ππ=-⨯⨯⨯⨯=-,故选B .【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键. (8)【2014年辽宁,理8,5分】设等差数列{}n a 的公差为d ,若数列{}12n a a 为递减数列,则( )(A )0d < (B )0d > (C )10a d < (D )10a d > 【答案】C【分析】∵等差数列{}n a 的公差为d ,∴1n n a a d +-=,又数列{}12na a 为递减数列,∴11112212n n a a a d a a +=<,∴10a d <,故选C .【点评】本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识和基本技能方法,属于中档题.(9)【2014年辽宁,理9,5分】将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )(A )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 (B )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增(C )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增【答案】B【分析】把函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,得到的图象所对应的函数分析式为:3sin 223y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦.即23sin 23y x π⎛⎫=- ⎪⎝⎭.由2222232k x k πππππ-+≤-≤+, 得71212k x k ππππ+≤≤+,k ∈Z .取0k =,得71212x ππ≤≤. ∴所得图象对应的函数在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,故选B .【点评】本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.(10)【2014年辽宁,理10,5分】已知点()2,3A -在抛物线C :22y px =的准线上,过点A 的直线和C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )(A )12 (B )23 (C )34 (D )43【答案】D【分析】∵点()2,3A -在抛物线C :22y px =的准线上,即准线方程为:2x =-,∴0p >,22p-=-即4p =,∴抛物线C :28y x =,在第一象限的方程为22y x =,设切点(),B m n ,则22n m =,又导数1222y x '=⋅⋅,则在切点处的斜率为2m,∴322n m m -=+即222223m m m +=-,22m = (2舍去),∴切点()8,8B ,又()2,0F ,∴直线BF 的斜率为804823-=-,故选D . 【点评】本题主要考查抛物线的方程和性质,同时考查直线和抛物线相切,运用导数求切线的斜率等,是一道基础题.(11)【2014年辽宁,理11,5分】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )(A )[5,3]-- (B )9[6,]8-- (C )[6,2]-- (D )[4,3]--【答案】C【分析】当0x =时,不等式32430ax x x -++≥对任意a ∈R 恒成立;当01x <≤时,32430ax x x -++≥可化为23143a x x x ≥--,令()23143f x x x x=--,则()()()234491189x x f x x x x x -+'=-++=-(*),当01x <≤时,()0f x '>,()f x 在(]0,1上单调递增,()()max 16f x f ==-∴6a ≥-;当20x -≤<时,32430ax x x -++≥可化为23143a x x x≤--,由(*)式可知,当21x -≤≤-时,()0f x '<,()f x 单调递减,当10x -<<时,()0f x '>,()f x 单调递增,()()min 12f x f =-=-,∴2a ≤-;综上所述,实数a 的取值范围是62a -≤≤-,即实数a 的取值范围是[6,2]--,故选C .【点评】本题考查利用导数研究函数的最值,考查转化思想、分类和整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.(12)【2014年辽宁,理12,5分】已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-.若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) (A )12 (B )14 (C )12π (D )18【答案】B【分析】依题意,定义在[0,1]上的函数()y f x =的斜率12k <,不妨令0k >,构造函数()kx f x k kx ⎧=⎨-⎩102k ⎛⎫<<⎪⎝⎭,满足()()010f f ==,()()12f x f y x y -<-. 当10,2x ⎡⎤∈⎢⎥⎣⎦,且10,2y ⎡⎤∈⎢⎥⎣⎦时,()()1110224f x f y kx ky k x y k k -=-=-≤-=⨯<;当10,2x ⎡⎤∈⎢⎥⎣⎦,且1,12y ⎡⎤∈⎢⎥⎣⎦,()()()()111224k f x f y kx k ky k x y k k k ⎛⎫-=--=+-≤+-=< ⎪⎝⎭;当1,12x ⎡⎤∈⎢⎥⎣⎦,且10,2y ⎡⎤∈⎢⎥⎣⎦时,同理可得,()()14f x f y -<;当1,12x ⎡⎤∈⎢⎥⎣⎦,且1,12y ⎡⎤∈⎢⎥⎣⎦时,()()()()111224k f x f y k kx k ky k x y k ⎛⎫-=---=-≤⨯-=< ⎪⎝⎭;综上所述,对所有[],0,1x y ∈,()()14f x f y -<,∵对所有[],0,1x y ∈,()()f x f y k -<恒成立,∴14k ≥,即k 的最小值为14,故选B .【点评】本题考查函数恒成立问题,着重考查构造函数思想、分类讨论思想、函数方程思想和等价转化思想的综合运用,考查分析、推理及运算能力,属于难题.第II 卷(共90分)二、填空题:本大题共4小题,每小题5分 (13)【2014年辽宁,理13,5分】执行右侧的程序框图,若输入9x =,则输出y = .【答案】299【分析】由程序框图知:第一次循环9x =,9253y =+=,5941-=>; 第二次循环5x =,511233y =+=,1145133-=>;第三次循环113x =,1129299y =+=.1111421939+-=<, 满足条件1y x -<,跳出循环,输出299y =.【点评】本题考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.(14)【2014年辽宁,理14,5分】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物 线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 . 【答案】23【分析】∵(1,1),(1,1),(1,1),(1,1)A B C D ----,∴正方体的ABCD 的面积224S =⨯=,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积()12311111148212211233333S x dx x x --⎡⎤⎛⎫⎛⎫⎛⎫=-=-=---+=⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰, 则由几何槪型的概率公式可得质点落在图中阴影区域的概率是82343=.