高中数学完整讲义——解三角形1.三角形中的有关问题

合集下载

新人教A版高中数学全套讲义:解三角形

新人教A版高中数学全套讲义:解三角形

正弦定理和余弦定理1.1.1正弦定理[新知初探] 1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C.[点睛]正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)正弦定理适用于任意三角形()(2)在△ABC中,等式b sin A=a sin B总能成立()(3)在△ABC中,已知a,b,A,则此三角形有唯一解()解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知asin A=bsin B,即b sin A=a sin B.(3)错误.在△ABC中,已知a,b,A,此三角形的解有可能是无解、一解、两解的情况,具体情况由a,b,A的值来定.答案:(1)√(2)√(3)×2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.bc B.sin B sin A C.sin C cD.c sin C解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2 B .10 3 C.1033D .5 6 解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =π6,b =2,以下错误的是( )A .若a =1,则c 有一解B .若a =3,则c 有两解C .若a =45,则c 无解D .若a =3,则c 有两解解析:选D a =2 sin π6=1时,c 有一解;当a <1时,c 无解;当1<a <2时,c 有两个解;a >2时,c 有一解.故选D.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin Csin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22. ∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin Bsin C =6·sin 75°sin 60°=3+1.三角形形状的判断 [典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B.由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,已知a cos A =b cos B ,试判断△ABC 的形状. 解:由正弦定理,a sin A =b sin B =c sin C=2R ,所以a cos A =b cos B 可化为sin A cos A =sin B cos B ,sin 2A =sin 2B ,又△ABC 中,A ,B ,C ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 的形状为等腰或直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37D.57解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形.3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( ) A .30° B .45° C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc, 则cos C =sin C ,即C =45°,故选B.4.△ABC 中,A =π6,B =π4,b =2,则a 等于( )A .1B .2 C. 3D .2 3解析:选A 由正弦定理得asin π6=2sin π4, ∴a =1,故选A.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sin B =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在锐角△ABC 中,BC =1,B =2A ,则ACcos A=________. 解析:由正弦定理及已知得1sin A =AC sin 2A ,∴AC cos A=2. 答案:29.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1,所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°, ∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°解析:选A ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C ,∴tan C =- 3.又0°<C <180°,∴C =120°.故选A.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C.3.在△ABC 中,A =60°,a =13,则a +b +c sin A +sin B +sin C 等于( )A.833B.2393C.2633D .2 3解析:选B 由a =2R sin A ,b =2R sin B ,c =2R sin C 得a +b +c sin A +sin B +sin C=2R =asin A =13sin 60°=2393. 4.在△ABC 中,若A <B <C ,且A +C =2B ,最大边为最小边的2倍,则三个角A ∶B ∶C =( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .4∶5∶6解析:选A 由A <B <C ,且A +C =2B ,A +B +C =π,可得B =π3,又最大边为最小边的2倍,所以c =2a ,所以sin C =2sin A ,即sin ⎝⎛⎭⎫2π3-A =2sin A ⇒tan A =33,又0<A <π,所以A =π6,从而C =π2,则三个角A ∶B ∶C =1∶2∶3,故选A.5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=b sin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC =5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314. 答案:33147.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a sin A =c3cos C .(1)求角C 的大小;(2)如果CA ·CB =4,求△ABC 的面积. 解:(1)由⎩⎨⎧a sin A =c sin C,asin A =c3cos C,得sin C =3cos C ,故tan C =3,又C ∈(0,π),所以 C =π3.(2)由CA ·CB =|CA ||CB |cos C =12ba =4得ab =8, 所以S △ABC =12ab sin C =12×8×32=2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0.(1)求B ;(2)若b =3,求a +c 的取值范围.解:(1)由正弦定理知:sin B cos C +3sin B sin C -sin A -sin C =0, ∵sin A =sin (B +C )=sin B cos C +cos B sin C 代入上式得: 3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0, 即sin ⎝⎛⎭⎫B -π6=12, ∵B ∈(0,π),∴B =π3.(2)由(1)得:2R =bsin B=2,a +c =2R (sin A +sin C ) =23sin ⎝⎛⎭⎫C +π6. ∵C ∈⎝⎛⎭⎫0,2π3,∴23sin ⎝⎛⎭⎫C +π6∈(3,23], ∴a +c 的取值范围为(3,23].1.1.2 余弦定理(1)余弦定理的内容是什么?预习课本P5~6,思考并完成以下问题[新知初探]余弦定理[点睛]余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形()(2)在△ABC中,若a2>b2+c2,则△ABC一定为钝角三角形()(3)在△ABC中,已知两边和其夹角时,△ABC不唯一()解析:(1)正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.(2)正确.当a2>b2+c2时,cos A=b2+c2-a22bc<0.因为0<A<π,故A一定为钝角,△ABC为钝角三角形.(3)错误.当△ABC已知两边及其夹角时可利用余弦定理求得第三边长且唯一,因此△ABC唯一确定.答案:(1)√ (2)√ (3)×2.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ) A.39 B .8 3 C .10 2D .7 3解析:选D 由余弦定理得:c =92+(23)2-2×9×23×cos 150° =147 =7 3.3.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .60° B .45° C .120°D .30° 解析:选C 由cos A =b 2+c 2-a 22bc =-12,∴A =120°.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24D.23解析:选B 由b 2=ac且c =2a 得cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 22a ·2a =34.故选 B.已知两边与一角解三角形[典例] (1)在△ABC 中,已知b =60 cm ,c =60 3 cm ,A =π6,则a =________cm ;(2)在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________. [解析](1)由余弦定理得: a =602+(603)2-2×60×603×cos π6=4×602-3×602=60(cm).(2)由余弦定理得:(5)2=52+BC 2-2×5×BC ×910,所以BC 2-9BC +20=0,解得BC =4或BC =5.[答案] (1)60 (2)4或5已知三角形的两边及一角解三角形的方法先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.若用正弦定理求解,需对角的取值进行取舍,而用余弦定理就不存在这些问题(在(0,π)上,余弦值所对角的值是唯一的),故用余弦定理求解较好.[活学活用]在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. 解:根据余弦定理得,b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos 45°=8, ∴b =2 2.又∵cos A =b 2+c 2-a 22bc =8+(6+2)2-(23)22×22×(6+2)=12,∴A =60°,C =180°-(A +B )=75°.已知三角形的三边解三角形[典例] 在△ABC 中,已知a =23,b =6,c =3+3,解此三角形. [解] 法一:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.同理可求B =30°,故C =180°-A -B =180°-45°-30°=105°. 法二:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.由正弦定理a sin A =b sin B 知23sin 45°=6sin B ,得sin B =6·sin 45°23=12. 由a >b 知A >B ,∴B =30°.故C =180°-A -B =180°-45°-30°=105°.(1)已知三边求角的基本思路是:利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,结果唯一.(2)若已知三角形的三边的关系或比例关系,常根据边的关系直接代入化简或利用比例性质,转化为已知三边求解.[活学活用]已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )·(a +b +c )=ab ,则C 的大小为( )A .60°B .90°C .120°D .150°解析:选C ∵(a +b -c )(a +b +c )=ab , ∴c 2=a 2+b 2+ab ,由余弦定理可得,cos C =a 2+b 2-c 22ab=a 2+b 2-(a 2+b 2+ab )2ab =-ab 2ab =-12,∵0°<C <180°,∴C =120°,故选C.利用余弦定理判断三角形形状 [典例] 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:[法一 化角为边] 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,∴b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2. ∴A =90°.∴△ABC 是直角三角形. [法二 化边为角]由正弦定理,已知条件可化为sin 2C sin 2B +sin 2C sin 2B =2sin B sin C cos B cos C .又sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0. 又∵0°<B +C <180°,∴B +C =90°,∴A =90°. ∴△ABC 是直角三角形.利用余弦定理判断三角形形状的两种途径(1)化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. (2)化角的关系:将条件转化为角与角之间关系,通过三角变换得出关系进行判断. [活学活用]在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.正、余弦定理的综合应用题点一:利用正、余弦定理解三角形1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB.(1)求角B 的大小;(2)若A =75°,b =2,求a ,c . 解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B. 故cos B =22,因此B =45°. (2)sin A =sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故由正弦定理得a =b ·sin Asin B=1+ 3.由已知得,C =180°-45°-75°=60°, c =b ·sin Csin B =2×sin 60°sin 45°= 6.题点二:利用正、余弦定理证明三角形中的恒等式 2.在△ABC 中,求证a 2sin 2B +b 2sin 2A =2ab sin C . 证明:法一:(化为角的关系式)a 2sin 2B +b 2sin 2A =(2R ·sin A )2·2sin B ·cos B +(2R ·sin B )2·2sin A ·cos A =8R 2sin A ·sin B (sin A ·cos B +cos A sin B )=8R 2sin A sin B sin C =2·2R sin A ·2R sin B ·sin C =2ab sin C .∴原式得证.法二:(化为边的关系式)左边=a 2·2sin B cos B +b 2·2sin A cos A =a 2·2b 2R ·a 2+c 2-b 22ac +b 2·2a 2R ·b 2+c 2-a 22bc =ab 2Rc(a 2+c 2-b 2+b 2+c 2-a 2)=ab 2Rc ·2c 2=2ab ·c2R=2ab sin C =右边, ∴原式得证.题点三:正、余弦定理与三角函数、平面向量的交汇应用3.已知△ABC 的周长为4(2+1),角A ,B ,C 所对的边分别为a ,b ,c ,且有sin B +sin C =2sin A .(1)求边长a 的值;(2)若△ABC 的面积为S =3sin A ,求AB ·AC 的值. 解:(1)由正弦定理,得b +c =2a .① 又a +b +c =4(2+1),② 联立①②,解得a =4. (2)∵S △ABC =3sin A , ∴12bc sin A =3sin A ,即bc =6. 又∵b +c =2a =42, ∴由余弦定理得cos A =b 2+c 2-a 22bc =(b +c )2-2bc -a 22bc =13.∴AB ·AC =bc cos A =2.正、余弦定理是解决三角形问题的两个重要工具,这类题目往往结合基本的三角恒等变换,同时注意三角形中的一些重要性质,如内角和为180°、大边对大角等.层级一 学业水平达标1.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B ∵(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.2.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦值是( ) A .-15 B .-16 C .-17 D .-18解析:选C 由余弦定理,得c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,所以c =3,故a 最大, 所以最大角的余弦值为cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形 解析:选C 由c 2-a 2-b 22ab>0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.4.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析:选A 由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4,由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,则ab +2ab =4,∴ab =43.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3或2π3C.π3D.π6或5π6解析:选B 因为(a 2+c 2-b 2)tan B =3ac , 所以2ac cos B tan B =3ac ,即sin B =32, 所以B =π3或B =2π3,故选 B.6.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 解析:∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120° =a 2+c 2+ac , ∴a 2+c 2+ac -b 2=0. 答案:07.在△ABC 中,若b =1,c =3,C =2π3,则a =________. 解析:∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos2π3, ∴a 2+a -2=0,即(a +2)(a -1)=0, ∴a =1,或a =-2(舍去).∴a =1. 答案:18.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:因为b +c =7,所以c =7-b . 由余弦定理得:b 2=a 2+c 2-2ac cos B , 即b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14, 解得b =4. 