北师大_数学_八年级_下_第2章_2.3不等式的解集
第二章2.1-2.3不等关系;不等式的基本性质;不等式的解集
一、考点突破1. 了解不等式的意义,能够根据具体问题中的数量关系理出不等式(组);2. 理解并掌握不等式的基本性质,能够利用不等式的基本性质比较两个数(或式子)的大小;3. 了解一元一次不等式(组)的解的意义,能够利用不等式的基本性质解不等式,且能够在数轴上表示或判定其解集.二、重难点提示重点:不等式的基本性质及应用其解不等式,并在数轴上表示出不等式的解集。
难点:理解方程与不等式之间的区别和联系。
微课程1:不等关系【考点精讲】考点1:不等式的定义:一般地,用不等号连接的式子叫不等式。
考点2:不等号:>,≥,<,≤,≠说明:(1)用“≥”来表示的字眼:“不小于”,“至少”“不低于”……;(2)用“≤”来表示的字眼:“不大于”,“至多”“不超过”……。
考点3:列不等式考点4:不等式和方程的区别:(1)从定义上来看,不等式是表示不等关系的式子;而方程是含有未知数的等式;(2)从符号上来看,不等式是用“>”“<”“≥”或“≤”来表示的;而方程是用“=”来连接两边的式子的;(3)从是否含有未知数上来看,不等式可以含有未知数,也可以不含有未知数;而方程则必须含有未知数。
【典例精析】例题1 用适当的符号表示下列关系:(1)x的13与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%; (5)小明的体重不比小刚轻。
思路导航:(1)非正数用“≤”表示;(2)、(4)不小于就是大于等于,用“≥”来表示; (3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重,用“≥”表示。
答案:(1)120;3x x +≤-x )元,则84(10)72x x +-≤点评:本题考查列不等式,解题关键是将现实生活中的事件与数学思想联系起来,列出不等关系式。
注意本题的不等关系为:至少含有4200单位的维生素C ,购买甲、乙两种原料的费用不超过72元。
2024年北师大版数学八年级下册2.3《不等式的解集》教学设计
2024年北师大版数学八年级下册2.3《不等式的解集》教学设计一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容,本节课主要让学生掌握不等式的解集及其表示方法,学会求解一元一次不等式组,并能够用数轴表示不等式的解集。
教材通过引入实际问题,引导学生探究不等式的解集,培养学生的逻辑思维能力和解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了不等式的基本性质,具有一定的数学运算能力。
但部分学生对不等式的解集概念理解不深,容易与方程的解集混淆。
因此,在教学过程中,教师需要关注这部分学生的学习情况,通过具体例子和实际问题,帮助他们更好地理解不等式的解集。
三. 教学目标1.知识与技能:(1)了解不等式的解集及其表示方法;(2)学会求解一元一次不等式组;(3)能够用数轴表示不等式的解集。
2.过程与方法:(1)通过实际问题,引导学生探究不等式的解集;(2)利用数形结合,培养学生解决实际问题的能力;(3)培养学生的逻辑思维能力和运算能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的精神。
四. 教学重难点1.重点:不等式的解集及其表示方法,一元一次不等式组的求解。
2.难点:不等式的解集与方程的解集的区别,用数轴表示不等式的解集。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生探究不等式的解集。
2.数形结合法:利用数轴帮助学生直观地理解不等式的解集,培养学生的空间想象能力。
3.引导发现法:教师引导学生发现不等式的解集的性质,培养学生独立思考的能力。
4.小组合作学习:学生分组讨论,共同解决问题,提高学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作课件,展示不等式的解集的性质和表示方法。
2.数轴教具:准备数轴教具,方便学生直观地理解不等式的解集。
3.练习题:准备适量的一元一次不等式组练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“某班学生的身高大于160cm,求该班学生的身高范围”,引导学生思考不等式的解集。
新北师大版八数下第二章不等式的解集
八年级数学组
学习目标:
1.理解不等式的解与解集的意义。 2.会用数轴表示不等式的解集。 3.会写不等式的特殊解。
自学指导
阅读课本43-44页,回答:
1.什么叫不等式的解? 2.什么叫不等式的解集? 3.什么叫解不等式? 4.不等式x+2>6的解集为 _ __ 5.在数轴上表示x-1<0的解集。
例1. 用数轴表示下列不等式的解集: ⑴ x>-1; ⑵ x< 9
解:
○
。
0 ⑴ 0 ⑵ 9
-1
总结: 用数轴表示不等式的解集的步骤: 第一步:画数轴;
第二步:定界点;
第三步:定方向.