【点评】本题主要考查几何槪型的概率的计算,利用积分求出阴影部分的面积是解决本题的关键.(15)【2014年辽宁,理15,5分】已知椭圆C :22194x y +=,点M 和C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .【答案】12【分析】如图:MN 的中点为Q ,易得212QF NB =,112QF AN =,∵Q 在椭圆C 上,∴1226QF QF a +==,∴||||12AN BN +=.【点评】本题考查椭圆的定义,椭圆的基本性质的使用,基本知识的考查. (16)【2014年辽宁,理16,5分】对于0c >,当非零实数,a b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c -+的最小值为 .【答案】2-【分析】∵224240a ab b c -+-=,∴222211542416c b a ab b a b ⎛⎫=-+=-+ ⎪⎝⎭,由柯西不等式得,222222151522241641515b b a b a b a b ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫-++≥-+⋅=+⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,故当2a b +最大时, 有15446215b a b-=,∴32a b =,210c b =,∴2223453451121122310222a b c b b b b b b ⎛⎫⎛⎫-+=-+=-=-- ⎪ ⎪⎝⎭⎝⎭,当12b =时,取得最小值为2-.【点评】本题考查了柯西不等式,以及二次函数的最值问题,属于难题.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2014年辽宁,理17,12分】在ABC ∆中,内角A ,B ,C 的对边,,a b c ,且a c >,已知2BA BC ⋅=u u u r u u u r ,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.解:(1)由2BA BC =u u u r u u u r g 得cos 2ac B ⋅=.又1cos 3B =,所以6ac =.由余弦定理得22a c +=22cos b ac B +⋅.又因为3b =,所以22a c +=21326133+⨯⨯=.解22613ac a c =⎧⎨+=⎩得23a c =⎧⎨=⎩或32a c =⎧⎨=⎩.因为a c >,32a c =⎧∴⎨=⎩. (2)在ABC ∆中,2sin 1cos B B =-21221()3=-=.由正弦定理得sin sin b cB C=, 所以222sin 3sin 3c B C b⨯==429=.因为a c >,所以角C 为锐角.2cos 1sin C C =-24271()99=-=. cos()B C -cos cos sin sin B C B C =+17224239=⨯+⨯2327=. 【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.(18)【2014年辽宁,理18,12分】一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为 概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .解:(1)设1A 表示事件“日销售量不低于100个”, 2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个”.1()(0.0060.0040.002)50P A =++⨯0.6=,2()0.003500.15P A =⨯=.()0.60.60.1520.108P B =⨯⨯⨯=.(2)X 可能取的值为0,1,2,3.相应概率为0033(0)0.60.40.064P X C ==⨯⨯=;123(1)0.60.40.288P X C ==⨯⨯=; 223(2)0.60.40.432P X C ==⨯⨯=;330(3)0.60.40.216P X C ==⨯⨯=.X 的分布列为:X0 1 2 3 P 0.0640.288 0.432 0.216 因为(3,0.6)X B :0.40.72=.【点评】在n 次独立重复试验中,事件A 发生的次数服从二项分布、服从二项分布的随机变量的期望和方差公式,考查分布列的求法.(19)【2014年辽宁,理19,12分】如图,ABC ∆和BCD ∆所在平面互相垂直,且AB BC =2BD ==, o 120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥; (2)求二面角E BF C --的正弦值.解:解法一: (1)过E 作EO BC ⊥,垂足为O ,连OF .由ABC DBC V V≌, 可证出EOC FOC V V ≌.所以2EOC FOC π∠=∠=,即FO BC ⊥,又EO BC ⊥,因此BC EFO ⊥面.又EF EFO ⊂面,所以EF BC ⊥.(2)在图1中,过O 作OG BF ⊥,垂足为G ,连结EG .由ABC BCD ⊥平面平面,从 而EO BCD ⊥面,又OG BF ⊥,由三垂线定理可知EG BF ⊥,因此,EGO ∠为二面角E-BF-C 的平面角. 在EOC V中,113cos3022EO EC BC ⋅===o,由BGO BFC VV∽知,3BO OG FC BC ==g ,因此tan 2EOEGO OG∠==,从而25sin EGO ∠=,即二面角E-BF-C 正弦值为25. FEA DB图1FEBA OG解法二:(1)由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示 空间直角坐标系. 易得(0,0,0)B ,(0,3)A -,(3,1,0)D -,(0,2,0)C ,因而13(0,2E ,31(,0)2F ,所以33(EF =u u u r ,(0,2,0)BC =u u u r ,因此0EF BC =u u u r u u u r g ,从而,EF BC EF BC ⊥⊥u u u r u u u r所以.(2)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量2(,,)n x y z =,又3113(,0),(0,)22BF BE ==u u u r u u u r ,由2200n BF n BE ⎧=⎪⎨=⎪⎩u u u rg u u u rg ,得其中一个 2(1,3,1)n =-.设二面角E-BF-C 大小为θ,且由题意知θ为锐角, 则121212cos cos ,=5n n n n n n θ⋅=<>=⋅25sin θ=25.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,空间向量的坐标运算,推理论证能力和运算求解能力.(20)【2014年辽宁,理20,12分】圆224x y +=的切线和x 轴正半轴, y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 且3(1)求1C 的方程;(2)椭圆2C 过点P 且和1C 有相同的焦点,直线l 过2C 的右焦点且和2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.