matlab计算有限元程序 (2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

function [T,esterrs0,d0]=LocalRefine1(T,TList,hFrac,esterrs0,esterrs,d0,d)

% [T1,esterrs1,d1]=LocalRefine1(T,TList,hFrac,esterrs,d0,d)
%
% This function performs a local refinement of the mesh
% T, refining each triangle whose index belongs to TList.
% Each T_i, i=TList(j), is refined until it is partitioned
% into subtriangles whose diameters are all less than
% hFrac(j) times the diameter of T_i (0%
% If hFrac is omitted, then hFrac(j) is taken to be 1 for
% each j.
%
% Certain data vectors are also updated for use with
% local error estimation and adaptive refinement.
% Input vectors are:
% esterrs: (Nt by 1) The estimated errors on each
% triangle in the mesh T.
% d0: (Nt by 1) The diameters of the supertriangles
% of the triangles in the mesh T.
% d: (Nt by 1) The diameters of the triangles in T.
%
% Output vectors:
% esterrs1: (Nt1 by 1) The estimated errors from the
% supertriangles of the triangles
% in the output mesh T1.
% d1: (Nt1 by 1) The diameters of the supertriangles
% of the triangles in the mesh T1.
%
% The inputs esterrs, d0, and d are optional; if they are
% not provided, then the outputs esterrs1, d1 are empty.
%
% For a description of the mesh data structure, see
% "help Mesh1".
%
% The algorithm is the recursive newest node bisection.

% This routine is part of the MATLAB Fem code that
% accompanies "Understanding and Implementing the Finite
% Element Method" by Mark S. Gockenbach (copyright SIAM 2006).

if nargin<3 | isempty(hFrac)
hFrac=ones(size(TList));
end

if nargin<6
d0=[];
esterrs=[];
end

% Automatically define bases if necessary.
% Notice that DefineBases uses a heuristic
% algorithm that is not guaranteed to produce
% an acceptable assignment of bases.

if ~isfield(T,'Bases')
T=DefineBases(T);
end

% Get the number of triangles and set the limit:

Nt=size(T.Elements,1);
NtMax=8*Nt;
done=0;
while ~done

% Refine the mesh:

diams=getDiameters(T,TList);
[T,params]=LocalRefine1a(T,TList);
Nt1=size(T.Elements,1);

% If requested, assign the old estimated errors
% and the diameters of the parent triangles to
% each triangle in the new mesh:

if nargin==7 && nargout>=2

% Identify the triangles that resulted from a bisection:

j=find(params.SubTriangles(params.SuperTriangle,2)~=0);

% The old error estimate for the subdivided triangles
% must be updated:

esterrs0=esterrs0(params.SuperTriangle);
esterrs=esterrs(params.SuperTriangle);
esterrs0(j)=esterrs(params.SuperTriangle(j));
d0=d0(params.SuperTriangle);
d=d(params.SuperTriangle);
d0(j)=d(params.SuperTriangle(j));

end

% Stop if the ma

ximum number of triangles has been reached:

if Nt1>=NtMax
done=1;
else

% Determine which triangles in T violate the bound:

n=length(TList);
TList1=[];
hFrac1=[];
for i=1:n
j=1;
k=abs(params.SubTriangles(TList(i),j));
while j<=4 & k~=0
l=getDiameter(T,k);
if l>(1+1e-7)*hFrac(i)*diams(i)
TList1=[TList1;k];
hFrac1=[hFrac1;(diams(i)/l)*hFrac(i)];
end
j=j+1;
if j<=4
k=abs(params.SubTriangles(TList(i),j));
end
end
end

TList=TList1;
hFrac=hFrac1;

% Quit if all triangles are conforming:

if isempty(TList)
done=1;
end

end

end

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [T,params]=LocalRefine1a(T,TList)

% [T1,params]=LocalRefine1a(T,TList)
%
% This function performs a local refinement of the mesh T,
% refining each triangle whose index belongs to TList.
%
% params is a struct with the following fields:
%
% SubTriangles (Nt1 by 4):
% SubTriangles(i,:) lists the subtriangles of
% the ith triangle in T, and also of the triangles
% added to T to form T1 (a subtriangle of T can
% itself be subdivided); the subtriangles are
% triangles in T1.
%
% SuperTriangle (Nt1 by 1):
% SuperTriangle(i) is the triangle in T containing
% triangle i from T1.
%
% SubEdges (Ne by 3):
% SubEdges(i,1:2) are the indices, in T1.Edges, of the two
% subedges of T.Edges(i). SubEdges(i,3) is the index, in
% T1.Nodes, of the midpoint of T.Edges(i).

