空调自动控制系统ppt课件
第六章 汽车空调自动控制系统详解
第六章 汽车空调自动控制系统
1—去真空伺服驱动器 2—来自真空换能器 3—来自发动机真空 4—去真空选择器 图6-3 真空保持器 (a) 在正常发动机真空下;(b) 发动机真空下降时
第六章 汽车空调自动控制系统 真空保持器的结构如图 6-3 所示。其工作原理是当发动 机进气歧管处真空度下降时,真空保持器能切断发动机的真 空源,同时,膜片亦将真空换能器和伺服真空驱动器之间的 真空气路切断,保持系统原来的工作状态。 真空伺服驱动器可根据真空换能器输出的真空度大小,
图6-8 微机控制空调的温度控制系统
第六章 汽车空调自动控制系统
ECU根据设定温度和车内温度传感器、车外温度传感器 和太阳能传感器等信号,自动调节混合门的位置。一般来说, 车内温度越高、车外温度越高、阳光越强,混合门就越接近 “全冷”位置。ECU根据车内温度和车外温度控制空气混合
门的位置,如图 6-9 所示,若车内温度 35℃,则混合门处于
机控制空调具有自我诊断功能,监控系统的随机存储器
(RAM)存储诊断码,传感器数量多,控制精度高,控制范围 广。
第六章 汽车空调自动控制系统
第一节 电控气动的自动空调系统
一、电控气动半自动空调系统
电控气动半自动空调系统的工作原理如图 6-1所示,其
控制系统主要由真空控制系统和放大器控制系统两部分组成。 其基本工作过程是:当人工设定功能选择键和温度后, 放大器8根据设定温度、车外温度、车内温度等信号计算并 输出一个控制信号,送到真空换能器 4,真空换能器将此信 号转换为真空度信号,并送到真空伺服驱动器 7上。真空伺 服驱动器根据真空度信号大小使控制杆14伸长或缩短,带动 与其相连接的温度门控制曲柄10、鼓风机调速板11和反馈电
其结构如图6-2所示。在换能器的支架上,有一个双通针阀5, 其一端控制真空源的通路,另一端控制铁芯7上的大气阀门6。
中央空调智能控制系统
安全可靠
舒适环保
中央空调智能控制系统 是指通过智能化技术对 中央空调进行控制和管 理的系统,实现对空调 设备的高效、节能、安 全和舒适的使用。
通过传感器、控制器等 设备实现空调系统的自 动控制和调节。
根据室内外环境参数和 用户需求,智能调节空 调的运行状态,降低能 耗。
具备故障诊断和报警功 能,提高系统的安全性 和稳定性。
家庭环境案例
总结词:智能便捷
详细描述:家庭环境中,中央空调的使用越来越普遍 。通过智能控制系统,可以实现远程控制、语音控制 等功能,方便用户的使用。同时,智能控制系统还可 以根据室内外环境变化自动调节温度和湿度,提高居 住舒适度。例如,某家庭安装智能控制系统后,用户 可以通过手机随时随地控制空调运行,同时系统还能 自动检测室内空气质量,进行相应的调节。
节能控制
根据室内外环境参数和用户需 求,智能调节空调的运行状态, 降低能耗。
智能控制的优势
提高能效
智能控制系统能够根据实际需 求自动调节空调的运行状态, 减少不必要的能耗,降低运行
成本。
提高舒适度
通过智能化控制,能够更好地 满足用户对室内环境的需求, 提高居住和工作环境的舒适度 。
延长设备寿命
智能控制系统能够实时监测设 备的运行状态,及时发现并处 理故障,延长设备的使用寿命 。
提高管理效率
通过智能化管理,能够实现远 程监控和控制,方便对空调系
统的管理和维护。
02 中央空调智能控制系统的 工作原理
传感器的工作原理
01
02
03
温度传感器
温度传感器通过检测室内 外温度变化,将温度信号 转换为电信号,传输给控 制单元。
湿度传感器
湿度传感器通过检测空气 中的湿度,将湿度信号转 换为电信号,传输给控制 单元。
1. 汽车空调系统(85页PPT).ppt
a)R12 (CCL2F2)
b)R134a(CH2F-CF3)