例2. 用数轴表示下列不等式的解集:
⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1; (5)-2<x<3.
(3) - 3 x +2 < - 3 y + 2
(5)已知a>b,若a<0,则a2
(4)- 3 x + 2 > - 3y + 2
ab;若a>0,则a2 ab.
如果不等式a>b两边都乘以a2,乘以a2 +1,乘以a2__1呢 (其中a的值不确定) (6)下列各式分别在什么条件下成立?
(1) a > - a
是正还是负?
① ② ③ ④
不等式的基本性质有什么用呢? 例:将下列不等式化成 X > a或 x < a 的形式 (1) x-5 >-1
(2) -2x > 3 (3) 7x <6x -6
将下列不等式化成“x>a”或“x<a”的形式: (1)x-17<-5; 1 (2) 2 x >-3
北师大版数学八年级下册2.3不等式的解集教学设计
-设计不同层次的练习题,从简单的数值替换到字母表达式的转换,逐步引导学生掌握一元一次不等式的解法。
2.针对难点内容的教学设想:
-对于抽象不等式的问题,采用问题驱动的教学方法,鼓励学生先将实际问题转化为数学语言,然后引导学生识别关键信息,建立不等式模型。
-对于解集的表示,通过小组讨论和合作学习,让学生在互动中探索如何在数轴上准确地表示解集,以及如何处理区间端点的包含与排除问题。
-针对不等式组等复杂问题,设计案例分析和综合练习,逐步引导学生学会分析多个不等式之间的关系,并运用逻辑推理和数学技巧解决问题。
为了有效突破重难点,教学设想还包括以下策略:
-利用信息技术,如多媒体课件和数学软件,为学生提供直观的学习工具,帮助他们在视觉和操作层面上更好地理解不等式的解集。
-实施差异化教学,根据学生的学习能力提供不同难度的任务,确保每位学生都能在原有基础上得到提升。
-创设情境教学,将数学问题融入到真实的生活情境中,让学生在实际操作中体验数学建模的过程,提高问题解决的能力。
-强化反馈机制,通过课堂提问、小组互评和课后反思,及时了解学生的学习情况,调整教学策略,确保教学目标的达成。
2.讨论过程:学生通过小组合作,共同探讨问题的解决方法,鼓励学生提出不同的观点和思路。
3.汇报展示:各小组汇报自己的解题过程和结果,其他小组进行评价,教师给予点评和指导。
(四)课堂练习
课堂练习是巩固新知、提高解题能力的重要环节。我将设计以下练习:
1.基础练习:针对一元一次不等式的解法,设计一些基础题目,让学生独立完成。
3.情感态度:强调数学在实际生活中的应用,培养学生的实用主义精神。
新版北师大初中数学教材目录
新版北师大初中数学教材目录七年级上册第一章丰富的图形世界1.生活中的立体图形 2.展开与折叠3.截一个几何体 4.从三个不同方向看物体的形状第二章有理数及其运算1.有理数 2.数轴 3.绝对值4.有理数的加法 5.有理数的减法6.有理数的加减混合运算 7.有理数的乘法8.有理数的除法 9.有理数的乘方 10.科学计数法11.有理数的混合运算 12.用计算器进行运算第三章整式及其加减1.字母表示数 2.代数式 3.整式4.整式的加减 5.探索与表达规律第四章基本平面图形1.线段、射线、直线 2.比较线段的长短3.角 4.角的比较 5.多边形和圆的初步认识第五章一元一次方程1.认识一元一次方程 2.求解一元一次方程3.应用一元一次方程——水箱变高了4.应用一元一次方程——打折销售5.应用一元一次方程——“希望工程”义演6.应用一元一次方程——追赶小明第六章数据的收集与整理1.数据的收集 2.普查和抽样调查3.数据的表示 4.统计图的选择七年级下册第一章整式的乘除1.同底数幂的乘法 2.幂的乘方与积的乘方3.