答案:49.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b . 解:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知a =7,b =3,c =5,求最大角和sin C . 解:∵a >c >b ,∴A 为最大角. 由余弦定理的推论,得cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A <180°, ∴A =120°, ∴sin A =sin 120°=32. 由正弦定理,得sin C =c sin Aa =5×327=5314. ∴最大角A 为120°,sin C =5314. 层级二 应试能力达标1.在△ABC 中,有下列关系式:①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2=2ab cos C ;④b =c sin A +a sin C . 一定成立的有( ) A .1个 B .2个 C .3个D .4个解析:选C 对于①③,由正弦、余弦定理,知一定成立.对于②,由正弦定理及sin A =sin(B +C )=sin B cos C +sin C cos B ,知显然成立.对于④,利用正弦定理,变形得sin B =sin C sin A +sin A sin C =2sin A sin C ,又sin B =sin(A +C )=cos C sin A +cos A sin C ,与上式不一定相等,所以④不一定成立.故选C.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .不能确定解析:选A 在△ABC 中,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab ,∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .3.在△ABC 中,cos 2B 2=a +c 2c ,则△ABC 是( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:选B ∵cos 2B 2=a +c2c ,∴cos B +12=a +c 2c ,∴cos B =ac ,∴a 2+c 2-b 22ac =a c ,∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若b 2+c 2+bc -a 2=0,则a sin (30°-C )b -c =( )A.12B.32C .-12D .-32解析:选A 由余弦定理得cos A =b 2+c 2-a 22bc ,又b 2+c 2+bc -a 2=0,则cos A =-12,又0°<A <180°,则A =120°,有B =60°-C ,所以a sin (30°-C )b -c =sin A sin (30°-C )sin (60°-C )-sin C=34cos C -34 sin C 32cos C -32sin C =12.故选A. 5.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:∵cos C =BC 2+AC 2-AB 22BC ·AC =22,∴sin C =22,∴AD =AC sin C = 3. 答案: 36.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为________.解析:由余弦定理可得49=AC 2+25-2×5×AC ×cos 120°,整理得: AC 2+5·AC -24=0,解得AC =3或AC =-8(舍去), 再由正弦定理可得sin B sin C =AC AB =35.答案:357.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B=2c -ab .(1)求sin Csin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.解:(1)由正弦定理可设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B ,所以cos A -2cos C cos B =2sin C -sin Asin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A , 因此sin Csin A =2.(2)由sin Csin A=2,得c =2a . 由余弦定理及cos B =14,得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2,所以b =2a .又a +b +c =5,所以a =1,因此b =2.8.如图,D 是直角三角形△ABC 斜边BC 上一点,AC =3DC . (1)若∠DAC =30°,求B ;(2)若BD =2DC ,且AD =22,求DC . 解:(1)在△ADC 中,根据正弦定理, 有AC sin ∠ADC =DCsin ∠DAC,∵AC =3DC ,所以sin ∠ADC =3sin ∠DAC =32, 又∠ADC =∠B +∠BAD =∠B +60°>60°, ∴∠ADC =120°,∴∠C =180°-120°-30°=30°,∴∠B =60°. (2)设DC =x ,则BD =2x ,BC =3x ,AC =3x ,∴sin B=ACBC =33,cos B=63,AB=6x,在△ABD中,AD2=AB2+BD2-2AB·BD·cos B,即(22)2=6x2+4x2-2×6x×2x×63=2x2,得x=2.故DC=2.应用举例第一课时解三角形的实际应用举例[新知初探]实际测量中的有关名称、术语名称定义图示仰角在同一铅垂平面内,视线在水平线上方时l与水平线的夹角俯角在同一铅垂平面内,视线在水平线l下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)错误!方位角从正北的方向线按顺时针到目标方向线所转过的水平角[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知三角形的三个角,能够求其三条边()(2)两个不可到达的点之间的距离无法求得()(3)方位角和方向角是一样的()解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).答案:(1)×(2)×(3)×2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:选B如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.故选B.3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为() A.α>βB.α=βC.α+β=90°D.α+β=180°解析:选B根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.4.已知船A在灯塔C北偏东85°且到C的距离为1 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为________km.解析:由题意得∠ACB=(90°-25°)+85°=150°,又AC=1,BC=3,由余弦定理得AB2=AC2+BC2-2AC·BC cos 150°=7,∴AB=7.答案:7测量高度问题[典例]如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.[解] 在△BCD 中, ∠CBD =π-(α+β).由正弦定理得BC sin ∠BDC =CDsin ∠CBD .∴BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β).在Rt △ABC 中,AB =BC tan ∠ACB =s ·sin βtan θsin (α+β).测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路.[活学活用]1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45°,沿A 向北偏东30°方向前进100 m 到达B 处,在B 处测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m 解析:选A 如图,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2×h ×100×cos 60°,即h 2+50h -5 000=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000 m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________m.解析:因为∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 所以∠ASB =180°-∠SAB -∠SBA =135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002,所以BC=AB·sin 45°=1 0002×22=1 000(m).答案:1 000测量角度问题[典例]如图所示,A,B是海面上位于东西方向相距5(3+3) n mile的两个观测点.现位于A点北偏东45°方向、B点北偏西60°方向的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?[解]由题意,知AB=5(3+3) n mile,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB=ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 h.测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等.解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.[活学活用]在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用t h在D处追上走私船,画出示意图,则有CD=103t,BD=10t,在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22,∴∠ABC=45°,BC与正北方向成90°角.∵∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即缉私船沿北偏东60°方向能最快追上走私船.测量距离问题题点一:两点间不可通又不可视1.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2ab cos α.若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.解:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB,∴AB2=4002+6002-2×400×600cos 60°=280 000.∴AB=2007 (m).即A,B两点间的距离为2007 m.题点二:两点间可视但有一点不可到达2.如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.解析:∠ABC =180°-75°-45°=60°, 所以由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. 答案:20 6题点三:两点都不可到达3.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA=δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.解:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°, ∴AC =DC =32. 在△BCD 中,∠DBC =45°,由正弦定理,得BC =DCsin ∠DBC ·sin ∠BDC =32sin 45°·sin30°=64. 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos 45° =34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64km.当A ,B 两点之间的距离不能直接测量时,求AB 的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C ,使得A ,B 与C 之间的距离可直接测量,测出AC =b ,BC =a 以及∠ACB =γ,利用余弦定理得:AB =a 2+b 2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B 同侧的点C ,测出BC =a 以及∠ABC 和∠ACB ,先使用内角和定理求出∠BAC ,再利用正弦定理求出AB .(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C ,D ,测出CD =m ,∠ACB ,∠BCD ,∠ADC ,∠ADB ,再在△BCD 中求出BC ,在△ADC 中求出AC ,最后在△ABC 中,由余弦定理求出AB .层级一 学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m解析:选D 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理得,AB sin C =ACsin B, 即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.2.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762 n mile/hB .34 6 n mile/h C.1722n mile/hD .34 2 n mile/h解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762 n mile/h.3.如图,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A.a sin α·sin βsin (β-α) B.a sin α·sin βcos (α-β) C.a sin α·cos βsin (β-α) D.a cos α·sin βcos (α-β)解析:选A 设AB =x ,则在Rt △ABC 中,CB =x tan β,所以BD =a +x tan β,又因为在Rt △ABD 中,BD =x tan α,所以BD =a +x tan β=x tan α,从中求得x =a1tan α-1tan β=a tan αtan βtan β-tan α=a sin αsin βsin βcos α-sin αcos β=a sin αsin βsin (β-α),故选A.4.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m,20 3 m C .10(3-2)m,20 3 mD.1532 m ,2033m解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 5.甲船在岛B 的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时乙船自岛B 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A.1507 min B.157 hC .21.5 minD .2.15 h解析:选A 由题意可作出如图所示的示意图,设两船航行t 小时后,甲船位于C 点,乙船位于D 点,如图.则BC =10-4t ,BD =6t ,∠CBD =120°,此时两船间的距离最近,根据余弦定理得CD 2=BC 2+BD 2-2BC ·BD cos ∠CBD =(10-4t )2+36t 2+6t (10-4t )=28t 2-20t +100,所以当t =514时,CD 2取得最小值,即两船间的距离最近,所以它们的航行时间是1507min ,故选A.6.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地的距离为________km.解析:如图所示,由题意可知AB =33,BC =2,∠ABC =150°. 由余弦定理,得AC 2=27+4-2×33×2×cos 150°=49,AC =7. 则A ,C 两地的距离为7 km. 答案:77.坡度为45°的斜坡长为100 m ,现在要把坡度改为30°,则坡底要伸长________m. 解析:如图,BD =100,∠BDA =45°,∠BCA =30°, 设CD =x ,所以(x +DA )·tan 30°=DA ·tan 45°, 又DA =BD ·cos 45°=100×22=502, 所以x =DA ·tan 45°tan 30°-DA =502×133-50 2=50(6-2)m. 答案:50(6-2)8.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,那么x =________cm.解析:如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,易知在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知: x =AB ·sin ∠ABO sin ∠AOB =10×sin 45°sin 60°=1063(cm).答案:10639.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,求乙船航行的速度.解:如图,连接A 1B 2,在△A 1A 2B 2中,易知∠A 1A 2B 2=60°,又易求得A 1A 2=302×13=102=A 2B 2,∴△A 1A 2B 2为正三角形, ∴A 1B 2=10 2.在△A 1B 1B 2中,易知∠B 1A 1B 2=45°, ∴(B 1B 2)2=400+200-2×20×102×22=200, ∴B 1B 2=102,∴乙船每小时航行302海里.10.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC =120°,∠ADC =150°,BD =1 千米,AC =3 千米.假设小王和小李徒步攀登的速度为每小时1.2 千米,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B 点出发到达C 点).解:由∠ADC =150°知∠ADB =30°,由正弦定理得1sin 30°=AD sin 120°,所以AD = 3. 在△ADC 中,由余弦定理得:AC 2=AD 2+DC 2-2AD ·DC ·cos 150°,即32=(3)2+DC 2-2·3·DC cos 150°,即DC 2+3·DC -6=0,解得DC =-3+332≈1.372 (千米),∴BC ≈2.372 (千米),由于2.372<2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.层级二 应试能力达标1.如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C 由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定。