图8-6 汽车空调用制冷剂
2.汽车空调制冷系统的基本组成
图8-7 汽车空调蒸汽压缩制冷系统 1-电磁离合器;2-压缩机;3-轴流式冷却风机;4-车外冷空气;5-冷凝器; 6-储液干燥器;7-热空气(吹向发动机);8-高压管路;9-车内热空气;10-离心式冷却风机; 11-节流膨胀阀;12-蒸发器;13-冷空气(吹入车内);14-低压管路;15-压缩机驱动皮带
3.汽车蒸汽压缩制冷系统工作原理
汽车蒸汽压缩制冷系统工作时,制冷剂以不同的状态(物 态)在密闭系统内循环流动,每一循环包括四个基本过程:
1)蒸汽压缩过程
当发动机带动压缩机运转时,压缩机吸入蒸发器出口处低温 (约0℃)低压(约0.147MPa)的气态制冷剂,将其压缩成 高温(70~80℃)、高压(约1.471MPa)的蒸汽排出压缩机。
压缩机是蒸汽压缩制冷系统中低压和高压、低温和高温 的转换装置,其正常工作是实现热交换的必要条件。
汽车空调制冷容积式压缩机种类繁多。按排量变化与否可 分为定量式和变量式两大类。常用的定量式压缩机按运动形式 和主要零件形状不同,又可分为往复活塞式和旋转活塞式两大 类。常用的轴向活塞式压缩机有斜盘式和摇板式两种。
8.1.3汽车空调系统的组成和分类 1.汽车空调系统的基本组成
现代汽车全功能空调系统由制冷系统、供暖系统、通风系 统、空气净化装置及控制系统等几部分组成。
①通风系统。通风系统用于将车外的新鲜空气引进车内,达 到通风、换气的目的。
②采暖系统。采暖系统用于对车内空气或车外进入车内的新鲜 空气进行加热、除湿,使车内达到温暖舒适。
1.动压通风方式
动压通风(自然通风)方式是利用汽车行驶时,车外空 气对汽车产生的风压,通过进风口和排风口,实现通风换气。
3空调自动化原理(第2部分)
第3章 空调系统自动化原理
第3章 空调系统自动化原理
3.1 空调系统的基本知识 3.2 中央空调系统的组成与分类 3.3 空调冷源水系统的自动控制 3.4 空调热源系统及集中供热系统自动控制 3.5 空调末端自动化 3.6 风机盘管的控制 3.7 通风系统自动控制 3.8 高精度工艺空调系统自动控制 3.9 VRV空调系统 3.10 恒温恒湿空调机组DDC控制器硬件设计
1# 2# 3#,则3#制冷机作为备用,以下只讨论1#、2#制冷 机的联动顺序。 1.启动第一台设备的步骤 开1#冷却塔→开相应冷却塔蝶阀V7、V8、V2→30S 后, 启动冷却塔风机和冷却水泵1# →240S 后, 打开冷冻水蝶阀V1→30S 后, 开冷冻水泵1#→ 240S 后开制冷机1#。
3.3.1 基本概念
2. 变流量系统 系统中供、回水温差保持不变,当空调负荷变化时,通过
改变供水量来适应。 管路内流量随系统负荷变化而变化,输送能耗也随着负荷
的减少而降低,水泵容量及电耗也相应减少。系统的最大 输水量是按照综合最大冷负荷计算的 适用于大面积的高层建筑空调全年运行的系统。
7
第3章 空调系统自动化原理
2
排风扇 送风口
送风管
消声器
第3章 空调烟系气统自动化原理
空
18°C
调
机
房
回风口 25°C
空调房间 24°C
新风
热湿空气
空调机
冷却塔
烟囱
冷凝水管
制冷机房
冷水管 冷冻水循环泵
制冷机的蒸发器 制冷机的冷凝器
7°C 12°C 37°C
32°C
冷却水管
热水管
60°C
热水锅炉
55°C
暖通空调自动控制系统培训资料
是暖通空调自动控制系统的核心,接收来自传感器的信号,根
据预设的程序和控制逻辑,输出控制指令。
分散控制器
02
用于控制各个分散的设备或系统,接收来自中央控制器的指令,
根据指令输出控制信号。
可编程逻辑控制器(PLC)
03
是一种可编程的控制器,能够实现复杂的控制逻辑,广泛应用
于工业控制领域。
执行器
电动阀
根据控制器的指令调节水路或气 路的流量,实现温度和湿度的控