同底数幂的除法 4.整式的乘法5.平方差公式 6.完全平方公式 7.整式的除法第二章相交线与平行线1.两条直线的位置关系 2.探索直线平行的条件3.平行线的性质 4.用尺规作角第三章三角形1.认识三角形 2.图形的全等 3.探索三角形全等的条件4.用尺规作三角形 5.利用三角形全等测距离第四章变量之间的关系1.用表格表示的变量间关系 2.用关系式表示的变量间关系3.用图像表示的变量间关系第五章生活中的轴对称1.轴对称现象 2.探索轴对称的性质3.简单轴对称图形 4.利用轴对称进行设计第六章频率与概率1.感受可能性 2.频率的稳定性 3.等可能事件的概率八年级上册第一章勾股定理1.探索勾股定理 2.一定是直角三角形吗 3.勾股定理的应用第二章实数1.认识无理数 2.平方根 3.立方根 4.估算5.用计算器开方 6.实数 7.二次根式第三章位置与坐标1.确定位置 2.平面直角坐标系 3.轴对称与坐标变化第四章一次函数1.函数 2.一次函数与正比例函数 3.一次函数的图象4.一次函数的应用第五章二元一次方程组1.认识二元一次方程组 2.求解二元一次方程组3.应用二元一次方程组——鸡兔同笼4.应用二元一次方程组——增收节支5.应用二元一次方程组——里程碑上的数6.二元一次方程与一次函数7.用二元一次方程组确定一次函数表达式8.三元一次方程组第六章数据的分析1.平均数 2.中位数与众数3.从统计图分析数据的集中趋势 4.数据的离散程度第七章平行线的证明1.为什么要证明 2.定义与命题 3.平行线的判定4.平行线的性质 5.三角形内角和定理八年级下册第一章证明(二)1.等腰三角形 2.直角三角形 3.线段的垂直平分线 4.角平分线第二章一元一次不等式和一元一次不等式组1.不等关系 2.不等式的基本性质3.不等式的解集 4.一元一次不等式5.一元一次不等式与一次函数 6.一元一次不等式组第三章图形的平移与旋转1.图形的平移 2.图形的旋转 3.中心对称 4.简单的图案设计第四章因式分解1.因式分解 2.提公因式法 3.运用公式法第五章分式1.认识分式 2.分式的乘除法 3.分式的加减法 4.分式方程第六章平行四边形1.平行四边形的性质 2.平行四边形的判别3.三角形的中位线 4.多边形的内角和与外角和九年级上册第一章特殊的平行四边形1.菱形的性质与判定 2.矩形的性质与判定 3.正方形的的性质与判定第二章一元二次方程1.认识一元二次方程 2.配方法 3.公式法4.因式分解法 5.一元二次方程的应用第三章相似图形1.成比例线段 2.平行线分线段成比例 3.相似多边形4.相似三角形的判定 5.黄金分割 6.测量旗杆的高度7.相似三角形的性质 8.图形的放大与缩小第四章视图与投影1.投影 2.视图第五章反比例函数1.反比例函数 2.反比例函数的图象与性质 3.反比例函数的应用第六章对概率的进一步研究1.游戏公平吗 2.投针试验 3.生日相同的概率九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起 2.特殊角的三角函数值3.三角函数的有关计算 4.船有触礁的危险吗 5.测量物体的高度第二章二次函数1.二次函数所描述的关系 2.二次函数的图像与性质 3.确定二次函数的表达式4.最大面积是多少 5.何时获得最大利润 6.二次函数与一元二次方程第三章圆1.圆 2.圆的对称性 3.垂径定理 4.圆周角与圆心角的关系5.确定圆的条件 6.直线和圆的位置关系 7.切线长定理8.圆内接正多边形 9.弧长及扇形的面积第四章统计与概率1.视力的变化 2.生活中的概率 3.统计与概率的应用。
八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳北...
