专题五 不等式与不等式组
不等式基本原理专题 ---(非常全面)
不等式基本原理专题 ---(非常全面)不等式基本原理专题 - 完整版概述在数学不等式中,有一些基本的原理和定理,这些定理不仅在不等式证明中起到重要的作用,而且在实际问题中也有着广泛的应用。
在本文中,将阐述几个不同的不等式基本原理,并通过相关例题进行演示。
一、加减法原理不等式加减法原理指的是,如果两个不等式关系成立,则将它们加起来或从其中一个减去另一个,得到的结果仍然是不等式关系。
例如:如果 $a>b$ 且 $c>d$,则 $a+c>b+d$如果 $a>b$ 且 $c>d$,则 $a-c>b-d$二、乘法原理不等式乘法原理指的是,如果不等式关系的两侧均为正或均为负,则将它们相乘,得到的结果仍然是不等式关系,而如果一侧为正,另一侧为负,则将它们相乘,则得到一种新的不等式关系。
例如:如果 $a>b>0$ 且 $c>d>0$,则 $ac>bd$如果 $a>b>0$ 且 $c<d<0$ 或 $a<b<0$ 且 $c>d>0$,则 $ac<bd$三、倒数性质不等式倒数性质指的是,如果 $a>b>0$,则$\frac{1}{a}<\frac{1}{b}$。
例如:如果 $3>2>0$,则$\frac{1}{3}<\frac{1}{2}$。
四、平均值不等式平均值不等式是一个常用的不等式概念,它指的是对于一组实数 $a_1,a_2,...,a_n$,它们的算术平均值、几何平均值与调和平均值有以下关系:$\frac{a_1+a_2+...+a_n}{n}\geq \sqrt[n]{a_1 a_2 ... a_n}\geq\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}}$。
例如:对于一组实数 $1,2,3$,它们的算术平均值是 $2$,几何平均值是 $\sqrt[3]{6}$,调和平均值是$\frac{3}{\frac{1}{1}+\frac{1}{2}+\frac{1}{3}}=\frac{9}{5}$。
专题05 方程的实际应用篇(原卷版)
专题05 方程与不等式的实际应用1. 列方程(不等式组)解实际应用题的基本步骤:①审题——仔细审题,找出题目中的等量关系。
②设未知数——根据问题与等量关系直接或间接设未知数。
③列方程(不等式):根据等量(不等量)关系与未知数列出相应的方程(不等式)。
④解方程(不等式)——按照解相应方程(不等式)的步骤解方程。
⑤检验作答——检验方程的解是否满足实际情况,然后作答。
2. 常见的建立方程的方法:①基本等量关系建立方程。
②同一个量的两种不同表达式相等。
3. 常见的基本等量关系:①行程问题基本等量关系:路程=时间×速度;时间=路程÷速度;速度=路程÷时间。
顺行:顺行速度=自身速度+风速(水速);逆行速度=自身速度-风速(水速)②工程问题:工作总量=工作时间×工作效率。
③配套问题:实际生产比=配套比。
④商品销售问题:利润=售价-成本;售价=标价×0.1折扣;利润率=利润÷进价×100%总利润=单利润×数量现单利润=原单利润+涨价部分(-降价部分)现数量=原数量-变化基数涨价基础涨价部分⨯(原数量+变化基数降价基础降价部分⨯)⑤图形的周长,面积,体积问题。
利用勾股定理建立一元二次方程。
利用面积公式建立二元一次方程。
⑥传播问题:计算公式:原病例数×(1+传播数)传播轮数=总病例数。
⑦握手(比赛)问题:计算公式:单循环:()21+n n =总数;双循环:()1+n n =总数。
(n 表示参与数量)⑧数字问题:一个十位数可表示为:10×十位上的数字+个位上的数字;一个百位数可表示为:100×百位上的数字+10×十位上的数字+个位上的数字。
以此类推。
⑨平均增长率(下降率)问题:计算公式:原数×(1+增长率)增长轮数=总数,原数×(1-下降率)下降轮数=总数。
4. 列方程解应用题的方法技巧:列表格找等量关系建立方程。
中考数学专题测试5:不等式(组)(含答案)
中考数学分类汇编专题测试——不等式(组)一、选择题1.(08山东省日照市)在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A .-1<m <3B .m >3C .m <-1D .m >-12.(2008浙江义乌)不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )3.(2008山东烟台) 关于不等式22x a -+≥的解集如图所示,a 的值是( )A 、0B 、2C 、-2D 、-44.(2008年山东省临沂市)若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =45.(2008年辽宁省十二市)不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( )6.(2008年天津市)若440-=m ,则估计m 的值所在的范围是( ) A .21<<m B .32<<mC .43<<mD .54<<m7.(2008年四川巴中市)点(213)P m -,在第二象限,则m 的取值范围是( ) A .12m > B .12m ≥C .12m <D .12m ≤-31 0 A .-31 0 B .-31 0 C .-31 0 D .1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2 D .8.(2008年成都市)在函数中,自变量x 的取值范围是( );(A )x ≥ - 3(B )x ≤ - 3(C )x ≥ 3(D )x ≤ 39.(2008年乐山市)函数12y x =-的自变量x 的取值范围为( ) A 、x ≥-2 B 、x >-2且x ≠2 C 、x ≥0且≠2 D 、x ≥-2且≠210.(2008年大庆市)使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥ B .12x ≤C .12x >D .12x ≠11.(2008年大庆市)已知关于x 的一元二次方程220x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A .0m < B .2m <- C .0m ≥D .1m >-12.(2008广州市)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>13.(2008广东肇庆市)下列式子正确的是( )A .2a >0 B .2a ≥0 C .a+1>1 D .a ―1>114.(2008云南省)不等式组233x x +⎧⎨-⎩≤≤ 的解集是( )A .3x -≥B .3x ≥图3C .1x ≤D .31x -≤≤15.(08厦门市)在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米 B .76厘米 C .86厘米 D .96厘米16.(08绵阳市)以下所给的数值中,为不等式-2x + 3<0的解的是( ).A .-2B .-1C .23D .2 17.(2008年陕西省)把不等式组3156x x -<-⎧⎨-<⎩,的解集表示在数轴上正确的是( )18.(2008年江苏省无锡市)不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <-D.12x <-19.(2008年云南省双柏县)不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <320.(2008湖北黄石)若不等式组5300x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .B .C .D .A .53m ≤B .53m <C .53m >D .53m ≥21.(2008湖北黄石)若23132a b a b +->+,则a b ,的大小关系为( ) A .a b < B .a b > C .a b = D .不能确定22. (2008 河南)不等式—x —5≤0的解集在数轴上表示正确的是 ( )23.(2008 四川 泸州)不等式组310x x >⎧⎨+>⎩的解集是( )A .1x >-B .3x >C .1x <-D .13x -<<24.(2008 湖南 怀化)不等式53-x <x +3的正整数解有( ) (A )1个 (B )2个 (C )3个 (D )4个25.(2008 重庆)不等式042≥-x 的解集在数轴上表示正确的是( )A B C D26.(2008 湖北 恩施)如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.ba<1 D. a-b<027.(2008 河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示, 则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,28.(2008 江西南昌)不等式组2131x x -<⎧⎨>-⎩,的解集是( )A .2x <B .1x >-C .12x -<<D .无解0-202-220 429.不等式组23124x x -->-⎧⎨-+⎩≤的解集在数轴上可表示为( )A B C D30.(2008湖北武汉)不等式3x <的解集在数轴上表示为( ). A. B.C. D.31.(2008江苏盐城)实数a 在数轴上对应的点如图所示,则a ,a -,1的大小 关系正确的是( ) A .1a a -<< B .1a a <-< C .1a a <-< D .1a a <<-32.(2008永州市) 如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b33. (2008永州市)下列判断正确的是( )A .23<3<2 B . 2<2+3<3 C . 1<5-3<2D . 4<3·5<534.(2008 台湾)解不等式32x +1≤92x +31,得其解的范围为何?( ) (A) x ≥ 23 (B) x ≥32 (C) x ≤ -23 (D) x ≤ -32.35.(2008 台湾)某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧道.下列何者可能是该车通过隧道所用的时间?( ) (A) 6分钟 (B) 8分钟 (C) 10分钟 (D) 12分钟二、填空题1.(2008年山东省潍坊市)已知3x+4≤6+2(x-2),则1x + 的最小值等于________.32 1 03 2 1 0 3 2 1 0 a 第2题图2(2008年浙江省绍兴市)如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 .3.(2008年天津市)不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .4.(2008年沈阳市)不等式26x x -<-的解集为 .5.(2008年大庆市)不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解的个数为 .6.(2008山东聊城)已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,则a 的取值范围是 .7.(2008湖北孝感)不等式组84113422x x x x +-⎧⎪⎨≥-⎪⎩的解集是 .8.(2008山东泰安)不等式组210353x x x x >-⎧⎨+⎩,≥的解集为9.(2008年江苏省连云港市)不等式组2494x xx x-<⎧⎨+>⎩的解集是 .10.(2008湖北咸宁)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .Oxy 1 P y=x+by=ax+311.(08厦门市)不等式组2430x x >-⎧⎨-<⎩的解集是 .12.(2008泰安)不等式组210353x x x x>-⎧⎨+⎩,≥的解集为 .13.(2008年上海市)不等式30x -<的解集是 .三、简答题1.(2008年四川省宜宾市)某学校准备添置一些“中国结”挂在教室.若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元.亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?2.(2008年浙江省衢州市)1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(库存处理费销售总收入总毛利润-=)?(2)设椪柑销售价格定为x )2x 0(≤<元/千克时,平均每天能售出y 千克,求y 关于x 的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?3.(08浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:(第12题图)(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?4、(2008淅江金华)解不等式:5x- 3 < 1- 3x5、(2008浙江宁波) 解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,6.(2008湖南益阳)乘坐益阳市某种出租汽车.当行驶 路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x ≥2时乘车费用y (元)与行驶路程x (千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x 的范围.7.(2008年山东省潍坊市)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1) 种植草皮的最小面积是多少?(2) 种植草皮的面积为多少时绿化总费用最低?最低费用为多少?8.(2008年成都市)解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整数解. 9.(2008年乐山市)若不等式组 231x +<1(3)2x x >- 的整数解是关于x 的方程24x ax -=的根,求a 的值10. 解方程|1||2|5x x -++=.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图(17)可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3参考阅读材料,解答下列问题:(1)方程|3|4x +=的解为 (2)解不等式|3||4|x x -++≥9;(3)若|3||4|x x --+≤a 对任意的x 都成立,求a 的取值范围11.(2008浙江金华))解不等式:5x- 3 < 1- 3x12.(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.13.(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(3) 若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?比赛项目 票价(元/场)男 篮 1000 足 球 800 乒乓球50014. (2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公4 0 2 -2 1 1司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.15.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断32x =是否满足该不等式组.17.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.0x -2>54-5-4-3-2-132120.(2008山东济南)解不等式组⎩⎨⎧<+>+6342xx,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的32,但又不少于B种笔记本数量的31,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?23.(2008 湖南长沙)解不等式组:⎪⎩⎪⎨⎧-<-≤-xxx1434121,并将其解集在数轴上表示出来.0 1 2 3-1-2-3-4-5-624.(2008 湖南怀化)5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.25.(2008北京)解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来.26.(2008安徽)解不等式组31422xx x->-⎧⎨<+⎩①②,并将解集在数轴上表示出来.27.(2008湖北鄂州)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A B,两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a b,的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.28.(2008湖北咸宁)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;总计 240吨260吨 500吨设A、B 两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案.29. (2008永州市)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?30.(2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.31.(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来.32.(2008广东)解不等式x x <-64,并将不等式的解集表示在数轴上.33.(2008山西太原)解不等式组:()2532213x x x x +≤+⎧⎪⎨-⎪⎩34.(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?35.(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x36.(2008湖南常德市)解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x① ②37.(2008湖北宜昌市)解不等式:2(x +21)-1≤-x +938.(2008桂林市)某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)如果该单位要印刷2400份,那么甲印刷厂的费用是 ,乙印刷厂费的用是 .(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?39.(2008广东肇庆市) 解不等式:)20(310x x --≥70.40.(2008江苏淮安)解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.41. (2008浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题.(1(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?42. (2008新疆乌鲁木齐市)解不等式组2392593x x x x ++⎧⎨+>-⎩≥43.(2008黑龙江黑河)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.不等式(组)答案一.选择题1. A2. A3.A4. B5.A6.B7. C8. C9. D 10.D 11.D 12. D 13. B 14. D 15.D 16.C 17.C 18.C19.D 20.A 21.A 22.B 23.B 24.C 25.C 26.C 27.B 28.C 29.D 30.B 31.D 32.C 33.A 34.C 35.B二.填空题1. 12. 1x >3. 34<<-x4. 4x >5. 46.32a -<-≤7. 3x8.52x 2≤9. 3x < 10. x <-1 11. 23x -<< 12. 2<x ≤52 13. 3x < 三.解答题1. 解:设需要中国结x 个,则直接购买需4x+200元,自制需10x 元分两种情况: (1)若10x<4x+200,得2333x <,即少于33个时,到商店购买更便宜 (2)若10x>4x+200,得2333x >即少于33个时,自已制作更便宜. 2. 解:(1))(600060100千克=⨯,所以不能在60天内售完这些椪柑,5000600011000=-(千克)即60天后还有库存5000千克,总毛利润为W=元1175005.0500026000=⨯-⨯;(2))2x 0(1100x 500501.0x 2100y ≤<+-=⨯-+= 要在2月份售完这些椪柑,售价x 必须满足不等式11000)1100x 500(28≥+-解得414.17099x ≈≤ 所以要在2月份售完这些椪柑,销售价最高可定为1.4元/千克.3. 解:(1)25x -;5(25)x --(2)根据题意,得105(25)100x x -->解得15x >x ∴的最小正整数解是16x =答:小明同学至少答对16道题4. 5x+3x<1+38x<4 x<21 5. 解:解不等式(1),得1x -≥. ···················· 2分 解不等式(2),得3x <. ························· 4分 ∴原不等式组的解是13x -<≤. ······················ 6分 6..解:(1) 根据题意可知:y =4+1.5(x -2) ,∴ y =1.5x +1(x ≥2) ················ 4分(2)依题意得:7.5≤1.5x +1<8.5 ··················· 6分∴ 313≤x <5 ····················· 8分7. (1)解设种植草皮的面积为x 亩,则种植树木面积为(30-x )亩,则:1030103(30)2x x x x ⎧⎪≥⎪-≥⎨⎪⎪≥-⎩解得1820x ≤≤答:种植草皮的最小面积是18亩.(2)由题意得:y=8000x+12000(30-x)=360000-4000x ,当x=20时y 有最小值280000元8. 解:解不等式x+1>0,得x >-1 ……2分解不等式x ≤223x -+,得x ≤2 ……2分 ∴不等式得解集为-1<x ≤2 ……1分∴该不等式组的最大整数解是2 ……1分9. 解不等式得31x --,则整数解x=-2代入方程得a=410. 解:(1)1或7-. ·························· 3分(2)3和4-的距离为7,因此,满足不等式的解对应的点3与4-的两侧.当x 在3的右边时,如图(2), 易知4x ≥. ··············· 5分 当x 在4-的左边时,如图(2),易知5x -≤. ·············· 7分∴原不等式的解为4x ≥或5x -≤ ····················· 8分(3)原问题转化为: a 大于或等于|3||4|x x --+最大值. ·········· 9分 当1x -≥时,|3||4|0x x --+≤,当41x -<<-,|3||4|21x x x --+=--随x 的增大而减小,当4x -≤时,|3||4|7x x --+=,即|3||4|x x --+的最大值为7. ······················ 11分 故7a ≥. 12分11. 解:(2)5x+3x<1+38x<4 x<21 12. 解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5由不等式(2)得:x ≥3所以:5>x ≥313. 