有理数 优质课教案完美版

合集下载

初中数学有理数教案5篇

初中数学有理数教案5篇

初中数学有理数教案5篇关于初中数学有理数教案5篇初中数学有理数教案(篇1)教学目标:1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。

(2)精通有理数的减法。

2、过程与方法通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。

重点、难点1.重点:有理数减法规则及其应用。

2.难点:有理数减法规则的应用改变了符号。

教学过程:一、创设情景,导入新课1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=—3+(+5)=2、-(-2)= -[-(+23)]=,+[-(-2)]=3、20__的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。

(出示课题)二、合作交流,解读探究1(-2)-(-10)=8=(-2)+82:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?3、通过以上列式,你能发现减法运算与加法运算的关系吗?(学生分组讨论,大胆发言,总结有理数的.减法法则)减去一个数等于加上这个数的相反数教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?三、应用迁移,巩固提高1、P.24例1 计算:(1) 0-(-3.18)(2)(-10)-(-6)(3)-解:(1)0-(-3.18)=0+3.18=3.18(2)(-10)-(-6)=(-10)+6=-4(3)-=+=12、课内练习:P.241、2、33、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。

《有理数》教案设计(最新4篇)

《有理数》教案设计(最新4篇)

《有理数》教案设计(最新4篇)七年级数学有理数教案篇一一、课题2.4有理数的减法二、教学目标1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;2.培养学生观察、分析、归纳及运算能力。

三、教学重点有理数减法法则四、教学难点有理数减法法则五、教学用具三角尺、小黑板、小卡片六、课时安排1课时七、教学过程(一)、从学生原有认知结构提出问题1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).3.填空:(1)______+6=20;(2)20+______=17;(3)______+(-2)=-20;(4)(-20)+______=-6.在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算。

如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算。

(二)、师生共同研究有理数减法法则问题1(1)(+10)-(+3)=______;(2)(+10)+(-3)=______.教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).教师启发学生思考:减法可以转化成加法运算。

但是,这是否具有一般性?问题2(1)(+10)-(-3)=______;(2)(+10)+(+3)=______.对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).至此,教师引导学生归纳出有理数减法法则:减去一个数,等于加上这个数的。

相反数。

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数。

七年级数学《有理数》教案模板

七年级数学《有理数》教案模板

七年级数学《有理数》教案模板教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。

有理数指整数可以看作分母为1的分数。

下面就是整理的《有理数》教案,希望大家喜欢。

《有理数》教案1一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2,(2),(3),(4).2.(1),,,.(2)-2,,.3.(1)0,(2),(3),(4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.《有理数》教案2教学目标1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

初一数学教案3篇:有理数的概念和表示方法教案

初一数学教案3篇:有理数的概念和表示方法教案

初一数学教案3篇:有理数的概念和表示方法教案有理数是初中数学中的一个重要知识点,全面掌握有理数的概念、表示方法以及各种基本运算规律,可以为我们后面的学习打下坚实的基础。