八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳北...八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳(北师大版)第二章一元一次不等式和一元一次不等式组一.不等关系1.一般地,用符号“<</span>”(或“≤”),“>”(或“≥”)连接的式子叫做不等式2.要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数大于等于0(≥0),非正数小于等于0(≤0)二.不等式的基本性质1.掌握不等式的基本性质:(1)不等式的两边加上(或减)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,a/c=b/c.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac2.比较大小:(a、b分别表示两个实数或整式)即:a>b <===>a-b>0 a=b <===>a-b=0 a<===>a-b<02.比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a那么a-b是负数;反过来,如果a-b是负数,那么a即:a>b <===>a-b>0a=b <===>a-b=0a<===>a-b<0(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三.不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个含有未知数的不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.¤3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:边界:有等号的是实心圆圈,无等号的是空心圆圈;。
新北师大版八年级数学下册第2章教案
第二章一元一次不等式和一元一次不等式组单元教学目标:1、知识与技能:理解不等式(组)的解及解集的含义,会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会用数轴确定其解集。
2、过程与方法:经历将一些简单的实际问题抽象为不等式的过程,进一步体会模型思想,建立符号意识。
3、情感、态度与价值观:进一步感受数学与生活的紧密联系,体会数学的价值。
单元教学重点:1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
2、解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会用数轴确定其解集。
3、能够根据具体问题中的数量关系列出一元一次不等式或一元一次不等式组,解决简单的实际问题。
单元教学难点:1、求不等式的解集和不等式组的解集,以及正确运用不等式的基本性质。
2、列一元一次不等式组解决实际问题。
单元课时安排:1、不等关系 1课时2、不等式的基本性质 1课时3、不等式的解集 1课时4、一元一次不等式 2课时5、一元一次不等式与一次函数 2课时6、一元一次不等式组 2课时7、一元一次不等式组应用 1课时回顾与思考 1课时§2.1 不等关系知识与技能目标理解不等式的意义;能根据条件列出不等式.过程与方法目标通过列不等式,训练学生的分析判断能力和逻辑推理能力.情感态度与价值观目标通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并以此激发学生学习数学的信心和兴趣.教学重点用不等关系解决实际问题.教学难点正确理解题意列出不等式.教法与学法讨论探索法教具准备多媒体课件教学过程一、创设问题情境,引入新课我们学过等式,知道利用等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.二、新课讲授既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?那么,如何用式子表示不等关系呢?请看例题.(课件)例1:用两根长度均为l cm的绳子,分别围成一个正方形和圆.(1)如果要使正方形的面积不大于25 cm2,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)你能得到什么猜想?改变l的取值,再试一试.本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.下面请大家互相讨论,按照题中的要求进行解答.猜想:用长度均为l cm 的两根绳子分别围成一个正方形和圆,无论l 取何值,圆 的面积总大于正方形的面积,即 42l >162l . 做一做:课件通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m 的地方作为测量部位,某树栽种时的树围为5 cm ,以后树围每年增加约为 3 cm.这棵树至少生长多少年其树围才能超过2.4 m ?(只列关系式).[师]请大家互相讨论后列出关系式.议一议:观察由上述问题得到的关系式,它们有什么共同特点?一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.[例]用不等式表示(1)a 是正数;(2)a 是负数;(3)a 与6的和小于5;(4)x 与2的差小于-1;(5)x 的4倍大于7;(6)y 的一半小于3.三、随堂练习当x =2时,不等式x +3>4成立吗?当x =1.5时,成立吗?当x =-1呢?四、课时小结能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.通过不等关系的式子归纳出不等式的概念.五、课后作业习题2.1 第1、2、3、4题.六、板书设计2.1 不等关系不等式:用来表示不等关系的式子叫不等式。
八年级数学北师大版下册名师说课稿:第二章课题 一元一次不等式组及其解集
八年级数学北师大版下册名师说课稿:第二章课题一元一次不等式组及其解集一. 教材分析本次说课的教材是北师大版八年级数学下册第二章课题《一元一次不等式组及其解集》。
本节课的内容是在学生已经掌握了不等式的概念、性质和一元一次不等式的解法的基础上进行学习的。
