必修五不等式知识点资料讲解
寒假必修五复习二---不等式

寒假必修五复习二---不等式1、 不等式的性质:(1) 同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2) 左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3) 左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,,则;若,,则。
如(1)对于实数中,给出下列命题:①;②;③;④;⑤;⑥;⑦;⑧,则。
其中正确的命题是______(答:;(2)已知,,则的取值范围是______(3)、已知函数,满足,,那么的取值范围是 .(3)已知,且则的取值范围是______不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法。
其中比较法(作差、作商)是最基本的方法。
如(1)设,比较的大小2)设,,,试比较的大小(3)比较1+与的大小3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”如(1)下列命题中正确的是A、的最小值是2B、的最小值是2C、的最大值是D、的最小值是(2)若,则的最小值是______(答:);(3)正数满足,则的最小值为______(答:);4. 常用不等式有:(1) (根据目标不等式左右的运算结构选用)(2) (2)a、b、c R,(当且仅当时,取等号);(3) 若,则(糖水的浓度问题)。
如如果正数、满足,则的取值范围是_________5、证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。
).常用的放缩技巧有:如(1)已知,求证:;(2) 已知,求证:;(3)已知,且,求证:;(4) 若a、b、c是不全相等的正数,求证:;(5)若,求证:;(7) 已知,求证:;(8)求证:。
必修五不等式知识点

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5) 倒数法则:b a ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
高中数学必修五-不等关系与不等式

不等关系与不等式知识集结知识元不等关系与不等式知识讲解1.不等关系与不等式【不等关系与不等式】不等关系就是不相等的关系,如2和3不相等,是相对于相等关系来说的,比如与就是相等关系.而不等式就包含两层意思,第一层包含了不相等的关系,第二层也就意味着它是个式子,比方说a>b,a﹣b>0就是不等式.【不等式定理】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.例题精讲不等关系与不等式例1.设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.|a-b|≤|a-c|+|b-c|B.C.D.例2.已知a,b,c,d∈R,则下列命题中必然成立的是()A.若a>b,c>b,则a>cB.若a>b,c>d,则C.若a2>b2,则a>bD.若a>-b,则c-a<c+b例3.若a,b∈R下列说法中正确的个数为()①(a+b)2≥a2+b2;②若|a|>b,则a2>b2;③a+b≥2A.0B.1C.2D.3不等式比较大小知识讲解1.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a <0,b <0,则p =与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q解:p ﹣q =﹣a ﹣b ==(b 2﹣a 2)=,∵a <0,b <0,∴a +b <0,ab >0,若a =b ,则p ﹣q =0,此时p =q ,若a ≠b ,则p ﹣q <0,此时p <q ,综上p ≤q ,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A .<<B .<<C .<<D .<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.例题精讲不等式比较大小例1.已知-1<a<0,b<0,则b,ab,a2b的大小关系是()A.b<ab<a2b B.a2b<ab<bC.a2b<b<ab D.b<a2b<ab例2.a=80.7,b=0.78,c=log0.78,则下列正确的是()A.b<c<a B.c<a<bC.c<b<a D.b<a<c例3.三个数a=,b=()2020,c=log2020的大小顺序为()A.b<c<a B.b<a<cC.c<a<b D.c<b<a当堂练习单选题练习1.已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥sC.t<s D.t≤s练习2.已知a=,b=,c=,则()A.a>b>c B.a>c>bC.b>a>c D.c>b>a练习3.设a=,b=2,c=log32,则()A.b>a>c B.a>b>cC.c>a>b D.b>c>a练习4.设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<aC.a<c<b D.c<a<b练习5.若a=(),b=(),e=log,则下列大小关系正确的是()A.c<a<b B.c<b<aC.a<b<c D.a<c<b填空题练习1._____.不等式≤3的解集是__________练习2.于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是______.练习3.已知a,b∈R,且>1,则下列关系中①②a3<b3③ln(a2+1)<ln(b2+1)④若c>d>0,则其中正确的序号为_____。
高中数学必修五不等式知识点

必修五不等式1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①a b b a >⇔<; ②,a b b c a c >>⇒>; ③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1n n a b a b n n >>⇒>∈N >;⑧)0,1a b n n >>⇒>∈N >.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
在字母比较的选择或填空题中,常采用特值法验证。
3、一元二次不等式解法:(1)化成标准式:20,(0)axbx c a ++>>;(2)求出对应的一元二次方程的根; (3)画出对应的二次函数的图象; (4)根据不等号方向取出相应的解集。
线性规划问题:1.了解线性约束条件、目标函数、可行域、可行解、最优解2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.3.解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值; (4)验证。
两类主要的目标函数的几何意义:①z ax by =+-----直线的截距;②22()()z x a y b =-+------两点的距离或圆的半径;4、均值定理: 若0a >,0b >,则a b +≥,即2a b +≥ ()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;2a b +称为正数a 、b 称为正数a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值. 注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高一必修5不等式知识点