(完整版)高中数学-解三角形知识点汇总及典型例题1,推荐文档

(完整版)高中数学-解三角形知识点汇总及典型例题1,推荐文档

解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C=90°,AB=c,AC=b,BC=a。

(1)三边之间的关系:a2+b2=c2。

(勾股定理)(2)锐角之间的关系:A+B=90°;(3)边角之间的关系:(锐角三角函数定义)a b asin A=cos B=,cos A=sin B=,tan A=。

c c b2.斜三角形中各元素间的关系:在△ABC 中,A、B、C 为其内角,a、b、c 分别表示A、B、C 的对边。

(1)三角形内角和:A+B+C=π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a sin A = bsin B= csin C= 2R (R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C。

3.三角形的面积公式:1 1 1(1)S∆=2ah a=2bh b=2ch c(h a、h b、h c分别表示a、b、c上的高);1 1 1(2)S∆=2 ab sin C=2bc sin A=2ac sin B;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.2 2 1+3 1- 33 2 4c = a sin C = 20sin760 ≈30(cm ).sin A sin400②当 B ≈1160 时,a sin C 20sin240 C =180 -(A + B )≈180 -(40 +116 )=24,c = sin A= sin400 ≈13(cm ). 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型 2:三角形面积例 2.在∆ABC 中, sin A + cos A =, AC = 2 , AB = 3 ,求 tan A 的值和∆ABC 的面积。

高一数学讲义一(解三角形)

高一数学讲义一(解三角形)

解三角形一、知识结构要点:→→↓常用方法: (1)A+B+C=180° 可进行角的代换(2)R Cc B b A a 2sin sin sin === 可进行边角互换 (3)abc b a C 2cos 222-+= 可进行角转化为边 (4)A ab S sin 21=∆ 面积与边角联系。

二、例题例1、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。

求:(1)角C 的度数; (2)AB 的长度。

例2、ABC c b a B A b a ABC ∆-=-+∆则中若sin )()sin()(2222是( )A 、等腰三角形B 、直角三角形C 、等腰直角三角形D 、等腰或直角三角形。

例3、在△ABC 中 A=45°,B :C = 4:5最大边长为10,求角B 、C 外接圆半径及面积S例4、在△ABC 中以知A=30°a 、b 分别为角A 、B 对边,且a=4=33b ,解此三角形例5、已知△ABC 的三个内角成等差数列并且 tanA ·tanC=2+3⑴求A 、B 、C的变数,⑵若AB 边上的高CD=34 求三边a 、b 、c 的长。

三、基础练习:1、△ABC 中,∠A 、∠B 的对边分别为a 、b ,5,4a b ==,且∠A=60°,那么满足条件的△ABC ( )A .有一个解B .有两个解C .无解D .不能确定2、在△ABC 中,有sinB=2cosCsinA ,则此三角形是( )(A )等边三角形 (B )等腰三角形 (C )等腰直角三角形 (D )直角三角形3、△ABC 中,已知sin 2C -sin 2A -sin 2B =sinAsinB ,则角C 等于4、△ABC 中,若tanAtanB>1,则△ABC 是5、△ABC 中,若sinC =BA B A cos cos sin sin ++,则△ABC 为 . 6、在直角三角形、ABC 中,,,c r S 分别表示它的斜边、内切圆半径和面积,则cr S的最小值是 . 7、在△ABC 中,三边a, b, c 成等差数列,求证:B ≤6︒08、已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.9、已知△ABC 的三个内角A,B,C 满足A +C =2B,2C A 求cos ,cosB 2cosC 1cosA 1--=+的值.10、在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102(cos =θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时? OPθ45°东西北东。