通过本节课的学习,使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次不等式的相关知识,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于不等式组的解法和解集的表示方法,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生,激发学生的学习兴趣,帮助学生理解和掌握不等式组的知识。
三. 说教学目标1.知识与技能目标:使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:不等式组的解法和不等式组的解集的表示方法。
2.教学难点:不等式组的解集的图像表示方法。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在解决问题的过程中,掌握不等式组的知识。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,辅助教学。
六. 说教学过程1.导入新课:通过复习一元一次不等式的知识,引出不等式组的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究不等式组的解法,引导学生发现解法的规律。
3.合作交流:学生分组讨论,分享解法经验,互相学习,共同提高。
4.教师讲解:教师讲解不等式组的解集的表示方法,特别是图像法的含义和画法。
5.练习巩固:让学生通过练习题,巩固所学知识,提高解题能力。
6.总结提升:教师引导学生总结不等式组的知识,使学生形成系统化的知识结构。
北师大版数学八年级下册《3. 不等式的解集》教案
北师大版数学八年级下册《3. 不等式的解集》教案一. 教材分析《北师大版数学八年级下册》中的《3. 不等式的解集》一章主要介绍了不等式的解集及其表示方法。
通过本章的学习,学生能够理解不等式的解集概念,掌握求解不等式解集的方法,并能够用数轴、表格等方式表示不等式的解集。
二. 学情分析学生在学习本章之前,已经掌握了不等式的基本概念和性质,具备了一定的代数基础。
但部分学生对于不等式的解集的理解和表示方法可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导。
三. 教学目标1.知识与技能目标:使学生理解不等式的解集概念,掌握求解不等式解集的方法,能够用数轴、表格等方式表示不等式的解集。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.重点:不等式的解集概念,求解不等式解集的方法。
2.难点:不等式解集的表示方法,尤其是数轴表示方法。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等多种教学方法,引导学生自主学习,培养学生的解决问题的能力。
六. 教学准备1.准备相关的不等式案例,用于课堂分析和练习。
2.准备数轴、表格等表示工具,用于展示不等式的解集。
3.准备课堂提问的问题,激发学生的思考。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、身高等,引入不等式的解集概念。
提问学生:不等式的解集是什么意思?引导学生思考并回答。
2.呈现(10分钟)呈现一些不等式案例,让学生尝试求解。
如:(1)2x + 3 > 7(2)x - 5 ≤ 8引导学生通过移项、合并同类项等方法,求解不等式的解集。
3.操练(15分钟)让学生分组合作,解决一些不等式解集的问题。
如:(1)求解不等式 3x - 4 < 2 的解集。
(2)用数轴表示不等式 x > 5 的解集。
2022北师大版八年级数学下册全套教案
2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。
能够根据具体的事例列出不等关系式。
二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。
在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。
(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。
(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。
当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。
教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。
北师大版八年级下册数学教案
北师大版八年级下册数学教案北师大版八班级下册数学教案1一、指导思想在教学中努力推动九年义务教育,落实新课改,表达新理念,培育创新精神。
通过数学课的教学,使同学切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本学问和基本技能;努力培育同学的运算力量、规律思维力量,以及分析问题和解决问题的力量。
二、学情分析八班级是学校学习过程中的关键时期,同学基础的好坏,直接影响到将来是否能升学。
优生不多,思想不够活跃,有少数同学不上进,思维跟不上。
要在本期获得抱负成果,老师和同学都要付出努力,充分发挥同学是学习的主体,老师是教的主体作用,注意方法,培育力量。
三、本学期教学内容分析本学期教学内容共计六章。
第一章《三角形的证明》本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将讨论直角三角形全等的判定,进一步体会证明的必要性。
其次章《一元一次不等式和一元一次不等式组》本章通过详细实例建立不等式,探究不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过详细实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最终讨论一元一次不等式组的解集和应。