解:(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x +500(15-x )=12000,解得:x = 9 ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y =5. 15-2y =5答:(1)略 (2)略14. 解:(1)设租用一辆甲型汽车的费用是x 元,租用一辆乙型汽车的费用是y 元.由题意得2250022450x y x y +=⎧⎨+=⎩·························· 2分 -4 图(2)7解得800850x y =⎧⎨=⎩ ······························· 1分答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z 辆,则租用乙型汽车(6)z -辆.由题意得1618(6)100800850(6)5000z z z z +-⎧⎨+-⎩≥≤ ····················· 2分 解得24z ≤≤ ······························ 1分 由题意知,z 为整数,2z ∴=或3z =或4z =∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆. ··············· 1分 方案一的费用是800285045000⨯+⨯=(元);方案二的费用是800385034950⨯+⨯=(元);方案三的费用是800485024900⨯+⨯=(元)500049504900>>,所以最低运费是4900元. ··············· 1分 答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.15. 解:(1)解:由题意: 600120(15)50001(15)2x x x x +-≤⎧⎪⎨≥-⎪⎩,………………2分 解得:5≤x ≤203………………3分 ∵x 为整数,∴x =5,6 ………………4分∴共两种购票方案:方案一:A 种船票5张,B 种船票10张方案二:A 种船票6张,B 种船票9张 ………………5分(2)因为B 种船票价格便宜,因此B 种船票越多,总购票费用少.∴第一种方案省钱,为5×600+120×10=4200(元)………………8分前两年第20题知识点分布:2006年考查内容不等式组设计方案,2007年考查内容不等式组设计方案16. 解:原不等式组的解集是:31x -<≤,x =满足该不等式组. 17. 解:(1)由题得到:2.2x +2.1y+2(30-x -y )=64 所以 y = -2x +40又x ≥4,y ≥4,30-x -y ≥4,得到14≤x ≤18-120(2)Q=6x +8y+5(30-x -y )= -5x +170Q 随着x 的减小而增大,又14≤x ≤18,所以当x =14时,Q 取得最大值,即Q= -5x +170=100(百元)=1万元.因此,当x =14时,y = -2x +40=12, 30-x -y=4所以,应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车18. 解不等式① 得x < 1 ··············· 2分 解不等式② 得x > -1 ················ 4分 所以这个不等式组的解集为:-1<x <1 ··············· 6分19. 解:解不等式①,得x<2, …………………………………………………2分解不等式②,得x ≥-1. ………………………………………………4分所以,不等式组的解集是-1≤x<2. ……………………………………5分不等式组的解集在数轴上表示如下:………………………………………………………………………………6分20. 解:解①得x>-2……4分解②得x<3……5分所以,这个不等式组的解集是-2<x<3……6分解集在数轴上表示正确.……7分21. 解 依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则(1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ···················· (2分) (2)由201680017560W x =+≥,38x ∴≥.3840x ∴≤≤,38x =,39,40.∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件.②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件.③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件.(3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+-(20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ························· (8分)22. 解:(1)设能买A 种笔记本x 本,则能买B 种笔记本(30-x )本依题意得:12x+8(30-x)=300,解得x=15.因此,能购买A ,B 两种笔记本各15本 …………………………3分(2)①依题意得:w=12n+8(30-n),即w=4n+240,且n <32(30-n )和n ≥)30(31n - 解得215≤n <12 所以,w (元)关于n (本)的函数关系式为:w=4n+240,自变量n 的取值范围是215≤n <12,n 为整数. ………………7分 ②对于一次函数w=4n+240,∵w 随n 的增大而增大,且215≤n <12,n 为整数, 故当n 为8 时,w 的值最小此时,30-n =30-8=22,w =4×8+240=272(元).因此,当买A 种笔记本8本、B 种笔记本22本时,所花费用最少,为272元23. 解:由11024314x x x ⎧-⎪⎨⎪-<-⎩≤得⎩⎨⎧->≤52x x , 不等式组的解集为-5<x≤2.解集在数轴上表示略.24. 解: (1)因为租用甲种汽车为x 辆,则租用乙种汽车()x -8辆.由题意,得()()42830,38820.x x x x +-⎧⎪⎨+-⎪⎩≥≥ 解之,得.5447≤≤x 即共有两种租车方案:第一种是租用甲种汽车7辆,乙种汽车1辆; 第二种是全部租用甲种汽车8辆(2)第一种租车方案的费用为780001600062000⨯+⨯=元 第二种租车方案的费用为8800064000⨯=元 所以第一种租车方案最省钱25. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤. 系数化为1,得2x -≥.不等式的解集在数轴上表示: 26. [解] 由①得1x >-, 由②得2x <,∴原不等式组的解集是12x -<<.在数轴上表示为:27. 解:(1)2326a b b a -=⎧⎨-=⎩,1210a b =⎧∴⎨=⎩.(2)设购买污水处理设备A 型设备X 台,B 型设备(10)X -台,则:1210(10)105X X +-≤2.5X ∴≤,X 取非负整数,012X ∴=,,,∴有三种购买方案:①A 型设备0台,B 型设备10台;②A 型设备1台,B 型设备9台;③A 型设备2台,B 型设备8台. (3)由题意:240200(10)2040X X +-≥,1X ∴≥,又2.5X ≤,X ∴为1,2.当1X =时,购买资金为:121109102⨯+⨯=(万元) 当2X =时,购买资金为:122108104⨯+⨯=(万元)∴为了节约资金,应选购A 型设备1台,B 型设备9台28. 解:(1)填表依题意得:. 解得:200x = . (2) w 与x 之间的函数关系为:29200w x =+.C DA 200吨 0吨 B40吨260吨依题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩,,,.,∴40≤x ≤240在29200w x =+中,∵2>0, ∴w 随x 的增大而增大, 表一: 故当x =40时,总运费最小,此时调运方案为如右表一. (3)由题意知(2)9200w m x =-+C D A0吨200吨B 240吨 60吨∴0<m <2时,( 表二:m =2时,在40≤x ≤240的前提下调运方案的总运费不变; 2<m <15时,x =240总运费最小,其调运方案如右表二 . 29. 解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ···························· 3分解得:1133x ≥ ······························ 5分 由于x 是车的数量,应为整数,所以x 的最小值为14. ············· 7分 答:至少需要14台B 型车. ························· 8分 30. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:31. 解:()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 解不等式1,得x ≤3 解不等式2,得x >1- 把解集在数轴上表示为:∴原不等式组的解集是—1<x ≤3· 32. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:33. 解:解()2532x x +≤+,得1x ≥-,解213x x -,得3x .所以,原不等式组的解集是13x -≤.34. 解;设该小学有x 个班,则奥运福娃共有(10x+5)套. 由题意,得 解之,得146.3x << ∵x 只能整数,∴x=5,此时10x+5=55 答:该小学有5个班,共有奥运福娃55套35.解:由(1)得x>2(2)得x>3所以不等式组的解集为x>336. 解:解不等式①,得 3≤x .………………………………………2分 解不等式②,得 244->+x x , 即 2->x . …4分 ∴原不等式组的解集为32≤<-x . …………………………6分 37. 解:2x +1-1≤-x +92x +x ≤9 3x ≤9 x ≤338. 解:(1)1308,1320;(2)设该单位需要印刷资料x 份,当2000x ≤时,甲印刷厂的费用是600+0.3x ,乙印刷厂的费用是600+0.3x ,两厂的费用相同;当2000<3000x ≤时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,乙印刷厂的费用是600+0.3x ,甲厂的费用较低;当>3000x 时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,。
中考数学专题复习 第五章 方程与不等式 第2讲 不等式(组)课件
变式运用►3.[2017·常州中考]某校计划购买一批篮球和足球(zúqiú) ,已知购买2个篮球和1个足球(zúqiú)共需320元,购买3个篮球和2个 足球(zúqiú)共需540元.
(1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么 最多可购买多少个足球?
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲,乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多 少万件?
【思路分析】(1)可设甲种商品的销售单价(dānjià)为x元,乙种商品 的销售单价(dānjià)为y元,根据等量关系:①2件甲种商品与3件乙种 商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多 1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲 、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
2021/12/9
第十九页,共二十四页。
4.[2012·泰安,6,3分]将不等式组
的解集在数轴上表示(biǎoshì)出来,正确的是( C )
得分(dé fēn)要领►求不等式组的解集要遵循以下原则:同大取大, 同小取小,小大大小中间找,大大小小解不了.
2021/12/9
第二十页,共二十四页。
命题点2 确定不等式组中字母(zìmǔ)的取值范围
2021/12/9
第十一页,共二十四页。
类型(lèixíng)3 不等式的应用
【例3】[2017·宁波中考]2017年5月14日至15日,“一带一路”国际合作 (hézuò)高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作 (hézuò)协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国 家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比 2件乙种商品的销售收入多1500元.
中考数学不等式与不等式祖专题训练50题-含答案
中考数学不等式与不等式祖专题训练含答案一、单选题1.截至6月10日24时,广东新冠病毒疫苗累计接种超过6340万人,若接种人数为x ,x 为自然数,则“超过6340万”用不等式表示为( ) A .x <6340万B .x ≤6340万C .x >6340万D .x ≥6340万2.贵阳市今年5月份的最高气温为,270C 最低气温为180C ,已知某一天的气温为tC ,则下面表示气温之间的不等关系正确的是( )A .1?827t <<B .1?827t ≤<C .1?827t <≤D .1?827t ≤≤3.不等式组3122x x -≥⎧⎨-⎩>的解集在数轴上表示正确的是( )A .B .C .D .4.将“x 的2倍与5的和不是正数”用不等式表示为( ) A .250x +>B .250x +≥C .250x +<D .250x +≤5.将不等式组 422113x x -<⎧⎪⎨≤⎪⎩的解集在数轴上表示出来应是( )A .B .C .D .6.在“中国共产党建党百年知识竞赛”中共有20道题,每一题答对得10分,答错或不答都扣5分.墩墩得分要超过90分,设他答对了x 道题,则根据题意可列不等式为( )A .105(20)90x x --≥B .105(20)90x x -->C .10(20)90x x --≥D .10(20)90x x -->7.下列说法不一定成立的是( ) A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >①内错角相等,两直线平行; ①若33x y ->-,则x y >;①三角形的一个外角大于任何一个与之不相邻的内角; ①若1a <-,则21a > A .1个B .2个C .3个D .4个9.关于x ,y 的方程组3249x y ax y -=⎧⎨+=⎩,已知40a ,则x y +的取值范围为( )A .02x y <+<B .13x y -<+<C .04x y <+<D .12x y -<+<10.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是( ) A .18千克B .22千克C .28千克D .30千克11.如果点()391M m m --,在第二象限,则m 的取值范围是( ) A .1m <B .3m <C .13m <<D .3m >12.若关于x ,y 的方程组2822mx y x y +=⎧⎨-=-⎩的解为整数,且关于x 的不等式组11324x xx m +⎧<-⎪⎨⎪<⎩无解,则满足条件的非负整数m 的值有( ) A .4个B .3个C .2个D .1个13.不等式组315,26x x ->⎧⎨≤⎩的解集在数轴上表示正确的是( )A .AB .BC .CD .D14.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥D .0x ≤,0y ≤15.不等式215x +>的解集是( ) A 2x <BCD 3x >16.对于任意实数x ,现规定[]x 表示不大于x 的最大整数,例如][2122],1[1=-=-...若325x +⎡⎤=⎢⎥⎣⎦,则x 的取值范围是( ) A .7x ≥ B .12x ≤ C .712x ≤< D .712x <≤17.不等式组213{34x x +≤+>的解集是( ) A .x >1 B .x ≤1 C .x =1 D .无解18.已知a b <,则下列不等式一定成立的是( ) A .22a b +<+B .22a b -<-C .c a c b -<-D .22a b <19.已知二次函数2243y x x =-++,当3m x m ≤≤+时,函数y 的最大值为5,则m 的取值范围是( ) A .1m ≥-B .2m ≥-C .21m -≤≤D .12m -≤≤20.关于x 的不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,那么a 的取值范围( )A .4<a <6B .4≤a <6C .4<a≤6D .2<a≤4二、填空题21.不等式210x ->的解集是______.22.不等式组372510x x -<⎧⎨-≤⎩的解集是________.23.不等式组12x x m ≤≤⎧⎨>⎩无解,求m 的取值范围______.24.不等式组31534x x -<⎧⎨+>⎩的解是____________.25.若不等式组1241x ax +>⎧⎨-≤⎩有解,则a 的取值范围是________.262=成立,则x 的取值范围是___________. 27.不等式10->的解集是____________.28.把“a 的3倍与2的和不小于6”用不等式表示得______. 29.不等式13-3x >0的正整数解是______________________ . 30.不等式215x -≤的正整数解的个数有_______个.31.若0m n<<,则2{22x mx nx n>>-<的解集为.32.某品牌电脑的成本为2000元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,请依据题意列出关于x的不等式:_____.33.不等式-3x-1≥-10的正整数解为______________34.不等式3x-7<0的非负整数解是________________.35.如果x=2是不等式2x a2->3的一个解,则a的取值范围______.36.若关于x的分式方程11222kx x--=--的解是正数,则k的取值范围是______.37.设a,b是任意两个实数,max{a,b}表示a,b两数中较大的数.例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{﹣4,﹣3}=﹣3.若max{3x+1,﹣x+2}=﹣x+2,则x的取值范围是_____.38.已知关于x,y的方程组22324x y mx y m-=⎧⎨+=+⎩的解满足不等式组3050x yx y+≤⎧⎨+>⎩,则满足条件的m的整数值为________.39.我国已研制出新型新冠疫苗一一重组亚单位疫苗(CHO细胞),预计4月初开始接种.3月底我市部分小区率先开始了新型新冠疫苗接种预约,这部分小区平均每个小区有144名业主申报,其中申报人数低于120名的小区平均每个小区有112名业主申报,申报人数不低于120名的小区平均每个小区有168名业主申报.根据统计结果发现,若每个小区同时新增20名业主申报,则此时申报人数低于120名的小区平均每个小区有116名,申报人数不低于120名的小区平均每个小区有180名业主申报,且该市这部分小区个数高于100,且低于130,则这部分小区有______个.40.已知﹣1<a<0___.三、解答题41.解不等式组:12256xx x+⎧⎨≤+⎩,并把它的解集在数轴上表示出来.42.已知整数x同时满足不等式211132x x+--<和3x-4≤6x-2,并且满足方程3(x+a)-5a+2=020212a-的值43.解不等式组:12 382xx+<⎧⎨-<-⎩44.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?45.解不等式组(121(1)2-⎛⎫∏++ ⎪⎝⎭(2)32123x xxx>-⎧⎪+⎨>⎪⎩46.(1)解方程:31122xx x-+=--(2)解不等式组:426,{21136x xx x≥-++<+.47.某校在五一期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.(1)求外出旅游的学生人数是多少,单租45座的客车需多少辆?(2)已知45座的客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都有座,决定同时租用两种客车,使得租车总数比单租45座的客车少一辆,问45座的客车和60座的客车分别租多少辆才能使得租金最少?48.面临毕业季,某电脑营销商瞄准时机,在五月底筹集到资金12.12万元,用于一次性购进A、B两种型号的电脑共30台.根据市场需求,这些电脑可以全部销售,全部销售后利润不少于1.6万元,其中电脑的进价和售价见下表:设营销商计划购进A型电脑x台,电脑全部销售后获得的利润为y元.(1)试写出y与x的函数关系式;(2)该营销商有几种购进电脑的方案可供选择?(3)该营销商选择哪种购进电脑的方案获利最大?最大利润是多少?49.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元.(1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品.50.春节将至,洪崖洞的某礼品店准备将腊肉、香肠、野生葛根粉以礼盒形式销售,腊肉、香肠、野生葛根粉的成本之比为4:5:7.商家打算将3斤腊肉、2斤香肠、4斤野生葛根粉作为甲礼盒;将4斤腊肉、2斤香肠、4斤野生葛根粉作为乙礼盒;将2斤腊肉、4斤香肠、4斤野生葛根粉作为丙礼盒.已知每个礼盒的成本价是这三种年货的成本价之和,每个甲礼盒在成本价的基础上提高20%之后进行销售,每个乙礼盒的利润等于2斤野生葛根粉的成本价,每个丙礼盒的售价为1斤腊肉成本价的18倍.腊月二十九当天,该礼品店销售了40个甲礼盒,销售乙礼盒与丙礼盒的数量之和不少于55个,不超过58个.该礼品店通过核算,当天订单的利润率为25%,则腊月二十九当天一共销售了______个礼盒.参考答案:1.C【分析】根据关键词“超过”就是大于,然后列出不等式即可. 【详解】解:由题意得:x >6340万, 故选:C .【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词语,选准不等号. 2.D【详解】【分析】根据题意,用不等式表示.【详解】一天的最高气温为270C ,最低气温为180C ,一天的气温为t 0C ,用不等关系表示为1827t ≤≤. 故选D【点睛】本题考核知识点:不等式. 解题关键点:用不等式表示题意. 3.C【分析】先求出不等式组的解集,再根据解集中是否含有等号确定圆圈的虚实,方向,表示即可.【详解】① 不等式组3122x x -≥⎧⎨-⎩①>②中,解①得,x ≤2, 解①得,x >-1,①不等式组3122x x -≥⎧⎨-⎩①>②的解集为-1<x ≤2,数轴表示如下:故选C .【点睛】本题考查了一元一次不等式组的解集的数轴表示方法,熟练掌握解不等式的基本要领,准确用数轴表示是解题的关键. 4.D【分析】根据题意可直接列出不等式排除选项.【详解】解:由题意得:250x +≤; 故选D .【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键. 5.B【分析】分别求出两个不等式的解集,即可求解. 