解:(1)设切点坐标为00(,)x y (000,0x y >>),则切线斜率为00x y -,切线方程为0000()xy y x x y -=--,即004,x x y y +=此时两个坐标轴的正半轴和切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当002x y ==时00x y 有最大值,即S 有最小值,因此P 坐标为(2,2),由题意知222222213a ba b a⎧-=⎪⎨⎪+=⎩,解得221,2a b ==,故1C 方程为2212y x -=. (2)由(1)知2C 的焦点坐标为(3,0),(3,0)-,由此设2C 的方程为22221113x y b b +=+,10>其中b , 由P (2,2)在2C 上,得22112213b b +=+,解得213b =,因此2C 方程为22163x y +=,显然,l 不是直线0y =,设l 的方程为3x my =11(,)A x y ,22(,)B x y由223163x my x y ⎧=+⎪⎨+=⎪⎩,得22(2)2330,m y my ++-=,又12,y y 是方程的根,因此12122233 (2)2m y y y y m ⎧+=⎪⎪⎨-⎪=⎪+⎩, 由11223,3x my x my =+=121222121212243()23663()3 (4)2x x m y y m x x m y y m y y m ⎧+=++⎪⎪⎨-⎪=+++=⎪+⎩因11(22)AP x y =u u u r ,22(22)BP x y =u u u r,由题意可知0AP BP ⋅=u u r u u u r,所以121212122()2()40x x x x y y y y -++++= (5)yxPO图2zyFEB (O )CAF G B E CD将(1)(2)(3)(4)代入(5)整理得,222646110m m -+=,解得361m =-或61+, 因此直线方程为36(1)30x y --=或6(1)30x y +=. 【点评】本题综合考查了圆锥曲线的标准方程及其性质、相互垂直的直线斜率之间的关系、向量垂直和数量积的关系、切线的斜率和切线的方程、三角形的面积计算公式、基本不等式的性质、直线和椭圆相交问题转化为方程联立可得根和系数的关系等基础知识和基本技能方法,考查了推理能力和计算能力,考查了转化和化归能力,考查了解决问题的能力,属于难题.(21)【2014年辽宁,理21,12分】已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.解:(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,2()(1sin )(2)2cos 03f x x x x x π'=-++--<,函数()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上为减函数,又8(0)03f π=->,216()023f ππ=--<,所以存在唯一00,2x π⎛⎫∈ ⎪⎝⎭,使得0()0f x =.(2)考虑函数3()cos 2()4ln(3)1sin x x h x x x ππ-=--+,,2x ππ⎡⎤∈⎢⎥⎣⎦,令t x π=-,则,2x ππ⎡⎤∈⎢⎥⎣⎦时,0,2t π⎡⎤∈⎢⎥⎣⎦,记3cos 2()()4ln(1)1sin t t u t h t t t ππ=-=-++,则3()()(2)(1sin )f t u t t t π'=++ 由(1)得,当()00,t x ∈时,()0u t '>,当0(,)2t x π∈时,()0u t '<, 在()00,x 上()u t 是增函数,又(0)0u =,从而当(]00,t x ∈时,()0u t >,所以()u t 在(]00,x 无零点. 在0(,)2x π上()u t 是减函数,由0()0u x >,()4ln202u π=-<,知存在唯一10(,)2t x π∈,使()10u t =.所以存在唯一的1(0,)2t π∈,使()10u t =,因此存在唯一的11(,)2x t πππ=-∈,使111()()()0h x h t u t π=-==,因为当(,)2x ππ∈时,1sin 0x +>,故()(1sin )()g x x h x =+和()h x 有相同的零点,所以存在唯一的1(,)2x ππ∈使得1()0g x =.因为1110,x t t x π=->,所以01x x π+<.【点评】本题考查了导数的综合使用问题,解题时应根据导数来研究函数的单调性和最值问题,利用函数的单调性研究函数的零点问题,是较难的题目.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2014年辽宁,理22,10分】(选修4-1:几何证明选讲)如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (1)求证:AB 为圆的直径; (2)若AC BD =,求证:AB ED =.解:(1)PD PG PDG PGD PD =∴∠=∠Q Q 为圆的切线,PDA DBA ∴∠=∠ 又PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠Q , 9090BDA PFA AF EP PFA BDA AB ∴∠=∠⊥∴∠=︒∴∠=︒∴Q 为直径.(2)连接,BC DC 90AB BDA ACB ∴∠=∠=︒Q 是直径,在Rt BDA Rt ACB ∆∆与中,,AB BA AC BD ==,Rt BDA Rt ACB ∆≅∆,DAB CBA DCB DAB ∴∠=∠∠=∠Q //DAB CBA DC AB ∴∠=∠∴,90AB EP DC EP DCE ⊥∴⊥∠=︒Q ED ∴为直径, 由(1)AB ED =.F G E C D【点评】本题考查圆的切线的性质,考查三角形全等的证明,考查直径所对的圆周角为直角,属于中档题. (23)【2014年辽宁,理23,10分】(选修4-4:坐标系和参数方程)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=和C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且和l 垂直的直线的极坐标方程.解:(1)设11(,)x y 为圆221x y +=上任意一点,按题中要求变换后的点(,)x y .根据题意得112x x y y =⎧⎨=⎩,所以112x x y y =⎧⎪⎨=⎪⎩.由22111x y +=得2214y x +=.故C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数). (2)由2244220x y x y ⎧+=⎨+-=⎩解得10x y =⎧⎨=⎩或02x y =⎧⎨=⎩.不妨设1(1,0)P ,2(0,2)P,则线段中点坐标1(,1)2. 所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,即2430x y -+=.化为极坐标方程为2cos 4sin 30ρθρθ-+=,即34sin 2cos ρθθ=-.【点评】本题主要考查求点的轨迹方程的方法,极坐标和直角坐标的互化,用点斜式求直线的方程,属于中档题. (24)【2014年辽宁,理24,10分】(选修4-5:不等式选讲)设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N .(1)求M ;(2)当x M N ∈I 时,证明:221()[()]4x f x x f x +≤.解:(1)()2|1|1f x x x =-+-33,[1,)1,(,1)x x x x -∈+∞⎧=⎨-∈-∞⎩.当1x ≥时,()331f x x =-≤,解得413x ≤≤;当1x <时,()11f x x =-≤,解得01x ≤<.所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)2()16814g x x x =-+≤,解得13{|}44N x x =-≤≤.M N =I 3{|0}4x x ≤≤.当x M N ∈I 时,()1f x x =-. 22()[()]x f x x f x +=22(1)(1)x x x x -+-2x x =-211()42x =--,3{|0}4x x x ∈≤≤.221()[()]4x f x x f x ∴+≤.【点评】本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.。

