八年级数学竞赛题和答案解析

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。

八年级竞赛模拟数学试题附答案

八年级竞赛模拟数学试题附答案

八年级竞赛模拟数学试题一、填空题(每题4分,共40分):1、已知:三个数a 、b 、c 的积为负数,和为正数,且x=a a +b b +c c +abab +ac ac +cb bc,则ax 3+bx 2+cx +1的值为_________. 2、一个多边形的内角和为12600 ,则它的边数是____________. 3、已知:a -a 1=1,则a 8+81a=________. 4、某种商品的进货价是每件a 元,零售件是每件1100元,商店按零售价的80%降价出售,仍可获利10%(相对于进货价),则a=___ __元.5、把99拆成四个数,使得第一个数加上2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,那么这四个数是___ _______.6、若|a +b |<|a |+|b |,则bb a a||||-的值等于_________或_________. 7、已知b -a >0且a ≥0,那么||222b a b ab a +-+-化简为___________. 8、一个等腰三角形的周长为16,底边上的高是4,则这个三角形的三边长分别 是______,_____,_______。

9、盒子里有10个球,每个球上写有1~10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是___ ____.10、一辆卡车在公路上匀速行使,起初看到里程碑上的数字为AB ,过了一小时里程碑上的数字为BA ,又行使了一小时里程碑上的数字为三位数A0B ,则第三次看到里程碑上的数字是____ _____. 二、选择题(每题4分,共40分): 11、ΔABC 中三边之比为1: 1:,则ΔABC 形状一定不是 ( )A 、等腰三角形B 、直角三角形C 、等腰直角三角形D 、锐角三角形 12、数学大师陈省身于2004年12月3日在天津逝世.陈省身教授在微分几何等领域做出了杰出贡献,是获得沃尔夫奖的惟一华人.他曾经指出,平面几何中有两个重要定理,一个是勾股定理,另一个是三角形内角和定理,后者表明平面三角形可以千变万化,但是三个内角的和是不变量.下列几个关于不变量的叙述: (1)边长确定的平行四边形ABCD ,当∠A 变化时,其任意一组对角之和不变; (2)当多边形的边数不断增加时,它的外角和不变; (3)当△ABC 绕顶点A 旋转时,△ABC 各内角的大小不变; (4)在放大镜下观察,含角a 的图形放大时,角a 的大小不变; (5)当圆的半径变化时,圆的周长与半径的比值不变; (6)当圆的半径变化时,圆的周长与面积的比值不变, 其中,错误的叙述有 ( )(A)2个 (B)3个 (C)4个 (D)5个13、将右图中的图案甲变成图案乙,正确的说法是 ( ) A 、“扶正”后即可 B 、“扶正”后向右平移即可C 、“扶正”后作直线 MN 的轴对称图形即可D 、以上三种方法都可14、已知x 1,x 2, x 3的平均数为5,y l ,y 2,y 3的平均数为7,则2x l +3y l ,2x z +3y 2,2x 3+3y 3的平均数为 ( ) (A) 31 (B)331 (C) 593(D) 17 15、如图,正方形ABCD 的边长为1cm ,以对角线AC 为边长再作一个正方形,则正方形ACEF 的面积是( ) A 、3cm 2 B 、4cm 2 C 、5cm 2 D 、2cm 216、在凸四边形ABCD 中,AB=BC=BD ,∠ABC =700,则∠ADC 等于 ( ) (A) 1450 (B) 1500 (C) 1550 (D) 160017、.如图,△ABC 为等边三角形,且BM=CN ,AM 与BN 相交于点P ,则∠APN ( ) (A)等于700 (B)等于600 (C)等于500 (D)大小不确定18、如图,三个天平的托盘中形状相同的物体质量相等.图(1)、图(2)所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置 ( )(A) 3个球 (B) 4个球 (C) 5个球 (D) 6个球AB CDFEM ABCP N19、已知(a+b)2=8,(a-b)2=12. 则a2+b2的值为( )A、10B、8C、20D、420、某种细胞在分裂过程中,每个细胞一次分裂为2个.1个细胞第1次分裂为2个,第2次继续分裂为4个,第3次继续分裂为8个,……则第50次分裂后细胞的个数最接近( )(A)1015 (B)1012 (C)lO8 (D)lO5三、解答题21、如图, 已知正方形ABCD的对角线AC、BD 相交于点O ,E 是AC 上一点,过 A 作AG ⊥EB,垂足为G,AG 交 BD 于点 F,则 OE=OF.(对上述命题,可证 RtΔBOE ≌ Rt ΔAOF,可得OE=OF.) 若点 E 在 AC 的延长线上,AG ⊥ EB 交 EB的延长线于点 G,AG的延长线交 DB的延长线于点F,其他条件不变,则结论“OE = OF ”还成立吗 ? 如果成立,请说明理由;如果不成立,也请说明理由.22、在公路沿线有若干个黄沙供应站,每两个黄沙供应站之间有一个建筑工地.一辆载着黄沙的卡车从公司出发,到达第1个黄沙供应站装沙,使车上的黄沙增加1倍,到达第1个建筑工地卸下黄沙2吨.以后每到达黄沙供应站装沙,使车上黄沙增加1倍,每到达建筑工地卸下黄沙2吨.这样到达第3个建筑工地正好将黄沙卸光.求卡车上原来有多少吨的黄沙?23、当x=20时,一个关于x的二次三项式的值等于694.若该二次三项式的各项系数及常数项都是绝对值小于10的整数,求满足条件的所有二次三项式.24、(本题满分14分)某超市对顾客实行优惠购物,规定如下:(1)若一次性购物少于200元,则不予优惠;(2)若一次性购物满200元,但不超过500元,按标价给予9折优惠;(3)若一次性购物超过500元,其中500元以下部分(包括500元)按标价给予9折优惠,超过500元部分按标价给予8折优惠。

八年级数学竞赛题试卷

八年级数学竞赛题试卷

八年级数学竞赛题试卷一、选择题(每题5分,共30分)1. 若公式,公式,则公式的值为()A. 5B. 6C. 7D. 8解析:根据完全平方公式公式,已知公式,公式,则公式,所以答案是A。

2. 已知公式,则分式公式的值为()A. 公式B. 9C. 1D. 公式解析:由公式可得公式,即公式,公式。

将公式变形为公式,把公式代入可得:公式,所以答案是A。

3. 若关于公式的方程公式有增根,则公式的值为()A. -4或6B. -4或1C. 6或1D. -4或6或1解析:先将方程化为整式方程,方程两边同乘公式得:公式,公式,公式。