【详解】解:422113x x -<⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >, 解不等式①得:3x ≤, ①不等式组的解集为13x <≤,把不等式组的解集在数轴上表示出来,如下: 故选:B【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键. 6.B【分析】设他答对了x 道题,根据题意列出不等式即可求解. 【详解】解:设他答对了x 道题,则根据题意可列不等式为, 105(20)90x x -->,故选B .【点睛】本题考查了列一元一次不等式,理解题意,找到不等关系是解题的关键. 7.C【详解】解:A .在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,说法正确,不符合题意;B .在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,说法正确,不符合题意;C .当c =0时,若a b >,则不等式22ac bc >不成立,符合题意;D .在不等式22ac bc >的两边同时除以不为0的2c ,该不等式仍成立,即a b >,说法正确,不符合题意 故选C . 8.A【分析】根据平行线的判定可以判断①;根据不等式的性质可以判定①①;根据三角形外角的性质可以判定①.【详解】解:①内错角相等,两直线平行,故①是真命题,不符合题意; ①若33x y ->-,则x y <,故①是假命题,符合题意;①三角形的一个外角大于任何一个与之不相邻的内角,故①是真命题,不符合题意; ①若1a <-,则21a >,故①是真命题,不符合题意; 故选A .【点睛】本题主要考查了,判断命题真假,平行线的判定,不等式的性质,三角形外角的性质,熟知相关知识是解题的关怀. 9.B【分析】两方程相加、化简可得3x y a +=+,结合40a 知133a -<+<,据此可得答案.【详解】解:3249x y ax y -=⎧⎨+=⎩,3339x y a ∴+=+, 3x y a ∴+=+,40a -<<,133a ∴-<+<,即x y +的取值范围为13x y -<+<, 故选:B .【点睛】本题考查的是解一元一次不等式组,根据方程组得出3x y a +=+,并结合a 的取值范围得出3a +的范围是解题的关键. 10.A【详解】解:设小明的体重为m 千克,依题意得m+50<70 解得m <20即小明的体重<20千克①18<20①小明的体重可能是18千克. 故选A . 11.A【分析】根据点P (3m -9,1-m )在第二象限及第二象限内点的符号特点,可得一个关于m 的不等式组,解之即可得m 的取值范围. 【详解】解:①点P (3m -9,1-m )在第二象限, ①坐标符号是(-,+),①39010m m -<⎧⎨->⎩,解得m <1. 故选:A .【点睛】本题考查各象限内点的坐标的符号,解决本题的关键是转化为不等式或不等式组的问题. 12.C【分析】解方程组得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x +<-得8x >,结合4x m <且不等式组无解知2m ≤,继而从在2m ≤的非负整数中找到使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的个数.【详解】解:解方程组2822mx y x y +=⎧⎨-=-⎩得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x+<-,得:8x >, 又4x m <且不等式组无解,48m ∴≤, 解得2m ≤,在2m ≤的非负整数中使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的有0、2共2个, 故选:C .【点睛】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握解二元一次方程组和一元一次不等式组,并根据不等式组无解得出m 的取值范围. 13.C【详解】31526x x ->⎧⎨≤⎩①②, 解①得,2x >;解①得,3x ≤;①原不等式组的解集是23x <≤,故选C.14.C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果.【详解】解:根据题意得,20x y ≥,①20x ≥,①0y ≥,①0xy ≤,①0x ≤,故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.15.C【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:移项,得:2x >5-1,合并同类项,得:2x >4,系数化为1,得:x >2,故选:C .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.C【详解】①325x +⎡⎤=⎢⎥⎣⎦,①3235x +≤<,解得712x ≤<. 17.D【详解】21 3......{3 4......x x +≤+>①②解不等式①,得x≤1,解不等式①,得x>1,所以不等式组无解集;故选D .18.A【分析】根据不等式的性质逐项判断即可.【详解】A 、a b <,22a b ∴+<+,故本选项正确;B 、a b <,22a b ∴->-,故本选项错误;C 、a b <,c a c b ∴->-,故本选项错误;D 、a b <,22a b ∴<或22a b >,故本选项错误.故选A .【点睛】本题考查不等式的性质,不等式的基本性质1 :若a<b 和b<c ,则a<c (不等式的传递性);不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立;不等式的基本性质3:不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.19.C【分析】先根据二次函数的解析式确定对称轴及最大值,再结合图象判断:当自变量m +3在对称轴上或在对称轴右侧即m +3≥1时且自变量m 在对称轴上或在对称轴左侧即m ≤1时,函数能取到最大值5,由此列出不等式组,解不等式组即可.【详解】解:()22243=215y x x x =-++--+,①对称轴是x =1,①﹣2<0,①函数的最大值为5.又①当m ≤x ≤m +3时,函数y 的最大值为5, ①311m m +≥⎧⎨≤⎩, 解得:﹣2≤m ≤1.故选:C .【点睛】本题考查二次函数的最值问题,熟练掌握二次函数的图象和性质是解题的关键. 20.C【详解】分析:先根据一元一次不等式组解出x 的取值,再根据不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,求出实数a 的取值范围. 详解:2011,3x a x x +>⎧⎪⎨--≤⎪⎩①② 解不等式①,得 2a x ;>- 解不等式①,得1x ≤;原不等式组的解集为12a x -<≤. ①只有4个整数解,①整数解为:2,101--,,, 322a ∴-≤-<-, 4 6.a ∴<≤故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a 的取值范围.21.5x -<【分析】不等式两边都除以-2即可得出答案;【详解】解:210x ->,不等式两边都除以-2得:5x -<故答案为:x <-5【点睛】本题考查了解不等式,熟练掌握不等式的性质是解题的关键22.x <3【分析】分别求出每个不等式的解,再取各个解的公共部分,即可求解.【详解】解:372510x x -<⎧⎨-≤⎩①②, 由①得:x <3,由①得:x ≤15,①不等式的解为:x <3,故答案是:x <3.【点睛】本题主要考查解不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.23.2m ≥【分析】根据不等式组12x x m ≤≤⎧⎨>⎩无解,可得12x ≤≤与x >m 在数轴上没有公共部分,即可求解. 【详解】不等式组12x x m≤≤⎧⎨>⎩无解, 12x ∴≤≤与x >m 在数轴上没有公共部分,2m ∴≥,故答案为:2m ≥.【点睛】本题考查了一元一次不等式组无解的情况,熟练掌握知识点是解题的关键. 24.1<x <2【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:31534x x -<⎧⎨+>⎩①②, 解不等式①,得x <2,解不等式①,得x >1,所以 原不等式组的解集为1<x <2,故答案为:1<x <2.【点睛】本题考查的是一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.25.72a < 【分析】先解不等式组,再根据题意,“大小小大”列关于a 的不等式求解.【详解】解:1241x a x +>⎧⎨-≤⎩①②, 由①得:-1x a >,由①得:25x ≤,52x ≤①不等式组有解, ①5-12a <, 解得:72a <, 故答案为:72. 【点睛】本题考查了含参数不等式组的问题,首先要先解不等式组,再根据题意列出参数所满足的不等式,再进行计算求解.26.1x ≥【分析】根据二次根式有意义的条件分别求出等号两边被开方数中x 的范围,再取其公共部分即可.2(–10)x ≥,则x 为任意实数;2要满足10x -≥,则1x ≥,所以1x ≥.故答案为:1x ≥.【点睛】本题考查了二次根式有意义的条件,属于基本知识题型,熟知二次根式的被开方数非负是解题关键.27.x <【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以x <故答案为:x <【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.28.3a +2≥6##236a +≥【分析】由“a 的3倍与2的和不小于6”得出关系式为:a 的3倍+2≥6,把相关数值代入即可.【详解】解:①a 的3倍为3a ,①a 的3倍与2的和不小于6:3a +2≥6.故答案为:3a +2≥6.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.29.36125402x y x y +=⎧⎪⎨=⨯⎪⎩【详解】先求出不等式解集,再找出满足条件的正整数解即可.解:1330x ->的313x ->-133x < 满足条件的正整数解为:1,2,3,4故答案为x=1,2,3,430.3【分析】先求出不等式的解,再找出其正整数解即可得.【详解】215x -≤,251x ≤+,26x ≤,3x ≤,则不等式的正整数解为1,2,3,共有3个,故答案为:3.【点睛】本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键. 31.无解.【详解】试题考查知识点:解不等式组思路分析:根据条件确定2m 、2n 、-2n 的大小关系具体解答过程:①0m n <<①2m <2n <0<-2n①x >-2n >0,x <2n <0没有交集①x >-2n 与x <2n 没有交集①原不等式组无解试题点评:32.2800×10x ﹣2000≥2000×5%. 【分析】设最低可打x 折,根据品牌手机的利润率不低于5%,可列出不等式求解.【详解】设这种品牌的电脑打x 折销售,依据题意得:2800200020005%10x ⨯-≥⨯, 故答案为:2800200020005%10x ⨯-≥⨯. 【点睛】本题考查了一元一次不等式的应用,根据利润=售价-进价,可列不等式求解. 33.1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x -1≥-10,-3x≥-10+1,-3x≥-9,x≤3,①不等式-3x -1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键.34.0,1,2【分析】先确定不等式的解集,后确定非负整数解.【详解】①3x -7<0,①x <73,①要确定非负整数解,①0≤x <73, ①非负整数解有0,1,2;故答案为:0,1,2.【点睛】本题考查了一元一次不等式的解集和特解问题,规范求不等式的解集是解题的关键.35.a <-2.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得出不等式的解,再结合x=2是不等式的一个解列出关于a 的不等式,解之可得.【详解】解:①22x a ->3, ①2x-a >6,2x >a+6,则x >62a +, ①x=2是不等式的一个解, ①62a +<2, 解得a <-2,故答案为:a <-2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.36.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.37.14x ≤##0.25x ≤ 【分析】根据max {3x +1,﹣x +2}=﹣x +2,即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】解:①max {3x +1,﹣x +2}=﹣x +2,①3x +1≤﹣x +2,解得:14x ≤, 故答案为:14x ≤. 【点睛】本题考查了解一元一次不等式,解题的关键是根据max {3x +1,﹣x +2}=﹣x +2,找出关于x 的一元一次不等式.38.-3和-2【分析】根据题意,先求出方程组的解,然后解代入不等式组,即可求出m 的取值范围,然后得到m 的整数解即可.【详解】解:由题意得:x-2y=m 2x+3y=2m+4⎧⎨⎩①② 由①2-⨯①,解得:4y=7, 把4y=7代入①,得:8x=m+7, 把8x=m+7,4y=7代入不等式组,得: 843(m+)+07784m++5>077⎧⨯≤⎪⎪⎨⎪⨯⎪⎩③④, 解不等式①,得:4m -3≤,解不等式①,得:m>-4,①不等式组的解集为:4-4m -3<≤, ①满足条件的m 的整数解有:-3和-2,故答案为:-3和-2.【点睛】本题考查了解二元一次方程组,解一元一次不等式组,解题的关键是熟练掌握解方程组和解不等式组的方法和步骤.39.112【分析】先设低于120名的有x 个小区,不低于120名的有y 个小区,每个小区增加20名业主,则设低于120名的会在x 个小区的基础上减少e 个,根据“这部分小区平均每个小区有144名业主参加”可知一共有()144x y +名业主,再根据增加20户前与后两种情况的等量关系列式,可以得到x ,y 含有e 的关系式,再结合“该市这部分小区个数高于100,且低于130”即可得出答案.【详解】解:设低于120名的有x 个小区,不低于120名的有y 个小区,再设每个小区增加20名业主后,低于120名的会在x 个小区的基础上减少e 个小区,不低于120名的会在y 个小区的基础上增加e 个小区①增加20名业主后,低于120名的有()x e -个小区,不低于120户的有()y e +个小区, 由题意得:()144112168x y x y +=+,①43x y =①,同时有:()()()()11618020144x e y e x y x y -++=+++,化简得:34x y e -=①,由①①解得: 2.4 3.2x e y e ==,,①x ,y ,e 都是正整数,且100130x y <+<①100 5.6130e <<,①20e =,①4864x y ==,,①112x y +=故答案为:112.【点睛】本题主要考查方程与实际问题,能够读懂题意,找到等量关系并准确的表达出来是解题的关键.40.2a- 【分析】根据题意得到10a a->,10a a +<,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【详解】解:原式==①10a -<<,①201a <<, ①1a a>, 210a +>, ①10a a->,2110a a a a ++=<,原式112a a a a a ==---=- 故答案为:2a -. 【点睛】本题考查二次根式的化简和不等式的性质,解题关键是熟练掌握二次根式的性质.41.﹣2≤x ≤1,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x +1≤2,得:x ≤1,解不等式2x ≤5x +6,得:x ≥﹣2,则不等式组的解集为﹣2≤x ≤1,将不等式组的解集表示在数轴上如下:【点睛】此题主要考查在数轴上表示不等式组的解集,熟练掌握,即可解题.42.0【分析】先解两个不等式,确定解集的公共部分,再确定不等式组的整数解,把整数解代入方程解方程求解a 的值,从而可得答案.【详解】解:由两个不等式组成不等式组:2111323462x x x x +-⎧-<⎪⎨⎪-≤-⎩①② 解不等式①,得x <1,解不等式①,得x ≥-23①不等式组的解集为-23≤x <1①整数x 为0,①3(0+a )-5a +2=0,解得a =1202121120a -=+-=【点睛】本题考查的是一元一次不等式组的解法,求一个数的立方根,一元一次方程的解与解法,代数式的值,掌握以上知识是解题的关键.43.1x <【分析】直接根据一元一次不等式的解法进行求解即可. 【详解】解: 12382x x +<⎧⎨-<-⎩①② 解不等式①,得:1x <;解不等式①,得2x <;∴不等式组的解集为1x <.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握不等式组的解法是解题的关键.44.(1)购进甲种花卉每盆16元,乙种花卉每盆8元;(2)10≤x ≤12.5,故有三种购买方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【分析】(1)根据题意设购进甲种花卉每盆x 元,乙种花卉每盆y 元,列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,利用一次函数的性质得到哪种方案获利最大,最大利润是多少.【详解】解:(1)设购进甲种花卉每盆x 元,乙种花卉每盆y 元,20507204030880x y x y +=⎧⎨+=⎩, 解得:168x y =⎧⎨=⎩, 即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)设甲种花卉购进m 盆,则 80016688001688m m m m -⎧≥⎪⎪⎨-⎪≤⎪⎩, 解得,10≤m ≤12.5,又m 为整数,m ∴=10,11,12,故有三种购买方案,由利润W=80016614100,8m m m -+⨯=+ 40,∴>W 随m 的增大而增大,故当m =12时, 80016768m -=, 即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.45.(1)5;(2) 115x -<<. 【分析】(1)分别计算算数平方根,0指数幂,负指数幂,再把结果相加减;(2)依据解不等式的步骤分别计算两个不等式,求公共解.【详解】(1)原式2145=-+=(2)32(1)12(2)3x x x x >-⎧⎪+⎨>⎪⎩ 分别解两个一元一次不等式,过程如下:解①得,32x x ->-22x >-1x >-解①得,16x x +>51x <,15x < ①115x -<< 【点睛】本题考查0指数幂,算术平方根,负指数幂,解不等式组.(1)中熟记0指数幂,算术平方根,负指数幂的计算公式并能正确运用是解题的关键;(2)在解不等式时,需注意去分母和系数化为1时,要用到等式的性质2或者性质3,应注意不等号的方向改不改变.46.(1)解得x=2,检验,无解;(2)33x ≤<-【详解】试题分析:(1) 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2) 先求出①的解集,再求出①的解集,求两者的公共部分.试题解析: (1)31 122x x x-+=-- 去分母得:3−x −1=x −2,移项合并得:2-2x =-2,解得:x =2,经检验x =2是分式方程的增根,原方程无解. (2)426, 2x x 1136x x ①②≥-⎧⎪⎨++<+⎪⎩由①得,2x ≥-6所以x ⩾−3由①得,4+2x <x +1+6。
微专题05 一元二次不等式、分式不等式(解析版)
微专题05一元二次不等式、分式不等式【知识点总结】一、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅二、分式不等式(1)()0()()0()f x f xg x g x >⇔⋅>(2)()0()()0()f x f xg x g x <⇔⋅<(3)()()0()0()0()f x g x f x g x g x ⋅≥⎧≥⇔⎨≠⎩(4)()()0()0()0()f x g x f x g x g x ⋅≤⎧≤⇔⎨≠⎩三、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】(1)已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;(2)已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;(3)已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;(4)已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:一元二次不等式的解法题型二:分式不等式的解法题型三:绝对值不等式的解法题型四:高次不等式的解法题型五:一元二次不等式恒成立问题【典型例题】题型一:一元二次不等式的解法例1.(2022·全国·高一课时练习)不等式20x ax b --<的解集是{|23}x x <<,则210bx ax -->的解集是()A .{|23}x x <<B .11{|}32x x <<C .11{|}23x x -<<-D .{|32}x x -<<-【答案】C【解析】因为不等式20x ax b --<的解集是{|23}x x <<,所以方程20x ax b --=的两根为122,3x x ==,所以由韦达定理得23a +=,23b ⨯=-,即,=5=-6a b ,所以2216510bx ax x x --=--->,解不等式得解集为11{|}23x x -<<-故选:C例2.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是()A .0a >B .不等式20ax cxb ++>的解集为{|22x x <<+C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<<B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B例3.(2022·江苏南京·高一期末)已知,b c ∈R ,关于x 的不等式20x bx c ++<的解集为()2,1-,则关于x 的不等式210cx bx ++>的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,12∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】因为不等式20x bx c ++<的解集为()2,1-,所以2121-=-+⎧⎨=-⨯⎩b c 即12=⎧⎨=-⎩b c ,不等式210cx bx ++>等价于2210x x -++>,解得112x -<<.故选:A .例4.(2022·全国·高一课时练习)已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是关于x 的不等式230x x a -+<解集的子集,则实数a 的取值范围是().A .0a <B .0a ≤C .2a ≤D .2a <【答案】B【解析】不等式组22430680x x x x ⎧-+<⎨-+<⎩解得1324x x <<⎧⎨<<⎩,所以不等式组的解集是{|23}x x <<,关于x 的不等式230x x a -+<解集包含{|23}x x <<,令2()3f x x x a =-+,∴940(2)20(3)0a f a f a ∆=->⎧⎪=-+⎨⎪=⎩,解得0a ,故选:B .例5.