特点
自动化、智能化、高效节能、安 全可靠。
系统组成与工作原理
系统组成
主要包括传感器、执行器、控制器、人机界面等部分。
工作原理
传感器负责采集室内外温度、湿度、空气质量等参数,并将数据传输给控制器;控制器根据预设的程序和参数, 通过执行器对空调系统进行调节,以达到设定的舒适度和节能目标;同时,人机界面可以实时显示系统运行状态 和参数,方便用户进行监控和管理。
能减排。
系统集成与优化
跨区域、跨领域集成
将暖通空调系统与其他建筑系统(如电力系统、给排水系统等) 进行集成,实现跨领域协同优化。
集成控制平台
建立统一的集成控制平台,实现对暖通空调系统的集中监控、管 理和调度。
系统性能优化
通过系统集成和优化,提高暖通空调系统的整体性能,降低运行 成本和维护难度。
THANKS
VS
详细描述
通过采集室内外压力传感器数据,自动控 制系统根据预设的压力范围和调节算法, 调节新风量或排风量的输出量,以实现室 内压力的稳定。同时,系统还会根据室内 外压力差、人员活动等因素进行自适应调 节,以实现节能效果。
空气质量控制
总结词
空气质量控制是暖通空调自动控制系统中的 重要控制策略之一,主要目的是保持室内空 气的新鲜度和舒适性。
自动控制系统课设ppt
传感器技术
传感器是自动控制系统的重要 组成部分,用于检测和测量被
控对象的各种参数。
传感器的选择和设计需要根 据被控对象的特性和测量要 求进行,需要考虑精度、可 靠性、响应速度等因素。
传感器技术的发展对于提高自 动控制系统的性能和可靠性具
有重要意义。
执行器技术
01
执行器是自动控制系统的输出部分,用于实现对被控对象的控 制。
控制策略
采用运动学和动力学控制算法,根据 机器人运动轨迹的数学模型和控制目 标,计算出控制信号,驱动伺服电机 实现机器人的精确运动。
系统组成
工业机器人控制系统主要由机器人本 体、控制器、伺服驱动器等组成,能 够实现机器人的运动轨迹规划、速度 和加速度控制等功能。
优点
工业机器人控制系统能够提高生产效 率、降低劳动强度、提高产品质量等 优点。
硬件设计
选择合适的传感器、执行器、控制器等硬件设 备,并设计连接方式。
软件设计
编写控制算法,设计用户界面,实现数据采集、处理和输出等功能。
系统实现
系统集成
将各个模块集成在一起,进行测试和调试。
系统调试
通过实验验证系统的性能,调整参数以满足 设计要求。
系统优化
根据测试结果,对系统进行优化,提高性能 和稳定性。
3
通信技术的发展对于提高自动控制系统的远程控 制能力和数据传输能力具有重要意义。
04 自动控制系统应用领域
CHAPTER
工业自动化
生产过程控制
物流与仓储管理
通过自动化控制系统,实现对生产过 程中的温度、压力、流量等参数的精 确控制,提高生产效率和产品质量。
通过自动化设备与控制系统,实现物 料的高效搬运、存储和跟踪,降低物 流成本。
空调调节系统的自动控制资料课件
06
空调调节系统的自动控制发 展趋势与挑战
新兴技术的影响与应用
1 2 3
物联网技术
通过物联网技术,实现空调设备与智能家居系统 的连接,实现远程控制和智能管理。
人工智能技术
利用人工智能技术对空调系统进行智能控制,如 预测性控制、自适应控制等,提高系统效率和舒 适度。
传感器技术
传感器技术的应用,能够实时监测室内外环境参 数,为空调系统提供准确的控制依据。
复合控制系统
同时包含开环和闭环控制系统的特 点,对被控对象的控制更为精确和 稳定。
自动控制系统的基本性能要求
稳定性
系统在受到扰动或偏差作用后能够回到平衡 状态的能力。
准确性
系统对设定值的跟踪精度和调节精度。
快速性
系统对设定值变化的响应速度和调节速度。
抗干扰性
系统对外部干扰的抵抗能力和适应能力。
03
温度传感器
用于检测室内温度,并将 信号传递给控制器。