解三角形完整讲义

解三角形完整讲义

正余弦定理知识要点:1、正弦定理:或变形:2、余弦定理:或3、解斜三角形的常规思维方法是:(1 )已知两角和一边(如A、B C),由A+B+C = n求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = n求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = n求C, 再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = n求角C。

4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式•5、解三角形问题可能出现一解、两解或无解的情况,这时应结合三角形中大边对大角定理及几何作图来帮助理解”。

6、已知三角形两边a,b,这两边夹角C,则S = 1/2 * absinC7、三角学中的射影定理:在△ ABC中,,… &两内角与其正弦值:在△ ABC中,,…【例题】在锐角三角形ABC中,有(B )A. cosA>sinB 且cosB>sinAB. cosA<sinB且cosB<sinAC. cosA>sinB 且cosB<sinAD. cosA<sinB且cosB>sinA9、三角形内切圆的半径:,特别地,正弦定理专题:公式的直接应用1、已知中,,,,那么角等于()A. B. C. D.2、在厶AB(中, a=, b =, B= 45°贝U A 等于(C )A. 30 °B. 60 °C. 60 或120 ° D 30 或1503、的内角的对边分别为,若,则等于()A. B. 2 C. D.4、已知△ AB(中,,,则a等于(B )A. B. C. D.5、在△ AB(中, = 10 , B=60° ,C=4则等于(B )A. B. C. D.6、已知的内角,,所对的边分别为,,,若,,则等于.()7、△ AB(中,,,,则最短边的边长等于(A )A . B. C . D .& △ AB(中,,的平分线把三角形面积分成两部分,则( C )A .B .C .D .9、在△ AB(中,证明:。

高中数学知识点《解三角形》

高中数学知识点《解三角形》

解三角形(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c R C===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc +-A = 第二章 数列 1、数列中与之间的关系:11,(1),(2).n nn S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。

2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。

⑵等差中项:若三数a A b 、、成等差数列2a b A +⇔=⑶通项公式:1(1)()n m a a n d a n m d =+-=+-或(n a pn q p q =+、是常数). ⑷前n 项和公式: ()()11122n n n n n a a S na d -+=+= ⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项()Λ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。

高中数学解三角形知识点

高中数学解三角形知识点

高中数学解三角形知识点三角形是数学中一个重要的几何形状,它是由三条边和三个角所确定的。

在高中数学中,解三角形的题型常常出现。

解三角形是指通过已知的条件,计算出三角形的边长和角度大小。

下面我们来了解一些解三角形的知识点。

一、勾股定理勾股定理是解决直角三角形问题的基本工具。

它的表达式是:直角三角形斜边的平方等于另外两条边平方的和。

即c²=a²+b²。

在解决直角三角形问题时,我们可以利用勾股定理来求解未知的边长。

二、正弦定理正弦定理是解决非直角三角形问题的重要定理。

对于一个三角形,它的三条边分别为a、b、c,对应的角度为A、B、C。

正弦定理的表达式为sinA/a = sinB/b = sinC/c。

当我们已知三个角度或两个角度和一个边长时,可以利用正弦定理来计算出其他未知的边长或角度。

三、余弦定理余弦定理也是解决非直角三角形问题的重要定理。

对于一个三角形,它的三条边分别为a、b、c,对应的角度为A、B、C。

余弦定理的表达式为c²=a²+b²-2abcosC。

当我们已知三个边长或两个边长和一个夹角时,可以利用余弦定理来计算出其他未知的边长或角度。

四、解决三角形面积的公式在解决三角形问题时,求解三角形的面积也是一个关键步骤。

一般情况下,可以利用海伦公式来计算三角形的面积。

海伦公式的表达式为S=√(p(p-a)(p-b)(p-c)),其中S表示三角形的面积,a、b、c表示三角形的边长,p表示三角形的半周长(p=(a+b+c)/2)。

五、特殊三角形此外,在解决三角形问题时,还需要了解一些特殊三角形的性质。

常见的特殊三角形包括等腰三角形、等边三角形、直角三角形等。

对于等腰三角形来说,它的两个底边相等,顶角相等;对于等边三角形来说,它的三条边都相等;对于直角三角形来说,它含有一个直角(90°)。

在解决三角形问题时,我们需要根据已知条件选择合适的解题方法,利用勾股定理、正弦定理、余弦定理等知识点进行计算。

2019-2020学年高中数学必修五《解三角形》精品讲义(教师版)

2019-2020学年高中数学必修五《解三角形》精品讲义(教师版)

2019-2020学年高中数学必修五《解三角形》精品讲义(教师版)一、知识点总结1.正弦定理其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2Rsin A,b=2Rsin B,c=2Rsin C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.三角形面积公式S△ABC=12absin C=12bcsin A=12acsin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.3.余弦定理:222222222a b c2bccos A b a c2accos B c a b2abcos C =+-,=+-,=+-. 余弦定理可以变形为:cos A=222b c a2bc+-,cos B=222a c b2ac+-,cos C=222a b c2ab+-.4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.二、知识点识记1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;第1 页共35 页。

高三数学-高考复习讲义-解三角形讲义资料(Word版)

高三数学-高考复习讲义-解三角形讲义资料(Word版)

高三数学-高考复习讲义-解三角形设ABC ∆中a b c 、、分别是角A B C 、、所对的边,R 为ABC ∆的外接圆半径,r 为ABC ∆内切圆半径,S 为ABC ∆的面积.三角形内角和定理:A B C π++=. 正弦定理:2sin sin sin a b cR A B C===. 余弦定理:Cab b a c B ac c a b Abc c b a cos 2cos 2cos 2222222222⋅-+=⋅-+=⋅-+=.三角形面积公式:1sin 2S ab C =11sin sin 22bc A ac B == 注意:三角形两边之和大于第三边,两边之差小于第三边一、利用正余弦定理求解三角形【例1】在ABC ∆中,角A B C ,,的对边为,,a b c ,若,则角A =( )A .30B .30105或C .60D .60120或【例2】在ABC ∆中,由已知条件解三角形,其中有两解的是( )A. 20,45,80b A C ===B. 30,28,60a c B === C. 14,16,45a b A ===D. 12,15,120a c A ===【例3】在锐角ABC ∆中,边长1,2a b ==,则边长c 的取值范围是_______.【例4】已知下列各三角形的两边及一边的对角,先判断三角形是否有解,若有解,再解该三角形.(1)07,8,105a b A === (2)010,20,80a b A ===(3)010,60a b A ===(4)06,30a b A ===︒===45,2,3B b a【例5】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b cos A +a cos B =2c cos C ,△ABC 的面积为 . (Ⅰ)求角C 的大小; (Ⅱ)若a =2,求边长c .【例6】在ABC ∆中,c b a 、、为角C B A 、、所对的三边,已知222+c b a bc -=.(1)求角A 的值;(2)若a =cos C =,求c 的长.【巩固训练】1.在ABC ∆中,若1,60,a C c ===则A 的值为( ) A .︒30 B .︒60 C .30150︒︒或 D .60120︒︒或 2在ABC ∆中,若B a b sin 2=,则A 等于( ) A .006030或B .006045或C .0060120或D .0015030或3边长为5,7,8的三角形的最大角与最小角的和是( ) A .090B .0120C .0135D .01504.在△ABC 中,若sin A :sin B :sin C =5:7:8,则∠B 的大小是 .5.在△ABC 中,“A >B ”是“sin A >sin B ”的 条件. 7.在△ABC 中,已知, , ,则a = . 8.在ABC △中,若43tan =A ,︒=120C ,32=BC ,则AB =( ) A.3 B.4C.5D.69.已知ABC ∆的外接圆半径为5,=6,=8,a b 则此三角形 ( )A .有一解B .有两解C .无解D .不能确定10.根据下列条件,判断三角形解的个数: (1)a = 80,b = 100,A =30°___________; (2)a = 50,b = 100,A =30°__________ ; (3)a = 40,b = 100,A =30°___________;二、正、余弦定理判断三角形形状【例8】在ABC ∆中,cos cos sin sin A B A B >,则ABC ∆为( )A .锐角三角形B .直角三角形C .钝角三角形D .无法判定【例9】在ABC ∆中,若2cos sin sin B A C =,则ABC ∆的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 【例10】ABC ∆的三边分别为,,a b c 且满足c a b ac b +==2,2,则此三角形是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【例11】在ABC ∆中,若,cos cos cos C c B b A a =+则ABC ∆的形状是什么?【巩固训练】1.在ABC ∆中,若,12,10,9===c b a 则ABC ∆的形状是_________。