(多选题)(2022·江苏·苏州中学高一阶段练习)关于x 的不等式20ax bx c ++<的解集为(,2)(3,)-∞-⋃+∞,则下列正确的是()A .0a <B .关于x 的不等式0bx c +>的解集为(,6)-∞-C .0a b c ++>D .关于x 的不等式20cx bx a -+>的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】ACD【解析】A .由已知可得0a <且2,3-是方程20ax bx c ++=的两根,A 正确,B .由根与系数的关系可得:2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得,6b a c a =-=-,则不等式0bx c +>可化为:60ax a -->,即60x +>,所以6x >-,B 错误,C .因为660a b c a a a a ++=--=->,C 正确,D .不等式20cx bx a -+>可化为:260ax ax a -++>,即2610x x -->,解得12x >或13x <-,D 正确,故选:ACD .例6.(多选题)(2022·全国·高一)若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是()A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-⋃+∞【答案】ABD【解析】因为不等式20ax bx c ++>的解集为()1,2-,所以0,1,2b ca a a<-==-,故,2b a c a =-=-,此时20a b c a ++=->,所以A 正确,B 正确;22230230230bx cx a ax ax a x x ++>⇔--+>⇔+->,解得:3x <-或1x >.所以D 正确;C 错误.故选:ABD例7.(2022·全国·高一专题练习)关于x 的不等式22430(0)x ax a a -+-≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是_____________.【答案】4【解析】关于x 的不等式22430(0)x ax a a -+-≥>可化为()()30(0)x a x a a --≤>所以不等式的解集为[],3a a ,所以12,3x a x a ==.所以122123314443a a x x a a x x a a ++=+=+≥=(当且仅当14a a=,即12a =时取“=”).故答案为:4.例8.(2022·江苏·盐城市大丰区新丰中学高一期中)已知关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,且a ,b ,R c ∈,0b c +≠,则2210a b b c +++的最小值为_______.【答案】【解析】由题意,关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,可得0b >,且440ab ∆=+=,所以1ab =-且0b >,所以1a b=-,又由不等式220bx x a -->的解集为{|}x x c ≠,所以212c b b--==,令12t b c b b=+=+≥,则22222211()22a b b b t b b +=+=+-=-,所以2221088a b t t b c t t +++==+≥+t =时取等号.所以2210a b b c+++的最小值为故答案为:题型二:分式不等式的解法例9.(2022·河南·高一期中)不等式351x x x +>-的解集是______.【答案】()(),11,5-∞-⋃【解析】不等式351x x x +>-化为以下两个不等式组:21035x x x x -<⎧⎨+<-⎩或21035x x x x ->⎧⎨+>-⎩,解21035x x x x -<⎧⎨+<-⎩,即21450x x x <⎧⎨-->⎩,解得1x <-,解21035x x x x ->⎧⎨+>-⎩,即21450x x x >⎧⎨--<⎩,解得15x <<,所以原不等式的解集是()(),11,5-∞-⋃.故答案为:()(),11,5-∞-⋃例10.(2022·全国·高一专题练习)不等式3113x x+>--的解集是_______.【答案】()23-,【解析】由3113x x +>--可得31103x x ++>-,即2403x x +<-,即()()3240x x -+<解得23x -<<所以不等式3113x x+>--的解集是()23-,故答案为:()23-,例11.(2022·湖南·新邵县第二中学高一开学考试)不等式2131x x +>-的解是___________.【答案】(1,4)【解析】由题设,2143011x xx x +--=>--,∴(1)(4)0x x --<,可得14x <<,原不等式的解集为(1,4).故答案为:(1,4).例12.(2022·上海市延安中学高一期中)已知关于x 的不等式221037kx kx x x -+≤-+的解集为空集,则实数k 的取值范围是___________.【答案】[)0,4【解析】2231937024x x x ⎛⎫-+=-+> ⎪⎝⎭恒成立,∴不等式等价于210kx kx -+≤的解集是φ,当0k =时,10≤不成立,解集是φ,当0k ≠时,240k k k >⎧⎨∆=-<⎩,解得:04k <<,综上:04k ≤<.故答案为:[)0,4例13.(2022·湖北·武汉市钢城第四中学高一阶段练习)不等式301x x -≥+的解集是____________.【答案】()[),13,-∞-+∞【解析】原不等式等价于()()31010x x x ⎧-+≥⎨+≠⎩,解得:3x ≥或1x <-,故答案为:()[),13,-∞-+∞.例14.(2022·上海市奉贤区曙光中学高一阶段练习)设关于x 的不等式0ax b +>的解集为(,1)-∞,则关于x 的不等式06ax bx -≥-的解集为______;【答案】[)1,6-【解析】由于关于x 的不等式0ax b +>的解集是(,1)-∞,则1为关于0ax b +=的根,且0a <,0a b ∴+=,得=-b a ,不等式06ax b x -≥-即为06ax a x +≥-,即106x x +≤-,解该不等式得[)1,6x ∈-故答案为:[)1,6-例15.(2022·黑龙江·牡丹江市第三高级中学高一开学考试)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式13x ax -≤-的解集为______.【答案】{}3x x >【解析】∵不等式2510ax x ++≤的解集为11{|}23x x -≤≤-∴12-,13-是方程2510ax x ++=的两根,∴6a =,∴13x a x -≤-可化为303x -≤-∴3x >∴不等式13x ax -≤-的解集为{|3}x x >,故答案为:{|3}x x >.例16.(2022·上海·高一专题练习)关于x 的不等式212x ax -≤--的解集是523x x ⎧⎫≤<⎨⎬⎩⎭,则a 的值为____.【答案】3【解析】由题知,22122x a x x x --≤-=---,整理得()3202x a x -+≤-,所以()()()3220x a x -+-≤,且2x ≠,因为不等式()()()3220x a x -+-≤,且2x ≠,的解集为523x x ⎧⎫≤<⎨⎬⎩⎭,所以()53203a ⋅-+=,3a =.故答案为:3.题型三:绝对值不等式的解法例17.(2022·上海交大附中高一阶段练习)不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为______________;【答案】(]1,3-;【解析】不等式12x -≤等价于212x -≤-≤,解之得:13x -≤≤,不等式511x ≥+等价于()5101x x -+≥+,解之得:14x -<≤,故不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为:(]1,3-.故答案为:(]1,3-.例18.(2022·上海交大附中高一期中)已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{|}1||2B x x =-≤,则A B =___.【答案】(23]-,【解析】解不等式102x x -≤+即(1)(2)020x x x -+≤⎧⎨+≠⎩,解得21x -<≤,故10(2,1]2x A xx ⎧⎫-=≤=-⎨⎬+⎩⎭,解|1|2x -≤,即212x -≤-≤,解得13x -≤≤,故121{|||]3}[B x x =-≤=-,,则(23]A B ⋃=-,,故答案为:(23]-,.例19.(2022·上海浦东新·高一期中)不等式221x x ->+的解集是_________.【答案】1|33x x ⎧⎫-<<⎨⎬⎩⎭【解析】当12x ≤-时,不等式221x x ->+转化为()()221x x -->-+,解得3x >-,此时132x -<≤-,当122x -<<时,不等式221x x ->+转化为()221x x -->+,解得13x <,此时1123x -<<,当2x ≥时,不等式221x x ->+转化为221x x ->+,解得3x <-,此时无解,综上:221x x ->+的解集是1|33x x ⎧⎫-<<⎨⎬⎩⎭.故答案为:1|33x x ⎧⎫-<<⎨⎬⎩⎭例20.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___.【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4.又当a =2时,A ={x |1<x <3},a =4时,A ={x |3<x <5},均满足A 是B 的真子集,∴2≤a ≤4.故答案为:2≤a ≤4题型四:高次不等式的解法例21.(2022·全国·高一课时练习)不等式22132x x x +≥-+的解集为___________.【答案】[0,1)(2,4]⋃【解析】22132x x x +≥-+等价于221032+-≥-+x x x ,即224032x x x x -+≥-+,即(4)0(1)(2)x x x x -≤--,又等价于()()()()()1240120x x x x x x ⎧---≤⎪⎨--≠⎪⎩,利用数轴标根法解得01x ≤<或24x <≤,所以原不等式的解集为[0,1)(2,4]⋃,故答案为:[0,1)(2,4]⋃例22.(2022·天津·静海一中高一阶段练习)不等式()()222344032x x x x x +-+≤+-的解集为___________.【答案】3[,1){2}(3,)2--+∞【解析】由题得2320,3x x x +-≠∴≠且1x ≠-.由题得()()()()2222322320,023(3)(1)x x x x x x x x +-+-≥∴≥---+,所以()()223(1)2(3)0x x x x ++--≥,()()223(1)2(3)0x x x x ++--=零点为3,1,2,32--.当32x <-时,不等式不成立;当312x -≤<-时,不等式成立;当12x -≤<时,不等式不成立;当2x =时,不等式成立;当23x <≤时,不等式不成立;当3x >时,不等式成立.故不等式的解集为:3[,1){2}(3,)2--+∞故答案为:3[,1){2}(3,)2--+∞例23.(2022·上海·华师大二附中高一阶段练习)不等式201712xx x <≤-+的解集为________.【答案】(0,2][6,)⋃+∞【解析】20712xx x <⇒-+()()340x x x -->,根据数轴穿根法可解得03x <<或4x >,22228121100712712712x x x x x x x x x x -+≤⇒-≤⇒≥-+-+-+()()()()2234607120x x x x x x ⎧----≥⇒⎨-+≠⎩,解得2x ≤或34x <<或6x ≥,所以2034017122346x x xx x x x x ⎧<<≤⇒⎨-+≤<<≥⎩或或或,解得(0,2][6,)x ∈⋃+∞.故答案为:(0,2][6,)⋃+∞例24.(2022·上海·华师大二附中高一期末)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩,解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.例25.(2022·上海·高一专题练习)不等式()()()()2321120x x x x ++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x -≤或1x =-或12x ≤≤时,()()()()2321120x x x x ++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.例26.(2022·浙江·诸暨中学高一期中)不等式()()2160x x x -+-<的解集为______.【答案】()(),31,2-∞-【解析】因为()()2160x x x -+-<,所以()()()1320x x x -+-<,解得3x <-或12x <<.所以不等式()()2160x x x -+-<的解集为:()(),31,2-∞-.故答案为:()(),31,2-∞-例27.(2022·上海·高一专题练习)不等式()()22221221x xx x x x ++>++的解集为_________.【答案】()()(),11,02,-∞--+∞.【解析】()()22221221xxx x x x ++>++等价于()()2120,x x x +->当1x =-时,不等式不成立,当1x ≠-时,不等式等价于()20x x ->,解得0x <或2x >且1x ≠-,故不等式的解集为()()(),11,02,-∞--+∞.故答案为:()()(),11,02,-∞--+∞.例28.(2022·上海市复兴高级中学高一期中)不等式()()()()2233021x x x x x --≥-+-的解集是______.【答案】23x x ⎧≤⎨⎩或}13x <≤【解析】不等式()()()()2233021x x x x x --≥-+-等价为()()()23310x x x ---≥且10x -≠,∴23x ≤或13x <≤,∴不等式()()()()2233021x x x x x --≥-+-的解集是23x x ⎧≤⎨⎩或}13x <≤故答案为:23x x ⎧≤⎨⎩或}13x <≤例29.(2022·贵州·遵义航天高级中学高一阶段练习)不等式()()232101xx x x -++≤-的解集为()A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-.故选:D .题型五:一元二次不等式恒成立问题例30.(2022·江苏·高一专题练习)若正实数,x y 满足244x y xy ++=,且不等式()2222340x y a a xy +++-≥恒成立,则实数a 的取值范围是()A .532⎡⎤-⎢⎥⎣⎦,B .(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭C .532⎛⎤- ⎥⎝⎦,D .(]5,3,2⎛⎫-∞-+∞ ⎪⎝⎭【答案】B【解析】正实数x ,y 满足244x y xy ++=,可得244x y xy +=-,∴不等式()2222340x y a a xy +++-≥恒成立,即()24422340xy a a xy -++-≥恒成立,变形可得()222214234xy a a a +≥-+恒成立,即2221721a a xy a -+≥+恒成立,0x >,0y >,2x y ∴+≥2x y =时等号成立,4244xy x y ∴=++≥+220≥,≥≤舍)可得2xy ≥,要使2221721a a xy a -+≥+恒成立,只需22217221a a a -+≥+恒成立,化简可得22150a a +-≥,即()()3250a a +-≥,解得3a ≤-或52a ≥,故实数a 的取值范围是(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭故选:B .例31.(2022·全国·高一单元测试)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为()A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A .例32.(2022·河南濮阳·高一期末(理))已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为()A .(][),04,-∞+∞UB .[]0,4C .[)4,+∞D .()0,4【答案】A【解析】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为:(][),04,-∞+∞U .故选:A .例33.(2022·浙江·金华市曙光学校高一阶段练习)“不等式20x x m -+>在R 上恒成立”的充要条件是()A .14m >B .14m <C .1m <D .1m >【答案】A【解析】∵不等式20x x m -+>在R 上恒成立,∴24(10)m ∆--<=,解得14m >,又∵14m >,∴140m ∆=-<,则不等式20x x m -+>在R 上恒成立,∴“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A .例34.(2022·四川·广安二中高一阶段练习(理))已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围()A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2∞⎛⎫- ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110a x a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B例35.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D .例36.(2022·陕西安康·高一期中)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞故选:A例37.(2022·广西·南宁市东盟中学高一期中)已知命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则实数a 的取值范围是()A .a -<<B .a <C .3a <D .9 2a <【答案】B【解析】由题知,命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则21,2,2102x x ax ⎡⎤∀∈-+>⎢⎥⎣⎦为真命题,即11,2,22x x a x ⎡⎤∀∈+>⎢⎥⎣⎦恒成立.又12x x +≥12x x =≥2x =等号成立,所以a <故选:B例38.(2022·全国·高一课时练习)已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是()A .4a <B .4a <-C .4a >D .4a >-【答案】A【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足,25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .【过关测试】一、单选题1.(2022·江西·丰城九中高一期末)已知集合{}2870A x x x =-+<,{}14B x x =<<,则“x A ∈”是“x B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意得{}17A x x =<<,所以AB .所以“x A ∈”是“x B ∈”的必要不充分条件.故选:B2.(2022·全国·高一)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为()A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<,当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C3.(2022·江苏·高一专题练习)若存在正实数y ,使得54y xx y xy-=+,则实数x 的最大值为()A .15B .54C .1D .4【答案】A 【解析】115454y x x y x y xy x y-=+⇔-=+,因为0y >,所以144y y +≥,所以154x x-≥,当0x >时,154x x-≥⇔25410x x +-≤,解得105x <≤,当0x <时,154x x-≥⇔25410x x +-≥,解得1x <-,故x 的最大值为15.故选:A4.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是()A .()()12-∞⋃+∞,,B .()12,C .()()21-∞-⋃+∞,,D .()21-,【答案】D【解析】关于x 的不等式ax b >的解集为{|2}x x <,0a ∴<,20a b -=,()()10ax b x ∴+->可化为()()210a x x +->,21x ∴-<<,∴关于x 的不等式()()10ax b x +->的解集是()21-,.故选:D .5.(2022·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是()A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,【答案】C【解析】因为不等式22(11)m x mx m x +<+++对R x ∈恒成立,所以210mx mx m ++-<对R x ∈恒成立,所以,当0m =时,10-<对R x ∈恒成立.当0m ≠时,由题意,得20Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <,综上,m 的取值范围为(]0-∞,.故选:C6.(2022·江苏·高一)已知不等式20ax bx c ++>的解集为{}|21x x -<<,则不等式20cx bx a -+<的解集为()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()2,1-【答案】A【解析】关于x 的不等式20ax bx c ++>的解集为{}|21x x -<<0a ∴<,且2-和1是方程20ax bx c ++=的两个根,则4200a b c a b c -+=⎧⎨++=⎩b a ∴=,2c a =-,关于x 的不等式20cx bx a -+<,即220ax ax a --+<,2210x x ∴+-<,解得112x -<<,故不等式的解集为11,2⎛⎫- ⎪⎝⎭,故选:A7.(2022·北京师大附中高一期末)关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤;综上所述:实数a 的取值范围为(],3-∞.故选:B .8.(2022·广西·桂林中学高一期中)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为()A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞【答案】A【解析】因0ax b ->的解集为(,2)-∞,则0a <,且2ba=,即有2,0b a a =<,因此,不等式2056ax bx x +≥--化为:22056ax a x x +≥--,即22056x x x +≤--,于是有:220560x x x +≤⎧⎨-->⎩或220560x x x +≥⎧⎨--<⎩,解220560x x x +≤⎧⎨-->⎩得2x -≤,解220560x x x +≥⎧⎨--<⎩得16x -<<,所以所求不等式的解集为:(,2](1,6)-∞--.故选:A 二、多选题9.