第三章《图形的平移与旋转》本章将在学校学习的基础上进一步熟悉平面图形的平移与旋转,探究平移,旋转的性质,熟悉并观赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》本章通过详细实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最终学习分解因式的几种基本方法。
第五章《分式与分式方程》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简洁的实际应用问题。
第六章《平行四边形》本章将讨论平行四边形的性质与判定,以及三角形中位线的性质,还将探究多边形的内角和,外角和的规律;经受操作,试验等几何发觉之旅,享受证明之美。
北师大版数学八年级下册《2. 不等式的基本性质》说课稿1
北师大版数学八年级下册《2. 不等式的基本性质》说课稿1一. 教材分析北师大版数学八年级下册《2. 不等式的基本性质》这一节的内容,主要介绍了不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数时,不等号的方向如何变化。
这些性质是解决不等式问题的关键,也是学习更高级数学的基础。
二. 学情分析八年级的学生已经掌握了不等式的基本概念,具备了一定的逻辑思维能力,但是对于不等式的性质的理解还需要加强。
他们在学习过程中,需要通过实例来理解不等式的性质,需要通过练习来巩固不等式的性质,需要通过思考来深化不等式的性质。
三. 说教学目标本节课的教学目标有三:一是让学生理解不等式的性质,二是让学生掌握不等式的性质的运用,三是让学生提高解决实际问题的能力。
四. 说教学重难点本节课的重难点是理解和掌握不等式的性质。
难点在于学生对于不等式的性质的理解,需要通过实例来帮助学生理解,需要通过练习来帮助学生巩固,需要通过思考来帮助学生深化。
五. 说教学方法与手段本节课我采用的教学方法是讲解法和练习法。
讲解法用于讲解不等式的性质,练习法用于让学生通过练习来巩固不等式的性质。
同时,我还会使用多媒体手段,如PPT等,来辅助教学,使教学更加生动有趣。
六. 说教学过程教学过程分为五个环节:导入新课、讲解不等式的性质、举例说明、练习巩固、总结提高。
1.导入新课:通过一个实际问题,引出不等式的性质的概念。
2.讲解不等式的性质:详细讲解不等式的性质,并通过实例来帮助学生理解。
3.举例说明:通过具体的例子,让学生理解不等式的性质。
4.练习巩固:让学生通过练习,巩固不等式的性质。
5.总结提高:让学生通过总结,提高解决实际问题的能力。
七. 说板书设计板书设计分为两部分:一部分是不等式的性质的定义和公式,另一部分是举例说明。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
北师大版数学八(下)各章节教学目标
北师大版数学八(下)各章节教学目标第一篇:北师大版数学八(下)各章节教学目标八(下)数学北师大版 2004年11月第3版第一章一元一次不等式和一元一次不等式组1.经历将一些实际问题抽象为不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型,进一步发展符号感。
2.能够根据具体问题中的大小关系了解不等式的意义。
3.经历通过类比、猜测、验证发现不等式基本性质的探索过程,掌握不等式的基本性质。
4.理解不等式(组)的解及解集的含义;会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会在数轴上确定其解集;初步体会数形结合的思想。
5.能根据具体问题中的数量关系,列出一元一次不等式(组),解决简单的实际问题,并能根据具体问题的实际意义,检验结果是否合理。
6.初步体会不等式、方程、函数之间的内在联系与区别。
§1 不等关系1.感受生活中存在着大量的不等关系,了解不等式的意义,初步体会不等式是研究量与量之间关系的重要模型之一。
2.经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。
§2 不等式的基本性质1.经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2.掌握不等式的基本性质。
§3 不等式的解集1.理解不等式的解与解集的意义。
2.了解不等式解集的数轴表示。
§4 一元一次不等式1.经历一元一次不等式概念的形成过程。
2.会解简单的一元一次不等式,并能在数轴上表示其解集。
3.初步认识一元一次不等式的应用价值,发展学生分析问题、解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。
§5 一元一次不等式与一次函数1.通过作函数图象、观察函数图象,进一步理解函数概念,并从中初步体会一元一次不等式与一次函数的内在联系。
2.通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。
不等式的解集-八年级数学下册课件(北师大版)
导引:当x=-3时,x+4=-3+4=1,所以A错;取一个能使不等式x> 3
2
成立的值,如x=2,代入不等式-2x>-3,发现不等式-2x>-3
不成立,故x=2不是-2x>-3的解,所以x>
3 2
不是不等式-2x>
-3的解集,故B错;不等式x>-5的负整数解只有-1,-2,-3,
-4,共4个,所以C错.
总结
判断一个数值是否是不等式的一个解只需代入验证即可.由于不 等式的解集必须符合两个条件: (1)解集中的每一个数值都能使不等式成立; (2)能够使不等式成立的所有数值都在解集中,因此如果解集内 有一个数能够使不等式不成立或解集外有一个数能够使不等式成 立,那么这个解集就不是这个不等式的解集.
1 判断正误:
(2)如果每根B型号钢丝有以下几种选择:39 cm,42 cm,43 cm, 45 cm,那么哪些合适?哪些不合适?
解:(1)2(2x+1)+2x ≥ 260. (2)分别将x=39,42,43,45代入2(2x+1)+2x ≥260,
可得39 cm,42 cm不合适,43 cm和45 cm这两种 都合适.
3 不等式的解集
(1)不等式x-3>0的解各有多少个?
(2)不等式的解与方程的解有什么不同?
知识点 1 不等式的解与解集
想一想
(1) x=4,5,6,7.2能使不等式x>5成立吗? (2)你还能找出一些使不等式x>5成立的x 的值吗?
1.不等式的解:能使不等式成立的未知数的值,叫做不 等式的解.