2014全国统一高考数学真题及逐题详细解析(理科)—辽宁卷

2014全国统一高考数学真题及逐题详细解析(理科)—辽宁卷

2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6. 6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-.若对所有,[0,1x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12 B .14 C .12π D .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求: (1)a 和c 的值; (2)cos()BC -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线22122:1x y C a b-=过点P (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x ππ=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的x 0有01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程. 24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤. 参考答案一、选择题1. D [解析] 由题意可知,A ∪B ={x |x ≤0或x ≥1},所以∁U (A ∪B )={x |0<x <1}.2. A [解析] 由(z -2i)(2-i)=5,得z -2i =52-i,故z =2+3i.3. C [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .4. B [解析] B [解析] 由题可知,若m ∥α,n ∥α,则m 与n 平行、相交或异面,所以A 错误;若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错误.若m ∥α,m ⊥n ,则n ∥α或n ⊥α或n 与a 相交,故D 错误. 5. A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.6. D [解析] 这是一个元素不相邻问题,采用插空法,A 33C 34=24.7. B [解析] 根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分⎝⎛⎭⎫占圆柱的14后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π8. C [解析] 令b n =2a 1a n ,因为数列{2a 1a n }为递减数列,所以b n +1b n =2a 1a n +12a 1a n=2a 1(a n +1-a n )=2a 1d <1,所得a 1d <0.9. B [解析] 由题可知,将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度得到函数y =3sin ⎝⎛⎭⎫2x -23π的图像,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z 时,函数单调递增,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间⎣⎡⎦⎤π12,7π12上单调递增10. D [解析] 因为抛物线C :y 2=2px 的准线为x =-p2,且点A (-2,3)在准线上,所以p =4.设直线AB 的方程为x +2=m (y -3),与抛物线方程y 2=8x 联立得到y 2-8my +24m +16=0,由题易知Δ=0,解得m =-12(舍)或者m =2,这时B 点的坐标为(8,8),而焦点F 的坐标为(2,0),故直线BF 的斜率k BF =8-08-2=43. 11. C C [解析] 当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1=-2.当x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4= -(x -9)(x +1)x 4,故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2.解法一:12. B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.解法二:解法三:解法四:13.299[解析] 当x =9时,y =5,则|y -x |=4;当x =5时,y =113,则|y -x |=43;当x =113时,y =299,则|y -x |=49<1.故输出y =299.14.23[解析] 正方形ABCD 的面积S =2×2=4,阴影部分的面积S 1=2⎠⎛-11(1-x 2)d x =2⎝⎛⎭⎫x -13x 31-1=83,故质点落在阴影区域的概率P =834=23. 15. 12 [解析] 取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点F 1的对称点为A ,点M 关于C 的焦点F 2的对称点为B ,则有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.16. 2- [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.17.(Ⅰ)由2BA BC ⋅=得,cos 2c a B ⋅=,又1cos 3B =,所以ac =6.由余弦定理,得2222cos a c b ac B +=+.又b =3,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得a =2,c =3或a =3,c =2. 因为a >c ,∴ a =3,c =2. (Ⅱ)在ABC ∆中,sin 3B ===由正弦定理,得2sin sin 339c CB b ==⋅=,又因为a b c =>,所以C 为锐角,因此7cos9C===.于是cos()cos cos sin sinB C B C B C-=+=1723393927⋅+⋅=.18.(Ⅰ)设1A表示事件“日销售量不低于100个”,2A表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A=++⨯=.2()0.003500.15P A=⨯=.()0.60.60.1520.108P B=⨯⨯⨯=.(Ⅱ)X的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C==⋅-=,123(1)0.6(10.6)0.288P X C==⋅-=,223(2)0.6(10.6)0.432P X C==⋅-=,333(3)0.60.216P X C==⋅=,分布列为19.(Ⅰ)证明:(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=2π,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,又EF⊂面EFO,所以EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.易得B (0,0,0),A (0,-1,),D(,-1,0),C (0,2,0),因而11(0,),,,0)22E F ,所以33(,0,),(0,2,0)22EF BC =-=,因此0EF BC ⋅=,从而EF BC ⊥,所以EF BC ⊥. (Ⅱ)(方法一)在图1中,过O 作OG ⊥BF ,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG ⊥BF ,由三垂线定理知EG 垂直BF . 因此∠EGO 为二面角E -BF -C 的平面角; 在△EOC 中,EO =12EC=12BC ·cos 30°,由△BGO ∽△BFC 知,BO OG FC BC =⋅=,因此tan ∠EGO =2EO OG =,从而sin ∠EGO,即二面角E -BF -C (方法二)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量2(,,)n x y z =,又311(,,0),(0,,)2222BF BE ==,由220n BF nBE ⎧⋅=⎪⎨⋅=⎪⎩ 得其中一个2(1,n =,设二面角E -BF -C 的大小为θ,且由题意知θ为锐角,则121212cos |cos ,|||||||5n nn n n n θ⋅=<>==⋅因sin θ即二面角E -BF -C 20.(Ⅰ)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y =时00x y 有最大值,即S 有最小值,因此点P 得坐标为 , 由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (Ⅱ)由(Ⅰ)知2C的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+, 解得b 12=3,因此C 2方程为22163x y += 显然,l 不是直线y =0.设l 的方程为x =my1122(,),(,)A x y B x y由22163x my x y ⎧=⎪⎨+=⎪⎩得22(2)30m y ++-=,又12,y y 是方程的根,因此1212232y y y y m ⎧+=⎪⎪⎨-⎪=⎪+⎩①②,由12,3x y x m=+=+得12122221212122()266()32x x m y y m m x x m y y y y m ⎧+=++=⎪⎪+⎨-⎪=+++=⎪+⎩③④因1122(2,2),(2)AP x y BP x y =--=-由题意知0A P B P ⋅=,所以12121212))40x x x x y y y y ++++=⑤,将①,②,③,④代入⑤式整理得22110m -+=,解得12m =-或12m =-+,因此直线l 的方程为1)0x y --=,或1)0x y +-=. 21.(Ⅰ)当(0,)2x π∈时,2'()(1sin )(2)2cos 03f x x x x x π=-++--<,函数()f x 在(0,)2π上为减函数,又2816(0)0,()0323f f πππ=->=--<,所以存在唯一0(0,)2x π∈,使0()0f x =. (Ⅱ)考虑函数3()cos 2()4ln(3),[,]1sin 2x x h x x x x ππππ-=--∈+,令t x π=-,则[,]2x ππ∈时,[0,]2t π∈, 记3cos 2()()4ln(1)1sin t t u t h t t t ππ=-=-++,则3()'()(2)(1sin )f t u t t t π=++ ,由(Ⅰ)得,当0(0,)t x ∈时,'()0u t >,当0(,)2t x π∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点. 在0(,)2x π上()u t 是减函数,由0()0,()4ln 202u x u π>=-<,存在唯一的10(,)2t x π∈ ,使1()0u t =.所以存在唯一的10(,)2t x π∈使1()0u t =.因此存在唯一的11(,)2x t πππ=-∈,使111()()()0h x h t u t π=-==.因为当(,)2x ππ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1(,)2x ππ∈,使1()0g x =.因1110,x t t x π=->,所以01x x π+<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(Ⅰ)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .由于AF 垂直EP ,所以∠PF A =90°,于是∠BDA =90°,故AB 是直径. (Ⅱ)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°, 在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA . 又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .由于,,AB EP DC EP DCE ⊥⊥∠所以为直角 于是ED 是直径,由(Ⅰ)得ED =AB .23.(Ⅰ)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y +=得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t ⎧⎨⎩== (t 为参数).(Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-, 化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24.(Ⅰ)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<; 所以()1f x ≤的解集为4{|0}3M x x =≤≤.(Ⅱ)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4MN x x =≤≤.当x MN ∈时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+2111()(1)()424x f x x x x =⋅=-=--≤.。