高一必修5不等式知识点不等式是数学中的重要概念之一,它描述了数之间大小关系的不同情况。
在高中数学课程中,不等式的学习是必不可少的,而高一必修5则是学生们初次接触并系统学习不等式的阶段。
本文将为大家介绍高一必修5中的不等式知识点,包括基本概念、性质和解不等式的方法。
一、基本概念在学习不等式之前,我们先来了解一下一些基本概念。
首先是不等号的含义,大于号">"表示大于关系,小于号"<"表示小于关系,而大于等于号"≥"表示大于或等于关系,小于等于号"≤"表示小于或等于关系。
不等式由两个数之间的关系和一个不等号构成,如a>b、c≥d等。
我们可以将不等式理解为一个数轴上的区域,满足不等式的数所构成的集合。
二、性质不等式具有一些重要性质,对于学习和解决不等式问题非常有帮助。
1. 传递性:如果a>b,b>c,那么a>c。
这是因为不等式的比较关系具有传递性,如果一个数大于另一个数,而后者又大于另一个数,那么前者一定大于后者。
2. 加法性:如果a>b,那么a+c>b+c。
这是因为两边同时加上同一个数,不等式的关系仍然成立。
3. 减法性:如果a>b,那么a-c>b-c。
和加法性类似,两边同时减去同一个数,不等式的大小关系不变。
4. 乘法性:如果a>b,且c>0,那么ac>bc。
这是因为两边同乘以一个正数时,不等号的方向不变;而如果c<0,则不等号的方向会改变。
5. 除法性:如果a>b,且c>0,那么a/c>b/c。
和乘法性类似,两边同除以一个正数时,不等号的方向仍然不变;当c<0时,不等号的方向会改变。
三、解不等式的方法解不等式是数学中常见的问题,我们有一些常用的方法来求解不等式。
1. 图像法:将不等式对应的数轴画出来,并标出关键点,然后根据不等号的类型进行填色,最后得到不等式的解集。
高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结一.算术平均数与几何平均数1.算术平均数设a 、b 是两个正数,则2a b +称为正数a 、b 的算术平均数 2.几何平均数a 、b 的几何平均数二基本不等式1.基本不等式: 若0a >,0b >,则a b +≥,即2a b +≥ 2.基本不等式适用的条件一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s若xy p =(积为定值),则当x y =时,和x y +取得最小值三相等:必须有等号成立的条件注:当题目中没有明显的定值时,要会凑定值3.常用的基本不等式(1)()222,a b ab a b R +≥∈ (2)()22,2a b ab a b R +≤∈ (3)()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭(4)()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭. 三.跟踪训练1.下列各函数中,最小值为2的是 ( )A .1y x x =+B .1sin sin y x x =+,(0,)2x π∈C .2y = D .1y x =+- 2.当02x π<<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。
A. 1 B. 2 C. 4 D.3.x >0,当x 取什么值,x +1x的值最小?最小值是多少?4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折?5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少?6.设0,0x y >>且21x y +=,求11x y+的最小值是多少?7.设矩形ABCD(AB>AD)的周长是24,把∆ABC沿AC向∆ADC折叠,AB折过去后交CD与点P,设AB=x ,求∆ADP的面积最大值及相应x 的值。
必修五不等式知识点

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5) 倒数法则:b a ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
高一必修五不等式知识点