针对初一学生的教学情况,我们需要设计一些具体的教学方案,以便让学生更好地掌握有理数的相关知识。

一、教学目标了解有理数的概念,掌握有理数的表示方法和基本运算规律,培养学生的逻辑推理能力和应用能力。

二、教学内容1、有理数的概念有理数是可以用两个整数的比值来表示的数。

有理数包括正有理数、负有理数和零。

其中,正有理数和负有理数是有理数的两个主要部分。

2、有理数的表示方法有理数可以表示为分数的形式,也可以表示为小数的形式。

有理数在数轴上的位置,以及相邻数的大小关系可以用数轴上的位置关系来表示。

3、有理数的基本运算有理数的基本运算包括加、减、乘、除。

其中,加、减法要特别注意相反数的使用,乘、除法要注意分数的化简。

三、教学方法1、多种方法结合。

在教学中,可以采用多种方法相结合的方式,如图形辅助、举例说明、对比分析等方法,使学生能更好地理解和掌握有理数的概念和运算方法。

2、引导发现。

在教学中要引导学生发现问题,并尝试通过自主思考找到解决方法,培养学生的逻辑思维和应用能力。

3、启发式教学。

通过教师提出启示性问题,引导学生自主发现知识,并在学习中发现、探索和体验。

四、教学重点和难点1、教学重点教学重点是让学生掌握有理数的概念和运算方法,以及在数轴上的位置关系。

要重点讲解正有理数与负有理数的关系、绝对值的概念以及加减运算。

2、教学难点教学难点是让学生理解有理数的概念,掌握有理数符号的区别和运算规律,并在数轴上准确表示有理数的位置。

五、教学设计1、教学活动一:理解有理数的概念教学目标:让学生理解有理数的概念,掌握有理数的基本分类和符号。

教学内容:有理数的概念和基本分类。

教学步骤:(1)引入有理数的概念,介绍有理数的定义和特点。

(2)讲解有理数的基本分类:正有理数、负有理数、零。

人教版七年级数学上册1.2有理数优秀教学案例

人教版七年级数学上册1.2有理数优秀教学案例
(三)情感态度与价值观
1. 培养学生对数学学科的兴趣,使学生感受到数学的乐趣,从而激发学生学习数学的内在动力。
2. 培养学生积极思考、勇于探索的精神,使学生在面对数学问题时,能够积极寻求解决办法,增强学生的自信心。
3. 通过对有理数的学习,使学生认识到数学在生活中的重要性,培养学生的数学应用意识,提高学生的数学素养。
5. 教学策略:本节课运用了情景创设、问题导向、小组合作和反思与评价等多种教学策略,使学生在轻松愉快的氛围中学习有理数,提高了学生的学习效果和学科素养。
2. 有理数的性质:讲解有理数的加法、减法、乘法、除法运算规则,以及有理数的相反数、倒数等概念。
3. 举例说明:通过具体例子,让学生理解和掌握有理数的性质和运算规则。
(三)学生小组讨论
1. 设计具有探究性和实践性的讨论话题,如“有理数的加法运算规则是什么?请用实例进行说明。”
2. 引导学生积极开展小组讨论,鼓励学生发表自己的观点,培养学生的合作能力和口头表达能力。
二、教学目标
(一)知识与技能
1. 让学生掌握有理数的概念,理解有理数的分类,包括整数、分数、正数、负数、正有理数、负有理数、零等,并能正确地进行分类。
2. 让学生掌握有理数的性质,包括有理数的加法、减法、乘法、除法运算规则,以及有理数的相反数、倒数等概念。
3. 培养学生运用有理数解决实际问题的能力,使学生能够运用有理数的知识解决生活中的数学问题。
2. 问题导向:本节课以问题驱动的教学策略,引导学生发现并提出问题,激发学生的问题意识,培养学生的分析问题和解决问题的能力。
3. 小组合作:本节课通过小组合作的方式,让学生在讨论和交流中共同探讨有理数的概念和运算规则,培养了学生的团队合作能力和自主学习能力。

第一章有理数-有理数(教案)

第一章有理数-有理数(教案)
-有理数的乘除运算:特别是分数的乘除,以及运算过程中的符号处理。
-难点解释:分数乘除时,分子分母的交叉相乘相除,以及结果的符号判定。
-数轴上的有理数比较:特别是负数的大小比较。
-难点解释:在数轴上,负数的绝对值越大,其值越小,对于学生来说是思维上的一个转换点。
-应用题的建模:如何将实际问题抽象为有理数运算问题。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题,如购物时如何计算总价。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,使用数轴来表示不同的有理数,并观察它们之间的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在讲授新课内容时,我尽量用简洁明了的语言解释有理数的性质和运算规则,并通过案例分析让学生们看到有理数在实际中的应用。然而,我也发现,仅仅依靠讲解和案例可能还不够,学生们需要更多的实践活动来加深理解。因此,在实践活动中,我安排了分组讨论和实验操作,让学生们亲自动手去解决问题,这样能够更好地帮助他们消化吸收所学知识。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