2014年高考理科数学辽宁卷(含详细答案)

2014年高考理科数学辽宁卷(含详细答案)

数学试卷 第1页(共45页)数学试卷 第2页(共45页)数学试卷 第3页(共45页)绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{|0}A x x =≤,{|1}B x x =≥,则集合()UA B = ( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2i)(2i)5z --=,则z =( )A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21log 3b =,121log 3c =,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( )A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥5.设a ,b ,c 是非零向量.已知命题p :若a b 0=,b c 0=,则a c 0=;命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π-C .π82-D .π84-8.设等差数列{}n a 的公差为d .若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >9.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数 ( ) A .在区间π7π[,]1212上单调递减B .在区间π7π[,]1212上单调递增C .在区间ππ[,]63-上单调递减D .在区间ππ[,]63-上单调递增10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A .12B .23C .34D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是 ( )A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--12.已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y --<. 若对所有,[0,1]x y ∈,|()()|f x f y k -<恒成立,则k 的最小值为( )A .12B .14C .12πD .18第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.执行如图所示的程序框图,若输入9x =,则输出y =________.14.正方形的四个顶点(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -分别在抛物线2y x =-和2y x =上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=________.16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=且使|2|a b +最大时,345a b c-+的最小值为________.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共45页)数学试卷 第5页(共45页)数学试卷 第6页(共45页)三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC =,1cos 3B =,3b =.求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18.(本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列、期望()E X 及方差()D X .19.(本小题满分12分)如图,ABC △和BCD △所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=,E ,F 分别为AC ,DC 的中点.(Ⅰ)求证:EF ⊥BC ;(Ⅱ)求二面角E BF C --的正弦值.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线1C :22221x y a b-=过点P 且离心率为3.(Ⅰ)求1C 的方程;(Ⅱ)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.21.(本小题满分12分)已知函数8()(cos )(π2)(sin 1)3f x x x x x =-+-+,2()3(π)cos 4(1sin )ln(3)πxg x x x x =--+-.证明:(Ⅰ)存在唯一0π(0,)2x ∈,使0()0f x =;(Ⅱ)存在唯一1π(,π)2x ∈,使1()0g x =,且对(Ⅰ)中的0x ,有01πx x +<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC BD =,求证:AB ED =.23.(本小题满分10分)选修4—4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :220x y +-=与C 的交点为1P ,2P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4—5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+.记()1f x ≤的解集为M ,()4g x ≤的解集为N . (Ⅰ)求M ; (Ⅱ)当x MN ∈时,证明:221()[()]4x f x x f x +≤.3 / 152014年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】由题意可知,{|01}A B x x x =≤≥或,所以(){|01}UA B x x =<<.故选D.【提示】先求AB ,再根据补集的定义求()UAB .【提示】把给出的等式两边同时乘以12i-,然后利用复数代数形式的除法运算化简,则z 可求.【提示】利用指数式的运算性质得到01a <<,由对数的运算性质得到0b <,1c >,则答案可求. 【考点】对数的基本运算 4.【答案】B【解析】由题可知,若m α∥,n α∥则m 与n 平行、相交或异面,所以A 错误;若m α⊥,n α⊂,则m n ⊥,故B 正确;若m α⊥,m n ⊥,则n α∥或n α⊂,故C 错误.若m α∥,m n ⊥,则n α∥或n α⊥或n 与α相交,故D 错误.故选B.【提示】A.运用线面平行的性质,结合线线的位置关系,即可判断; B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断. 【考点】空间直线与直线,直线与平面的位置关系 5.【答案】A【解析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当0b ≠时,a ,c 一定共线,故命数学试卷 第10页(共45页) 数学试卷 第11页(共45页)数学试卷 第12页(共45页)题q 是真命题.故p q ∨为真命题.故选A.【提示】根据向量的有关概念和性质分别判断p ,q 的真假,利用复合命题之间的关系即可得到结论. 【考点】向量的平行与垂直,真假命题的判定 6.【答案】D【解析】这是一个元素不相邻问题,采用插空法,333424A C =.故选D.【提示】使用“插空法”根据分步计数原理可得结论.【提示】几何体是正方体切去两个14圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入正方体与圆柱的体积公式计算.【提示】由于数列1{2}n a a 为递减数列,可得11112212n na a a d a a +=<,解出即可.5 / 15【提示】由题意先求出准线方程2px =-,再求出p ,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线AB 的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的斜率公式求出BF 的斜率.数学试卷 第16页(共45页) 数学试卷 第17页(共45页)数学试卷 第18页(共45页)【提示】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论. 【提示】画出图形,利用中点坐标以及椭圆的定义,即可求出||||AN BN +的值.7 / 15【提示】首先把:224240a ab b c +-=-,转化为222343(2)4a b a b +≥+,再由柯西不等式得到|2|a b +,分别用b 表示a ,c ,在代入到345a b c-+得到关于b 的二次函数,求出最小值即可. (Ⅰ)由2BA BC =得,cos 2c a B =2222cos a c b B +=+. 29213c +=+⨯.解2ac a =⎧⎨+⎩,2c =2224339=22799⎫=⎪⎪⎭. 17224223sin 393927B C =+=数学试卷 第22页(共45页) 数学试卷 第23页(共45页)数学试卷 第24页(共45页)【提示】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将cos B 的值代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到2213a c +=,联立即可求出ac 的值;(Ⅱ)由cos B 的值,利用同角三角函数间基本关系求出sin B 的值,由c ,b ,sin B ,利用正弦定理求出sin C 的值,进而求出cos C 的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.033(10.6)-=130.6(10.6)-2230.6(10.6)-3330.60.216=0 0.064因为~(3,0.6)X B ,所以期望为()30.6 1.8E X =⨯=,方差()30.6(10.6)0.72D X =⨯⨯-=.【提示】(Ⅰ)由频率分布直方图求出事件1A ,2A 的概率,利用相互独立事件的概率公式求出事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”的概率;(Ⅱ)写出X 可取得值,利用相互独立事件的概率公式求出X 取每一个值的概率;列出分布列.根据服从二项分布的随机变量的期望与方差公式求出期望()E X 及方差()D X . 【考点】频率分布直方图,随机事件的概率随机变量的期望和方差19.【答案】(Ⅰ)证明:方法一,过点E 作EO BC ⊥,垂足为O ,连接OF 。