解三角形完整讲义

解三角形完整讲义

正余弦定理知识要点:1、正弦定理:2sin sin sin a b c R A B C===或变形:::sin :sin :sin a b c A B C =. 2、余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 3、解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A+B+C = π求C ,由正弦定理求a 、b ;(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = π,求另一角;(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A+B+C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A+B+C = π,求角C 。

4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形边对大角定理及几何作图来帮助理解”。

6、已知三角形两边a,b,这两边夹角C ,则S =1/2 * absinC7、三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…8、两角与其正弦值:在△ABC 中,B A B A sin sin <⇔<,…【例题】在锐角三角形ABC 中,有 ( B )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA9、三角形切圆的半径:2S r a b c ∆=++,特别地,2a b c r +-=斜直正弦定理专题:公式的直接应用1、已知ABC △中,a =b =60B =,那么角A 等于( )A .135B .90C .45D .30 2、在△ABC 中,a =32,b =22,B =45°,则A 等于( C ) A .30° B .60° C .60°或120° D . 30°或150°3、ABC △的角A B C ,,的对边分别为a b c ,,,若120c b B ===,则等于( )AB .2 CD4、已知△ABC 中,30A =,105C =,8b =,则a 等于( B )A .4 B. C. D.5、在△ABC 中,a =10,B=60°,C=45°,则c 等于 (B )A .310+B .()1310-C .13+D .3106、已知ABC ∆的角A ,B ,C 所对的边分别为a ,b ,c ,若31sin =A ,B b sin 3=,则a 等于 . (33) 7、△ABC 中,45B =,60C =,1c =,则最短边的边长等于( A )A .3 B. 2 C . 12 D . 2a8、△ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( C ) A .13 B .12 C .34D .0 9、在△ABC 中,证明:2222112cos 2cos b a b B a A -=-。

(完整版)解三角形完整讲义

(完整版)解三角形完整讲义

正余弦定理知识要点:3、解斜三角形的常规思维方法是:(1)已知两角和一边(如 A 、 B 、 C ),由 A+B+C = π求 C ,由正弦定理求 a 、b ; (2)已知两边和夹角(如 a 、b 、c ),应用余弦定理求 c 边;再应用正弦定理先求较短边所 对的角,然后利用 A+B+C = π,求另一角;(3)已知两边和其中一边的对角(如 a 、b 、A ),应用正弦定理求 B ,由 A+B+C = π求 C , 再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况;(4)已知三边 a 、b 、c ,应余弦定理求 A 、B ,再由 A+B+C = π,求角 C 。

4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定 理及几何作图来帮助理解” 。

6、已知三角形两边 a,b,这两边夹角 C ,则 S =1/2 * absinC7、三角学中的射影定理:在△ ABC 中, b a cosC c cosA ,⋯8、两内角与其正弦值:在△ ABC 中, A B sin A sinB ,例题】在锐角三角形 ABC 中,有 (A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinA正弦定理专题:公式的直接应用1、已知 △ ABC 中, a2,b 3, B 60o ,那么角 A 等于( )A . 135oB . 90oC .45oD .30o2、在△ ABC 中, a = 2 3 ,b = 2 2 , B = 45°,则 A 等于( C )A .30°B . 60°C .60°或 120°D . 30°或 150°3、△ABC 的内角 A ,B ,C 的对边分别为 a , b ,c ,若 c 2,b 6,B 120o ,则 a1、 正弦定理a sin Ab sin B 2R 或变形: a:b:c sinCsin A :sin B :sin C .2a b 22c 2bc cos AcosA2、余弦定理:b 22a 2 c 2accosB 或 cosB2cb 2 2 a 2ba cosCcosCb 22c 2 a2bc222a cb 22ac222b 2a c2abB )B . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA9、三角形内切圆的半径:2S bc,特别地, r 直a b c 斜616、已知 ABC 的内角 A , B ,C 所对的边分别为 a ,b ,c ,若sin A ,b3sinB ,33则 a 等于 . ( 3 )336 12 6,12 6 24)2、已知 △ ABC 的周长为 2 1,且sinA sinB 2sinC .(1)求边 AB 的长;1(2)若 △ ABC 的面积为 sin C ,求角 C 的度数.专题:三角形个数4、已知△ ABC中,A 30o , C 105o , b 8,则 a 等于(B )A . 4B.4 2C.4 3D.4 55、在△ ABC 中,a=10,B=60°,C=45° ,则 c 等于 ( B)A . 10 3B . 10 3 1C . 3 1D . 10 3C . 3D . 2等于( )A . 6B .27、△ ABC 中, B 45o,C60o , c 1,则最短边的边长等于(B.3: 2两部分,则 cosA ( C )1 13 A .B .C .324cos2Acos2B119、在△ ABC 中,证2222ab 2a 2b 2D .0证明:cos2Acos2B 1 2sin 2 Ab 21 2sin2 Bb 21 1 sin2 A sin 2 B 222 2 2a b a b由正弦定理得:sin 2 Aa 22sinb 2cos2A 2a专题:两边之和1、在△ ABC 中,A =60°, B =45°, cos2B b 21b 2ab 12, a =;b = .8、△ ABC 中,A:B1: 2,C 的平分线 CD 把三角形面积分成1、△ ABC中,∠ A=60°, a= 6 , b=4, 那么满足条件的△ ABC ( C ) A.有一个解 B.有两个解C.无解D.不能确定2、Δ ABC中,a=1,b= 3 , ∠ A=30° ,则∠ B等于( B )A.60°B.60°或120° C.30°或150° D.120°3、在△ ABC 中,根据下列条件解三角形,则其中有两个解的是( D )A.b = 10,A = 45°, B = 70°B.a = 60,c = 48,B = 100°C.a = 7,b = 5,A = 80°D.a = 14,b = 16,A = 45°4、符合下列条件的三角形有且只有一个的是( D )A.a=1,b=2 ,c=3 B.a=1,b= 2 ,∠ A=30°专题:等比叠加D. 32专题:变式应用1、在△ ABC中,若∠ A:∠ B:∠C=1:2:3,则a : b : c 1: 3:22、已知△ABC中,a∶b∶c=1∶3 ∶2,则A∶B∶C等于( A )A.1∶2∶3B.2∶3∶1C.1:3:2D.3:1:23、在△ ABC 中,周长为7.5cm ,且sinA :sinB:sinC=4:5:6,下列结论:① a:b:c4:5:6② a:b:c 2: 5 : 6 ③a2cm,b 2.5cm,c 3cm④ A: B:C 4:5:6其中成立的个数是( C )A.0 个B. 1 个C.2个D.3个5、C.a=1,b=2,∠ A=100°C.b=c=1, ∠B=45°在△ ABC中,a=12,b=13,C=60°,此三角形的解的情况是(A.无解B.一解C.二解B)D.不能确定6、满足A=45 ,c= 6 ,a=2 的△ ABC 的个数记为m, 则 a m 的值为( A )7、8、A.4 B.2 C.1 D.不定已知△ ABC 中,a181,b 209,A 121 ,则此三角形解的情况是无解在△ ABC中,已知50 3 ,c 150 ,B 30o,则边长a。

高中数学-解三角形知识点汇总及典型例题

高中数学-解三角形知识点汇总及典型例题

解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

解三角形最全知识点总结

解三角形最全知识点总结

解三角形最全知识点总结一、基本概念1. 三角形的定义三角形是由三条边和三个角组成的平面几何图形。

它是三边相交于三个顶点而成的基本图形,常用符号Δ表示。

2. 三角形的分类根据三角形的边长和角度大小,三角形可以分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等5种类型。