类型
热敏电阻、热电偶、集成 温度传感器等。
工作原理
通过材料的物理或化学性 质变化感知温度,并将变 化转化为电信号或数字信 号。
湿度传感器
湿度传感器
用于检测室内湿度,并将 信号传递给控制器。
类型
电容式、电阻式、露点式 等。
工作原理
通过感应空气中的水蒸气 或露点变化来测量湿度。
根据历史数据和行业标准,建立能耗评估标准, 对空调系统的能耗进行评估。
识别能耗瓶颈
通过数据分析,识别出空调系统中的能耗瓶颈, 为节能控制提供依据。
节能控制技术
01
智能控制算法
采用先进的智能控制算法,如模 糊控制、神经网络等,对空调系 统进行优化控制。
自动空调控制系统的组成 部件的功能
情境6:汽车空调温控不良的检修
任务二:开启制冷后,冷气时有时无(自动空调)
自动空调控制系统的组成
部件的功能
工作过程与原理
实训指导与实操
(6)其它输入信号 空调放大器的A37脚外接加热可辅助通 风装置控制总成E16,驾驶员通过调节面 板上的按钮来进行各种设定。 空调放大器的A25脚外接发电机E14的3 脚,发动机起动时,发电机转动并产生脉 冲电压信号,该信号由空调放大器使用。 空调放大器的A27脚接收前大灯照明信 号(电路如图6-32所示),并使用此信号 来判断电气负载情况。电气负载信号是加 热器线路控制的一个因素。
情境6:汽车空调温控不良的检修
任务二:开启制冷后,冷气时有时无(自动空调)
自动空调控制系统的组成 (5)空调压力传感器
部件的功能
工作过程与原理
实训指导与实操
空调放大器的A9、A10、A13脚外 接空调压力传感器,空调压力传感器 检测制冷剂压力,并将其以电压变化 的形式输出到空调放大器,空调放大 器根据该信号,以控制压缩机。电路 如图6-31所示。
情境6:汽车空调温控不良的检修
任务二:开启制冷后,冷气时有时无(自动空调)
自动空调控制系统的组成
部件的功能
工作过程与原理
实训指导与实操
情境6:汽车空调温控不良的检修
任务二:开启制冷后,冷气时有时无(自动空调)
自动空调控制系统的组成
1.传感器
部件的功能
工作过程与原理
实训指导与实操
(1)车内、外温度传感器
情境6:汽车空调温控不良的检修
任务二:开启制冷后,冷气时有时无(自动空调)
自动空调控制系统的组成
部件的功能
工作过程与原理
实训指导与实操
空调温度控制系统流程图
网上找到以下两种空调的自动控制方案。
比较简单的一种是如下图所示的单回路的闭环控制系统,传感器采用温度传感器,调节器采用pid控制,执行器指电机,调节阀指的是出风口的阀门开度。
另一种比较复杂的是如下所示的串级控制,分主回路和副回路,当室温偏离设定值时,调节器输出偏差指令信号,控制调节阀开大或关小,改变进入空气热交换器的蒸汽量或热水量,从而改变送风温度,达到控制室温的目的。
飞机飞行自动控制系统例子1、高度控制系统控制飞机在某一恒定高度上飞行的系统。
它以飞机俯仰角控制系统为内回路,因此除包括与自动驾驶仪俯仰通道中相同的元、部件(如俯仰角敏感元件、计算机、舵回路等)外,还包括产生高度差(当前高度与期望高度的差值ΔH)信号和升降速度(夑)信号的敏感元件。
专用的高度修正器或大气数据计算机能输出高度差和升降速度信号。
高度控制系统有两种工作状态:一种是自动保持飞机在当时的高度上飞行,简称定高状态;另一种是自动改变飞行高度直到人工预先选定的高度,再保持定高飞行,简称预选高度状态。
当驾驶员拨动预选高度旋钮调到预选高度刻度时,飞机自动进入爬高(或下滑)状态。
在飞机趋近预选高度后,自动保持在预选的高度上作平直飞行。
2、速度控制系统通过升降舵或升降舵加油门来自动控制空速或马赫数的系统。
通过升降舵调节的系统与高度控制系统相似,也以自动驾驶仪俯仰通道作为内回路。