因为方程有增根,所以公式或公式。

当公式时,公式,公式,公式;当公式时,公式,公式,公式。

所以答案是A。

二、填空题(每题5分,共30分)1. 分解因式公式______。

解析:先提取公因式公式,再利用平方差公式,公式。

2. 若公式,则公式______。

解析:根据完全平方公式公式,已知公式,则公式,所以公式。

3. 已知公式是方程公式的一个根,则公式______。

解析:因为公式是方程公式的根,所以公式,即公式。

则公式。

三、解答题(每题20分,共40分)1. 先化简,再求值:公式,其中公式。

解析:化简原式:\[\begin{align}&(\frac{(x 1)^{2}}{(x + 1)(x 1)}+\frac{1}{x})\div\frac{1}{x + 1}\\ =&(\frac{x 1}{x + 1}+\frac{1}{x})\div\frac{1}{x + 1}\\=&(\frac{x(x 1)+(x + 1)}{x(x + 1)})\div\frac{1}{x + 1}\\=&\frac{x^{2}-x+x + 1}{x(x + 1)}\times(x + 1)\\=&\frac{x^{2}+1}{x}\end{align}\]当公式时,公式。

八年级上数学竞赛练习题含答案

八年级上数学竞赛练习题含答案

八年级上数学竞赛练习题含答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

八年级(下)竞赛数学试卷(含答案)

八年级(下)竞赛数学试卷(含答案)