3. 三角形的元素三角形的元素包括三边、三角、三个顶点、三个内角和三个外角等。

4. 三角形的性质三角形中的基本性质有:两边之和大于第三边、两角之和大于第三角、外角等于两个不相邻内角之和等。

二、性质定理1. 三角形内角和定理三角形内角和定理是几何学中的经典定理之一,它指出任意三角形内角的和等于180°。

2. 三角形外角和定理三角形的外角和定理是指三角形外角等于它对应内角的和,即三角形的一个外角等于与它相对的两个内角之和。

3. 直角三角形的性质直角三角形是一个内含有一个直角的三角形,它的两条边相对于直角的边长满足勾股定理。

4. 等腰三角形的性质等腰三角形是指两边边长相等的三角形,它的两条边角度相等,即底角相等。

5. 等边三角形的性质等边三角形是指三条边和三个角都相等的三角形,它是所有内角相等的三角形。

6. 中位线定理在三角形中,连接边上中点的直线称为中位线,中位线定理指出中位线的中点构成的线段等于底边的一半。

7. 外心定理外心定理是指三角形外接圆的圆心,外接圆定理指出外心是三角形三边的平分线的交点。

8. 内切圆定理内切圆定理是指三角形内切圆和三角形三边接触点构成的线段等于三角形的半周长。

9. 海伦公式海伦公式是指用三角形三边的长度来求三角形面积的公式,其中s为半周长。

10. 正弦定理正弦定理是三角形中用角的正弦比例来求边长的公式,可表示为a/sinA=b/sinB=c/sinC。

11. 余弦定理余弦定理是三角形中用边长和角度的余弦比例来求边长的公式,可表示为a²=b²+c²-2bc*cosA。

最全面的解三角形讲义

最全面的解三角形讲义

解三角形【高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法.4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b解的 个数无解 一解 两解 一解 一解 无解5.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 6.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)). (2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等. (4)坡度:坡面与水平面所成的二面角的度数.考向探究题型一 正弦余弦定理运用【例题1】在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c. 【例题2】 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.【例题3】 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;(2)若a=3,求bc 的最大值; (3)求cb C a --︒)30sin(的值.【变式】1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .2.(1)△ABC 中,a=8,B=60°,C=75°,求b; (2)△ABC 中,B=30°,b=4,c=8,求C 、A 、a.3.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的面积为 .4.已知△ABC 中,三个内角A ,B ,C 的对边分别为a,b,c,若△ABC 的面积为S ,且2S=(a+b )2-c 2,求tanC 的值.5. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .6. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则角B 的值为 . 7. 在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c.已知c=2,C=3π. (1)若△ABC 的面积等于3,求a 、b 的值; (2)若sinC+sin(B-A)=2sin2A,求△ABC 的面积. 题型二 判断三角形形状【例题】在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A-B )=(a 2-b 2)sin (A+B ),判断三角形的形状.【变式】 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B-8cosB+5=0,求角B 的大小并判断△ABC 的形状. 题型三 测量距离问题 【例题】如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.【变式】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离. 题型四 测量高度问题【例题】如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .【变式】如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB . 题型五 正、余弦定理在平面几何中的综合应用【例题】如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长. 【变式】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.巩固训练1.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是 三角形.2.在△ABC 中,A=120°,AB=5,BC=7,则CB sin sin 的值为 .3.已知△ABC 的三边长分别为a,b,c,且面积S △ABC =41(b 2+c 2-a 2),则A= .4.在△ABC 中,BC=2,B=3π,若△ABC 的面积为23,则tanC 为 .5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .9.下列判断中不正确的结论的序号是 . ①△ABC 中,a=7,b=14,A=30°,有两解 ②△ABC 中,a=30,b=25,A=150°,有一解 ③△ABC 中,a=6,b=9,A=45°,有两解 ④△ABC 中,b=9,c=10,B=60°,无解10. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状. 11. 在△ABC 中,cosB=-135,cosC=54.(1)求sinA 的值;(2)△ABC 的面积S △ABC =233,求BC 的长.12.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x-b=0 (a >c >b)的两根之差的平方等于4,△ABC 的面积S=103,c=7. (1)求角C ; (2)求a ,b 的值. 13. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a+b=5,c=7,且4sin 22B A +-cos2C=27.(1)求角C 的大小; (2)求△ABC 的面积.14.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ). A .50 2 m B .50 3 m C .25 2 m D.2522 m15.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90° D .α+β=180° 16.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°17.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里C .10海里 D .103海里18.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.19.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里? 参考答案例题答案题型一 正弦、余弦定理 【例题1】 解 ∵B=45°<90°且asinB <b <a,∴△ABC 有两解.由正弦定理得sinA=b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°, c=BCb sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°, c=B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A=60°,C=75°,c=226+或 A=120°,C=15°,c=226-. 【例题2】 解(1)由余弦定理知:cosB=ac b c a 2222-+,cosC=ab c b a 2222-+.将上式代入C B cos cos =-ca b+2得:ac b c a 2222-+·2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cosB=acb c a 2222-+=ac ac2- =-21∵B 为三角形的内角,∴B=32π.(2)将b=13,a+c=4,B=32π代入b 2=a 2+c 2-2accosB,得b 2=(a+c)2-2ac-2accosB ∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac=3.∴S △ABC =21acsinB=433. 【例题3】解(1)∵cosA=bca cb 2222-+=bc bc2-=-21, 又∵A ∈(0°,180°),∴A=120°.(2)由a=3,得b 2+c 2=3-bc,又∵b 2+c 2≥2bc (当且仅当c=b 时取等号),∴3-bc ≥2bc(当且仅当c=b 时取等号). 即当且仅当c=b=1时,bc 取得最大值为1.(3)由正弦定理得:===CcB b A a sin sin sin 2R, ∴CR B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒=C B C A sin sin )30sin(sin --︒ =CC C C sin )60sin()sin 23cos 21(23--︒- C C C C sin 23cos 23)sin 43cos 43--==21【变式】1.22. 解(1)由正弦定理得BbA a sin sin =. ∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C=90°.∴A=180°-(B+C)=60°,a=22b c -=43. 3. 1034. 解 依题意得absinC=a 2+b 2-c 2+2ab, 由余弦定理知,a 2+b 2-c 2=2abcosC. 所以,absinC=2ab(1+cosC), 即sinC=2+2cosC,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C=2.从而tanC=2tan 12tan22C C -=-34. 5.336. 3π或32π7. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab=4.又因为△ABC 的面积等于3, 所以21absinC=3,所以ab=4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a .(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA, 当cosA=0时,A=2π,B=6π,a=334,b=332. 当cosA ≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a所以△ABC 的面积S=21absinC=332. 题型二 判断三角形形状【例题】 解方法一 已知等式可化为a 2[sin (A-B )-sin (A+B )]=b 2[-sin (A+B )-sin(A-B)] ∴2a 2cosAsinB=2b 2cosBsinA 由正弦定理可知上式可化为:sin 2AcosAsinB=sin 2BcosBsinA ∴sinAsinB(sinAcosA-sinBcosB)=0 ∴sin2A=sin2B,由0<2A,2B <2π 得2A=2B 或2A=π-2B, 即A=B 或A=2π-B,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB=2b 2sinAcosB 由正、余弦定理,可得a 2b bca cb 2222-+= b 2a ac b c a 2222-+∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0 ∴a=b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.【变式】 解 方法一 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去).∴cosB=21. ∵0<B <π,∴B=3π.∵a ,b ,c 成等差数列,∴a+c=2b. ∴cosB=acbc a 2222-+=acc a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac=0,解得a=c. 又∵B=3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去). ∴cosB=21,∵0<B <π,∴B=3π,∵a,b,c 成等差数列,∴a+c=2b. 由正弦定理得sinA+sinC=2sinB=2sin 3π=3. ∴sinA+sin ⎪⎭⎫⎝⎛-A 32π=3, ∴sinA+sin A cos 32π-cos A sin 32π=3. 化简得23sinA+23cosA=3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A+6π=2π,∴A=3π, ∴C=3π,∴△ABC 为等边三角形.题型三 测量距离问题【例题】解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . 【变式】解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.题型四 测量高度问题【例题】解 如图,设CD =x m , 则AE =x -20 m , tan 60°=CD BD,∴BD =CD tan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m. 【变式】解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDCsin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.题型五 正、余弦定理在平面几何中的综合应用 【例题】解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.【变式】解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6巩固训练1. 等腰;2.53;3. 45°;4. 33;5. 60°;6. 45°或135°;7. 65π; 8. 3或23;9. ①③④10.(1)证明 因为a 2=b(b+c),即a 2=b 2+bc, 所以在△ABC 中,由余弦定理可得,cosB=acb c a 2222-+=ac bc c 22+=a cb 2+=ab a 22=b a 2=BA sin 2sin , 所以sinA=sin2B,故A=2B. (2)解 因为a=3b,所以ba=3, 由a 2=b(b+c)可得c=2b,cosB=ac b c a 2222-+=22223443b b b b -+=23,所以B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形.11. 解 (1)由cosB=-135,得sinB=1312, 由cosC=54,得sinC=53.所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533. (2)由S △ABC =233,得21×AB×AC×sinA=233. 由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB,故1320AB 2=65,AB=213. 所以BC=CA AB sin sin ⨯=211.12. 解 (1)设x 1、x 2为方程ax 2-222b c -x-b=0的两根,则x 1+x 2=ab c 222-,x 1·x 2=-a b .∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab4=4. ∴a 2+b 2-c 2=ab. 又cosC=abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C=60°. (2)S=21absinC=103,∴ab =40 ……① 由余弦定理c 2=a 2+b 2-2abcosC, 即c 2=(a+b)2-2ab(1+cos60°). ∴72=(a+b)2-2×40×⎪⎭⎫⎝⎛+211.∴a+b=13.又∵a >b ……②∴由①②,得a=8,b=5.13. 解 (1)∵A+B+C=180°,由4sin 22B A +-cos2C=27, 得4cos 22C-cos2C=27,∴4·2cos 1C +-(2cos 2C-1)=27,整理,得4cos 2C-4cosC+1=0,解得cosC=21, ∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2abcosC, 即7=a 2+b 2-ab,∴7=(a+b)2-3ab , 由条件a+b=5,得7=25-3ab,ab=6, ∴S △ABC =21absinC=21×6×23=233. 14.解析 由正弦定理得AB sin ∠ACB =ACsin B ,又∵B =30°∴AB =AC ·sin ∠ACBsin B =50×2212=502(m).答案 A15.解析 根据仰角与俯角的定义易知α=β. 答案 B 16.解析 如图. 答案 B17.解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里),于是这艘船的速度是50.5=10(海里/时). 答案 C18.解析 由正弦定理,知BC sin 60°=ABsin 180°-60°-75.解得BC =56(海里).答案 5 619.如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分) 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)11。