在保持定速状态下,空速差(ΔV)等于当时空速(V)与系统投入该状态瞬间空速(V0)之差。
在预选空速状态下,空速差等于当时空速与预选空速(Vg)之差。
为提高控制速度的精度,须引入空速差的积分信号。
在保持飞机姿态或飞行高度不变的条件下,空速也可由油门自动控制。
将空速差和空速变化率(妭)信号引入油门控制器来改变发动机油门的大小。
如不满足上述条件,改变油门大小只能使飞机升高或降低,而速度不变。
为防止随机阵风引起空速频繁变化以致对发动机过分频繁调节,一般将空速差和空速变化率信号经过阵风滤波器(通常为低通滤波器)进行滤波。
空调控制系统培训课件
节能化
随着能源紧缺和环境保护意识 的提高,空调控制系统的设计 正朝着节能化方向发展,通过 优化系统设计和选用高效节能
设备,降低运行成本。
智能化
智能化技术如人工智能、物联 网等在空调控制系统中的应用 逐渐普及,使系统能够根据室 内外环境参数自动调节运行状 态,提高舒适度和节能性能。
网络化
网络化技术可以实现远程监控 和管理空调系统,方便用户对 设备进行操作和维护,提高管
空气质量传感器
检测室内空气的质量,包括二氧化 碳浓度、氧气浓度等,并将信号转 换为电信号,传输给控制器。
控制器
01
02
03
温度控制器
根据温度传感器的信号, 控制空调机组的工作状态 ,以达到调节温度的目的 。
湿度控制器
根据湿度传感器的信号, 控制空调机组的工作状态 ,以达到调节湿度的目的 。
空气质量控制器
空调控制系统的主要任务是通过对空气的处理,使室内空气的温度、湿度、清 洁度等参数达到预设要求。这一过程主要基于空气动力学、热力学和传热学等 原理。
控制系统原理
空调控制系统通过感应室内外空气状态的变化,并按照预设的程序对空气处理 设备进行控制,以实现温度、湿度等参数的调节。
空调控制系统的组成
1 2
3
故障三
空调漏水。排除方法:检查排水管道是否堵塞,检查冷凝水盘是否 清洁。
05
空调控制系统的设计与优化
空调控制系统设计的基本原则
节能性
01
稳定性
02
空调控制系统设计应遵循节能的原则,通过合 理的调度和控制策略,降低能源消耗。
控制系统应具有较高的稳定性,能够在不同的 环境和负载条件下稳定运行。
灵活性
卫生。
空调系统类PPT课件
特点: ●送风量和循环水量小,减少了空气处理设备、水泵、风道等的初投资,节 省了机房面积和风道所占空间高度; ●加大了空气的除湿量,降低了室内湿度,增强了室内的热舒适性; ●利用蓄冰设备提供的低温冷水,与低温送风系统相结合,可有效的减少初 投资和用电量;
管道设有防止回流设施且各层设有自动喷水灭火系统时,其进风和排风管 道可不受此限制。垂直风管应设在管井内。
一系统时,应作局部处理。 ●对空气洁净度要求不同的空气调节区,宜分设系统。 ●空气中含有易燃易爆物质的空气调节区,应独立设置系统。在同一时间内
须分别进行供热和供冷的空气调节区,应分设系统。 ●空气调节房间的瞬时负荷变化差异较大时,应分设系统。 ●需要划分内外区供冷时,应按内外区分设系统。 ●通风空调系统,横向应按每个防火分区设置,竖向不宜超过五层,当排风
VRV的称谓用于图纸上并未违反“不得指定生产厂、供应商”的规定,用 于
招标文件却有“倾向性”的嫌疑。
特点: ●散热途径:冷却塔、内区需要制冷的热泵向外区需要供热的热泵转换(冬 季); ●对于有内区和外区的大中型建筑物,当有同时供冷和供热时,可以做到 热量的回收转换,特别适用于全年需要空气调节,冷热负荷接近的场合; ●调节灵活,便于单独计量和计费; ●与风机盘管加新风系统相若,节省空间;
特点: ●使用灵活,适用于中小型建筑物或须细分成多用途、多单元的较大型建
筑物; ●节省机房面积; ●无冷却水、冷冻水管,节省空间; 注意事项: ●不宜用于振动较大、油污蒸汽较多以及产生电磁波或高频波的场所—易
空调自控原理