八年级(下)竞赛数学试卷(含答案)一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2﹣ab﹣ac+bc=7,则a﹣c等于()A.﹣1 B.﹣1或﹣7 C.1 D.1或72.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,则排在第13个的四位数是()A.4527 B.5247 C.5742 D.72453.1989年,我国的GDP(国民生产总值)只相当于英国的53.3%,目前已相当于英国的81%,如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()A.1.5倍B.1.5m倍C.27.5倍D.m倍4.若x取整数,则使分式的值为整数的x值有()A.3个 B.4个 C.6个 D.8个5.已知a为整数,关于x的方程a2x﹣20=0的根是质数,且满足|ax﹣7|>a2,则a等于()A.2 B.2或5 C.土2 D.﹣26.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.2个 B.4个 C.6个 D.8个7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()A.570 B.502 C.530 D.5388.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定二、填空题(每小题7分,共84分)9.多项式x2+y2﹣6x+8y+7的最小值为.10.已知=1,则的值等于.11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为mm.12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为为.13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ=°.14.设a为常数,多项式x3+ax2+1除以x2﹣1所得的余式为x+3,则a=.15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC=.16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后来又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)门课程,最后平均成绩为分.17.已知a+b+c=0,a>b>c,则的取值范围是.18.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是﹣0.75,则原来输入的某数是.19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买只.20.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为.参考答案与试题解析一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2﹣ab﹣ac+bc=7,则a﹣c等于()A.﹣1 B.﹣1或﹣7 C.1 D.1或7【考点】因式分解的应用;因式分解﹣分组分解法.【分析】此题先把a2﹣ab﹣ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【解答】解:根据已知a2﹣ab﹣ac+bc=7,即a(a﹣b)﹣c(a﹣b)=7,(a﹣b)(a﹣c)=7,∵a>b,∴a﹣b>0,∴a﹣c>0,∵a、b、c是正整数,∴a﹣c=1或a﹣c=7故选D.2.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,则排在第13个的四位数是()A.4527 B.5247 C.5742 D.7245【考点】排列与组合问题.【分析】首先找到以2开头的四位数的个数,然后再找到以4开头的四位数的个数,这些数共有12个,则第13个数从5开头,找出这个最小的四位数即可.【解答】解:千位上是2的四位数的个数有3×2×1=6个,千位上是4的四位数的个数有3×2×1=6个,即可知排在第13个四位数是千位上是5,又知这些从小到大排列,第13个数为5247,故选B.3.1989年,我国的GDP(国民生产总值)只相当于英国的53.3%,目前已相当于英国的81%,如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()A.1.5倍B.1.5m倍C.27.5倍D.m倍【考点】列代数式.【分析】可以把英国1989年的GDP看作单位1,然后分别表示我国目前的GDP和1989年的GDP,求比即可.【解答】解:根据题意得:我国目前的GDP约为1989年的m≈1.5m倍.故选B.4.若x取整数,则使分式的值为整数的x值有()A.3个 B.4个 C.6个 D.8个【考点】分式的值;整式的除法.【分析】首先把分式转化为3+,则原式的值是整数,即可转化为讨论的整数值有几个的问题.【解答】解:==3+当2x﹣1=±6或±3或±2或±1时,是整数,即原式是整数.当2x﹣1=±6或±2时,x的值不是整数,当等于±3或±1是满足条件.故使分式的值为整数的x值有4个,是2,0和±1.故选B.5.已知a为整数,关于x的方程a2x﹣20=0的根是质数,且满足|ax﹣7|>a2,则a等于()A.2 B.2或5 C.土2 D.﹣2【考点】一元二次方程的解;一元二次方程的定义.【分析】本题是道选择题,可用排除法进行选择.【解答】解:当a=2时,x=5是质数,但|ax﹣7|=|2×5﹣7|=3<4,所以不选A,C.当a=5时,x=不是质数,所以不选B.当a=﹣2时,x=5是质数,同时满足|ax﹣7|=|﹣2×5﹣7|=17>4,所以选D.故选D.6.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.2个 B.4个 C.6个 D.8个【考点】等腰三角形的判定;坐标与图形性质.【分析】本题是开放性试题,根据题意,画出图形结合求解.【解答】解:第1个点在AC上,作线段AB的垂直平分线,交AC于点P,则有PA=PB;第2个点是以A为圆心,以AB长为半径截取AP=AB,交AC延长线上于点P;第3个点是以A为圆心,以AB长为半径截取AP=AB,在上边于CA延长线上交于点P;第4个点是以B为圆心,以BA长为半径截取BP=BA,与AC的延长线交于点P;第5个点是以B为圆心,以BA长为半径截取BP=BA,与BC在左边交于点P;第6个点是以A为圆心,以AB长为半径截取AP=AB,与BC在右边交于点P;∴符合条件的点P有6个点.故选C.7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()A.570 B.502 C.530 D.538【考点】几何体的表面积.【分析】先求出边长分别是3、5、8的三个正方体的表面积的和,再减去边长是3的两个正方形的面积和的4倍、边长是5的两个正方形的面积和的2倍,即为所求.【解答】解:(3×3+5×5+8×8)×6﹣(3×3)×4﹣(5×5)×2=98×6﹣9×4﹣25×2=588﹣36﹣50=502.故选B.8.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【考点】全等三角形的判定与性质;三角形三边关系.【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB﹣AD=BE,放在△BCE 中,根据三边之间的关系解答即可.【解答】解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选A.二、填空题(每小题7分,共84分)9.多项式x2+y2﹣6x+8y+7的最小值为﹣18.【考点】完全平方式;非负数的性质:偶次方.【分析】将原式配成(x﹣3)2+(y+4)2﹣18的形式,然后根据完全平方的非负性即可解答.【解答】解:原式=(x﹣3)2+(y+4)2﹣18,当两完全平方式都取0时原式取得最小值=﹣18.故答案为:﹣18.10.已知=1,则的值等于0.【考点】分式的化简求值.【分析】先根据已知条件可求出a﹣b=﹣ab,再把a﹣b的值整体代入所求式子计算即可.【解答】解:∵=1,∴b﹣a=ab,∴a﹣b=﹣ab,∴==0.故答案是0.11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为96mm.【考点】矩形的性质.【分析】题目中是一个多边形,求周长应把图中的多边形分成各个矩形求解或把多边形变为整体一个矩形求解即可.【解答】解:如图:矩形的长为24mm,AB+CD+GH+EF+4=24.∵GD=HE=4.∴矩形的周长为24+GD+HE+20+24+16+4=96mm.故答案为:96.12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为为12r2﹣3πr2..【考点】面积及等积变换.【分析】首先理解题意,求出(1)的面积,根据砂轮磨不到的部分的面积为12个图(1)的面积,计算即可得出答案.【解答】解:如图,连接OA、OC,则OA⊥AB、OC⊥BC,OA=OC,∵∠ABC=90°,∴四边形OABC是正方形,且OA=r,∴图形(1)的面积是r•r﹣πr2,∴砂轮磨不到的部分的面积为12(r•r﹣πr2)=12r2﹣3πr2.故答案为:12r2﹣3πr2.13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ=345°.【考点】角的计算.【分析】分别计算15×23°=345°,15×24°=360°,15×25°=375°,则345°、360°、375°三个数值其中一个是α、β、γ三个角的和,由于三角中,有两个锐角,一个钝角,根据锐角和钝角的定义知,α+β+γ<360°,所以345°是正确的.【解答】解:∵α、β、γ中有两个锐角和一个钝角,∴0°<α<90°,0°<β<90°,90°<γ<180°,∴α+β+γ<360°,∵15×23°=345°,15×24°=360°,15×25°=375°,∴α+β+γ=345°.故答案是345°14.设a为常数,多项式x3+ax2+1除以x2﹣1所得的余式为x+3,则a=2.【考点】余式定理.【分析】首先由多项式x3+ax2+1除以x2﹣1所得的余式为x+3,根据余式定理可设x3+ax2+1﹣(x+3)=(x2﹣1)(x+b),然后分别整理等式的左右两边,再根据多项式相等时对应系数相等,即可得方程,则可求得a的值.【解答】解:∵多项式x3+ax2+1除以x2﹣1所得的余式为x+3,∴可设x3+ax2+1﹣(x+3)=(x2﹣1)(x+b),整理可得:x3+ax2﹣x﹣2=x3+bx2﹣x﹣b,∴,∴a=2.故答案为:2.15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC= 120°或60°.【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形外角的性质及三角形的内角和定理.分∠BOC在△ABC内,及∠BOC在△ABC外两种情况讨论.【解答】解:若∠BOC在△ABC内,如下图:∵BD、CE是△ABC的高,∴∠BOC=360°﹣∠A﹣∠ADO﹣∠AEO=120°;若∠BOC在△ABC外,如下图:∵BD、CE是△ABC的高,∴∠BOC=90°﹣∠DCO=90°﹣∠ACE=∠A=60°.故答案为:120°或60°.16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后来又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)10门课程,最后平均成绩为88分.【考点】二元一次方程组的应用;加权平均数.【分析】可以设小王前面共考了x门课程,平均成绩为y分.根据加试了一门比最初的平均成绩提高了1分.加试了二门比最初的平均成绩下降了1分.可以分别列方程,解方程组即可.【解答】解:小王前面共考了x门课程,平均成绩为y分,根据题意得:,解得:.即小王共考了(含加试的两门)8+2=10门课程,最后平均成绩为89﹣1=88分.故答案为:10,88.17.已知a+b+c=0,a>b>c,则的取值范围是﹣2<<﹣.【考点】一元一次不等式的应用.【分析】首先将a+b+c=0变形为b=﹣a﹣c.再将b=﹣a﹣c代入不等式a>b,b>c,解这两个不等式,即可求得a与c的比值关系,联立求得的取值范围.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c ②解得>﹣2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c ③解得<﹣,∴﹣2<<﹣.故答案为:﹣2<<﹣.18.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是﹣0.75,则原来输入的某数是5.【考点】计算器—有理数;倒数.【分析】设原来输入的数为a,根据题意列出方程﹣1=﹣0.75,解之可得答案.【解答】解:设原来输入的数为a,根据题意,得:﹣1=﹣0.75,解得:a=5,经检验:a=5是分式方程的解,∴原来输入的某数是5,故答案为:5.19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买48只.【考点】三元一次方程组的应用.【分析】先设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z元,能买C型W只根据题意列出方程组,求出方程组的解即可.【解答】解:设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z元,能买C型W只,根据题意得:,解得:代入4x+18y+16z=Wz得:W=48.故答案为:48.20.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为4.【考点】全等三角形的判定与性质.【分析】可延长DE至F,使EF=BC,可得△ABC≌△AEF,连AC,AD,AF,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求出结论.【解答】解:延长DE至F,使EF=BC,连AC,AD,AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,由题中条件可得Rt△ABC≌Rt△AEF,△ACD≌△AFD,∴S ABCDE=2S△ADF=2וDF•AE=2××2×2=4.故答案为:4.。