七年级数学有理数教案5篇

七年级数学有理数教案5篇

七年级数学有理数教案5篇一、有理数的意义1.有理数的分类学问点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;假如一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。

2.数轴学问点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不行,是推断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(由于全部的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮忙理解肯定值的意义,3)比拟有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数3. 相反数学问点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4. 肯定值学问点:一个数a的肯定值就是数轴上表示数a的点与原点的距离,数a的肯定值记作∣a∣;肯定值的意义:一个正数的肯定值是它本身,一个负数的肯定值是它的相反数,零的肯定值是零,即若a0,则∣a∣=a. 若a=0,则∣a∣=0. 若a0,则∣a∣=﹣a ;肯定值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

二、有理数的运算1. 有理数的加法学问点:有理数的加法法则:1)同号两数相加,取一样的符号,并把肯定值相加;2)异号两数相加,①肯定值相等时,和为零(即互为相反数的两个数相加得0);②肯定值不相等时,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a; 加法结合律:a+b+c=a+(b+c)多个有理数相加时,把符号一样的数结合在一起计算比拟简便,若有互为相反的数,可利用它们的和为0的特点。

七年级有理数教案

七年级有理数教案

七年级人教版数学《有理数》教案以下是一份七年级有理数教案:一、教学目标知识与技能目标理解有理数的概念,掌握有理数的分类方法。

能正确区分正有理数、负有理数和零。

会在数轴上表示有理数,理解有理数与数轴上的点的对应关系。

过程与方法目标通过对有理数分类的讨论,培养学生的分类思想和归纳能力。

借助数轴理解有理数,提高学生的数形结合能力。

情感态度与价值观目标让学生在学习有理数的过程中,体会数学的严谨性和逻辑性。

培养学生合作交流的意识和探索精神。

二、教学重难点教学重点有理数的概念及分类。

数轴上表示有理数。

教学难点对有理数分类的理解。

有理数与数轴上的点的对应关系。

三、教学方法讲授法、讨论法、演示法、练习法。

四、教学过程导入新课(3 分钟)教师提问:我们在小学学过哪些数?这些数可以分为哪几类?学生回答后,教师引导:进入初中,我们将学习一种新的数——有理数。

引出课题。

讲解有理数的概念(5 分钟)教师讲解:整数和分数统称为有理数。

举例说明:如正整数 5、负整数-3、零、正分数、负分数等都是有理数。

有理数的分类(10 分钟)(1)教师引导学生对有理数进行分类,可以按定义分类:有理数分为整数和分数。

整数又分为正整数、零和负整数。

分数分为正分数和负分数。

(2)也可以按性质分类:有理数分为正有理数、零和负有理数。

正有理数分为正整数和正分数。

负有理数分为负整数和负分数。

(3)组织学生进行小组讨论,理解两种分类方法的异同。

(4)请小组代表发言,教师点评总结。

数轴上表示有理数(15 分钟)(1)教师介绍数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。

(2)演示在数轴上表示整数,如 2、-3 等。

(3)接着表示分数,如、等。

强调如何确定分数在数轴上的位置。

(4)让学生自己动手在数轴上表示一些有理数,教师巡视指导。

(5)提问:数轴上的点与有理数有怎样的关系?引导学生得出有理数与数轴上的点是一一对应的关系。

课堂练习(10 分钟)出示一些有理数分类的题目和在数轴上表示有理数的题目,让学生独立完成。

有理数教案优秀8篇

有理数教案优秀8篇

有理数教案优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!有理数教案优秀8篇作为一位优秀的人·民教师,就难以避免地要准备教案,教案是教学活动的依据,有着重要的地位。

有理数教案(精彩8篇)

有理数教案(精彩8篇)

有理数教案(精彩8篇)有理数教案篇一1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

一、知识导向:有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。

在学习中应掌握有理数的乘法法则。

二、新课:1、知识基础:其一:小学所学过的乘法运算方法;其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列式:即:小虫位于原来出发位置的东方6米处拓展:如果规定向东为正,向西为负情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列式:即:小虫位于原来出发位置的西方6米处发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的。