确保空调设备的电源和线路连接良好,无短路或 断路现象。
检查水管和排水
确保水管连接牢固,排水口畅通无阻,防止积水 。
常见故障及排除方法
空调不制冷
检查制冷剂是否充足,冷凝器 是否堵塞,压缩机是否正常工
作。
空调制冷效果差
检查室内外温度传感器是否正常 工作,过滤网是否需要清洗,冷 凝器是否需要清洗。
健康功能
家庭空调自控系统可以 监测室内空气质量,自 动过滤空气中的细菌、 病毒等有害物质,保证 家庭成员的身体健康。
能耗监测
家庭空调自控系统可以 实时监测空调的能耗, 帮助用户合理分配电力 资源,减少能源浪费。
工业空调自控系统的设计
适应性强的控制系统
工业空调自控系统需要适应各种复杂的环境和工艺需求,因此 需要采用适应性强的控制系统,如PLC控制系统等。
空调系统的能效和空气处理效果。
06
空调自控系统案例分析
酒店中央空调自控系统案例
酒店中央空调系统特点
酒店中央空调系统需要满足不同区域、不同时间段的冷暖需求,同时要确保舒适度和节能 性。
自控系统实现功能
通过自控系统,可以实现根据室内温度自动控制冷热源的输出,以及根据室外温度和室内 人员数量等因素自动调节新风量等功能。
制冷/制热模式
根据实际温度与设定温度的差异,空调自控系统会选择制冷或制热模式。制冷模式下,空 调会降低室内温度,制热模式下,空调会提高室内温度。
风速调节
空调自控系统可以通过调节风速来控制温度。高风速可以加快空气流通,提高制冷/制热 效果,低风速可以减少空气流通,保持温度稳定。
湿度控制原理
01
湿度传感器
噪音控制原理
噪音传感器
暖通空调的自动控制(共8张PPT)
▣ 暖通空调〔HVAC〕
■ 传感器输入/输出示意图
驾驶员操作
温度选择 自动设定 环境条件
冷却液温度
环境温度
蒸发器温度
车内温度
太阳辐射
车辆信息 车速信号
控制
控制 模块 〔空 调面 板〕
输出
功率晶 体管
鼓风机转速 控制
混合风门 电机
空气流 向风门
电机
进气通 道风门
电机
发动机 ECU
温度控制
自动控制:连续可变控制 1、强力制冷控制
模式、空气流向模式、压缩机请求
当发动机温度很低时为了防止强冷风吹到乘客,鼓风机电机设定到低档,〔当水温超过设定值或者分钟以后,运行自动〕。
▣ 暖通空调〔HVAC〕
:如果温度设置到最低水平〔Lo〕或最高水平〔Hi〕,系统也会进入最大冷却或最大加热模式。
▣ 暖通空调〔HVAC〕
▣ 暖通空调〔HVAC〕
1、 环境温度低的情况下: 当发动机温度很低时为了防止强冷风吹到乘客,鼓风机电机设定到低档,风向模式设定 到“除霜〞〔当水温超过设定值或者分钟以后,运行自动〕。
风速控制
自动控制
除霜
吹脚
除霜/吹脚
0
20 56 冷却液温度〔℃〕
2、环境温度高的情况下
当环境温度、进气温度超过〔35℃〕时,为了防止热风吹到乘客,吹风模式设定到“除霜〞5秒钟
Байду номын сангаас
2、通过车1速、进强行空力气制选择冷模控式制控制
▣ 暖通空调〔HVAC〕
1、 光线强度补偿:在光线较强的情况下,将鼓风机转速提高。
根本设定为根“外本循设环定〞为模“式,外但循是环如〞果模强式烈,要但求冷是却如,果那强么烈空要气求模冷式改为“内循环〞模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
空调自动控制的种类
1.常规仪表控制系统 该系统由分散的常规仪表来完成数据
信 息的采集,采集的信息直接传输给终端的 执行器,有执行器来完成控制任务,此种 控制简单,控制过于粗糙。
4
空调器常规仪表控制
5
2.直接数字控制系统(DDC控制系统)
14
空调控制原理图
15
空调控制原理图 16
空调控制原理图 17
自控系统示范
18
监控计算机界面
19
空调运行曲线 20
谢 谢 大 家!