八年级数学竞赛题及答案

八年级数学竞赛题及答案

八年级数学竞赛试题 姓名 成绩 。

1、某公园门票价格,对达到一定人数的团队,按团体票优惠,现有A 、B 、C 三个旅游团共72人,如果各团单独购票,门票依次为360元、、384元、480元;如果三个团合起来购票,总共可少花72元. ⑴这三个旅游团各有多少人?⑵在下面填写一种票价方案,使其与上述购票情况相符:2、如图,已知梯形ABCD 中,AD ∥BC ,CA 平分∠BCD ,AD =12,BC =22,CE =10, (1)试说明: AB =DE; (2)求CD 的长。

3、如图,D 为等腰△ABC 底边BC 的中点,E 、F 分别为AC 及其延长线上的点.又已知∠EDF = 90°,ED = DF = 1,AD = 5.求线段BC 的长.EDCBAFEDC B A参考答案解答题: 1、解:(1)360+384+480-72=1152(元),1152÷72=16(元/人),即团体票是每人16元。

因为16不能整除360,所以A 团未达到优惠人数,若三个团都未达到优惠人数, 则三个团的人数比为360︰384︰480=15︰16︰20,即三个团的人数分别为725115⨯、725116⨯、725120⨯,均不是整数,不可能, 所以B 、C 两团至少有一个团本来就已达到优惠人数,这有两种可能:①只有C 团达到;②B 、C 两团都达到.对于①,可得C 团人数为480÷16=30(人),A 、B 两团共有42人,A 团人数为423115⨯,B 团人数为423116⨯,不是整数,不可能;所以必是②成立,即C 团有30人,B 团有24人,A 团有18人. (2)2、先由AD 平行且等于BE 得到四边形ABED 为平行四边形,因此AB=DE ,再由角平分线得等腰,从而AD=CD=12;3、作DG ⊥AC 于G ,得△ABD 与△ADG 为相似变换,又DG=1/2EF=221,由勾股定理得AG=227,从而BD=75,BC=710;。

八年级上数学竞赛练习题含答案

八年级上数学竞赛练习题含答案

八年级上数学竞赛练习题含答案Newly compiled on November 23, 2020八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。

八年级数学竞赛题及答案解析

八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。

C.3错误!未找到引用源。

-错误!未找到引用源。

=3(a ≥0) D.错误!未找到引用源。

·错误!未找到引用源。

=错误!未找到引用源。

(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。

八年级数学竞赛试卷(含答案)

八年级数学竞赛试卷(含答案)

八年级数学竞赛试卷(含答案) (满分:完卷时间:120分钟)一、选择题(每小题5分,共40分)1.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 2设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为【 】 A.M <N B.M >N C.M=N D .不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34+…+32015的末位数字是【 】 A .0B .1C .3D .94.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是【 】A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-= 5.已知△ABC 中,AB=AC,高BD 、CE 交于点O,连接AO,则图中全等三角形的对数为【 】A .3B .4C .5D .6第5题图 第6题图6、如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是【 】A .4B .5C .6D .7 7、点(3,5)P -关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 8、下列四个命题中,真命题有( )① 两条直线被第三条直线所截,内错角相等.② 如果∠1和∠2是对顶角,那么∠1=∠2. ③ 三角形的一个外角大于任何一个内角. ④ 如果02>x ,那么0>x . A .1个 B .2个 C .3个 D .4个二、填空题(每小题5分,共40分)9.若532+y x b a 与x y b a 2425-是同类项,则XY= .10. 如图,直线l ∥m,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则 ∠1+∠2的度数为 .11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 . 12.已知2(25)1000a +=,则(15)(35)a a ++的值为 .13.计算1111111111234523456⎛⎫⎛⎫----++++ ⎪⎪⎝⎭⎝⎭1111111111234562345⎛⎫⎛⎫------+++ ⎪⎪⎝⎭⎝⎭的结果是 .14.如图,在△ABC 中,I 是三内角平分线的交点,∠BIC=130°,则∠A= .15.如图,钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A,则∠A 的度数是 .16、如图AB=AC,则数轴上点C 所表示的数为_____________题 号 1 2 3 4 5 6 7 8 答案题 号 9 10 11 12 13 14 15 16 答案OE D CA QP C B D第10题第14题图第15题图第16题图二、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值.19.如图,△ABC是边长为6的等边三角形, P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.ICBA20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.参考答案三、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.(2b=a+c)18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值=319.如图,△ABC是边长为6的等边三角形, P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.解法一:过P 作PE ∥QC则△AFP是等边三角形, ∵P 、Q 同时出发、速度相同,即BQ=AP∴BQ=PF∴△DBQ≌△DFP,∴BD=DF∵,∴BD=DF=FA=,∴AP=2.解法二: ∵P 、Q 同时同速出发,∴AQ=BQ设AP=BQ=x,则PC=6-x,QC=6+x 在Rt△QCP中,∠CQP=30°,∠C=60°∴∠CQP=90°∴QC=2PC,即6+x=2(6-x)∴x=2∴AP=2(2)由(1 )知BD=DF而△APF 是等边三角形,PE ⊥AF,∵AE=EF 又DE+(BD+AE)=AB=6,∴DE+(DF+EF)=6 ,即DE+DE=6∵DE=3 为定值,即DE 的长不变20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.题号 1 2 3 4 5 6 7 8 答案 D B D D C A A A 题号9 10 11 12 13 14 15 16答案-2 4507 900 1/680°12°15AED CB证明:延长AB到F,使BF=BD,连DF,所以∠F=∠BDF因为∠ABC=80所以∠F=40°因为∠ACB=40度所以∠F=∠ACB,因为AD是平分线所以∠BAD=∠CAD又AD为公共边所以△ADF≌△ADC所以AF=AC因为AD是角平分线,所以∠CBE=∠ABC/2=40所以∠EBD=∠C所以BE=EC,所以BE+AE=EC+AE=AC=AF=AB+BF=AB+BD。

八年级上册数学竞赛试题及答案

八年级上册数学竞赛试题及答案

八年级上册数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果是正数?A. \((-3) \times (-2)\)B. \((-3) \times (-3)\)C. \(3 \times (-2)\)D. \((-3) \times 3\)答案:A3. 一个数的平方是16,这个数是:A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 一个三角形的三个内角分别是30°、60°和90°,这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:A5. 一个数的绝对值是5,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 计算下列哪个表达式的结果是0?A. \((-2) + 2\)B. \((-2) \times 2\)C. \((-2) - 2\)D. \((-2) \div 2\)答案:A7. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B8. 一个数除以-1的结果是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:A9. 一个数的倒数是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:B10. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。