积6的相反数-6概括:把一个因数换成它的相反数,所得的积是原来的积的相反数3、设疑:如果我们把中的一个因数2换成它的相反数-2时,所得的积又会有什么变化?当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。

例:计算:(1)(2)三、巩固训练:p52.1、2、3四、知识小结:本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。

在运算中应强调注意如何正确得到积的结果。

五、家庭作业:p57.1、2,3六、每日预题:1、小学多学过哪些乘法的运算律?2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?有理数教案篇二知识与技能:熟记有理数的减法法则,能熟练进行有理数减法运算。

《有理数》教学设计(通用12篇)

《有理数》教学设计(通用12篇)

《有理数》教学设计《有理数》教学设计(通用12篇)作为一无名无私奉献的教育工作者,有必要进行细致的教学设计准备工作,教学设计是对学业业绩问题的解决措施进行策划的过程。

我们该怎么去写教学设计呢?下面是小编为大家收集的《有理数》教学设计,希望对大家有所帮助。

《有理数》教学设计篇1【地位作用】《有理数的加法运算律》是人教版七年级数学上册第一章《有理数》第三节的内容。

本节共计两课时,加法运算律是第二课时的内容,依据教材的安排本节课应是让学生在理解有理数的加法法则的基础上来运用加法运算律,最终能熟练地进行有理数的加法运算,并能用运算律简化运算。

加、减法可以统一成为加法,因此加法的运算是本小节的关键,而加法又是学生初中阶段接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于本一节的学习。

【教学目标】知识与技能通过有理数加法运算法则,使学生掌握有理数加法的运算律,并能用有理数加法进行简化运算。

过程与方法培养学生观察能力、归纳能力,通过分类结合思想渗透,提高学生运算能力,尤其是简便计算能力的提高。

情感态度与价值观培养学生把实际问题抽象成数学问题的能力【教学重点、难点】重点:有理数加法运算律难点:灵活运用有理数运算律简便运算重难点的突破:1、处理好知识之间的联系。

适时复习,以旧带新,相互对比。

2、给出大量具体的例子。

让学生亲身经历观察思考、抽象概括、补充完善的过程,从不同的问题情境中抽象出相同的数学模型。

【学情分析】认知:七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中善于结合学生的这些特征是上好这节课的关键所在。

能力:1.学生对正数加正数,正数加零的情况较为熟练,但计算准确率不高。

2.对异号两数相加确定符号,绝对值大减小掌握不好。

3.学生善于形象思维,思维活跃,能积极参与讨论。

【教法与学法】教法:以引导法为主,辅之以直观演示法、小组讨论法,向学生提供充分从事数学活动的机会,激发学生的学习主动性,使学生主动参与课堂活动的全过程。

初一数学有理数教案5篇

初一数学有理数教案5篇

初一数学有理数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初一数学有理数教案5篇教案的撰写过程促使教师思考教学目标,确保教学的针对性和有效性,为了提高教学质量,教案在撰写过程需要更加注重教学效果的评估,下面是本店铺为您分享的初一数学有理数教案5篇,感谢您的参阅。

完整的有理数单元教案设计

完整的有理数单元教案设计

完整的有理数单元教案设计教学目标- 理解有理数的概念和性质- 掌握有理数的四则运算规则- 能够在实际问题中运用有理数进行计算和解决问题教学内容第一课:有理数的引入研究内容- 了解有理数的概念和特点- 区分有理数和无理数教学活动1. 通过实例引入有理数的概念,让学生感受有理数的存在和应用。