Nt=size(T.Elements,1);
Ne=size(T.Edges,1);
Nv=length(T.NodePtrs);

% Allocate the parameter arrays:

params.SubTriangles=[(1:Nt)',zeros(Nt,3)];
params.SuperTriangle=(1:Nt)';
params.SubEdges=zeros(Ne,3);

% The algorithm is simple: Bisect the triangles one by one
% by calling the recursive routine bisectTriangle. No
% nonconforming triangles are ever created, but it may be
% that triangle TList(j) is bisected in the course of
% bisecting triangle TList(i), i
n=length(TList);
for i=1:n
if params.SubTriangles(TList(i),2)==0
[T,params]=bisectTriangle(T,params,TList(i));
end
end

% Define LevelNodes and NodeParents:

Nv1=length(T.NodePtrs);
if isfield(T,'LevelNodes')
T.LevelNodes=[T.LevelNodes;Nv1];
T.NodeParents=T.NodeParents;
else
T.LevelNodes=[Nv;Nv1];
T.NodeParents=[(1:Nv)',zeros(Nv,1)];
end

ii=find(params.SubEdges(:,1)~=0);
for i=1:length(ii)
j=ii(i);
T.NodeParents(params.SubEdges(j,3),:)=T.Edges(j,:);
end

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [T,params]=bisectTriangle(T,params,k)

% [T,params]=bisectTriangle(T,params,k)
%
% This function bisects triangle k by its base,
% provided triangle k and a

neighbor share a base.
% Otherwise, bisectTriangle is called recursively to
% bisect the neighbor across the base. No
% nonconforming triangles are ever formed.

Nt=size(T.Elements,1);
Ne=size(T.Edges,1);
Nv=length(T.NodePtrs);
Nf=length(T.FNodePtrs);
Nc=length(odePtrs);
Nb=length(T.FBndyEdges);

% Get the index of the neighboring triangle (across the
% base):

b=T.Bases(k);
t1=getAdjacentTriangle(T,k,b);

% There are now three cases to consider (only the third
% case generates a recursive call to bisectTriangles):
%
% 1. The base of triangle k is a boundary edge.
% 2. A neighboring triangle has the same base
% as triangle k.
% 3. The triangle on the other side of triangle
% k has a different base.

if t1<=0

% The base of triangle k is a boundary edge.

% Get the edges of triangle k:

[k1,k2,k3]=getOtherEdges(T,k,b);

% Get the vertices of triangle k:

i1=T.Edges(b,1);
i2=T.Edges(b,2);
i3=getOppositeVertex(T,k,i1,i2);

% Create the midpoint of edge b:

Nv=Nv+1;
if T.EdgeCFlags(b)
T.Nodes(Nv,:)=feval(T.BndyFcn,T.Nodes(i1,:),T.Nodes(i2,:));
else
T.Nodes(Nv,:)=0.5*(T.Nodes(i1,:)+T.Nodes(i2,:));
end
if t1==0
Nc=Nc+1;
T.NodePtrs(Nv)=-Nc;
odePtrs(Nc)=Nv;
else
Nf=Nf+1;
T.NodePtrs(Nv)=Nf;
T.FNodePtrs(Nf)=Nv;
end

% Replace edge b by edges b and Ne+1 and update FBndyEdges:

T.Edges(b,:)=[i1,Nv];
T.Edges(Ne+1,:)=[Nv,i2];
if t1<0
T.FBndyEdges(Nb+1)=Ne+1;
Nb=Nb+1;
end
T.EdgeCFlags(Ne+1)=T.EdgeCFlags(b);
params.SubEdges(b,:)=[b,Ne+1,Nv];

% Create a new edge to bisect triangle k:

T.Edges(Ne+2,:)=[i3,Nv];
T.EdgeEls(Ne+2,:)=[k,Nt+1];
T.EdgeCFlags(Ne+2)=0;

% Replace triangle k by triangles k and Nt+1 and update EdgeEls:

if k1>0
T.Elements(k,:)=[k1,-(Ne+2),k3];
T.Elements(Nt+1,:)=[Ne+1,k2,Ne+2];
if t1==0
T.EdgeEls(Ne+1,:)=[Nt+1,0];
else
T.EdgeEls(Ne+1,:)=[Nt+1,-Nb];
end
if T.EdgeEls(abs(k2),1)==k
T.EdgeEls(abs(k2),1)=Nt+1;
else
T.EdgeEls(abs(k2),2)=Nt+1;
end
T.Bases(k)=abs(k3);
T.Bases(Nt+1)=abs(k2);
else
T.Elements(k,:)=[k1,k2,Ne+2];
T.Elements(Nt+1,:)=[-(Ne+1),-(Ne+2),k3];
if t1==0
T.EdgeEls(Ne+1,:)=[Nt+1,0];
else
T.EdgeEls(Ne+1,:)=[Nt+1,-Nb];
end
if T.EdgeEls(abs(k3),1)==k
T.EdgeEls(abs(k3),1)=Nt+1;
else
T.EdgeEls(abs(k3),2)=Nt+1;
end
T.Bases(k)=abs(k2);
T.Bases(Nt+1)=abs(k3);
end
ii=min(find(params.SubTriangles(k,:)==0));
params.SubTriangles(k,ii)=Nt+1;
params.SubTriangles(Nt+1,1)=Nt+1;
params.SuperTriangle(Nt+1)=params.SuperTriangle(k);

elseif T.Bases(t1)==b

% An adjacent triangle shares the same base.