(2022·湖北黄石·高一阶段练习)下列结论错误的是()A .不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅B .不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤C .若函数()20y ax bx c a =++≠对应的方程没有实根,则不等式20ax bx c ++>的解集为RD .不等式11x>的解集为1x <【答案】CD【解析】对于选项A ,当0a ≥时,210ax x ++≥的解集不为∅,而当0a <时,要使不等式210ax x ++≥的解集为∅,只需140a ∆=-<,即14a >,因0a <,故不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅,因此A 正确;对于选项B ,当0a <且240b ac ∆=-≤时,20ax bx c ++≤在R 上恒成立,故不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤,因此B 正确;对于选项C ,因函数()20y ax bx c a =++≠对应的方程没有实根,但a 正负不确定,故20ax bx c ++>或20ax bx c ++<恒成立,因此不等式20ax bx c ++>的解集不一定为R ,故C错;对于选项D ,由11x>,得10x x ->,即()10x x ->,解得01x <<,故D 错.故选:CD .10.(2022·黑龙江·尚志市尚志中学高一阶段练习)设p :实数x 满足1021x x -≤-,则p 成立的一个必要不充分条件是()A .11 2x ≤≤B .112x <≤C .01x ≤≤D .01x <≤【答案】ACD【解析】由题设,若p 成立,(1)(21)0210x x x --≤⎧⎨-≠⎩,解得112x <≤,∴p 成立的一个必要不充分条件,只需1(,1]2在某个范围内,但不相等即可.故选:ACD .11.(2022·江苏南京·高一阶段练习)定义区间(),m n 的长度为n m -,若满足()()2012x ax x -<--的x 构成的区间的长度之和为3,则实数a 的可能取值是()A .14B .13C .3D .4【答案】CD【解析】若14a =,()()()1111220,1,21222x x x x x ⎛⎫⎛⎫-+ ⎪⎪⎛⎫⎝⎭⎝⎭<⇒∈- ⎪--⎝⎭故区间长度之和为1+1=2,不符合题意;若13a =,()()()01,212x x x x x ⎛+ ⎛⎝⎭⎝⎭<⇒∈ --⎝⎭故区间长度之和为符合题意;若3a =,(()()())0212x x x x x +<⇒∈--故区间长度之和为123=,符合题意;若()()()()()224,02,112x x a x x x -+=<⇒∈---故区间长度为3,符合题意.故选:CD .12.(2022·全国·高一专题练习)下列条件中,为“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有()A .04m ≤<B .02m <<C .14m <<D .16m -<<【答案】BC【解析】因为关于x 的不等式210mx mx -+>对R x ∀∈恒成立,当0m =时,原不等式即为10>恒成立;当0m >时,不等式210mx mx -+>对R x ∀∈恒成立,可得∆<0,即240m m -<,解得:04m <<.当0m <时,21y mx mx =-+的图象开口向下,原不等式不恒成立,综上:m 的取值范围为:[)0,4.所以“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有02m <<或14m <<.故选:BC .三、填空题13.(2022·广东·梅州市梅江区梅州中学高一阶段练习)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则不等式(ax +b )(cx -b )<0的解集是________.【答案】3,32⎛⎫- ⎪⎝⎭【解析】由图像知:1和2是关于x 的方程ax 2+bx +c =0(a ≠0)的两个根,所以0a >,12,12b c a a+=-⋅=,所以3,2b a c a =-=.不等式(ax +b )(cx -b )<0可化为()()3230ax a ax a -+<,即()()23230x x a-+<,解得:332x -<<.所以不等式(ax +b )(cx -b )<0的解集是3,32⎛⎫- ⎪⎝⎭.故答案为:3,32⎛⎫- ⎪⎝⎭14.(2022·江苏·南京市金陵中学河西分校高一阶段练习)若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.【答案】12【解析】令1x =,则44a b c ≤++≤,故4a b c ++=,对任意R x ∈,222x ax bx c +≤++,则2(2)20ax b x c +-+-≥恒成立,∴222(2)4(2)(2)4(2)(2)0b ac a c a c a c ∆=---=+---=-+≤∴2c a =+,此时22b a =-,∴2111(22)2(1)2(222ab a a a a a =-=-=--+≤,当15,1,22a b c ===时取等号,此时()()2222333224310222x x ax bx c x x x -+-++=-+=-≥成立,∴ab 的最大值为12.故答案为:12.15.(2022·江苏·扬州大学附属中学高一期中)不等式20ax bx c ++≤的解集为R ,则2222b a c +的最大值为____________.【解析】当0a =时,即不等式0bx c +≤的解集为R ,则0b =,0c ≤,要使得2222b a c +有意义,此时0c <,则22202b a c =+;当0a ≠时,若不等式20ax bx c ++≤的解集为R ,则20Δ40a b ac <⎧⎨=-≤⎩,即204a b ac <⎧⎨≤⎩,所以,22222422b ac a c a c ≤++,因为24b ac ≤,则0ac ≥,当0c =时,则0b =,此时22202b a c =+;当0c <时,则0ac >,令0c t a =>,则22244412122ac t a c t t t ==≤+++当且仅当242b ac c a a c ⎧=⎪⎨=⎪⎩时,等号成立.综上所述,2222b a c +16.(2022·上海·格致中学高一期末)已知关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,则12123a x x x x ++的最小值是___________.【答案】【解析】因为关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,所以12,x x 是方程()226300x ax a a -+-=>的实数根,所以112226,3x x x x a a ==+,因为0a >,所以1212316a x x a x x a ++=+≥16a a =,即a =时等号成立,所以12123a x x x x ++的最小值是故答案为:。
中考数学专题训练之不等式与不等式组(01)
中考数学专题训练之不等式与不等式组(01)一.选择题(共10小题)1.如果a 、b 为有理数,且a 、b 两数的和小于a 与b 的差,则( )A .a 、b 同号B .a 、b 异号C .a 、b 为负数D .b 为负数2.某商店的老板销售一种商品,他要以不低于进价130%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价( ),可以买到这件商品.A .80元B .100元C .120元D .160元3.下列四个不等式:(1)ac >bc ;(2)2a >2b ;(3)ac 2>bc 2;(4)a b >1,一定能推出a>b 的有( )A .1个B .2个C .3个D .4个4.某种药品说明书上,贴有如图所示的标签,则一次服用这种药品的剂量范围是x ~ymg ,则x ,y 的值分别为( )用法用量:口服,每天30〜60mg ,分2〜3次服用.规格:□□□□□□贮藏:□□□□□□A .x =15,y =30B .x =10,y =20C .x =15,y =20D .x =10,y =305.网课期间,琪琪同学花整数元购买了一个手机支架,让同学们猜价格.甲说:“至少20元”,乙说“至多18元”,丙说:“至多15元”.琪琪说:“你们都猜错了.”则这个支架的价格为( )A .15元B .18元C .19元D .20元6.若关于x 的方程4(2﹣x )+x =ax 的解为正整数,且关于x 的不等式组{x−16+2>2x a −x ≤0有解,则满足条件的所有整数a 的值之和是( )A .3B .0C .﹣2D .﹣37.已知集合A ={x |x <a },B ={x |1≤x ≤2},且A ∪B =A ,则实数a 的取值范围是( )A .a ≤2B .a <2C .a ≥2D .a >28.若数m 使关于x 的不等式组{5(x −m)≤0x+23−x 2>1的解集为x <﹣2,且使关y 的方程32m −6=4y +m 2的解为负整数,则符合条件的所有整数m 的和为( ) A .1 B .2 C .5 D .09.不等式﹣3(x +1)>﹣6的解集表示在数轴上正确的是( )A .B .C .D .10.如图,学校要在领奖台上铺红地毯,地毯每平米40元,至少花多少钱才能铺满整个领奖台( )A .1200元B .1320元C .1440元D .1560元二.填空题(共10小题)11.一个数位大于等于4的多位数,如果其末三位数与末三位数以前的数之差(大数减小数)能被13整除,则这个多位数一定能被13整除;则672906 (能或不能)被13整除.若一个五位数S ,其前两位数为A =46+n ,后三位数为B =320+10m +n (0≤m ≤7,0≤n ≤9且为整数).现将五位数S 的后两位数放在最左边得到一个新的五位数S 1,再交换S 1百位上的数字与十位上的数字后得到S 2,S 2能被13整除,则满足条件的最大五位数与最小五位数的差为 .12.设[x ]表示不超过x 的最大整数{例如:[3]=3,[﹣5]=﹣5,[2.5]=2,[﹣2.7]=﹣3}请你认真理解[x ]的意义,当0<a <1,若[a +180]+[a +280]+…+[a +7880]+[a +7980]=32,则[10a ]的值为 .13.点A 在数轴上的位置如图所示,机器人从点A 的位置开始移动.第1次,机器人向左移动2个单位长度,描述这一变化的算式为:1﹣2,则此时机器人在数轴上的位置表示的数是 ;第2次,机器人向右移动3个单位长度,第3次,机器人向左移动4个单位长度,第4次,机器人向右移动5个单位长度,…,以此类推,至少移动 次后,机器人在数轴上的位置表示的数的绝对值比6大.14.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为 .15.若关于x 的不等式组{4−2x >03(x −m)≥5+x只有3个整数解,则m 的取值范围是 .16.若关于x 的一元一次不等式组{4k +1>4(x +14)5x−34≤x +1的解集是x <k ,且关于y 的方程2(y ﹣3)=k ﹣4y +5有正整数解,则符合条件的所有整数k 的和为 .17.关于x 的分式方程ax−9x−2+1=32−x 的解为正数,且关于y 的不等式组{12y −1≤13y −238y +7>a −y 恰好有三个整数解,则所有满足条件的整数a 的值之和为 .18.若关于x 的一元一次不等式组{x −2a >03−2x >x −6无解,则a 的取值范围是 .19.若关于x 的一元一次方程ax−12=7有正整数解,且使关于x 的不等式组{2x −a ≥0x−22<x+13至少有4个整数解,求出满足条件的整数a 的所有值的积为 .20.已知不等式(2a ﹣4)x <4﹣2a 的解集为x <﹣1,则a 的取值范围是 .三.解答题(共5小题)21.某汽车有油和电两种驱动方式,两种驱动方式不能同时使用,该汽车从A 地行驶至B 地,全程用油驱动需96元油费,全程用电驱动需16元电费,已知每行驶1千米,用油比用电的费用多0.8元.(1)求该汽车用电驱动方式行驶1千米的电费;(2)从A 地行驶至B 地,若用油和用电的总费用不超过39元,则至少需用电行驶多少千米?22.若A 、B 两点在数轴上分别表示数a 、b ,则A 、B 两点间的距离等于|a ﹣b |.(1)|x﹣2|=1可理解为数轴上表示x的点到表示2的点的距离等于1,则x=;(2)同理|x﹣2|+|x﹣5|可理解为数轴上表示x的点到表示2、5的点的距离之和;借助数轴(如图1)不难发现,当表示x的点在A的左侧时,|x﹣2|+|x﹣5|大于3,当表示x的点在A、B之间时,|x﹣2|+|x﹣5|等于3,当表示x的点在B的右侧时,|x﹣2|+|x﹣5|大于3;综上,当x满足时,|x﹣2|+|x﹣5|有(填“最大”或“最小”)值3;(3)如图2所示,某公共汽车运营线路上依次有A1,A2,A3三个汽车站,现要在路旁修建一个加油站M,使得三个汽车站到加油站M的路程总和最小,加油站M建在何处最好;(4)如果公共汽车运营线路上依次有A1,A2,A3,…,A n共n个汽车站,为使得n个汽车站到加油站M的路程总和最小,加油站M建在何处最好.23.对于任意实数a,b,定义一种新运算:a⊕b=a﹣3b+7,等式右边是通常的加减运算,例如:3⊕5=3﹣3×5+7=﹣5.(1)7⊕4=;√2⊕(√2−1)=.(2)若2x⊕y=12,x⊕3=2y,求xy的平方根;(3)若3m<2⊕x<7,且解集中恰有3个整数解,求m的取值范围.24.某商家销售A,B两种果苗,进货单价分别为70元,50元,下表是近两天的销售情况.销售量/棵销售收入/元A果苗B果苗第一天43625第二天55875(1)求A,B两种果苗的销售单价;(2)若该商家购进这两种果苗总计50棵,购进费用不超过2900元,则最多购进A种果苗多少棵?(3)某天商家销售A,B两种果苗,要使获得的总利润是900元,求这一天共有几种销售方案.25.为加强校园阳光体育活动,某中学计划购进一批篮球和排球,经过调查得知每个篮球的价格比每个排球的价格贵40元,买5个篮球和10个排球共用1100元.(1)求每个篮球和排球的价格分别是多少?(2)某学校需购进篮球和排球共120个,总费用不超过9000元,但不低于8900元,问有几种购买方案?最低费用是多少?。
高中数学专题复习基本不等式限时练习试卷与答案
高二数学专题复习(五)基本不等式1 限时练高二 ______班_____组 学号:_______ 姓名:______________ 一、【基础过关】(大约35分钟).225,0.1的最大值求已知xx x +<.19,1.2的最小值求已知-+>x x x.)41(,410.3的最大值求已知x x x -<<4.(2020·上海,13)下列不等式恒成立的是( )A.a 2+b 2≤2abB.a 2+b 2≥-2abC.a+b ≥2√|ab |D.a+b ≥-2√|ab |5.(2015·福建,理5)若直线x a +yb =1(a>0,b>0)过点(1,1),求a+b 的最小值.6.(2015·湖南,文)若实数a ,b 满足1a +2b =√ab ,则ab 的最小值为( )A.√2B.2C.2√2D.47.(2019·天津,文13)设x>0,y>0,x+2y=4,则(x+1)(2y+1)xy的最小值为 .8.(2019·天津,理13)设x>0,y>0,x+2y=5,则√xy的最小值为.9.(2014·重庆,文9)若log4(3a+4b)=log2√ab,则a+b的最小值是()A.6+2√3B.7+2√3C.6+4√3D.7+4√3二、【能力提升】(大约5分钟)10.(2015·重庆,文14)设a,b>0,a+b=5,则√a+1+√b+3的最大值为.高二数学专题复习(五)基本不等式1限时练答案1. 302. 73.641A.由基本不等式可知a2+b2≥2ab,故A不正确;B.a2+b2≥-2ab⇒a2+b2+2ab≥0,即(a+b)2≥0恒成立,故B正确;C.当a=-1,b=-1时,不等式不成立,故C不正确;D.当a=0,b=-1时,不等式不成立,故D不正确.故选B.∵直线xa+yb=1过点(1,1),∴1a+1b=1.又a,b均大于0,∴a+b=(a+b)(1a+1b)=1+1+ba+ab≥2+2√ba·ab=2+2=4.故选C.由已知1a+2b=√ab,可知a,b同号,且均大于0.由√ab=1a+2b≥2√2ab,得ab≥2√2.即当且仅当1a=2b,即b=2a时等号成立,故选C.(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy.∵x+2y=4,∴4≥2√2xy,∴2xy≤4.∴1xy≥12.∴2+5xy≥2+52=92.先化简,利用√xy 的范围求解.√xy=√xy=√xy =2√xy √xy≥2·√2√xy ·6√xy =4√3.当且仅当√xy =√xy,即xy=3时等号成立.由log 4(3a+4b )=log 2√ab ,得12log 2(3a+4b )=12log 2(ab ),所以3a+4b=ab ,即3b +4a =1. 所以a+b=(a+b )(3b +4a )=3ab +4ba +7≥4√3+7,当且仅当3ab =4ba ,即a=2√3+4,b=3+2√3时取等号.故选D .10.(2015·重庆,文14,5分,难度★★)设a ,b>0,a+b=5,则√a +1+√b +3的最大值0,a+b=5,所以(a+1)+(b+3)=9.令x=a+1,y=b+3,则x+y=9(x>1,y>3),于是=√x +√y,而(√x +√y )2=x+y+2√xy ≤x+y+(x+y )=18,所以√x +√y ≤3√2 .此时x=y ,即a+1=b+3,结合a+b=5可得a=3.5,b=1.5,故当a=3.5,b=1.5时,√a +1+√b +3的最大值为3√2.。
不等式与不等式组(压轴题综合测试卷)(人教版)(原卷版)
专题9.4 不等式与不等式组(满分100)学校:___________姓名:___________班级:___________考号:___________题号 一二三总分得分评卷人得 分一.选择题(本大题共10小题,每小题3分,满分30分) 1.(2023春·四川达州·八年级校考阶段练习)若不等式2x+53−1≤2−x 的解集中x 的每一个值,都能使关于x 的不等式3(x ﹣1)+5>5x +2(m +x)成立,则m 的取值范围是( ) A .m >−35B .m <−15C .m <−35D .m >−152.(2023春·福建泉州·七年级晋江市第一中学校考期中)若关于x 的不等式mx - n >0的解集是x <15,则关于x 的不等式(m +n)x >n −m 的解集是( ) A .x >−23B .x <−23C .x <23D .x >233.(2022秋·八年级课时练习)已知方程|x|=ax+1有一个负根而且没有正根,那么a 的取值范围是( ). A .a >-1B .a =1C .a≥1D .非上述答案4.(2023春·江苏·七年级专题练习)已知关于x 的不等式组{3a −2x ≥02a +3x >0 恰有3个整数解,则a 的取值范围是( ) A .23≤a ≤32B .43≤a ≤32C .43<a <32D .43≤a <325.(2023春·江苏·七年级期末)关于x 的不等式组{a −x >32x +8>4a有解且每一个x 的值均不在−2≤x ≤6的范围中,则a 的取值范围是( ) A .a <1B .a ≤1C .1<a ≤5D .a ≥56.(2022春·山西运城·八年级统考期末)若不等式组{2x −a <1x −2b >3的解 为−3<x <1,则(a +1)(b −1)值为( ) A .−6B .7C .−8D .97.(2023春·四川资阳·七年级四川省安岳中学校考期中)若整数a 使关于x 的不等式组{x+13≤2x+59x−a2>x−a+13至少有1个整数解,且使关于x ,y 的方程组{ax +2y =−4x +y =4的解为正整数,那么所有满足条件的a 值之和为( )A .﹣17B .﹣16C .﹣14D .﹣128.(2022春·重庆渝北·八年级校联考阶段练习)如果关于x 的不等式组{x−43−x <−4x −m >0的解集为x >4,且整数m 使得关于x ,y 的二元一次方程组{mx +y =83x +y =1的解为整数(x ,y 均为整数),则不符合条件的整数m的有( ) A .-4B .2C .4D .109.(2023春·江苏·七年级专题练习)若关于x 的一元一次不等式组{−2x+3m4≥2x2x +7≤4(x +1)有解,且最多有3个整数解,且关于y 的方程3y −2=2m−3(8−y)2的解为非负整数,则符合条件的所有整数m 的和为( ) A .23B .26C .29D .3910.(2022春·重庆綦江·七年级统考期末)如果关于x 、y 的方程组{3x +2y =m +12x +y =m −1 中x >y ,且关于x 的不等式组{x−12<1+x35x +2≥x +m 有且只有4个整数解,则符合条件的所有整数m 的和为( ) A .8 B .9C .10D .11评卷人得 分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022春·江苏连云港·七年级统考期末)对非负实数x “四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n +12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x =_____. 12.(2023春·江苏·七年级专题练习)若不等式|x −2|+|x +3|+|x −1|≥a 对一切数x 都成立,则a 的取值范围是________.13.(2023春·全国·七年级专题练习)若6a =3b +12=2c ,且b ≥0,c ≤9,设t =2a +b −c ,则t 的取值范围为______.14.(2022春·重庆南川·八年级统考期中)某公司急需生产一批不超过10000套的工装服(一套工装服含领带、衬衣、裙子各一件)该公司计划将员工分为甲、乙、丙三个组,分别生产领带、衬衣、裙子,他们于某天零时同时开工,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零时甲完成任务,再几天后(不少于一天)的中午12时乙完成任务,再过几天(不少于一天)后的8时丙完成了任务,已知三个组每天完成的任务分别是500件,400件,300件,则该公司甲组完成任务工作了______天.15.(2023春·江苏·七年级专题练习)将长为4,宽为a (a 大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图①所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止.当n =3时,a 的值为 ___________.评卷人得 分三.解答题(本大题共9小题,满分55分)16.(4分)(2023春·全国·七年级专题练习)解下列不等式: (1)解不等式6x ﹣4>5(x ﹣1)+3; (2)解不等式1-0.1x+10.4>1-0.15x 0.5,并把不等式的解在数轴上表示出来.17.(8分)(2022秋·江西景德镇·七年级景德镇一中校考期中)根据要求解不等式或答题 (1){2x +5≤3(x +2)1−2x 3+15>0 ; (2)若关于x 的不等式组{2x <3(x −3)+13x+24>x +a有四个整数解,则a 的取值范围是? (3)mx +1>2x +n ; (4)2|x +1|−|x |>3|2−x |.18.(6分)(2022秋·全国·七年级专题练习)已知2x−13−1≥x −5−3x 2,求|x −1|−|x +3|的最大值和最小值.19.(6分)(2022·安徽·九年级专题练习)某商场计划拨款9万元从厂家购买50台电视机,已知该厂家生产三种不同型号的电视机的出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,商场销售一台甲种电视机可获利150元,销售乙种电视机每台可获利200元,销售丙种电视机每台可获利250元. (1)若同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案; (2)经市场调查这三种型号的电视机是最受欢迎的,且销售量乙种是丙种的3倍.