2. 使用教具或图片展示有理数和无理数的区别,进行讨论和解释。

3. 练题目:判断下列数是否为有理数,给出理由。

第二课:有理数的比较与排序研究内容- 掌握有理数的大小比较方法- 学会有理数的排序方法教学活动1. 引入有理数的比较与排序问题,让学生思考如何进行比较和排序。

2. 教师给出一些有理数进行比较,让学生讨论并给出结论。

3. 练题目:将给定的有理数按从小到大的顺序进行排序。

第三课:有理数的加减运算研究内容- 掌握有理数的加法运算规则- 掌握有理数的减法运算规则教学活动1. 通过实际问题引入有理数的加减运算,让学生理解运算的意义。

2. 演示有理数的加法和减法运算步骤,让学生跟着教师进行计算。

3. 练题目:完成给定的有理数加减运算。

第四课:有理数的乘除运算研究内容- 掌握有理数的乘法运算规则- 掌握有理数的除法运算规则教学活动1. 引入有理数的乘除运算问题,让学生思考如何进行运算。

2. 演示有理数的乘法和除法运算步骤,让学生跟着教师进行计算。

3. 练题目:完成给定的有理数乘除运算。

第五课:实际问题的应用研究内容- 学会将实际问题转化为有理数计算- 能够运用有理数解决实际问题教学活动1. 提供一些实际问题,让学生尝试将问题转化为有理数计算。

2. 学生分组讨论并解决实际问题,展示解决思路和过程。

3. 练题目:解决给定的实际问题,运用有理数进行计算。

教学评价- 教师观察学生在课堂上的参与情况和表现- 练题目的完成情况和答案的正确性- 学生在解决实际问题时的运用能力和思考深度教学资源- 教具:有理数图示、教学卡片等- 练题目和答案- 实际问题的案例教学延伸- 引导学生在日常生活中发现有理数的应用场景- 探索更复杂的有理数运算问题,如根式运算等。

七年级数学有理数教案15篇

七年级数学有理数教案15篇

七年级数学有理数教案15篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!七年级数学有理数教案15篇七年级数学有理数教案(15篇)教案中的教学活动和方法都经过了反复实践和优化,具有很强的可操作性。

《有理数》的教学设计【优秀5篇】

《有理数》的教学设计【优秀5篇】

《有理数》的教学设计【优秀5篇】有理数教案篇一教学目标:1、经历探索有理数减法法则的过程。

2、理解并初步掌握有理数减法法则,会做有理数减法运算。

3、能根据具体问题,培养抽象概括能力和口头表达能力。

教学重点运用有理数减法法则做有理数减法运算。

教学难点有理数减法法则的得出。

教具学具多媒体、教材、计算器教学方法研讨法、讲练结合教学过程一、引入新课:师:下面列出的是连续四周的最高和最低气温:第1周第二周第三周第四周最高气温+6℃0℃+4℃-2℃最低气温+2℃-5℃-2℃-5℃周温差求每周的温差时,应运用哪一种运算?℃生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

列式为;(+6)-(+2)=40-(-5)=5(+4)-(-2)=6(-2)-(-5)=3教学过程二、有理数减法法则的推倒:师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

举例:(-5)+()=-2得出(-5)+(+3)=-2所以得到(-2)-(-5)=+3而(-2)+(+5)=+3有理数减法法则:减去一个数,等于加上这个数的相反数。

教学过程三、法则的应用:例1:先做笔算,再用计数器检验。

(1)(-34)-(+56)-(-28);(2)(+25)-(-293)-(+472)教学过程解:(1)原式=-34+(-56)+(+28)=-90+(+28)=-62(2)原式=+25+(+293)+(-472)=+25+(-836)= 676注意:强调计算过程不能跳步,体现有理数减法法则的运用。