% Get the edges of triangles k and t1:


[k1,k2,k3]=getOtherEdges(T,k,b);
[l1,k4,k5]=getOtherEdges(T,t1,b);

% Get the vertices of triangles k and t1:

i1=T.Edges(b,1);
i2=T.Edges(b,2);
i3=getOppositeVertex(T,k,i1,i2);
i4=getOppositeVertex(T,t1,i1,i2);

% Create the midpoint of edge b:

Nv=Nv+1;
T.Nodes(Nv,:)=0.5*(T.Nodes(i1,:)+T.Nodes(i2,:));
Nf=Nf+1;
T.NodePtrs(Nv)=Nf;
T.FNodePtrs(Nf)=Nv;

% Replace edge b by edges b and Ne+1:

T.Edges(b,:)=[i1,Nv];
T.Edges(Ne+1,:)=[Nv,i2];
T.EdgeCFlags(Ne+1)=0;
params.SubEdges(b,:)=[b,Ne+1,Nv];

% Create a new edge to bisect triangle k:

T.Edges(Ne+2,:)=[i3,Nv];
T.EdgeEls(Ne+2,:)=[k,Nt+1];
T.EdgeCFlags(Ne+2)=0;

% Create a new edge to bisect triangle t1:

T.Edges(Ne+3,:)=[i4,Nv];
T.EdgeEls(Ne+3,:)=[t1,Nt+2];
T.EdgeCFlags(Ne+3)=0;

% Replace triangle k by triangles k and Nt+1 and triangle
% t1 by t1 and Nt+2, and update EdgeEls:

if k1>0
T.Elements(k,:)=[k1,-(Ne+2),k3];
T.Elements(Nt+1,:)=[Ne+1,k2,Ne+2];
T.Elements(t1,:)=[-k1,k4,Ne+3];
T.Elements(Nt+2,:)=[-(Ne+1),-(Ne+3),k5];
T.EdgeEls(b,:)=[k,t1];
T.EdgeEls(Ne+1,:)=[Nt+1,Nt+2];

if T.EdgeEls(abs(k2),1)==k
T.EdgeEls(abs(k2),1)=Nt+1;
else
T.EdgeEls(abs(k2),2)=Nt+1;
end
if T.EdgeEls(abs(k5),1)==t1
T.EdgeEls(abs(k5),1)=Nt+2;
else
T.EdgeEls(abs(k5),2)=Nt+2;
end
T.Bases(k)=abs(k3);
T.Bases(Nt+1)=abs(k2);
T.Bases(t1)=abs(k4);
T.Bases(Nt+2)=abs(k5);
else
T.Elements(k,:)=[k1,k2,Ne+2];
T.Elements(Nt+1,:)=[-(Ne+1),-(Ne+2),k3];
T.Elements(t1,:)=[-k1,-(Ne+3),k5];
T.Elements(Nt+2,:)=[Ne+1,k4,Ne+3];
T.EdgeEls(b,:)=[k,t1];
T.EdgeEls(Ne+1,:)=[Nt+1,Nt+2];
if T.EdgeEls(abs(k3),1)==k
T.EdgeEls(abs(k3),1)=Nt+1;
else
T.EdgeEls(abs(k3),2)=Nt+1;
end
if T.EdgeEls(abs(k4),1)==t1
T.EdgeEls(abs(k4),1)=Nt+2;
else
T.EdgeEls(abs(k4),2)=Nt+2;
end
T.Bases(k)=abs(k2);
T.Bases(Nt+1)=abs(k3);
T.Bases(t1)=abs(k5);
T.Bases(Nt+2)=abs(k4);
end
ii=min(find(params.SubTriangles(k,:)==0));
params.SubTriangles(k,ii)=Nt+1;
params.SubTriangles(Nt+1,1)=Nt+1;
params.SuperTriangle(Nt+1)=params.SuperTriangle(k);
ii=min(find(params.SubTriangles(t1,:)==0));
params.SubTriangles(t1,ii)=Nt+2;
params.SubTriangles(Nt+2,1)=Nt+2;
params.SuperTriangle(Nt+2)=params.SuperTriangle(t1);

else

% The triangle on the other side of the base has a different
% base. Recursively refine that other triangle and then this
% one.

[T,params]=bisectTriangle(T,params,t1);
[T,params]=bisectTriangle(T,params,k);

end

相关文档
最新文档