商场要求成本不能超过计划拨款数额,利润不能少于8500元的前提,购进这三种型号的电视机共50台,请你设计这三种不同型号的电视机各进多少台?20.(6分)(2022春·湖北武汉·七年级校考阶段练习)如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果) (2)若k 使得方程组{3x +2y =k +14x +3y =k −1中的x ,y 均为连动数,求k 所有可能的取值;(3)若关于x 的不等式组{2x−63>x −3x+32≤x −a的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.21.(6分)(2022秋·浙江宁波·八年级校考期中)(1)阅读下面的材料并把解答过程补充完整. 问题:在关于x ,y 的二元一次方程组{x −y =2x +y =a中,x >1,y <0,求a 的取值范围.分析:在关于x 、y 的二元一次方程组中,用a 的代数式表示x ,y ,然后根据x >1,y <0列出关于a 的不等式组即可求得a 的取值范围.解:由{x −y =2x +y =a 解得{x =a+22y =a−22又因为x >1,y <0所以{a+22>1a−22<0解得a 的取值范围是 . 因为x +y =a ,所以a 的取值范围就是x +y 的取值范围. (2)请你按照上述方法,完成下列问题:①已知x ﹣y =4,且x >3,y <1,求x +y 的取值范围;①已知a ﹣b =m ,在关于x ,y 的二元一次方程组{2x −y =−1x +2y =5a −8中,x <0,y >0,请直接写出a +b 的取值范围.22.(6分)(2023春·江苏·七年级专题练习)我们把关于x 的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”. (1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由; ①{2x −4=05x −2<3;①{x−53=2−3−x 2x+32−1<3−x 4. (2)若关于x 的组合{5x +15=03x−a2>a 是“有缘组合”,求a 的取值范围;(3)若关于x 的组合{5a−x2−3=2x −3a x−a 2+1≤x +a是“无缘组合”;求a 的取值范围.23.(6分)(2022春·四川资阳·七年级校考期中)使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x−3=1与不等式x+3>0,当x=2时2x−3=2×2−3=1,x+3=2+3=5>0同时成立,则称“x=2”是方程2x−3=1与不等式x+3>0的“理想解”.(1)已知①x−12>32,①2(x+3)<4,①x−12<3,试判断方程2x+3=1的解是否为它与它们中某个不等式的“理想解”;(2)若{x=x0y=y0是方程x−2y=4与不等式{x>3y<1的“理想解”,求x0+2y0的取值范围;(3)当实数a、b、c满足a<b<c且a+b+c=0时,x=m恒为方程ax=c与不等式组{x−1≥t+s4x−4≤2t+s 的“理想解”,求t、s的取值范围.24.(7分)(2022春·江苏南通·七年级校考期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“相依方程”,例如:方程x−1=3的解为x=4,而不等式组{x−1>1x−2<3的解集为2<x<5,不难发现x=4在2<x<5的范围内,所以方程x−1=3是不等式组{x−1>1x−2<3的“相依方程”.(1)在方程①6(x+2)−(x+4)=23;①9x−3=0;①2x−3=0中,不等式组{2x−1>x+13(x−2)−x≤4的“相依方程”是________;(填序号)(2)若关于x的方程3x−k=6是不等式组{3x+12>xx−1 2≥2x+13−1的“相依方程”,求k的取值范围;(3)若关于x的方程x−3m2=−2是关于x的不等式组{x+1>mx−m≤2m+1的“相依方程”,且此时不等式组有5个整数解,试求m的取值范围.。
4758题型五方程与不等式(组)应有用题1
题型五方程与不等式(组)应有用题专题一(省2011中考荟萃)1(2011绥化齐齐哈尔)建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元. 在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?2(2011牡丹江)某个体小服装准备在夏季来临前,购进甲、乙两种T恤,在夏季到来时进行销售.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.3(2011龙东五市)2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”。
为了响应节能减排的号召,某品牌汽车4S店准备购进A 型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由。
不等式组和不等式方程组
不等式组和不等式方程组
一、不等式组
1、不等式的定义:用不等号连接表示不等关系的式子,叫做不等式
2、不等号:>、<、≥、≤、≠
3、不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含的未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。
5、解不等式:求不等式的解集的过程叫做解不等式。
二、不等式组的性质
1、不等式的性质1:不等号两边同时加上或减去同一个数(或同一个式子),不等号的方向不变。
2、不等式的性质2:不等号两边同时乘或除以同一个正数(或同一个大于0的式子),不等号的方向不变。
3、不等式的性质3:不等号两边同时乘或除以同一个负数(或同一个小于0的式子),不等号的方向改变。
三、一元一次不等式:
1、一元一次不等式的定义:含有一个未知数,未知数的次数是1,未知数的系数不为0,这样的不等式叫做一元一次不等式。
2、一元一次不等式的一般形式:
ax+b>0或ax+b<0(a、b为常数,且a≠0)
3、一元一次不等式的最简形式:
ax>b或ax<b(a、b为常数,且a≠0)
四、一元一次不等式组:
1、一元一次不等式组的定义:把几个含有相同未知数的一元一次不等式合在一起,就组成了一元一次不等式组。
2、一元一次不等式组的解集:在一个一元一次不等式组中,所有一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
3、解不等式组:求不等式组的解集的过程,叫做解不等式组。
4、一元一次不等式组的解的情况:。
备战2023数学高考一轮复习真题演练(2021-22年真题) 一元二次不等式与其他常见不等式解法
专题05 一元二次不等式与其他常见不等式解法【考点预测】 1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解 【方法技巧与总结】1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,n m 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法 题型二:含参数一元二次不等式的解法 题型三:一元二次不等式与韦达定理及判别式 题型四:其他不等式解法 题型五:二次函数根的分布问题【典例例题】题型一:不含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为( ) A .{2}xx <-∣ B .{1}x x >∣ C .{21}x x -<<∣ D .{2∣<-xx 或1}x > 【答案】D 【解析】 【分析】结合一元二次不等式的解法求得正确答案即可. 【详解】由(2)(1)0x x +->解得2x <-,或1x >,所以不等式(2)(1)0x x +->的解集为{2∣<-x x 或1}x >, 故选:D.例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】 【分析】根据指数型函数的定点求解,m n ,代入后再求解一元二次不等式. 【详解】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1) B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C 【解析】 【分析】根据()f x 解析式,可得()f x 的单调性,根据条件,可得x +2<x 2+2x ,根据一元二次不等式的解法,即可得答案.【详解】函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,可得x ≥0,()f x 递增; 当x <0时,()f x 递增;且x =0时函数连续,所以()f x 在R 上递增,不等式()2f x +<()22f x x +,可化为x +2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2, 则原不等式的解集为(﹣∞,﹣2)∪(1,+∞). 故选:C例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是( )A .m <B .m >C .0m >D .m >m <【答案】B 【解析】 【分析】根据该不等式是否为二次不等式,分情况讨论. 【详解】当0m =时,该不等式为210x -+>,解集为12x <,不成立; 当0m ≠时,由不等式的解集为R ,得()()2Δ2410m m m m >⎧⎪⎨=+-+<⎪⎩,解得m >故选:B.例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为( )A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【答案】D 【解析】 【分析】根据奇偶性定义可知()f x 为偶函数,并根据指数函数和二次函数单调性确定()f x 的单调性,从而将所求不等式转化为124x x +≥-,解不等式可求得结果.【详解】()f x 定义域为R ,()()()2233x x f x x x f x --=+-=+=,()f x ∴为定义在R 上的偶函数,图象关于y 轴对称;当0x ≥时,()23x f x x =+,又3x y =,2yx 在[)0,∞+上均为增函数,()f x ∴在[)0,∞+上为增函数,则()f x 在(],0-∞上为减函数;由()()124f x f x +≥-可得:124x x +≥-,即()()22124x x +≥-,解得:15x ≤≤,即不等式()()124f x f x +≥-的解集为[]1,5. 故选:D.【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集 题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】 【分析】根据一元二次不等式的解法即可求解. 【详解】解:原不等式可以转化为:()()120x ax --≥,当0a <时,可知2()(1)0x x a --≤,对应的方程的两根为1,2a,根据一元二次不等式的解集的特点,可知不等式的解集为:2[,1]a. 故选:A.例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为( )A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x a ⎫<⎬⎭D .1|x x a ⎧⎫<⎨⎬⎩⎭【答案】A 【解析】 【分析】当1a <-时,根据开口方向及根的大小关系确定不等式的解集. 【详解】因为1a <-,所以1()0a x a x a ⎛⎫--< ⎪⎝⎭等价于1()0x a x a ⎛⎫--> ⎪⎝⎭,又因为当1a <-时,1a a >,所以不等式1()0x a x a ⎛⎫--> ⎪⎝⎭的解集为:{|x x a <或1x a ⎫>⎬⎭. 故选:A . 【点睛】本题考查含参一元二次不等式的解法,较简单,解答时,注意根的大小关系比较.例8.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()()f x y f x f y -=-,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m < )A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m >C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<【答案】A 【解析】 【分析】先判断函数()f x 单调递减,再利用已知条件和函数的单调性得()()20mx x m --<,解不等式即得解. 【详解】任取12x x <,由已知得()120f x x ->,即()()120f x f x ->,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m ->-,即()22f mx x f ->()22m x m -,所以2222mx x m x m -<-,即()22220mx m x m -++<,即()()20mx x m --<,又因为0m << 所以2m m >,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 【点睛】方法点睛:解抽象函数不等式一般先要判断函数的单调性,再利用单调性化抽象函数不等式为具体的函数不等式解答.例9.(2022·全国·高三专题练习)在关于x 的不等式2(1)0x a x a -++<的解集中至多包含2个整数,则a 的取值范围是 A .(3,5)-B .(2,4)-C .[3,5]-D .[2,4]-【解析】 【详解】因为关于x 的不等式2(1)0x a x a -++<可化为(1)()0x x a --<, 当1a >时,不等式的解集为1x a <<, 当1a <时,不等式的解集为1<<a x ,要使得解集中至多包含2个整数,则4a ≤且2a ≥-,所以实数a 的取值范围是[2,4]a ∈-,故选D.点睛:本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等知识点的综合应用,试题比较基础,属于基础题,同时着重考查了分类讨论思想的应用,解答中正确求解不等式的解集是解答的关键.例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围. 【答案】()(),22,∞∞--⋃+ 【解析】 【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案. 【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x aa ==由此可知120,0x x <>, 当0a >时,解集{}{}12||A x x x x x x =<>,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x<,即12a ,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a>,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R. (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由. 【答案】(1)答案见解析(2)能;2k =-,B ={-3,-2,-1,0,1,2,3} 【解析】(1)对k 进行分类讨论,结合一元二次不等式的解法求得不等式的解集A . (2)结合(1)的结论进行分类讨论,结合基本不等式求得和正确答案. (1)当k =0时,A ={x |x <4};当k >0且k ≠2时,A ={x |x <4或4x k k>+}; 当k =2时,A ={x |x ≠4};当k <0时,A ={x |4k k+<x <4}. (2)由(1)知:当k ≥0时,集合B 中的元素的个数有无限个;当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集. 因为4k k+=-[(-k )+()4k -]≤-4,当且仅当k =-2时取等号, 所以当k =-2时,集合B 中的元素个数最少,此时A ={x |-4<x <4},故集合B ={-3,-2,-1,0,1,2,3}.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围 【答案】12ln2(,]43-【解析】 【分析】将不等式转化为22ln 2(1)x x m x ->+,构造函数22ln ()=2(1)x xf x x -+,利用导数判断单调性,结合题意即可求解.【详解】关于x 的不等式21ln 02x mx x m ---<化为:22ln 2(1)x x m x ->+,令22ln ()=2(1)x xf x x -+,0x >,则3222222ln ()2(1)x x x x xf x x x +--+'=+.令32()2222ln u x x x x x x =+--+,2()342ln u x x x x '=++在(0,)+∞上单调递增,因此存在0(0,1)x ∈,使得20000()342ln 0u x x x x '=++=,20002ln 34x x x =--, 3232232200000000000000000()2222ln 222(34)22222(1)(1)0u x x x x x x x x x x x x x x x x x =+--+=+--+--=----=-++<,u (1)10=-<,u (2)104ln20=+>.因此存在1(1,2)x ∈,使得1()0u x =,因此函数()f x 在1(0,)x 内单调递减,在1(x ,)∞+单调递增.f (1)14=,f (2)2ln23-=.关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >, 该不等式在(,)a b 中有且只有一个整数解,∴实数m 的取值范围是12ln2(,]43-.【方法技巧与总结】 1.数形结合处理.2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2- B .1 C .2 D .8【答案】C 【解析】 【分析】由一元二次不等式的解与方程根的关系求出系数1a =,确定2b ≥,然后结合基本不等式得最小值. 【详解】2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,则2240ax bx ++=的两根为m ,4m ,∴44m m a ⋅=,∴1a =,42m b m +=-,则424b m m=-+≥-,即2b ≥,44244b b a b b +=+≥,当且仅当4b =时取“=”, 故选:C.例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB.CD. 【答案】D 【解析】 【分析】一元二次不等式解集转化为一元二次方程的解,根据韦达定理求出124x x a +=,2123x x a =,再用基本不等式求出最值【详解】22430(0)x ax a a -+<<的解集为()12x x ,,则12x x ,是方程22430-+=x ax a 的两个根,故124x x a +=,2123x x a =,故1212143a x x a x x a++=+ 因为0a <,所以有基本不等式得:114433a a a a ⎡⎤⎛⎫+=--+-≤-= ⎪⎢⎥⎝⎭⎣⎦,当且仅当143a a -=-即a =1212a x x x x ++的最大值为 故选:D(多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( ) A .0a >B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-⋃+∞【答案】ABD 【解析】 【分析】根据不等式20ax bx c ++>的解集判断出0a >,结合根与系数关系、一元二次不等式的解法判断BCD 选项的正确性.【详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确; 且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误; 不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确. 故选:ABD .例16.(2022·全国·高三专题练习)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________. 【答案】{}23x x <<【解析】 【分析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭可得参数a 的值,则不等式303x ax -<-也具体化了,按分式不等式解之即可. 【详解】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,,故6a =,则不等式303x ax -<-即3603x x -<-等价于3(2)(3)0x x --<, 不等式3(2)(3)0x x --<的解集为{}23x x <<, 则不等式303x ax -<-的解集为{}23x x <<, 故答案为:{}23x x <<.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【答案】{|23}x x << 【解析】【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答. 【详解】依题意,12-,13-是方程210ax bx --=的两个根,且0a <,于是得11()()23111()()23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<, 所以不等式20x bx a --< 的解集是{|23}x x <<. 故答案为:{|23}x x <<【方法技巧与总结】1.一定要牢记二次函数的基本性质.2.含参的注意利用根与系数的关系找关系进行代换. 题型四:其他不等式解法例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______. 【答案】10,2⎛⎫ ⎪⎝⎭【解析】 【分析】 由12x>可得120x ->,结合分式不等式的解法即可求解.【详解】 由12x >可得120x ->,整理可得:120xx ->,则()210x x -<,解可得:102x <<. 所以不等式是12x >的解集为: 10,2⎛⎫ ⎪⎝⎭. 故答案为:10,2⎛⎫⎪⎝⎭.例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________. 【答案】()1,0- 【解析】【分析】根据分式不等式的解法进行求解. 【详解】1111000101111x x x x x x x ->⇒->⇒>⇒<⇒-<<++++, 故答案为:()1,0-.例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________. 【答案】02xx <- 【解析】 【分析】由题意根据分式不等式的解法,得出结论. 【详解】一个解集为()0,2的分式不等式可以是02xx <-, 故答案为:02xx <-.(答案不唯一) 例21.(2022·上海·高三专题练习)关于x 230≥的解集为_________.