答案:±52. 一个数的立方是27,这个数是______。

答案:33. 如果一个三角形的两个内角分别是40°和70°,那么第三个内角是______。

答案:70°4. 一个数的绝对值是7,这个数是______。

答案:±75. 一个数除以-2的结果是-3,这个数是______。

八年级趣味数学竞赛试题

八年级趣味数学竞赛试题

八年级趣味数学竞赛试题班级姓名得分1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。

问他赚了多少?答案:2元2、小华的爸爸1分钟可以剪好5只自己的指甲。

他在5分钟内可以剪好几只自己的指甲?答案:20只,包括手指甲和脚趾甲3、哪一年正着念和倒着念一样?答案:1961年4、一根绳子两个头,一根半绳子有几个头?答案:4个5、桌子上原有12支点燃的蜡烛,先被风吹灭了3支,不久又被风吹灭了2支,桌子上还剩几支蜡烛呢?答案:12支6、一张照片上有3个人,但是却有2个爸爸和2个儿子,为什么?答案:照片上的人分别为爷爷、爸爸、儿子7、用放大镜不能放大的是什么?猜一几何名词。

答案:角8、5只鸡,5天生了5个蛋。

100天内要100个蛋,需要多少只鸡?答案:5只9、12356789,猜一含数字成语。

答案:丢三落四10、阿拉伯数字是哪个国家或地区的人发明创造的?()答案:AA、古印度人B、阿拉伯人C、欧洲人D、中国人11、7/8,猜一含数字成语。

答案:七上八下12、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量。

答案:先称3只,再拿下一只,称量后算差。

13、一天有个年轻人来到王老板的店里买一件礼物,这件礼物成本是18元,售价是21元。

结果是这个年轻人掏出100元要买这件礼物。

王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。

但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。

现在问题是:王老板在这次交易中到底损失了多少钱?答案:97元14、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。

求井深和绳子各是多少?15、王师傅爱喝酒,家中有24只空啤酒瓶。

某商店推出一项活动:三个空啤酒瓶可以换一瓶啤酒。

请问:王师傅家的空啤酒瓶可以换多少瓶啤酒喝?答案:12瓶。

因为三个空啤酒瓶可以换一瓶啤酒,相当于两个空瓶换一瓶酒喝。

八年级(下)数学竞赛试卷(含解析)

八年级(下)数学竞赛试卷(含解析)