2014年高考真题辽宁卷及答案参考

2014年高考真题辽宁卷及答案参考

2014年普通高等学校招生全国统一考试(辽宁卷)语文注意事项:1. 本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。

有人会说,幸福这个东西很难说,好像是很主观的感觉,很难有统一的标准。

确实是这样,每个人对幸福的理解是不一样的。

但是,你若深入地问为什么会不一样,其实还是有标准的。

一个人对幸福的理解,从大的方面来说,其实是体现了价值观的,就是你究竟看重什么。

古希腊哲学家亚里士多德曾经说过:幸福是我们一切行为的终极目标,我们做所有的事情其实都是手段。

一个人想要赚钱赚得多一点,这本身并不是目的,他是为了因此可以过上幸福的生活。

有人可能就要反驳了:我不要那么多钱,也可以幸福,比如说我读几本好书,就会感到很幸福。

其实对后一种人来说,读书就是他获得幸福的手段。

对于什么是幸福,西方哲学史上主要有两种看法、两个派别。

一派叫做“快乐主义”,其创始人是古希腊哲学家伊壁鸠鲁。

近代以来,英国的一些哲学家,如亚当〃斯密、约翰〃穆勒、休谟对此也有所阐发。

这一派认为,幸福就是快乐。

但什么是快乐?快乐就是身体的无痛苦和灵魂的无烦恼。

身体健康、灵魂安宁就是快乐,就是幸福。

他们还特别强调一点,人要从长远来看快乐,要理智地去寻求快乐。

你不能为了追求一时的、眼前的快乐,而给自己埋下一个痛苦的祸根,结果得到的可能是更大的痛苦。

另一派叫做“完善主义”。

完善主义认为,幸福就是精神上的完善,或者说道德上的完善。

他们认为人身上最高贵的部分,是人的灵魂,是人的精神。

你要把这部分满足了,那才是真正的幸福。

这一派的代表人物是苏格拉底、康德、黑格尔等,包括马克思,他们强调的是人的精神满足。

这两派有一个共同之处,那就是,都十分强调精神上的满足。

2014年普通高等学校招生全国统一考试(辽宁卷)数学试题(理科)解析版

2014年普通高等学校招生全国统一考试(辽宁卷)数学试题(理科)解析版

【答案】C
【解析】
a
=
-1
23

(
1 2
,1),
b
=
log
2
1 3

(-2,-1),
c
=
log
1 2
1 3

(1,2).∴
c > a > b.选C.
4.已知 m,n 表示两条不同直线, 表示平面,下列说法正确的是( )
A.若 m / / , n / / , 则 m / /n
B.若 m , n ,则 m n
2014 年普通高等学校招生全国统一考试(辽宁卷)
理科数学
第Ⅰ卷(共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,
只有一项
是符合题目要求的.
1.已知全集U R, A {x | x 0}, B {x | x 1} ,则集合 CU (A B) (
若 a / /b,b / /c ,则 a / /c ,则下列命题中真命题是( )
A. p q B. p q C. (p) (q) D. p (q)
【答案】A 【解析】命题 p 为假,命题 q 为真,所以 A 正确。选 A
6 把椅子摆成一排,3 人随机就座,任何两人不相邻的做法种数为( )
8.设等差数列{an} 的公差为 d,若数列{2a1an } 为递减数列,则( )
A. d 0 B. d 0 C. a1d 0 D. a1d 0
【答案】C 【解析】
由同增异减知,a1an递减,即a1an+1 < a1an.分情况解得 : a1 > 0且d < 0;或a1 < 0且d > 0. ∴ a1d < 0.选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年辽宁文一、选择题(共12小题;共60分)1. 已知全集U =R ,A = x x ≤0 ,B = x x ≥1 ,则集合∁U A ∪B = A. x x ≥0B. x x ≤1C. x 0≤x ≤1D. x 0<x <12. 设复数z 满足 z −2i 2−i =5,则z = A. 2+3iB. 2−3iC. 3+2iD. 3−2i3. 已知a =2−1,b =log 213,c =log 1213,则 A. a >b >cB. a >c >bC. c >a >bD. c >b >a4. 已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是 A. 若m ∥α,n ∥α,则m ∥nB. 若m ⊥α,n ⊂α,则m ⊥nC. 若m ⊥α,m ⊥n ,则n ∥αD. 若m ∥α,m ⊥n ,则n ⊥α5. 设a ,b ,c 是非零向量,已知命题p :若a ⋅b =0,b ⋅c =0,则a ⋅c =0;命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中的真命题是 A. p ∨q B. p ∧qC. ¬p ∧ ¬qD. p ∨ ¬q6. 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是 A. π2B. π4C. π6D. π87. 某几何体三视图如图所示,则该几何体的体积为 .A. 8−π4B. 8−π2C. 8−πD. 8−2π8. 已知点A−2,3在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为 A. −43B. −1 C. −34D. −129. 设等差数列a n的公差为d,若数列2a1a n为递减数列,则 A. d<0B. d>0C. a1d>0D. a1d<010. 已知f x为偶函数,当x≥0时,f x=cosπx,x∈0,12,2x−1,x∈12,+∞ .则不等式f x−1≤12的解集为A. 