解: (1)x-4≥6,x ≥10,解集在数轴上的表示如图: (2)3x-1≤8,x ≤3,解集在数轴上的表示如图:
1 将下列不等式的解集分别表示在数轴上:
(1) x>4;
北师大版八年级下册数学2.3不等式的解集(教案)
பைடு நூலகம்四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《不等式的解集》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要比较两个数的大小关系的情况?”(如购物时比较价格)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不等式的解集的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了不等式的解集的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对不等式解集的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在课堂总结时,我发现有的学生对今天学习的知识点还存在一些疑惑。这提醒我,在今后的教学中,要更加注重课堂反馈,及时了解学生的学习情况,对于学生提出的问题,要耐心解答,确保他们能够真正理解并掌握知识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的解集的基本概念。不等式的解集是指满足不等式的所有可能的解的集合。它是解决实际问题中比较大小、确定范围的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。比如,不等式2x - 3 > 5在数轴上的表示,以及它如何帮助我们确定x的取值范围。
-通过图示和实际操作,帮助学生建立不等式解集与数轴之间的联系。
-举例:对于不等式-3x > 6,解释为什么除以-3后不等号变为<,并在数轴上展示这一变化。
初中北师大版数学八年级下册2.3【教学设计】《不等式的解集》
《不等式的解集》教学设计不等式的解集是义务教育课程标准实验教科书(北师版)《数学》八年级下册第二章第三节内容,本章主要是研究不等式和不等式组的解法;本节要求理解能根据具体情境理解不等式的解与解集的意义。
能在数轴上表示不等式的解集。
所以本节的重点是理解不等式的解与解集的概念。
探索不等式的解集并能在数轴上表示出来。
教材在此创设了丰富的实际问题情境,引出不等式的解的问题,进一步探索出不等式的解集,同时还要求在数轴上把不等式的解集表示出来,渗透了数形结合的数学思想,发展了学生符号表达的能力以及分析问题、解决问题的能力。
教材中设置的“议一议”,意在引导学生回忆实数与数轴上的点的对应关系,认识数轴上的点是有序的,实数是可以比较大小的,体现了新教材循序渐进、螺旋上升的特点。
【知识与能力目标】①能根据具体情境理解不等式的解与解集的意义。
②能在数轴上表示不等式的解集。
【过程与方法目标】①培养学生从现实情况中探索、发现并提出简单的数学问题的能力。
②经历求不等式的解集的过程,通过尝试把不等式的解集在数轴上表示出来,引导学生体验用数轴表示不等式解集具有直观的优越性,增强学生数形结合的意识。
【情感态度价值观目标】通过从实际问题中抽象出数学模型、探索求不等式的解集的过程,让学生认识数学与人类生活的密切联系,体验数学活动充满了探究性和创造性。
【教学重点】(1)理解不等式的解与解集的概念。
(2)探索不等式的解集并能在数轴上表示出来。
【教学难点】不等式解集的数轴表示。
教师准备课件、多媒体;学生准备;练习本;第一环节:复习旧知识活动内容:师:我们已学习了不等式的基本性质,不等式的基本性质有哪些?它与等式的性质有何异同点?生:答(略)。
(多媒体呈现)师:我们已学习了不等式的基本概念和性质。
这节课我们来研究不等式的解的相关知识。
师:方程的解的定义是什么?生:使得方程左右两边的值相等的未知数的值,叫做方程的解。
师:换句话说,方程的解是使得方程成立的未知数的值。
北师大版数学八年级下册2.3《不等式的解集》教案
北师大版数学八年级下册2.3《不等式的解集》教案一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容,本节主要让学生了解不等式的解集及其表示方法,学会通过图像和表格来表示不等式的解集,并能够求解一些简单的不等式组。
教材内容安排合理,由浅入深,通过具体的例子引导学生理解和掌握不等式的解集。
二. 学情分析学生在学习本节内容前,已经学习了不等式的基本性质和一元一次不等式,对不等式的概念和运算法则有一定的了解。
但学生对不等式的解集概念可能较难理解,需要通过具体的例子和实践活动来帮助学生掌握。
三. 教学目标1.让学生了解不等式的解集及其表示方法。
2.培养学生通过图像和表格来表示不等式的解集的能力。
3.使学生能够求解一些简单的不等式组。
四. 教学重难点1.教学重点:不等式的解集及其表示方法。
2.教学难点:不等式的解集的求解和表示。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过观察、思考、讨论和操作来掌握不等式的解集。
六. 教学准备1.准备相关的教学PPT和教学案例。
2.准备黑板和粉笔,用于板书。
3.准备练习题,用于巩固所学内容。
七. 教学过程导入(5分钟)通过一个实际问题引入本节内容:某班有男生和女生共50人,其中男生人数是女生人数的3倍,求男生和女生各有多少人?呈现(10分钟)1.引导学生列出相应的不等式:x + y = 50,x = 3y。
2.通过解这个不等式组,引导学生思考解集的概念。
操练(10分钟)让学生分组讨论,每组找出一个不等式,求解其解集,并用图像或表格表示出来。
巩固(10分钟)1.让学生独立完成教材上的练习题。
2.引导学生总结解集的表示方法。
拓展(10分钟)1.引导学生思考:不等式的解集与方程的解集有什么关系?2.让学生举例说明,并进行讨论。
小结(5分钟)对本节内容进行总结,强调不等式的解集的表示方法和求解方法。
家庭作业(5分钟)布置一些有关不等式的解集的练习题,让学生巩固所学内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做一做
(1) 不等式 x + 1 > 5 的解集是 x>4 ; (2) 不等式 x2 > 0 的解集是 x是所有非0实数。。
议一议
1)你能用自己的方式将x>5的解集表示在数轴上吗?