【答案】[4,5) 【解析】 【分析】通过2330x x -+>0≥恒成立,将不等式最终转化为405010x x x -≥⎧⎪->⎨⎪+≠⎩,解出即可.【详解】解:对于233x x -+,有23340∆=-⨯<,则2330x x -+>恒成立,0≥恒成立,2323(34)00150x x x x ⎧--≥⎪≥⇔+⎨⎪->⎩又2333(34)(4)(1)11x x x x x x ---+=++, 23(34)0150x x x x ⎧--≥⎪∴+⎨⎪->⎩, 2333(34)(4)(1)x x x x --=-+405010x x x -≥⎧⎪∴->⎨⎪+≠⎩解得不等式的解集为[4,5).故答案为:[4,5). 【点睛】本题考查分式不等式的求解,发现部分因式恒大于零,以及分母不为零是解题的关键,是中档题. 例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____. 【答案】()()3,11,2--.【解析】 【分析】 关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x 代入可得不等式1011kx bx ax cx ++<++的解集.【详解】 若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭则关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x 代入可得,则1111,,132x ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,则()()3,11,2x ∈--⋃. 故解集为:()()3,11,2--.【点睛】本题考查不等式的解法,考查方法的类比,正确理解题意是关键.【方法技巧与总结】1.分式不等式化为二次或高次不等式处理. 2.根式不等式绝对值不等式平方处理. 题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围是( ) A .()0,1 B .()0,∞+C .()1,+∞D .(),0-∞【答案】C 【解析】 【分析】由0a ≠,判别式0∆>及根与系数关系列出不等式组,即可求出实数a 的取值范围. 【详解】因为关于x 的方程2210ax ax -+=有两个不同的正根,所以2044010a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩,解得1a >,故实数a 的取值范围是()1,+∞.故选:C例24.(2022·全国·高三专题练习)已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) A .(,1]-∞- B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫-- ⎪⎝⎭【答案】B 【解析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解. 【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】A 【解析】化简函数f (x ),根据f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,f ′(x )≤0恒成立,由此解不等式求出a 的取值范围.【详解】由函数()()()1cos 23sin cos 212f x x a x x a x =+++-,且f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A . 【点睛】本题考查三角函数的公式及导数的应用,解题的关键是利用换元将不等式恒成立问题转化为一元二次不等式恒成立问题,属于较难题.例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103 D .92【答案】AC 【解析】 【分析】本题先求导函数并根据题意建立关于m 的方程,再根据根的分布求a 的取值范围,最后判断得到答案即可. 【详解】 解:∵ 322()13f x x x ax =-+-, ∴ 2()22f x x x a '=-+,可令切点的横坐标为m ,且0m >,可得切线斜率2223k m m a =-+=即22230m m a -+-=,由题意,可得关于m 的方程22230m m a -+-=有两个不等的正根,且可知1210m m +=>,则1200m m ∆>⎧⎨⋅>⎩,即2242(3)0302a a ⎧-⨯⨯->⎪⎨->⎪⎩, 解得:732a <<,所以a 的取值可能为196,103. 故选:AC. 【点睛】本题考查求导函数,导数的几何意义,根的分布,是中档题.例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+ 【解析】根据一元二次方程根的分布建立不等式组,解之可得答案. 【详解】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (Ⅰ) 0a >且21ba-<<-; (Ⅰ)方程()0f x =在(0,1)内有两个实根. 【答案】(Ⅰ)见解析;(Ⅰ)见解析. 【解析】 【分析】(Ⅰ)先由条件求得,a c 的符号,结合条件可得; (Ⅰ)根据(0),(1)()3bf f f a-的符号可得. 【详解】(Ⅰ)因为(0)0,(1)0f f >>,所以0,320c a b c >++>. 由条件0a b c ++=,消去b ,得0a c ;由条件0a b c ++=,消去c ,得0a b +<,20a b +>.故21ba-<<-. (Ⅰ)函数2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--,在21b a -<<-的两边乘以13-,得12333b a <-<.又因为(0)0,(1)0,f f >>而22()0,33b a c acf a a+--=-<又因为2()32f x ax bx c =++在(0,)3ba -上单调递减,在(,1)3b a-上单调递增, 所以方程()0f x =在区间(0,)3ba -与(,1)3b a-内分别各有一实根. 【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】 一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}22x x -≤≤ B .{}42,3x x x -≤≤≠- C .{}34x x ≤≤ D .{}34x x -<≤【答案】D 【解析】 【分析】由一元二次不等式的解法和简单分式不等式的解法求出集合,A B ,然后根据并集的定义即可求解. 【详解】解:因为集合{}{}228024A x x x x x =--≤=-≤≤,()(){}2302032330x x x B x x x x x x ⎧⎫⎧-+≤⎧⎫-⎪⎪=≤==-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎩⎪⎪⎩⎭,所以{}34A B x x ⋃=-<≤, 故选:D.2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】【分析】2,20x x x a ∃∈-+<R ,列出不等式,求出1a <,从而判断出答案. 【详解】2,20x x x a ∃∈-+<R ,则要满足440a ∆=->,解得:1a <,因为11a <⇒1a <,但111a a <⇒<故“11a <”是“2,20x x x a ∃∈-+<R ”的必要不充分条件. 故选:B3.(2022·陕西·模拟预测(理))已知集合234|0A x x x ,{}2|B x a x a =<<,若A B =∅,则实数a 的取值范围是( ) A .(],1-∞- B .[)4,+∞ C .()(),12,4-∞-⋃ D .[][)1,24,-⋃+∞【答案】D 【解析】 【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可. 【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅, 所以,当{}2|B x a x a=<<=∅时,2a a≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞,综上,实数a 的取值范围是[][)1,24,-⋃+∞. 故选:D4.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1- B.(-C .()0,1D.(【答案】C 【解析】 【分析】根据函数解析式判断函数关于点(1,0)成中心对称,再由基本初等函数判断函数单调性,转化原不等式后求解即可. 【详解】()()ππln ln 2cosln 2ln cos(π)0)2()(22f x f x x x x x x x ----+----=+=, ()f x ∴图象关于点(1,0)成中心对称,又()()ln ln 2cos2f x x x x π=---的定义域为(0,2),由πln ,ln(2),cos 2y x y x y x ==--=-在(0,2)上单调递增知, ()()ln ln 2cos2f x x x x π=---在(0,2)上递增,()()20f t f t +<,()20(2)f f t t ∴+-<-,即()2(2)f t f t <-,22t t ∴<-,解得21t -<<,又20202t t <<⎧⎨<<⎩,解得0t << 所以01t <<. 故选:C5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的取值范围为( )A .[1,3]- B .75,22⎡⎤-⎢⎥⎣⎦C.[1,- D.[1,【答案】A 【解析】【分析】令1sin ,[,1]2t x t =∈,则||2t t k -≤.对k 进行讨论,即可求出答案.【详解】令1sin ,[,1]2t x t =∈,则||2t t k -≤.(1)当12k <时,则2()220t t k t kt -≤⇒--≤, 令2()2g t t kt =--,max ()(1)101g t g k k ==--≤⇒≥-.故112k -≤<. (2)当1k >时,则2()220t k t t kt -≤⇒-+≥, 令2()2g t t kt =-+ ①当12k<时,212k k <⇒<<,则22min ()()201242k k k g t g k ==-+≥⇒<≤②当12k≥时,2k ≥, 则min ()(1)120323g x g k k k ==-+≥⇒≤⇒≤≤ 故13k << (3)当112k ≤≤时,则||2t t k -≤在1[,1]2t ∈上恒成立, 故112k ≤≤. 综上所述:[1,3]k ∈- 故选:A.7.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .()2,4-C .][(),42,-∞-⋃+∞ D .][(),24,-∞-⋃+∞【答案】A 【解析】 【分析】首先判断0,0a b >>,再化简()214224a b a b a b a b b a ⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求解.【详解】解:设方程2320x x ab --=的两个异号的实根分别为1x ,2x ,则1203abx x =-<,0ab ∴>. 又211a b+=,0a ∴>,0b >,则()21422448a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当4a =,2b =时取“=”), 由不等式222a b m m +>+恒成立,得228m m +<,解得42m -<<.∴实数m 的取值范围是()4,2-. 故选:A .8.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)【答案】C 【解析】 【分析】把不等式看作是关于a 的一元一次不等式,然后构造函数()2(2)44f a x a x x =-+-+,由不等式在[1-,1]上恒成立,得到(1)0(1)0f f ->⎧⎨>⎩,求解关于a 的不等式组得x 得取值范围.【详解】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x 的取值范围为()(),13,-∞⋃+∞. 故选:C . 二、多选题9.(2022·全国·高三专题练习)若不等式2sin sin 20x a x -+≥对任意的0,2x π⎛⎤∈ ⎥⎝⎦恒成立,则实数a 可能是A .1B .2C .3D .4【答案】ABC 【解析】 【分析】利用换元法令sin t x =,不等式可整理为220t at -+≥在(]0,1t ∈上恒成立,即2a t t ≤+,即min 2a t t ⎛⎫≤+ ⎪⎝⎭,求函数的最小值即可得解. 【详解】设sin t x =,0,2x π⎛⎤∈ ⎥⎝⎦,(]0,1t ∴∈则不等式2sin sin 20x a x -+≥对任意0,2x π⎛⎤∈ ⎥⎝⎦恒成立,即转化为不等式220t at -+≥在(]0,1t ∈上恒成立, 即转化为222t a t t t+≤=+在(]0,1t ∈上恒成立, 由对勾函数知2y t t=+在(]0,1t ∈上单减,min 2131y =+=,3a ∴≤故选:ABC 【点睛】关键点点睛:本题主要考查不等式恒成立问题,利用换元法结合对勾函数的单调性求出函数的最值是解题的关键,考查学生的转化与化归能力,属于一般题.10.(2022·江苏·高三专题练习)已知不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,则以下选项正确的有( ) A .0a <B .0c >C .20cx bx a ++>的解集为11x x nm ⎧⎫<<⎨⎬⎩⎭D .20cx bx a ++>的解集为{1x x n<或}1x m >【答案】AC 【解析】由一元二次不等式的解法,再结合根与系数的关系逐个分析判断可得答案 【详解】解:因为不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >, 所以0a <,,m n 是方程20ax bx c ++=的两个根,所以A 正确; 所以b m n a c mn a ⎧+=-⎪⎪⎨⎪=⎪⎩,解得()b m n a c mna =-+⎧⎨=⎩,因为0m >,m n <,所以0n >,又由于0a <,所以0c mna =<,所以B 错误; 所以20cx bx a ++>可化为2()0mnax m n ax a -++>, 即2()10mnx m n x -++<,即(1)(1)0mx nx --<, 因为0n m >>,所以11n m<, 所以不等式20cx bx a ++>的解集为11x x nm ⎧⎫<<⎨⎬⎩⎭,所以C 正确,D 错误, 故选:AC 【点睛】关键点点睛:此题考查一元二次不等式的解法的应用,解题的关键由一元二次不等式的解法可知0a <,且,m n 是方程20ax bx c ++=的两个根,再利用根与系数的关系得b m n a c mn a ⎧+=-⎪⎪⎨⎪=⎪⎩,再求得()b m n a c mna =-+⎧⎨=⎩,从而可求解不等式20cx bx a ++>,考查转化思想,属于中档题11.(2022·全国·高三专题练习)已知函数()222f x x mx m =--,则下列命题正确的有( )A .当0m ≠时,()0f x <的解集为2mx x m ⎧⎫-<<⎨⎬⎩⎭B .当1m =时,[)12,1,x x ∀∈+∞时,()()()12120x x f x f x -->⎡⎤⎣⎦C .121,,4x x m ⎛⎤∀∈-∞ ⎥⎝⎦且12x x ≠时,()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭D .当0m <时,若120x x <<,则()()2112>x f x x f x 【答案】BC 【解析】对于A ,分0m >和0m <时求解不等式; 对于B ,根据函数的单调性可判断;对于C ,根据函数的单调性,任取两点,根据数形结合的方式可判断;对于D ,构造函数()()(0)f x g x x x=>,看作()y f x =在y 轴右侧图象上的点与原点所在直线的斜率, 数形结合可判断单调性,即可得出结果. 【详解】对于A ,由2220x mx m --<得()(2)0x m x m -+<,当0m >时,原不等式的解集为|2m x x m ⎧⎫-<<⎨⎬⎩⎭;当0m <时,原不等式的解集为|2m x m x ⎧⎫<<-⎨⎬⎩⎭,故A 错误;对于B ,1m =时,2219()212()48f x x x x =--=--在[)1+∞,上是增函数,则1212()()0f x f x x x ->-,即()[]1212()()0x x f x f x -->,故B 正确;对于C. ()f x 在1,4⎛⎤-∞ ⎥⎝⎦m 上单调递减,当121,4x x m ⎛⎤∈-∞ ⎥⎝⎦,时,设11(,())A x f x 、()22,()B x f x ,则AB 的中点C1212()(),22x x f x f x ++⎛⎫⎪⎝⎭,又设1212,22x x x D f x ⎛⎫⎛++⎫ ⎪ ⎪⎝⎭⎝⎭, 数形结合可知,点D 位于点C 的下方,即1212()()22x x f x f x f ++⎛⎫< ⎪⎝⎭,故C 正确;对于D ,设()()(0)f x g x x x=>,则()g x 表示()y f x =在y 轴右侧图象上的点与原点所在直线的斜率, 数形结合可知,()g x 是增函数,当120x x <<时,12()()<g x g x ,则1212()()f x f x x x <,即2112()()x f x x f x <,故D 错误.故选:BC. 【点睛】关键点睛:本题考查二次函数性质的综合应用,对于CD 选项的判断,关键是根据函数的单调性,利用数形结合的方法进行判断.12.(2022·重庆巴蜀中学高三阶段练习)已知两个变量x ,y 的关系式(,)(1)f x y x y =-,则以下说法正确的是( )A .(1,3)(3,1)0f f ==B .对任意实数a ,都有1(,)4f a a ≤成立 C .若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立,则实数a 的取值范围是[5,3]- D .若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立,则实数x 的取值范围是(,0)-∞ 【答案】BC 【解析】 【分析】(1,3)f 和(3,1)f 的值直接代入即可求得,1(,)4f a a ≤转化为求二次函数最大值的问题,若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立转化为关于x 的二次函数与x 轴至多有一个交点的问题,若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立转化为关于a 的一次函数在0a >内恒大于等于零恒成立的问题.【详解】对于选项A ,()(1,3)1132f =⨯-=-,()(3,1)3110f =⨯-=,即(1,3)(3,1)f f ≠,则A 选项错误;对于选项B ,()22211111(,)144244f a a a a a a a a a ⎛⎫⎛⎫=-=-=--++=--+≤ ⎪ ⎪⎝⎭⎝⎭,则B 选项正确;对于选项C , ()()()2(,)114f x a x x a x x a x a a -=--=-++-≤-+ 恒成立,即()2140x a x -++≥ 恒成立,则()21160a ∆=+-≤,解得53a -≤≤,即实数a 的取值范围是[5,3]-,则C选项正确;对于选项D ,()2140x a x -++≥ 恒成立,令()24 0y ax x x a =-+-+>,当0x >时,该函数看成关于a 的一次函数,函数单调递减,不可能恒大于0,当0x =时,40y =≥成立,当0x <时,该函数看成关于a 的一次函数,函数单调递增,当0a =时,24y x x =-+211544x x =-++2115024x ⎛⎫=-+> ⎪⎝⎭,则实数x 的取值范围是(],0-∞,则D 选项错误;故选:BC . 三、填空题13.(2022·全国·高三专题练习)不等式210ax x c a++>的解集为{|21}x x -<<,则函数y =递增区间是_______ 【答案】[0,1] 【解析】根据不等式的解集可知一元二次不等式所对应的一元二次方程的根,利用韦达定理可求出a ,c 的值,再根据复合函数求单调区间的方法,得出单调递增区间. 【详解】由题知-2和1是210ax x c a++=的两根, 由根与系数的关系知-2+1=21a -,−2×1=c a , 由不等式的解集为{|21}x x -<<,可知0a <, 12a c ∴=-=,,则y因为函数y []0,2x ∈,令()22g x x x =-+则该函数的增区间为(],1-∞所以y =[]0,1 故答案为:[]0,1.14.(2022·浙江·高三专题练习)若不等式2(3)16x b -<的解集中的整数有且仅有1,2,3,则实数b 的取值范围是___________. 【答案】()5,7 【解析】 【分析】首先解一元二次不等式,求出不等式的解集,再根据解集中整数的情况,得到不等式组,解得即可;【详解】 解:因为2(3)16x b -<,所以()()34340x b x b -+--<,解得4433b b x -+<<,所以原不等式的解集为44|33b b x x -+⎧⎫<<⎨⎬⎩⎭,又解集中的整数有且仅有1,2,3, 所以40134343b b -⎧<⎪⎪⎨+⎪<⎪⎩解得:57b <<,即()5,7b ∈,故答案为:()5,7.15.(2022·全国·高三专题练习)若关于x 的不等式()2220x a x a -++->恰有1个正整数解,则a 的取值范围是___________. 【答案】()(],13,4-∞【解析】 【分析】先解带有参数的一元二次不等式,再对a 进行分类讨论,使得恰有1个正整数解,最后求出a 的取值范围 【详解】不等式()2220x a x a -++->等价于()2220x a x a -++<.令()2220x a x a -++=,解得2x =或x a =.当2a >时,不等式()2220x a x a -++<的解集为()2,a ,要想恰有1个正整数解,则34a <; 当2a =时,不等式()2220x a x a -++<无解,所以2a =不符合题意; 当2a <时,不等式()2220x a x a -++<的解集为(),2a ,则1a <.综上,a 的取值范围是()(],13,4-∞.故答案为:()(],13,4-∞16.(2022·全国·高三专题练习)设a ,b ,c R ∈,对任意满足1x 的实数x ,都有21ax bx c ++,则a b c++的最大可能值为__. 【答案】3 【解析】 【分析】可先通过赋值0x =,判断1c ≤,再令1,0c b =-=,结合二次函数最值,可得所求最大值. 【详解】任意满足1x 的实数x ,都有21ax bx c ++,若0x =,则1c ,可取1c =-,0b =,可得211ax -,即22ax ≤恒成立,由于201x ,可得a 最大取2, 可得3a b c ++,即有a b c ++的最大可能值为3. 故答案为:3. 四、解答题17.(2022·北京·高三学业考试)已知函数2()1f x x mx =++(m 是常数)的图象过点(1,2). (1)求()f x 的解析式;(2)求不等式()21f x x <+的解集. 【答案】(1)2()1f x x =+; (2)(0,2). 【解析】 【分析】(1)把点代入解析式可得0m =,即得; (2)利用一元二次不等式的解法即得. (1)由题意,(1)22f m =+=, 所以0m =.。
七年级数学下册第8章一元一次不等式专题技能训练五训练方程与不等式习题课件新版华东师大版
(2)该不等式的所有负整数解的和是关于 y 的方程 2y-3a=6 的解,求 a 的值.