解三角形上课讲义

解三角形上课讲义

解三角形讲义摘要:高考对解三角形内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。

今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。

题型一般为选择题、填空题,也可能是中、难度的解答题。

一.正弦定理:1.正弦定理:(其中R是三角形外接圆的半径)2.变形:①②角化边③边化角如:△ABC中,①,则△ABC是等腰三角形或直角三角形②,则△ABC是等腰三角形。

3.三角形内角平分线定理:如图△ABC中,AD是的角平分线,则4.△ABC中,已知锐角A,边b,则①时,无解;②或时,有一个解;③时,有两个解。

如:①已知,求(有一个解)②已知,求(有两个解)注意:由正弦定理求角时,注意解的个数。

二.三角形面积1.2.,其中是三角形内切圆半径.注:由面积公式求角时注意解的个数三.余弦定理1.余弦定理:2.变形:注意整体代入,如:3.三角形中线:△ABC中, D是BC的中点,则4.三角形的形状①若时,角是锐角②若时,角是直角③若时,角是钝角如:锐角三角形的三边为,求x的取值范围; 钝角三角形的三边为,求x的取值范围;5.应用①用余弦定理求角时只有一个解②已知,求边题型1:正、余弦定理1、在△ABC中,由已知条件解三角形,其中有两解的是()A.b=20,A=45°,C=80° B.a=30,c=28,B=60°C.a=14,b=16,A=45° D.a=12,c=15,A=1202、3、已知求的边长以及外接圆的面积。

4、在中,若其面积,则=_______。

5、边长为5,7,8的三角形的最大角与最小角的和是()A.B.C.D.6、在中,7..(1)在ABC中,已知,,,求b及A;题型2:三角形面积1.在中,,,,求的值和的面积。

解三角形完整讲义

解三角形完整讲义

欢迎阅读正余弦定理知识要点:1、正弦定理:2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2、余弦定理: 2222222cos 2cos a b c bc A b a c ac B ⎧=+-⎪=+-⎨ 或 222222cos 2cos b c a A bc a c b B ⎧+-=⎪⎪+-⎪=⎨. 8、两内角与其正弦值:在△ABC 中,B A B A sin sin <⇔<,…【例题】在锐角三角形ABC 中,有 ( B )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA9、三角形内切圆的半径:2S r a b c ∆=++,特别地,2a b c r +-=斜直正弦定理专题:公式的直接应用1、已知ABC △中,a =b =60B =,那么角A 等于( )A .135B .90C .45D .3030,105C =,b =等于 .37、△ABC 中,45B =,60C =,1c =,则最短边的边长等于( A )A .3212 D . 2 8、△ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( C ) A .13 B .12 C .34D .0 9、在△ABC 中,证明:2222112cos 2cos b a b B a A -=-。

证明:⎪⎪⎭⎫ ⎝⎛---=---=-222222222222sin sin 211sin 21sin 212cos 2cos b B a A b a b B a A b B a A2、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( B )A .60°B .60°或120°C .30°或150°D .120°3、在△ABC 中,根据下列条件解三角形,则其中有两个解的是 ( D )A .b = 10,A = 45°,B = 70° B .a = 60,c = 48,B = 100°C .a = 7,b = 5,A = 80°D .a = 14,b = 16,A = 45°4、符合下列条件的三角形有且只有一个的是 ( D )A .a=1,b=2 ,c=3B .a=1,b=2 ,∠A=30°C .a=1,b=2,∠A=100° C .b=c=1, ∠B=45°5、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( B ) 30,则边长60,a =专题:变式应用1、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 2:3:12、已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( A )A .1∶2∶3B .2∶3∶1C .1:3:2D .3:1:23、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( C )A .0个B .1个C .2个D .3个1、△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围( C)A .2>xB .2<xC .3342<<xD . 3342≤<x 2、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( B )A .51<<xB .135<<xC .50<<xD .513<<x3、在锐角中,则的值等于 ,的取值范围为 . 2答案?:设由正弦定理得 由锐角得, A. 090 B. 060 C. 0120 D. 01506、在△ABC 中,三边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为( D )A .38B .37C .36D .357、在△ABC 中,已知bc c b a ++=222,则角A 为(C )ABC ∆1,2,BC B A ==cos AC A AC )3,2(,2.A B θθ∠=⇒=,1 2.sin 2sin 2cos cos AC BC AC AC θθθθ=∴=⇒=ABC ∆0290045θθ<<⇒<<230452θ<<⇒<A . 3πB .6πC .32πD . 3π或32π8、在钝角△ABC 中,已知1a =,2b =,则最大边c 的取值范围是。

最全面的解三角形讲义全

最全面的解三角形讲义全

解三角形【高考会这样考】1考查正、余弦定理的推导过程.2•考查利用正、余弦定理判断三角形的形状. 3•考查利用正、余弦定理解任意三角形的方法.4. 考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.基础梳理a b c1. 正弦定理: = = 、=2R,其中R 是三角形外接圆的半径•由正弦定理可以变sin A sin B sin C形为:(1) a : b : c = sin A : sin B: sin C;(2) a = 2R sin_ A , b = 2R sin_ 旦 c = 2R sin_ C ;a b c(3) sin A = 2R sin B= 2R sin C = 2R 等形式,以解决不同的三角形问题.圆半径,r 是三角形内切圆的半径),并可由此计算 R, r .5•用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2•余弦定理:a 2 =b 2 +c 2 — 2bc cos_ A, b 2 = a 2+ c 2— 2ac cos_ B, c 2 = a 2+ b 2— 2ab cos_C. 余弦定理可以变形为: cos A = 2,22b +c — a 2bc , cos B = 2,22a + c —b 2accos C = 222a +b — c3•面积公式:1 1& ABC = q ab sin C = ^bc sinA 1r abc 1 ,A = g ac sin B=;4R = 2(a + b + c )r (R 是三角形外接6•实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角 (如图⑴)•(2)方位角(4) 坡度:坡面与水平面所成的二面角的度数.考向探究题型一正弦余弦定理运用【例题1】在厶ABC 中,已知a= ,3 ,b= ,2 ,B=45 ° ,求A 、C 和c.【例题2】在厶ABC 中,a 、b 、c 分别是角A , B, C 的对边,且空B =- L cosC 2a c (1) 求角B 的大小;(2) 若b= J3 , a+c=4,求厶ABC 的面积.【例题3】 (14分)△ ABC 中,角A , B, C 的对边分别为a , b , c ,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;(2) 若a= .. 3,求be 的最大值;指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为a (如图(2)). ⑶ 方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(3) 求asin(3° C)的值.b e【变式】1. △ ABC的内角A、B C 的对边分别为a、b、e,若e= •、2 , b=、. 6 , B=120° ,则a= .2. ( ABC中, a=8,B=60 ° ,C=75 ° ,求b;(2) △ ABC中,B=30° ,b=4,e=8,求C A、a.3. 在厶ABC中,A=60°,AB=5 BC=7,则厶ABC的面积为.4. 已知△ ABC中,三个内角A,B, C的对边分别为a,b,e,若厶ABC的面积为S,且2S=( a+b)2-e2,求tanC 的值.5. 在厶ABC中,角A、B C所对的边分别为a、b、e.若(3 b-e) cosA=acosC,贝U eosA=6. 在厶ABC中,角A B、C的对边分别为a、b、。