21
系 统 功 能 确 定
11
2.通讯网络的设计 2.1 通讯协议
硬件设备之间的信息传递是通过二进 制的数字编码来实现的,只有采用相同的 编码协议和通讯协议的硬件设备之间才能 相互理解。
通讯网络应解决采用各种通讯设备的 兼容问题。
12
2.信息传递平台 每一个控制任务的完成是建立在对
各 个功能子系统运行情况全面掌握的基础上 的。
暖通空调自动控制系统
1
空调自动控制的意义
1.全面掌握系统信息 测量建筑内空气温度,空气湿度,水
流量,空调送风风速等参数。 2.动态能耗计量分析
实现建筑水,电,热量,燃气,等能 耗的自动统计计量。
2
3.控制调节和节能分析 当气象条件等因素发生变化时,对系统 设备的运行状态进行调节,实现节能优 化。
通讯网络应该提供一个集成的,公共 的信息传递平台,平等的收集、发送来自 各个功能子系统中传感器、执行器等控制 设备的信息。
13
2.3控制策略的灵活改变 在建筑系统运行过程中,运行管理人
员可能会不断调整、优化系统运行策略 和控制算法,以改善系统运行情况。
通讯网络应该能够满足控制策略的灵 活改变:通讯网络结构形式不应该妨碍控 制策略的改变,控制逻辑也不应该影响到 通讯网络的形式。
直接数字控制系统
可以理解为常规仪表
控制经数据收集器转换传输给中央电脑的控
制系统。
直
பைடு நூலகம்
中央设备(中央电脑,彩色监视器,
键盘,鼠标,打印机,不间断电源,通
接
讯借口,鼠标等)
数 字
DDC现场控制器
控
通讯网络
制
系
统
终端设备(传感器,执行器)
6
中央电脑设备 主要用于管理,其功能
为一台中央电脑可容纳数个DDC控 制
器,并可分别对每个DDC控制器进 行
管理和相互通讯。
DDC控制器
本身具有输入输出通
讯功能的微型计算机,但DDC有容量限
制(DDC包含多少个控制点)。
7
直接数字控制系统(DDC系统)
8
新风机组DDC控制
9
空调自控系统的设计
1.信息点的选择 1.1 硬件设备的选择是信息点选择的第一步
每一个控制或测量任务的完成都是获取信息、处 理信息、发出信息的过程。控制系统获取的信息可能是 传感器的测量数据,可能是执行器的反馈信号,也可能 是运行管理人员输入的指令。各种控制测量任务是通过 信息采集、处理实现的。因而建立控制系统,首先要选 择传感器、执行器等系统硬件设备,确定实现控制测量 的信息来源。
10
1.2如何选择系统硬件设备
对各个控制调节和测量任务的分析,可以清楚的知 每
一个任务控制系统所需要获取的信息和所需要发送的信
息。据此,可以明确实现各个任务所需要传感器的种类, 测量范围,以及精度要求;明确所需要的执行器的种类,调 节范围。
信 息 点 的 选 择
确 定 信 息 来 源
终 端 设 备 选 择