不等式x>5的解集可以用数轴上表示5的点的右 边部分来表示。在数轴上表示5的点的位置上画 空心圆圈,表示5不包含在这个解集内。
-3 -2 -1 0 1 2 3 4 5 6 7 8
(2)x<-1
-3 -2 -1 0 1 2 3 4 5 6 7 8
-3 -2 -1 0 1 2 3 4 5 6 7 8 -3 -2 -1 0 1 2 3 4 5 6 7 8
(3)x≥-2
(4)x≤6
3、填空
• 1)方程2x=4的解有( 1 )个,不等式 2x<4的解有( 无数 )个
将不等式的解集表示在数轴上时,要注意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
-3 -2 -1 0 1 2 3 4 5 6 7 8
-3 -2 -1 0 1 2 3 4 5 6 7 8
例题
根据不等式的基本性质求不等式的 解集,并把解集表示在数轴上.
(2)2x
-3 -2 -1 0 1 2 3 4 5 6 7 8
2)你能将x-5≤ -1的解集表示在数轴上吗?
(x ≤ 4)
不等式x-5≤-1的解集可以用数轴上表示4的点 的左边部分来表示。在数轴上表示4的点的位置 上画实心圆点,表示4包含在这个解集内。
-3 -2 -1 0 1 2 3 4 5 6 7 8
注意 :
思考题:
• 已知不等式3x-a≤0的正整数解是1,2,3,求a的 取值范围。
作业
配套校本作业
• 2)不等式5x≥-10的解集是( x≥-2 )
• 3)不等式x≥-3的负整数解是( -3, -2, -1 )
• 4)不等式x-1<2的正整数解是( 2, 1 )
课堂小结 :
• 本节课你学会了哪些数学知识?增长了哪些 数学技能? • 一个不等式的解是唯一的吗?有哪几种情况? • 什么叫做不等式的解集?什么叫做解不等式? • 在数轴上表示不等式的解集时要注意哪些方 面?
复习
不等式的基本性质
不等式的基本性质1:不等式两边同时加上(或减去)同 一个整式,不等号的方向不变. 不等式的基本性质2:不等式两边同时乘以(或除以)同 一个正数,不等号的方向不变. 不等式的基本性质3:不等式两边同时乘以(或除以)同 一个负数,不等号的方向改变. 你认为不等式的基本性质与等式的基本性质有哪些异同点? 请用自己的语言描述。
人离开的时间为: 10/4=5/2(s)
导火线的燃烧时间为: 0.01x/0.02=x/2 依题意得: x/2=5/2 由不等式的基本性质2得:x>5 所以,导火线的长度应大于5厘米。
想一想
1、x=-2、1、5、6、的解。x=-2、1、5不是。
2、你还能说出几个不等式x>5的解吗?你认为不等 式x>5的解有几个?它们有什么特点?
不等式x>5的解有无数个。它们都比5大。 3、不等式x2≤0的解有哪些?不等式x2≤-2呢? 不等式x2≤0的解是x=0;不等式x2≤-2无解。
总结 :
不等式的解一般有无数个,但有 时只有有限个,有时无解。 一个含有未知数的不等式的所有 解,组成这个不等式的解集。 求不等式解集的过程叫做解不等式。
≤
(1)x-2≥ -4
解:两边同时加2得: x ≥ -2
-3 -2 -1 0 1 2
8
解:两边同时除以2得: x ≤4
-1 0
1 2 3
4
(3)-2x-2 > -10 解:两边同时加2得: -2x > -8 两边同时除以-2得: x < 4
-1 0 1 2 3 4
1、判断正误:
(1)不等式x-1>0有无数个解 (√ ) (2)不等式2x-3 ≤0的解集为 x ≥ 2/3 (× ) 2、将下列不等式的解集分别表示在数轴上: (1)x>4
想一想
请同学们回顾一下,什么叫做方程的解?
使方程左右两边的值相等的未知数的值,叫做 方程的解。换句话说,
方程的解是就是使方程成立的未知数的值。
类似地,你认为什么是不等式的解?
能使不等式成立的未知数的值叫做不等式的解。
燃放礼花时,为了确保安全,人在点燃导火线后要在燃 放前转移到10米以外的安全区域,已知导火线的燃烧速度为 0.02m/s,人离开的速度为 4 m/s,那么导火线的长度应是 多少厘米? 解:设导火线的长度为x cm,即0.01x m