八年级(下)数学竞赛试卷一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.6332.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,93.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣14.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.1965.化简(a﹣1)的结果是()A.B.C.﹣D.﹣6.方程组的解的个数是()A.1 B.2 C.3 D.47.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=.12.若关于x的分式方程有整数解,m的值是.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是个;第n个图形中三角形的个数是个.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M N.三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?参考答案与试题解析一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.633【考点】幂的乘方与积的乘方.【分析】分别把277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,比较它们的底数的大小即可求解.【解答】解:∵277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,而27=128,35=243,54=625,63=216,∴最大的数是544.故选C.2.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,9【考点】完全平方公式.【分析】根据完全平方公式把(ax+3y)2展开,再根据对应项系数相等列出方程求解即可.【解答】解:∵(ax+3y)2=a2x2+6axy+9y2,∴a2x2+6axy+9y2=4x2﹣12xy+by2,∴6a=﹣12,b=9,解得a=﹣2,b=9.故选C.3.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣1【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称列出等式解得m 的值.【解答】解:由两函数解析式可得出:P(0,1﹣m),Q(0,m2﹣3),又∵P点和Q点关于x轴对称,∴可得:1﹣m=﹣(m2﹣3),解得:m=2或m=﹣1.∵y=(m2﹣4)x+(1﹣m)是一次函数,∴m2﹣4≠0,∴m≠±2,∴m=﹣1.故选D.4.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196【考点】二元一次方程组的应用.【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.【解答】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.5.化简(a﹣1)的结果是()A.B.C.﹣ D.﹣【考点】二次根式的性质与化简.【分析】代数式(a﹣1)有意义,必有1﹣a>0,由a﹣1=﹣(1﹣a),把正数(1﹣a)移到根号里面.【解答】解:原式=﹣=﹣.故选D.6.方程组的解的个数是()A.1 B.2 C.3 D.4【考点】解二元一次方程组.【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可作出判断.【解答】解:当x>0,y>0时,方程组变形得:,无解;当x>0,y<0时,方程组变形得:,①+②得:2x=14,即x=7,②﹣①得:2y=﹣6,即y=﹣3,则方程组的解为;当x<0,y>0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去,把y=﹣7代入②得:x=﹣3,此时方程组无解;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选A7.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选B.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小【考点】分式的混合运算.【分析】根据不等式的性质,在不等式两边同时加上同一个数,不等号的方向不变和分式的加法法则计算即可.【解答】解:∵,∴,∴<<,又a、b、c都是负数,∴a+b<b+c<c+a,∴b<a<c,故选:C.9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d【考点】三角形的面积.【分析】分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.可得△APF、△BGC、△DHE、△GHP都是等边三角形,求得答案.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴P A=PF=AF=b,BG=CG=BC=f,DH=EH=DE=d,∴a+b+f=f+e+d=d+c+b,∴a+b=e+d,f+e=c+b,a+f=d+c.故选C.10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4【考点】规律型:数字的变化类.【分析】先设报3的人心里想的数,利用平均数的定义表示报5的人心里想的数;报7的人心里想的数;抱9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【解答】解:设报3的人心里想的数是x,则报5的人心里想的数应是8﹣x,于是报7的人心里想的数是12﹣(8﹣x)=4+x,报9的人心里想的数是16﹣(4+x)=12﹣x,报1的人心里想的数是20﹣(12﹣x)=8+x,报3的人心里想的数是4﹣(8+x)=﹣4﹣x,所以得x=﹣4﹣x,解得x=﹣2.故选B.二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=25.【考点】整式的除法;幂的乘方与积的乘方.【分析】根据积的乘方得出4x6n÷(4x2n),根据单项式除以单项式法则得出x4n,根据幂的乘方得出(x2n)2,代入求出即可.【解答】解:∵n是正整数,且x2n=5,∴(2x3n)2÷(4x2n)=4x6n÷(4x2n)=(4÷4)x6n﹣2n=x4n=(x2n)2=52=25.故答案为:25.12.若关于x的分式方程有整数解,m的值是4或3或0.【考点】解分式方程.【分析】首先化分式方程为整式方程,然后解整式方程,最后讨论整数解即可求解.【解答】解:,∴mx﹣1﹣1=2(x﹣2),∴x=﹣,而分式方程有整数解,∴m﹣2=1,m﹣2=﹣1,m﹣2=2,m﹣2=﹣2,但是m﹣2=﹣1时,x=2,是分式方程的增根,不合题意,舍去∴m﹣2=1,m﹣2=2,m﹣2=﹣2,∴m=4,m=3,m=0.故答案为:m=4,m=3,m=0.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是(﹣b,a).【考点】坐标与图形性质.【分析】本题用三角函数解答,由A和A1向坐标轴作垂线即可得解.【解答】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β=90°sinα=cosβcosα=sinβsinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为0.【考点】根与系数的关系;一元二次方程的解.【分析】因为x13=x1•x12=x1•(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,所以x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19.【解答】解:∵x1,x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1;又∵x13=x1x12=x1(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,∴x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19=﹣4﹣15+19=0.故答案为:0.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为x2﹣3x+2=0.【考点】根与系数的关系;非负数的性质:偶次方;配方法的应用.【分析】根据非负数的性质,求出a+b、ab的值,再由根与系数的关系,写出以a,b为根的一元二次方程即可.【解答】解:∵a2﹣4ab+5b2﹣2b+1=0,∴a2﹣4ab+4b2+b2﹣2b+1=0,∴(a﹣2b)2+(b﹣1)2=0,∴a=2,b=1,∴a+b=2,ab=1,∴以a,b为根的一元二次方程为x2﹣3x+2=0.故答案为:x2﹣3x+2=0.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是17个;第n个图形中三角形的个数是4n﹣3个.【考点】规律型:图形的变化类.【分析】把前面一个图形当成后一个图形的中间部分,就会发现后面的图形比前一个图形多4个三角形,从而得出变化规律,根据变换规律找出第n个图形中三角形的个数,套入数据即可得出结论.【解答】解:观察图形发现规律:后一个图形比前一个图形多4个三角形,∵第一个图形中只有一个三角形,∴第n个图形中有4(n﹣1)+1=4n﹣3个三角形.令n=5,则4×5﹣3=17(个).故答案为:17;4n﹣3.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.【考点】三角形的面积;钟面角.【分析】设OA边上的高为h,则h≤OB,所以,当OA⊥OB 时,等号成立,此时△OAB的面积最大.【解答】解:设经过t秒时,OA与OB第一次垂直,又因为秒针1秒钟旋转6度,分针1秒钟旋转0.1度,于是(6﹣0.1)t=90,解得t=.故经过秒钟后,△OAB的面积第一次达到最大.故答案为:.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M>N.【考点】整式的混合运算.【分析】利用M﹣N与0大小的比较来比较M、N的大小.【解答】解:M﹣N=(a1+a2+…+a2006)(a2+a3+…+a2007)﹣(a1+a2+…+a2007)(a2+a3+…+a2006)=(a1+a2+…+a2006)(a2+a3+…+a2006)+(a1+a2+…+a2006)a2007﹣(a1+a2+…+a2006)(a2+a3+…+a2006)﹣a2007(a2+a3+…+a2006)=(a1+a2+…+a2006)a2007﹣a2007(a2+a3+…+a2006)=a1a2007>0∴M>N三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.【考点】含绝对值符号的一元一次方程.【分析】根据分类讨论:x<2,2≤x<3,x≥3,可化简绝对值,根据解方程,可得答案.【解答】解:①当x<2时,原方程等价于2﹣x+3﹣x=2,解得;②当2≤x≤3时,原方程等价于x﹣2+3﹣x=2无解;③当x≥3时,原方程等价于x﹣2+x﹣3=2,解得,综上所述:方程的解是x=,x=.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?【考点】一次函数的应用.【分析】(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,把将(2.4,48)代入即可求出此一次函数的表达式,再根据图中S=30即可求出t的值;(2)可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入即可求出此表达式,进而可求出t的值,同理设乙车由B地返回A地的函数的解析式为s=﹣30t+n,把将(1.8,48)代入即可求解;(3)求出乙车返回到A地时所需的时间及乙车的速度即可.【解答】解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,将(2.4,48)代入,解得k=20,所以s=20t,由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,(小时).即甲车出发1.5小时后被乙车追上,(2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入,得,解得,所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;(3)当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,甲车要比乙车先回到A地,速度应大于(千米/小时).。

八年级数学竞赛题及其规范标准答案解析

八年级数学竞赛题及其规范标准答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。

C.3错误!未找到引用源。

-错误!未找到引用源。

=3(a ≥0) D.错误!未找到引用源。

·错误!未找到引用源。

=错误!未找到引用源。

(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。

八年级数学竞赛试题(含答案)

八年级数学竞赛试题(含答案)

CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。

八年级(上)竞赛数学试卷(含答案)

八年级(上)竞赛数学试卷(含答案)