14,23∪43,74B. −34,−13∪14,23C. 13,34∪43,74D. −34,−13∪13,3411. 将函数y=3sin2x+π3的图象向右平移π2个单位长度,所得图象对应的函数 A. 在区间π12,7π12上单调递减 B. 在区间π12,7π12上单调递增C. 在区间 −π6,π3上单调递减 D. 在区间 −π6,π3上单调递增12. 当x∈−2,1时,不等式ax3−x2+4x+3≥0恒成立,则实数a的取值范围是 A. −5,−3B. −6,−98C. −6,−2D. −4,−3二、填空题(共4小题;共20分)13. 执行如图的程序框图,若输入n=3,则输出T=.14. 已知x,y满足条件2x+y−2≥0,x−2y+4≥0,3x−y−3≤0.则目标函数z=3x+4y的最大值为.15. 已知椭圆C:x29+y24=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则 AN + BN =.16. 对于c>0,当非零实数a,b满足4a2−2ab+b2−c=0且使2a+b最大时,1a +2b+4c的最小值为.三、解答题(共8小题;共104分)17. 在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c,已知BA⋅BC=2,cos B=13,b=3,求:(1)a和c的值;(2)cos B−C的值.18. 某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100附:χ2=n n11n22−n12n212n1+n2+n+1n+2,Pχ2≥k0.1000.0500.010k 2.706 3.841 6.635(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19. 如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120∘,E,F,G分别为AC,DC,AD的中点.附:锥体的体积公式V=13S ,其中S为底面面积, 为高.(1)求证:EF⊥平面BCG;(2)求三棱锥D−BCG的体积.20. 圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:y=x+交于A,B两点,若△PAB的面积为2,求C的标准方程.21. 已知函数f x=πx−cos x−2sin x−2,g x=x−π1−sin x1+sin x +2xπ−1.(1)证明:存在唯一x0∈0,π2,使f x0=0;(2)证明:存在唯一x1∈π2,π ,使g x1=0,且对(1)中的x0,有x0+x1>π.22. 如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.23. 将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y−2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.24. 设函数f x=2x−1+x−1,g x=16x2−8x+1,记f x≤1的解集为M,g x≤4的解集为N.(1)求M;.(2)当x∈M∩N时,证明:x2f x+x f x2≤14答案第一部分 1. D 2. A 3. C 【解析】由对数函数和指数函数的性质得0<a <1,b <0,c >1.4. B5. A 【解析】p 假、q 真,由复合命题的真假判断方法可得.6. B7. C8. C9. D10. A【解析】令x −1=t ,则函数f t 为偶函数,当t ∈ 0,12 时,f t =cos πt ≤12的解集为 13,12 ;当t ∈ 12,+∞ 时,f t =2t −1≤12的解集为 12,34 ,所以f t ≤12的解集为 −34,−13 ∪ 13,34 .于是f x −1 ≤12的解集为 14,23∪ 43,74.11. B 【解析】函数y =3sin 2x +π3 的图象向右平移π2个单位长度得到的函数为f x =3sin 2x −2π3,当2x −2π3∈ −π2+2kπ,π2+2kπ ,即x ∈ π12+kπ,7π12+kπ ,k ∈Z 时,函数f x 单调递增.12. C 【解析】分x ∈[−2,0),x =0,x ∈(0,1]三种情况去做,用分离变量法. 第二部分 13. 20 14. 18 15. 12【解析】设椭圆C :x 29+y 24=1的焦点为F 1,F 2,线段MN 的中点为D ,则 DF 1 + DF 2 =6,然后根据三角形中位线定理,得 AN + BN =12. 16. −1【解析】由4a 2−2ab +b 2−c =0,得c = 2a −b 2 2+3b 24.由柯西不等式,得 2a −b 2 2+3b 24⋅ 12+ 3 2≥ 2a −b2 +3b 22= 2a +b 2,当且仅当2a−b21=3b 23,即2a =b ,c =b 2时取等号.从而1a +2b +4c =4b +4b 2=4 1b +12 2−1,所以,当b =−2,a =−1,c =4时,1a +2b +4c 取得最小值−1. 第三部分17. (1)由BA⋅BC =2,得ca cos B =2.又cos B =13,所以ca =6. 由余弦定理,得a 2+c 2=b 2+2ac cos B ,又b =3,所以a 2+c 2=9+2×2=13,由ac=6,a2+c2=13.解得a=2,c=3 或 a=3,c=2.因为a>c,所以a=3,c=2.(2)在△ABC中,可得sin B=1−cos2B=1−12=22.