检测题教学过程四、练习反馈:师:巡视个别指导,订正答案。

教学过程五、小结:有理数减法法则:减去一个数,等于加上这个数的相反数。

有理数减法法则:减去一个数,等于加上这个数的相反数。

初一数学有理数教案模板6篇

初一数学有理数教案模板6篇

初一数学有理数教案模板6篇初一数学有理数教案模板6篇提高课堂教学质量是每个教师的共同目标。

然而,在实际教学中,我们常常会遇到一些问题,下面是小编为大家整理的初一数学有理数教案,如果大家喜欢可以分享给身边的朋友。

初一数学有理数教案【篇1】学习目标:1、学会用计算器进行有理数的除法运算.2、掌握有理数的混合运算顺序.3、通过探究、练习,养成良好的学习习惯学习重点:有理数的混合运算学习难点:运算顺序的确定与性质符号的处理教学方法:观察、类比、对比、归纳教学过程一、学前准备1、计算1)(—0.0318)÷(—1.4)2)2+(—8)÷2二、探究新知1、由上面的问题1,计算方便吗想过别的方法吗2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)4、结合问题2,你先猜想,有理数的混合运算顺序应该是?5、阅读P36,并动手做做三、新知应用1、计算1)、18—6÷(—2)×2)11+(—22)—3×(—11)3)(—0.1)÷×(—100)2、师生小结四、回顾与反思请你回顾本节课所学习的主要内容3页五、自我检测1、选择题1)若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数2)下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-13)关于0,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数4)下列运算结果不一定为负数的是()A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积5)下列运算有错误的是()A.÷(-3)=3×(-3)B.C.8-(-2)=8+2D.2-7=(+2)+(-7)6)下列运算正确的是()A.;B.0-2=-2;C.;D.(-2)÷(-4)=22、计算1)6—(—12)÷(—3)2)3×(—4)+(—28)÷73)(—48)÷8—(—25)×(—6)4)六、作业1、P39第7题(4、5、7、8)、第8题2、选做题:P39第10、11、12、1314、15题初一数学有理数教案【篇2】教学目标1,在现实背景中理解有理数加法的意义。

《有理数》教学设计(通用16篇)

《有理数》教学设计(通用16篇)

《有理数》教学设计《有理数》教学设计(通用16篇)作为一名优秀的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。

那要怎么写好教学设计呢?下面是小编为大家收集的《有理数》教学设计,仅供参考,欢迎大家阅读。

《有理数》教学设计篇1一、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。

二、教学重点、难点重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

三、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。

每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。

教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

① 2 ×32看作向东运动2米,×3看作向原方向运动3次。

结果:向运动米2 ×3=② -2 ×3-2看作向西运动2米,×3看作向原方向运动3次。

结果:向运动米-2 ×3=③ 2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向运动米2 ×(-3)=④ (-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向运动米(-2)×(-3)=(2)学生归纳法则①符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得②积的绝对值等于。

有理数的加法教案优秀6篇

有理数的加法教案优秀6篇

有理数的加法教案优秀6篇有理数的加法教案篇一一、教学目标1.知识与技能(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。

2.过程与方法通过观察,比较,归纳等得出有理数加法法则。

能运用有理数加法法则解决实际问题。

3.情感态度与价值观认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二、教学重难点及关键:重点:会用有理数加法法则进行运算。

难点:异号两数相加的法则。

关键:通过实例引入,循序渐进,加强法则的应用。

三、教学方法发现法、归纳法、与师生轰动紧密结合。

四、教材分析“有理数的加法”是人教版七年级数学上册一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

五、教学过程(一)问题与情境我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。

例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。

章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。

于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。

(二)师生共同探究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。

这节课我们来研究两个有理数的加法。

两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量。

若我们规定赢球为“正”,输球为“负”,打平为“0”。

比如,赢3球记为+3,输1球记为-1。

学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。

也就是(+3)+(+1)=+4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上学期数学教案第一章
课题: 1.1 正数和负数(1)
教学目标
1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负趣。
教学难点
正确区分两种不同意义的量。
知识重点
两种相反意义的量
教学过程(师生活动)
设计理念
设置情境
引入课题
上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…
这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。
附板书:课题: 1.1 正数和负数(1)
1.1 正数和负数(2)
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分
界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是
举一反三思维拓展
经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.
这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
设计理念
知识回顾与深化
回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。
先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知
问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.
本课作业
教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要
本课教育评注(课堂设计理念,实际教学效果及改进设想)
密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习
教科书第5页练习
课堂小结
围绕下面两点,以师生共同交流的方式进行:
1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
教学目标
1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点
深化对正负数概念的理解
知识重点
正确理解和表示向指定方向变化的量
教学过程(师生活动)
相关文档
最新文档