八年级(上)竞赛数学试卷(含答案)一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=度.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有个数据.9.若(x+2)2=64,则x=.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是三角形.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.8114.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.2218.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.119.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表:组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?参考答案与试题解析一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为5.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据题意作出图形,利用等腰三角形的两底角相等求出三角形的顶角等于150°,所以顶角的邻补角等于30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半即可求出.【解答】解:如图,△ABC中,∠B=∠ACB=15°,∴∠BAC=180°﹣15°×2=150°,∴∠CAD=180°﹣150°=30°,∵CD是腰AB边上的高,∴CD=AC=×10=5cm.故答案为:5.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】先根据“于x轴对称的点,横坐标相同,纵坐标互为相反数”求得a,b的值再求代数式的值.【解答】解:∵点A(a,2)、B(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=30度.【考点】等边三角形的性质.【分析】作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.【解答】解:作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB=BP=BC,∠DBP=∠DBC,BD=BD;∴△BDC≌△BDP,所以∠BPD=30°.故应填30°.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为30°或150°.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】本题要分两种情况解答:当BD在三角形内部以及当BD在三角形外部.再根据等腰三角形的性质进行解答.【解答】解:本题分两种情况讨论:(1)如图1,当BD在三角形内部时,∵BD=AB,∠ADB=90°,∴∠A=30°;(2)当如图2,BD在三角形外部时,∵BD=AB,∠ADB=90°,∴∠DAB=30°,∠ABC=180°﹣∠DAB=30°=150°.故答案是:30°或150°.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为【考点】待定系数法求一次函数解析式.【分析】将点(﹣2,﹣1)代入函数解析式即可求出k的值.【解答】解:将点(﹣2,﹣1)代入得:﹣1=﹣2k+2,解得:k=.故填.6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是98%.【考点】有理数的除法.【分析】合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,即有294件合格,根据合格率=合格产品÷总产品,得出结果.【解答】解:这批产品的合格率=÷300=294÷300=0.98.答:这批产品的合格率是98%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.【考点】代数式求值.【分析】令a=1,b=2,代入a◇b=,可求得k的值,进而根据运算法则可得出2◇3的值.【解答】解:令a=1,b=2,∴=1,k=7,∴2◇3==.故填:.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有60个数据.【考点】频数(率)分布表.【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【解答】解:∵一组数据中某一个数据的频数是12,频率是0.2,∴这个数据组中共有数据的个数=12÷0.2=60.9.若(x+2)2=64,则x=6或﹣10.【考点】平方根.【分析】依据平方根的定义可求得x+2的值,然后解关于x的一元一次方程即可.【解答】解:∵(x+2)2=64,∴x+2=±8.解得:x=6或x=﹣10.故答案为:6或﹣10.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=94°10′.【考点】全等三角形的性质.【分析】全等三角形的对应角相等,三角形内角和等于180°.所以∠C=180°﹣∠A﹣∠B,且∠C1=∠C,∠B=∠B′.【解答】解:∵△ABC≌△A1B1C1,∴∠C1=∠C,∠B=∠B′,又∵∠C=180°﹣∠A﹣∠B=180°﹣∠A﹣∠B′=180°﹣35°25′﹣49°45′=94°50′.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“几个非负数相加,和为0,这几个非负数的值都为0”解出x、y、z的值,再根据勾股定理的逆定理判断三角形的类型.【解答】解:依题意得:x﹣13=0,y﹣12=0,z﹣5=0,∴x=13,y=12,z=5,∵x2=y2+z2,∴此三角形为直角三角形,故填直角.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为9【考点】规律型:数字的变化类.【分析】根据3的指数从1到4,末位数字从3,9,7,1进行循环,再用2010除以4得出余数,再写出32010个位数字.【解答】解:2010÷4=502…2,则32010个位数字为9,故答案为9.二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.81【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出=9的算术平方根.【解答】解:∵=32=9,∴的算术平方根是3.故选:B.14.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【考点】角平分线的性质.【分析】根据到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角平分线两两相交的交点,共三处.故选:D.15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:根据对称的性质,得已知点A(﹣3,a)是点B(3,﹣4)关于y轴对称的点的坐标,那么a=﹣4;则点A的坐标是(﹣3,﹣4),所以点A关于x轴对称的点的坐标是(﹣3,4).故选B.16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人【考点】频数与频率.【分析】根据频率、频数的关系:频率=,可得频数=频率×数据总和.【解答】解:根据题意,得0.3×60=18(人).故选B.17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.22【考点】加权平均数.【分析】本题是加权平均数,根据加权平均数的公式即可求解.【解答】解:平均数=12×+17×+25×=16.5.故选B.18.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.1【考点】菱形的判定与性质;含30度角的直角三角形.【分析】过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.【解答】解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COMP为菱形,PM=4PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD=PC=2.令解:作CN⊥OA.∴CN=OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.19.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°【考点】等腰三角形的性质.【分析】由题意知,△ABD和△ABC是等腰三角形,可求得顶角∠DAE的度数,及∠BAD=∠EAC,进而求得∠CAE的度数.【解答】解:∵AD=AE,BE=CD,∴△ABE和△ABC是等腰三角形.∴∠B=∠C,∠ADE=∠AED.∵∠1=∠2=110°,∴∠ADE=∠AED=70°.∴∠DAE=180°﹣2×70°=40°.∵∠1=∠2=110°,∠B=∠C,∴∠BAD=∠EAC.∵∠BAC=80°.∴∠BAD=∠EAC=(∠BAC﹣∠DAE)÷2=20°.故选A.20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m﹣3)=±8,∴m=7或﹣1.【解答】解:∵(x±4)2=x2±8x+16,∴在x2+2(m﹣3)x+16中,2(m﹣3)=±8,解得:m=7或﹣1.故选:C.三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两直线解析式,解方程即可得到点A的坐标,两直线的解析式令y=0,求出x的值,即可得到点A、B的坐标;(2)根据三点的坐标求出BC的长度以及点A到BC的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l1:y=2x+1、直线l2:y=﹣x+7联立得,,解得,∴交点为A(2,5),令y=0,则2x+1=0,﹣x+7=0,解得x=﹣0.5,x=7,∴点B、C的坐标分别是:B(﹣0.5,0),C(7,0);(2)BC=7﹣(﹣0.5)=7.5,=×7.5×5=.∴S△ABC22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B==70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表: 组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.【考点】频数(率)分布表.【分析】(1)根据频率、频数的关系,频率=,可依次计算出各组的频率;(2)观察图表,可得其中100m跑的成绩不低于15.55秒的有8人,进而求得其所占的比例.【解答】解:(1)样本容量为25,且已知各组的频数,则各组的频率分别为0.12,0.24,0.32,0.2,0.12.(2)观察图表可得:有8人100m跑的成绩不低于15.55秒,所占的比例为=0.32.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?【考点】一次函数的应用.【分析】(1)根据“甲厂费用=单价×数量+制版费;乙厂费用=单价×数量”,即可得出y甲、y乙关于x之间的函数关系式;(2)分别令y甲、y乙=2000,求出与之对应的x的值,比较后即可得出结论.【解答】解:(1)根据题意可知:y甲=0.2x+500;y乙=0.4x.(2)选甲印刷厂,理由如下:当y甲=2000时,有0.2x+500=2000,解得:x=7500;当y乙=2000时,有0.4x=2000,解得:x=5000.∵7500>5000,∴若三江职业中学拿出2000元材料印刷费,应该选取甲印刷厂.。