高中数学解三角形

高中数学解三角形

高中数学解三角形三角形是几何学中最基本的形状之一,也是高中数学中的重要内容之一。

在解三角形的过程中,我们会涉及到三角形的各种性质和定理,通过运用这些知识,我们能够准确地计算出三角形的各种参数。

本文将介绍一些常用的解三角形方法和定理,帮助读者更好地理解和应用这些知识。

一、三角形的基本性质1. 三角形的内角和定理:任意三角形的三个内角的和等于180度。

这一性质是解三角形的基础,通过它我们可以推导出其他的三角形性质和定理。

2. 三角形的外角和定理:三角形的任意一个外角等于其余两个内角的和。

这一性质在解决一些与三角形内角相关的问题时非常有用。

3. 三角形的边长关系:在一个三角形中,两边之和大于第三边,两边之差小于第三边。

这一性质也是解三角形问题时需要注意的重要条件。

二、解三角形的方法1. 已知两边和夹角:如果我们已知三角形的两边和夹角,可以通过余弦定理来计算第三边的长度。

余弦定理的公式为:c² = a² + b² -2abcosC,其中c为第三边的长度,a和b为已知的两边的长度,C 为夹角的度数。

2. 已知三边:如果我们已知三角形的三边长度,可以通过余弦定理来计算夹角的大小。

余弦定理的公式为:cosC = (a² + b² - c²) / 2ab,其中C为夹角的度数,a、b和c为三边的长度。

3. 已知两边和夹角的正弦或余弦值:如果我们已知三角形的两边和夹角的正弦或余弦值,可以通过正弦定理或余弦定理来计算第三边的长度或夹角的大小。

4. 已知两角和一边:如果我们已知三角形的两个角和一边的长度,可以通过正弦定理或余弦定理来计算其他未知参数。

三、常用的三角形定理1. 正弦定理:在一个三角形中,三条边的长度与其对应的角的正弦值成比例。

正弦定理的公式为:a / sinA = b / sinB = c / sinC,其中a、b和c为三边的长度,A、B和C为对应的角的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学讲义
【例1】 ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则c o s B =
( ) A .
14 B .34 C
【例2】 在ABC ∆中,下列等式总能成立的是 ( )
()A cos cos a C c A = ()B sin sin b C c A =
()C sin sin ab C bc B = ()D sin sin a C c A =
【例3】 在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( )
A.等腰直角三角形
B.直角三角形
C.等腰三角形
D.等边三角形
【例4】 △ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,
△ABC 的面积为
23,那么b 等于 ( ) A.
231+ B.1+3 C.232+ D.2+3
【例5】 若ABC ∆的内角A 满足2sin 23
A =,则sin cos A A += ( )
A.
B
..53 D .53- 【例6】 在△ABC 中,“sin sin A B >”是“A B >”的 ( )
A 充分不必要条件
B 必要不充分条件 典例分析
板块一. 三角形中的 有关问题
高中数学讲义 C 充要条件
D 既不充分也不必要条件
【例7】 在△ABC 中,若2222()sin()()sin a b A B a b C +-=-,则△ABC 是( ) A 等腰三角形
B 直角三角形
C 等腰直角三角形
D 等腰三角形或直角三角形
【例8】 ,,a b c 是ABC ∆三边长,若满足等式()()a b c a b c ab +-++=,则角C 的大小为 ( )
()A 060 ()B 090 ()C 0120 ()D 0150
【例9】 在△ABC 中,已知tan tan tan A B A B +=⋅且sin cos 4
A A =,则△ABC 是 ( )
A 正三角形
B 正三角形或直角三角形
C 直角三角形
D 等腰三角形
【例10】 在△ABC 中,,33A BC π
==,则△ABC 的周长为 ( )
A . )33
B π+
+ B .)36B π++ C. 6sin()33B π+
+ D.6sin()36B π
++
【例11】 在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且BC 边上的高为2a ,则c b b c
+的最大值为 ( )
A . B
C 2
D 4
【例12】 在ABC ∆中,由已知条件解三角形,其中有两解的是 ( ) A.0020,45,80b A C ===
B.030,28,60a c B ===
C.014,16,45a b A ===
D. 012,15,120a c A ===
高中数学讲义
【例13】在ABC
∆中,已知
5
cos
13
A=,
3
sin
5
B=,则cos C的值为()
A
16
65
B
56
65
C
16
65

56
65
D
16
65
-
【例14】若钝角三角形三边长为1
a+、2
a+、3
a+,则a的取值范围是.
【例15】在ABC
∆C中,0
60,1,
sin sin sin
ABC
a b c
A b S
A B C
++
∠===
++
则= .
【例16】在△ABC中,角A、B、C所对的边分别是a、b、c,,若00
105,45
A B
∠=∠=,b=由c= .
【例17】在△ABC中,2
b=,c=△ABC面积
3
2
S=,由A
∠= .
【例18】在ABC
∆中,若∠C=60°,则
c
a
b
c
b
a
+
+
+
=_______.
【例19】在锐角ABC
∆中,边长a=1,b=2,则边长c的取值范围是_______.
【例20】已知ABC
∆的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD 的长为.
【例21】在△ABC中,7,8,9
a b c
===,则AC边上的中线BD长为.
【例22】在ABC
△,角,,
A B C
∠∠∠所对的边分别是,,
a b c,若三角形的面积1
4
S= ()
222
a b c
+-,则∠C的度数是_______.
【例23】在ABC
△中,sin A=
C
B
C
B
cos
cos
sin
sin
+
+
,判断这个三角形的形状.
【例24】在ABC
△中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,
高中数学讲义 且22a c ac bc -=-,求∠A 的大小及
c
B b sin 的值.
【例25】 如图,D 是直角ABC △斜边BC 上一点,AB=AD ,记∠CAD=α,∠ABC=β. (1).证明 sin cos 20αβ+=;
(2).若求β的值.
【例26】
ABC ∆中,内角,,A B C 成等差数列,边长8,7a b ==,求边c 及ABC ∆面积.
【例27】 在ABC ∆中,c b a ,,分别为角C B A ,,的对边,已知ABC c ∆=,27的面积为32
3,且
tan tan tan tan 3A B A B +⋅b a +的值.
【例28】 已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,△ABC 外接圆半径为2.
(1)求∠C ;
(2)求△ABC 面积的最大值.
【例29】 在△ABC 中,角A 、B 、C 对边分别为a 、b 、c. 证明:
222c b a -=C
B A sin sin )(-.
【例30】 已知圆内接四边形ABCD 的边长分别是2,6,4AB BC CD DA ====,求四边形ABCD 的面积.
高中数学讲义
【例31】 在△ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,若,,a b c 成等比数列,且
2cos 28cos 50B B -+=,求角B 的大小并判断△ABC 的形状.
【例32】 在ABC △中,,,A B C ∠∠∠所对的边分别为,,a b c ,且1cos 3
A = (1)求2sin cos22
B
C A +⎛⎫+ ⎪⎝⎭
的值; (2
)若a =bc 的最大值;
【例33】 在ABC △中,,,A B C ∠∠∠所对的边分别为,,a b c ,设,,a b c 满足条件
222b c b c a +-=
和12
c b =A ∠和tan B 的值.
【例34】 如图,已知ABC △是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN
经过ABC △的中心G ,设MGA α∠=(233
π
πα≤≤) (1)试将AGM △、AGN △的面积(分别记为S 1与S 2)表示为α的函数;
(2)求2212
11S S y =+的最大值与最小值. D
C
B
A
高中数学讲义
N
M
G D C B
A。

相关文档
最新文档