由正弦定理得sin C=csin B=2×22=42,因a=b>c,所以C为锐角,因此cos C=1−sin2C=1−42=7,于是cos B−C=cos B cos C+sin B sin C=1×7+22×42=23.18. (1)将2×2列联表中的数据代入公式计算,得χ2=n n11n22−n12n212n1+n2+n+1n+2=100×60×10−20×10270×30×80×20=10021≈4.762,由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系的学生任取3人的一切可能结果有:a1,a2,b1,a1,a2,b2,a1,a2,b3,a1,b1,b2,a1,b2,b3,a1,b1,b3,a2,b1,b2,a2,b2,b3,a2,b1,b3,b1,b2,b3,其中a i表示喜欢甜品的学生,i=1,2.b j表示不喜欢甜品的学生,j=1,2,3.基本事件空间由这10个基本事件组成,且这些基本事件出现是等可能的.用A表示“ 3人中至多有1人喜欢甜品”这一事件,则A包含:a1,b1,b2,a1,b2,b3,a1,b1,b3,a2,b1,b2,a2,b2,b3,a2,b1,b3,b1,b2,b3,这7个基本事件,因而P A=710.19. (1)由已知得△ABC≌△DBC,因此AC=DC.又G为AD中点,所以CG⊥AD.同理BG⊥AD,又BG∩CG=G,因此AD⊥平面BGC.又EF∥AD,所以EF⊥平面BCG.(2)在平面ABC内,作AO⊥CB,交CB延长线于O,由平面ABC⊥平面BCD,知AO⊥平面BDC.又G为AD中点,因此G到平面BCD的距离 是AO长度的一半.在△AOB中,可得AO=AB⋅sin60∘=3,所以V D−BCG=V G−BCD=13⋅S△DBC⋅=13⋅12⋅BD⋅BC⋅sin120∘⋅32=12.20. (1)设切点坐标为x0,y0x0>0,y0>0,则切线斜率为−x0y0,切线方程为y−y0=−x0x−x0,即x0x+y0y=4,此时,两个坐标轴的正半轴与切线围成的三角形面积S=12⋅4x0⋅4y0=8x0y0,由x02+y02=4≥2x0y0,知当且仅当x0=y0=2时,x0y0有最大值,即S有最小值,因此点P的坐标为.(2)设C的标准方程为x2a2+y2b2=1a>b>0,点A x1,y1,B x2,y2.由点P在C上知2 2+22=1,并由x2 a2+y2b2=1,y=x+ 3.得b2x2+43x+6−2b2=0.又x1,x2是方程的根,因此x1+x2=−43 b2,x1x2=6−2b22.由y1=x1+3,y2=x2+3,得AB =2x1−x2=2⋅48−24b2+8b4b2.由点P到直线l的距离为32及S△PAB=12×32=2,得b4−9b2+18=0,解得b2=6 或 b2=3.因此b2=6,a2=3舍或 b2=3,a2=6.从而所求C的方程为x 26+y23=1.21. (1)当x∈0,π2时,fʹx=π+πsin x−2cos x>0,所以f x在0,π2上为增函数.又f0=−π−2<0,f π=π2−4>0,所以存在唯一x0∈0,π2,使f x0=0.(2)当x∈π2,π 时,化简得g x=π−x cos x+2x−1.令t=π−x,记u t=gπ−t=−t cos t−2t+1,t∈0,π,则uʹt=f t,由(1)得,当t∈0,x0时,uʹt<0;当t∈ x0,π2时,uʹt>0,从而在 x0,π2上u t为增函数.由uπ2=0知,当t∈ x0,π2时,u t<0,所以u t在 x0,π2上无零点,在0,x0上u t为减函数.由u0=1及u x0<0知存在唯一t0∈0,x0,使得u t0=0.于是存在唯一t0∈0,π2,使得u t0=0.设x1=π−t0∈π,π ,g x1=gπ−t0=u t0=0,因此存在唯一的x1∈π2,π ,使得g x1=0,由于x1=π−t0,t0<x0,所以x0+x1>π.22. (1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.由于AF⊥EP,所以∠PFA=90∘,于是∠BDA=90∘.故AB是圆的直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90∘.在Rt△BDA与Rt△ACB中,AB=BA,BD=AC,从而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.所以ED=AB.23. (1)设x1,y1为圆x2+y2=1上的点,经变换为C上点x,y,依题意,得x=x1,y=2y1.由x12+y12=1,得x2+y2=1,即曲线C的方程为x2+y24=1,故C的参数方程为x=cos t,y=2sin t t为参数.(2)由x2+y2=1,2x+y−2=0.解得x=1, y=0或x=0, y=2.不妨设P11,0,P20,2,则线段P1P2的中点坐标为12,1,所求直线的斜率为k=12,于是所求直线方程为y−1=12x−12,化为极坐标方程为2ρcosθ−4ρsinθ=−3,即ρ=34sinθ−2cosθ.普通高等学校招生全国统一考试高考数学教师精校版含详解完美版 24. (1)由已知得f x = 3x −3,x ∈ 1,+∞ ,1−x ,x ∈ −∞,1 .当x ≥1时,由f x =3x −3≤1得x ≤43,故1≤x ≤43; 当x <1时,由f x =1−x ≤1得x ≥0,故0≤x <1.所以f x ≤1的解集为M = x 0≤x ≤43 . (2)由g x =16x 2−8x +1≤4,得16 x −142≤4, 解得−14≤x ≤34, 因此N = x −14≤x ≤34 ,故M ∩N = x 0≤x ≤34 .当x ∈M ∩N 时,f x =1−x ,故x 2f x +x ⋅ f x2=xf x x +f x =x 1−x =14− x −12 2≤14.。

相关文档
最新文档