八年级数学竞赛试题及答案

八年级数学竞赛试题及答案

八年级数学竞赛试题及答案1.将1、2、3、4、5这五个数字排成一排,使得最后一个数是奇数且其中任意连续三个数之和都能被这三个数中的第一个数整除。

求满足要求的排法数量。

答案:3种2.XXX沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车。

假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车。

求发车间隔的时间。

答案:18分钟3.如图,在三角形ABC中,AB=7,AC=11,点M是BC 的中点,AD是∠BAC的平分线,MF∥AD。

求FC的长度。

答案:FC=54.已知0<a<1,且满足$\left\lfloor\frac{a+1}{2}\right\rfloor+\left\lfloor\frac{a+2}{3}\right\rfloor+\cdots+\left\lfloor\frac{a+29}{30}\right\rfloor=18$,求$\left\lfloor10a\right\rfloor$的值。

答案:25.XXX家电话号码原为六位数。

第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码。

XXX发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍。

求XXX家原来的电话号码。

答案:6.在平面上有7个点,其中任意3个点都不在同一条直线上。

如果连接这7个点中的每两个点,那么最多可以得到21条线段;以这些线段为边,最多能构成35个三角形。

7.设a、b、c均是不为0的实数,且满足$a^2-b^2=bc$及$b^2-c^2=ca$。

证明:$a^2-c^2=ab$。

8.如图,在凹四边形ABCD中,它的三个内角∠A、∠B、∠C均为45度。

E、F、G、H分别是边AB、BC、CD、DA的中点。

证明:四边形EFGH是正方形。

9.已知长方形ABCO,O为坐标原点,点B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限且是直线y=2x+6上的一点,若△APD是等腰直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: : 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。

C.3错误!未找到引用源。

-错误!未找到引用源。

=3(a ≥0) D.错误!未找到引用源。

·错误!未找到引用源。

=错误!未找到引用源。

(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。

的自变量x 的取值围是________.12.点 P (a ,a -3)在第四象限,则a 的取值围是 .13.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则a b 的值为__________.14.某水库的水位在5小时持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为__________.15.在△ABC 错误!未找到引用源。

中,a ,b ,c 为其三边长,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,则△ABC 错误!未找到引用源。

是_________.16.在等腰△ABC 中,AB =AC =10 cm ,BC =12 cm ,则BC 边上的高是_________cm .17.若),(b a A 在第二、四象限的角平分线上,a 与b 的关系是_________.18已知:m 、n 为两个连续的整数,且m <<n ,则m +n =_________. 三、解答题(共66分)19.(8分)如图,已知等腰△错误!未找到引用源。

的周长是错误!未找到引用源。

,底边错误!未找到引用源。

上的高错误!未找到引用源。

的长是错误!未找到引用源。

, 求这个三角形各边的长.20.(8分)计算:(1)44.1-21.1; (2)0)31(33122-++;(3)2)75)(75(++-; (4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积.22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值. 23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗?第24题图 第25题图25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度; (2)在坐标系中,补画s 关于t 的函数图象的其余部分;(3)问甲、乙两人何时相距360米?26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型 AD C 第19题图服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?年级数学竞赛答题卡二、填空题(每小题3分,共24分) 11. 12. 13. 14.15. 16. 17. 18.三、解答题(共66分) 19. (8分)如图,已知等腰△错误!未找到引用源。

的周长是错误!未找到引用源。

,底边错误!未找到引用源。

上的高错误!未找到引用源。

的长是错误!未找到引用源。

,求这个三角形各边的长.20.(8分)计算:(1)44.1-21.1; (2)0)31(33122-++;(3)2)75)(75(++-; (4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积.D C 第19题图22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值.23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗?25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 的函数图象的其余部分;(3)问甲、乙两人何时相距360米?26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型 服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?期中检测题参考答案一、选择题1.C 解析:|-5|=5;|-2|=2,|1|=1,|4|=4,所以绝对值最小的数是1,故选C .2.C 解析:选项A 9=,选项B 5=,选项D 中22(=,所以只有选项C 中1=-正确. 3.D 解析:∵ 81<90<100,∴ 错误!未找到引用源。

,即9错误!未找到引用源。

10,∴ k =9.4.D 解析:因为22ab ab a b ⋅=,所以A 项错误;因为33(2)8a a =,所以B 项错误;因为0)a =≥,所以C 0,0)a b =≥≥,所以D 项正确.5.D 解析:判断一个三角形是不是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角.B 、C 满足勾股定理的逆定理,故选D.6.C 解析:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5以直角三角形的周长为3+4+5=12或3+47C .7.D 解析:筷子在杯中的最大长度为22815+=17(cm ),最短长度为8 cm ,则筷子露在杯子外面的长度h 的取值围是24-17≤h ≤24-8,即7≤h ≤16,故选D .8.C 解析:关于原点对称的点的坐标的特点是横、纵坐标均互为相反数,所以点(-2,3)关于原点的对称点为(2,-3).根据平移的性质,结合直角坐标系,(2,-3)点向左平移2个单位长度,即横坐标减2,纵坐标不变.故选C .9.B 解析:∵ △ABC 向左平移5个单位长度,A (4,5),4-5=-1,∴ 点A 1的坐标为(-1,5),故选B .10.D 解析:设直线l 的表达式为()0y kx b k =+≠,直线l 经过第一、二、三象限,∴ 0k >,函数值y 随x 的增大而增大.01>-,∴ a b >,故A 项错误;02>-,∴ 3a >,故B 项错误; 12->-,∴ 3b >,故C 项错误; 13-<,∴ 2c <-,故D 项正确.二、填空题11.x ≥2 解析:因为使二次根式有意义的条件是被开方数≥0,所以x -2≥0,所以x ≥2. 12.0<a <3 解析:本题考查了各象限点的坐标的符号特征以及不等式的解法.∵ 点P (a ,a -3)在第四象限,∴ a >0,a -3<0,解得0<a <3.13.25 解析:本题考查了关于y 轴对称的点的坐标特点,关于y 轴对称的点的横坐标互为相反数,纵坐标相同,可得a +b =-3,1-b =-1,解得b =2,a =-5,∴ a b =25.14.y =0.3x +6 解析:因为水库的初始水位高度是6米,每小时上升0.3米,所以y 与x 的函数关系式为y =0.3x +6(0≤x ≤5).15.直角三角形 解析:因为错误!未找到引用源。

相关文档
最新文档