解:因为不等式的解集为 x≥-2, 所以不等式的所有负整数解为-2,-1,-2+(-1)=-3, 由题意得,-3 是关于 y 的方程 2y-3a=6 的解, 把 y=-3 代入 2y-3a=6,得-6-3a=6, 解得 a=-4.
17.已知关于 x,y 的二元一次方程组3xx+-24y=y=2mm, +3的解 都大于 1,试求 m 的取值范围.
解:x3+x-2y4=y=2mm+,① 3,② ①+②×2,得 5x=5m+6,解得 x=m+65, 把 x=m+65代入②,得 m+65+2y=2m+3,解得 y=12m+190,
13.已知关于 x,y 的方程组32xx++yy==3k,的解满足 x-2y≥1,求 满足条件的 k 的最大整数值.
解:解关于 x,y 的方程组23xx+ +yy= =k3, ,得xy==33k--k, 6. 把yx==33k--k6,代入 x-2y≥1,得 3-k-2(3k-6)≥1, 解得 k≤2,所以满足条件的 k 的最大整数值为 2.
【答案】C
10.若关于 x,y 的二元一次方程组3xx++2yy= =-4 3m+2,的解满
足 x+y>-32,则满足条件的 m 的所有正整数值为( )
A.1,2,3,4,5
B.0,1,2,3,4
C.1,2,3,4
D.1,2,3
【点拨】解方程组3xx++2yy= =-4,3m+2,得xy==3-m65+5m1,0. 因为 x+y>-32,所以-65m+3m+5 10>-32, 解得 m<365, 则满足条件的 m 的所有正整数值为 1,2,3,4,5.
14.若关于 x,y 的方程组2xx++2yy= =-4k+k 3,的解满足 1<x+
人教版初中数学七年级下册第九章《不等式与不等式组》小结教案
课题:第九章不等式与不等式组小结一、教材地位:不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究现实世界数量关系的重要内容,应用不等式的基本性质解一元一次不等式(组)是学生应该掌握的基本运算技能,为学生的进一步学习函数、方程和不等式的后续学习奠定基础。
二、学情分析:学生在七年级已经学习一元一次方程和二元一次方程组的基础上学习不等式与不等式组,本节主要引导学生对一元一次不等式(组)的解及其解法的小结,对学生在数学及其生活里不等式内容的进一步的总结。
以数学建模为主要思想,进一步地培养学生分析问题和解题能力。
三、教学目标:(一)知识与技能目标:1、巩固运用不等式的性质;2、会运用不等式的基本性质,解一元一次不等式(组),并会借助数轴确定不等式(组)的解集;3、会巧用解集确定字母系数。
(二)过程与方法目标:1、通过学生解不等式,暴露易犯的错误,针对共性解决问题;2、注重渗透知识形成中蕴涵的数学思想、方法和思维策略;(三)情感与态度目标:1、让学生领会数形结合、分类讨论等解题思想;2、感受数学与生活密切相关,提高学习数学的积极性;四、教学重点:一元一次不等式(组)的概念、性质及解一元一次不等式(组);五、教学难点:巧用解集确定字母系数,体验运用数形结合、分类讨论的思想方法,六、教学策略:本节课将采用“兵教兵”及多媒体演示等方式来突出重点,突破难点.设计典型例题,学生通过“兵教兵”的方式发现问题并展开探索交流.在学生把握基本内容的基础上,教师引导学生进一步提炼,构建知识体系,科学地进行小结与归纳.在此基础上,通过师生之间、生生之间的交流,使学生对数学思想方法的认识更深刻,对解决问题的策略把握得更灵活。
七、教学准备:教师多媒体,学生学具准备。
教学过程一、小测比一比谁做得最快、最好1、解不等式 , 并把解集在数轴上表示出来;2、求不等式组 的整数解。
设计意图:1、根据学生新课的学习,对不等式与不等式组的计算掌握较好,所以通过小测的形式检测;让学生明白本章的重点之一(不等式与不等式组的计算)是否过关;2、通过“兵教兵”的形式,让之前没过关的学生全部通过;3、通过小老师的批改及“兵教兵”时发现的错误,再请他们小结计算过程的易错点。
选修4-5不等式选讲
根据课程标准,本专题介绍一些重 要的不等式和它们的证明、数学归纳法 和它的简单应用。
本专题的内容是在初中阶段掌握了 不等式的基本概念,学会了一元一次不 等式、一元一次不等式组的解法,多数 学生在学习高中必修课五个模块的基础 上展开的.作为一个选修专题,教科书 在内容的呈现上保持了相对的完整性.
第二部分讨论了有关绝对值不等式的性质及 绝对值不等式的解法.绝对值是与实数有关 的一个基本而重要的概念,讨论关于绝对值 的不等式具有重要的意义.
• 绝对值三角不等式是一个基本的结论,教 科书首先引导学生借助于实数在数轴上的 表示和绝对值的几何意义,探究归纳出绝 对值三角不等式,接着联系向量形式的三 角不等式,得到绝对值三角不等式的几何 解释,最后用代数方法给出证明.这样, 数形结合,引导学生多角度认识这个不等 式,逐步深化对它的理解.利用绝对值三 角不等式可以解决一种特殊形式的函数的 极值问题,教科书安排了一个这样的实际 问题。
• 课程标准对于本专题的几个教学内容都明 确的教学要求,如:对于解含有绝对值的 不等式,只要求能解几种特殊类型的不等 式,不要求学生会解各种类型的含有绝对 值的不等式。对于数学归纳法证明不等式 的要求也只要求会证明一些简单问题。只 要求通过一些简单问题了解证明不等式的 基本方法,会利用所学的不等式证明一些 简单不等式,等等。
数学归纳法证明一些简单问题。 7.会用数学归纳法证明贝努利不等式:
(1+x)n >1+nx(x>-1,n为正整数)。
了解当n为实数时贝努利不等式也成立。
• 8.会用上述不等式证明一些简单问 题。能够利用平均值不等式、柯西 不等式求一些特定函数的极值。
• 9.通过一些简单问题了解证明不等 式的基本方法:比较法、综合法、 分析法、反证法、放缩法。
专题05 不等式(组)及不等式的应用(5大考点)-2023年中考数学总复习真题探究与变式训练解析版)
第二部分方程(组)与不等式(组)专题05 不等式(组)及不等式的应用核心考点一不等式的基本性质核心考点二一元一次不等式(组)的解法核心考点核心考点三含参不等式(组)问题核心考点四不等式的实际应用核心考点五方程与不等式结合的实际应用新题速递核心考点一不等式的基本性质例1(2022·内蒙古包头·中考真题)若,则下列不等式中正确的是()A.B.C.D.∴,故本选项不合题意;∴,故本选项不合题意;∴,故本选项不合题意;∴,故本选项符合题意;数轴上的点分别表示实数、,则______.(填“>”、“=”或“<”)【答案】【分析】由图可得:,再根据不等式的性质即可判断.【详解】解:由图可得:,由不等式的性质得:,故答案为:.【点睛】本题考查了数轴,不等式的性质,解题的关键是掌握不等式的性质.江苏淮安·中考真题)解不等式.解:去分母,得.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A”或“B”)A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.【答案】(1)余下步骤见解析;(2)A.【分析】(1)按照去括号、移项、合并同类项的步骤进行补充即可;(2)根据不等式的性质即可得.【详解】(1)去分母,得去括号,得移项,得合并同类项,得;(2)不等式的性质:不等式两边都乘(或除以)同一个正数,不等号的方向不变两边同乘以正数2,不等号的方向不变,即可得到故选:A.【点睛】本题考查了解一元一次不等式、不等式的性质,熟练掌握一元一次不等式的解法是解题关键.知识点:不等式及其基本性质1、定义:用不等号(>,≥,<,≤或≠)表示不等关系的式子叫做不等式。
2、基本性质性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,即如果,那么性质2不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果,,那么,性质3不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即如果,,那么,性质4如果,那么性质5如果,,那么【变式1】.(2022·安徽·合肥市五十中学西校三模)已知实数a,b,c满足,.则下列结论正确的是()A.若,则B.若,则C.a,b,c不可能同时相等D.若,则【答案】B【分析】A.根据,则,根据,得出;B.根据,得出,把代入得:,即可得出答案;C.当时,可以使,,即可判断出答案;D.根据解析B可知,,即可判断.【详解】A.∵,∴,∵,∴,∴,故A错误;B.∵,即,∴,把代入得:,,解得:,故B正确;C.当时,可以使,,∴a,b,c可能同时相等,故C错误;D.根据解析B可知,,把代入得:,故D错误.故选:B.【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.【变式2】(2022·江苏南通·一模)若关于x的不等式mx﹣n>0的解集为x<2,则关于x 的不等式(m+n)x>m﹣n的解集是( )A.x<13B.x>13C.x<-13D.x>-13【答案】C【分析】根据不等式的性质,利用不等式的解集是得到,,然后把代入不等式中求解即可.【详解】解:∵不等式的解集是,∴(),,∴,不等式变形为,即,∵,∴.故选C.【点睛】本题考查了解一元一次不等式.解题的关键在于熟练掌握不等式的性质.【变式3】(2022·江苏宿迁·三模)若不等式,两边同除以m,得,则m的取值范围为__________.【答案】【分析】由不等式的基本性质知,据此可得答案.【详解】解:若不等式,两边同除以,得,则.故答案为:.【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的基本性质.【变式4】(2022·安徽·模拟预测)已知关于x的不等式(1﹣a)x>2的解集为x<,化简:|1﹣a|﹣a=_____.【答案】【分析】根据不等式的基本性质得出1﹣a<0,再由绝对值的性质去绝对值符号、合并同类项即可.【详解】解:∵关于x的不等式(1﹣a)x>2的解集为,∴1﹣a<0,解得a>1,即,∴原式=a﹣1﹣a=﹣1,故答案为:﹣1.【点睛】本题主要考查了不等式的性质及绝对值的化简求值,解题的关键是掌握不等式的基本性质和绝对值的化简.【变式5】(2022·浙江杭州·一模)已知,,请比较M和N的大小.以下是小明的解答:∵,,∴.小明的解答过程是否有错误?如果有错误,请写出正确的解答.【答案】有错;时,;时,;时,;【分析】先求出M与N的差,根据不等式的性质对M与N的差进行分类讨论即可求解.【详解】解:有错,正确解答如下.∵,,∴.∴当x>0时,2x>0,即,此时M>N;当x=0时,2x=0,即,此时M=N;当x<0时,2x<0,即,此时M<N.∴时,;时,;时,.【点睛】本题考查作差法比较大小,不等式的性质,正确应用分类讨论思想是解题关键.核心考点二一元一次不等式(组)的解法例1(2022·辽宁大连·中考真题)不等式的解集是()A.B.C.D.【详解】解:,移项,合并同类项得:本题考查的是一元一次不等式的解法,掌握中考真题)若在实数范围内有意义,则实数___________.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式是解题的关键.中考真题)解不等式组并将其解集在数轴上表示出来.【答案】x≤1,图见解析【分析】先分别求出不等式组中每一个不等式解集,再求出其公共解集即可求解,然后把解集用数轴表示出来即可.【详解】解:解①得:x≤1,解②得:x<6,∴x≤1,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.也考查了用数轴表示不等式的解集.知识点:一元一次不等式及其解法定义含有一个未知数,未知数的次数是1、且不等号两边都是整式的不等式叫做一元一次不等式。
2022-2023人教版七年级下册数学期末复习——专题5不等式与不等式组
2022-2023人教版七年级下册数学期末复习专题5 不等式与不等式组4.一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .30x +>B .30x -<C .26x ≥D .30x -<化简.过程如图所示:接力中,自己负责的一步出现错误的是( )则m 的范围在数轴上可表示为( )A .B .C.D.8.对于三个数a、b、c的最小的数可以给出符号来表示,我们规定{min a,b,}c 这三个数中最小的数,42}2x,则B.2 3 -二、填空题9.小明、小林和小华三人在一起讨论一个一元一次不等式组:小明:它的所有解都为非负数;小林:其中一个不等式的解集为4x≤;小华:其中有一个不等式在求解过程中需要改变不等号的方向.请你写出一个同时符合上述3个条件的不等式组:_______________________.10.若不等式组21>125x ax x-⎧⎨-≥-⎩无解,则a的取值范围是_____.11.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价_________元.12.某班数学兴趣小组对不等式组2xx m>⎧⎨≤⎩的解集进行讨论,得到以下结论:①若m = 4,则不等式组的解集为 2<x ≤ 4;②若m = 1,则不等式组无解;③若原不等式组无解,则m 的取值范围为m<2;④若 7 ≤m<8,则原不等式组有 5 个整数解.其中,结论正确的有______.。
专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数
专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五 不等式与不等式组
(时间:90分钟 满分:100分)
一、选择题(每小题3分,共24分)
1.(2011年南昌)不等式8-2x >0的解集在数轴上表示正确的是
( )
2.(2011年天门)某不等式组的解集在数轴上表示如图,则这个不等式组可能是 ( )
A .23x x ≥-⎧⎨≤⎩
B .23x x ≥-⎧⎨<⎩
C .23x x >-⎧⎨<⎩
D .23x x >-⎧⎨≤⎩
3.(2011年临沂)不等式组132
103
x
x x ⎧+≥-⎪⎪⎨⎪->⎪⎩的解集是 ( )
A .x ≥8
B .3<x ≤8
C .0<x ≤2
D .无解
4.(2011年泰安)不等式组304332
6x x x ->⎧⎪
⎨+>-⎪⎩的最小整数解为 ( )
A . 0
B . 1
C . 2
D . -1
5.(2011年福州)不等式组11112
x x +≥-⎧⎪
⎨<⎪⎩的解集在数轴上表示正确的是
( )
6.(2011年威海)如果不等式组()2131x x x m ⎧->-⎪
⎨
<⎪⎩
的解集是x <2,那么m 的取值范围是( )
A .m =2
B . m>2
C . m<2
D .m ≥2
7.(2011年潍坊)不等式组112422312
2x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩的解集在数轴上表示正确的是( )
8.(2011年日照)若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是
( )
A .1<a ≤7
B .a ≤7
C .a <1或a ≥7
D .a =7 二、填空题(每小题3分,共9分) 9.(2011年株洲)不等式x -1>0的解集是______.
10.(2011年金华)已知三角形的两边长为4,8,则第三边的长度可以是______(写出一个即可).
11.(2011年黄冈)若关于x 、y 的二元一次方程组3133x y a
x y +=+⎧⎨+=⎩
的解满足x +y <2,则a 的取值范围为______.
三、解答题(共67分)
12.(8分)(2011年重庆)解不等式2x -
3<
1
3
x +,并把解集在数轴上表示出来.
13.(9分)(2011年成都)解不等式组:2031212
3x x x +≥⎧⎪
-+⎨<⎪⎩,并写出该不等式组的最小整数解.
14.(12分)(2011年河南省)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费
标准如下:
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?
15.(12分)(2011年哈尔滨)义洁中学计划从荣威公司购买A,B两种型号小黑板,经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.
(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?新课标第一网
(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A,B两
种型号小黑板的总费用不超过5240元,并且购买A型小黑板的数量应大于购买A,B两种型号小黑
板总数量的1
3
,请你通过计算,求出义洁中学从荣威公司购买A,B两种型号的小黑板有哪几种方案?
16.(12分)(2011年天门)2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.依据草案规定,解答下列问题:
(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?
(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该
纳税人的月工薪范围;若不能,请说明理由.
17.(14分)(2011年凉山州)我州产苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会,现有A型、B 型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满,根据下表信息,解答问题.
(1)设A型汽车安排x辆,B型汽车安排y辆,求y与x之间的函数关系式;
(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案;
(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.
参考答案
1.C
2.B
3.B
4.A
5.D
6.D
7.A
8.A
9.x>1 10.如5,6等11.a<4
12.x<2 表示如图:
13.-2 14.(1)超过200人(2)甲160人,乙80人
15. (1)购买一块A型小黑板需要100元,购买一块B型小黑板需要80元.
(2) 有两种购买方案.
方案一:购买A型小黑板21块,购买B型小黑板39块;
方案二:购买A型小黑板22块,购买B型小黑板38块.
16.(1)475元(2) 若该纳税人月工薪大于9375元且不超过10000元时,他的纳税金额能超过月工薪的8%.17.(1)y=-3x+27.
(2)车辆安排有三种方案,即
方案一:A型车5辆,B型车12辆,C型车4辆;
方案二:A型车6辆,B型车9辆,C型车6辆;
方案三:A型车7辆,B型车6辆,C型车8辆.
(3)为节约运费,应采用(2)中方案一,最少运费为37100元.。