高一必修五不等式知识点一、不等式的定义不等式是数学中表示数与数之间大小关系的一种符号体系。
不等式由不等号(<、>、≤ 或≥)构成,表示两个数的大小关系,其中“<”表示小于,“>”表示大于,“≤”表示小于等于,“≥”表示大于等于。
二、一元一次不等式1. 一元一次不等式的解集表示方法对于一元一次不等式ax + b > c(或 < c、≥ c、≤ c),可以通过解一元一次方程ax + b = c(或 = c、≠ c)求得解集。
例如,不等式2x - 5 > 1的解集为{x | x > 3}。
2. 一元一次不等式的性质(1)对于不等式两边同时加上(或减去)同一个数,不等号的方向不变。
(2)对于不等式两边同时乘以(或除以)同一个正数,不等号的方向不变。
(3)对于不等式两边同时乘以(或除以)同一个负数,不等号的方向相反。
三、一元二次不等式1. 一元二次不等式的解集表示方法对于一元二次不等式ax^2 + bx + c > 0(或 < 0、≥ 0、≤ 0),可以通过求解一元二次方程ax^2 + bx + c = 0(或 = 0)的解集,并结合一元二次函数的图像来确定不等式的解集。
例如,不等式x^2 - 4x - 5 > 0的解集为{x | x < -1 或 x > 5}。
2. 一元二次不等式的性质(1)对于不等式两边同时加上(或减去)同一个数,不等号的方向不变。
(2)对于不等式两边同时乘以(或除以)同一个正数,不等号的方向不变。
(3)对于不等式两边同时乘以(或除以)同一个负数,不等号的方向相反。
(4)一元二次不等式可化为一元二次方程求解,再通过一元二次函数的图像确定解集。
四、绝对值不等式1. 绝对值不等式的解集表示方法对于绝对值不等式|ax + b| > c(或 < c、≥ c、≤ c),可通过绝对值的定义进行分类讨论求得解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的基本知识
(一)不等式与不等关系
1、应用不等式(组)表示不等关系;不等式的主要性质:
(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,
(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)
(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,
bd ac d c b a >⇒>>>>0,0(同向同正可乘)
(5) 倒数法则:b a ab b a 110,<⇒
>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且
(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且
2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)
3、应用不等式性质证明不等式
(二)解不等式
1、一元二次不等式的解法
一元二次不等式()0002
2≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002
≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:
0>∆ 0=∆ 0<∆
二次函数 c bx ax y ++=2
(0>a )的图象
c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2
一元二次方程 ()的根
002
>=++a c bx ax 有两相异实根
)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(0
2>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R
的解集)0(0
2><++a c bx ax {}21x x x x << ∅ ∅
2、简单的一元高次不等式的解法:
标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;
(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
()()()如:x x x +--<112023
3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
()()0()()0()()0;0()0
()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题
若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >
若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <
(三)线性规划
1、用二元一次不等式(组)表示平面区域
二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)
2、二元一次不等式表示哪个平面区域的判断方法
由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)
3、线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:
满足线性约束条件的解(x ,y )叫可行解.
由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
4、求线性目标函数在线性约束条件下的最优解的步骤:
(1)寻找线性约束条件,列出线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解 (四)基本不等式2a b ab +≤ 1.若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号. 2.如果a,b 是正数,那么).""(2
号时取当且仅当==≥+b a ab b a 变形: 有:a+b ≥ab 2;ab ≤22⎪⎭
⎫ ⎝⎛+b a ,当且仅当a=b 时取等号. 3.如果a,b ∈R+,a ·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;
如果a,b ∈R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值4
2
S . 注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求
它们的积的最小值,正所谓“积定和最小,和定积最大”.
(2)求最值的重要条件“一正,二定,三取等”
4.常用不等式有:(1)2222211a b a b ab a b
++≥≥≥+(根据目标不等式左右的运算结构选用) ;(2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则
b b m a a m
+<+(糖水的浓度问题)。
不等式主要题型讲解
(一) 不等式与不等关系 题型一:不等式的性质 1. 对于实数c b a ,,中,给出下列命题:
①22,bc ac b a >>则若; ②b a bc ac >>则若,22;
③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则
若; ⑤b
a a
b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b
c b a c a b a c ->->>>则若,0; ⑧11,a b a b >>若,则0,0a b ><。
其中正确的命题是______
题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式)
(二) 解不等式
题型三:解不等式
2. 解不等式
3. 解不等式2(1)(2)0x x -+≥。
4. 解不等式25123
x x x -<---
5. 不等式2120ax bx ++>的解集为{x|-1<x <2},则a =_____, b=_______
6. 关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式
02
>-+x b ax 的解集为
7. 解关于x 的不等式2(1)10ax a x -++<
题型四:恒成立问题 8. 关于x 的不等式a x 2+ a x +1>0 恒成立,则a 的取值范围是_____________
9. 若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.
10. 已知0,0x y >>且191x y +=,求使不等式x y m +≥恒成立的实数m 的取值范围。
(三)基本不等式2
a b ab +≤ 题型五:求最值
11. (直接用)求下列函数的值域
(1)y =3x 2+12x 2 (2)y =x +1x
12. (配凑项与系数)
(1)已知54x <
,求函数14245y x x =-+-的最大值。
(2)当
时,求(82)y x x =-的最大值。
求函数224y x =
+的值域。
13. (条件不等式)
(1) 若实数满足2=+b a ,则b a 33+的最小值是 .
(2) 已知0,0x y >>,且
191x y
+=,求x y +的最小值。
(四)线性规划
题型八:目标函数求最值
14. 满足不等式组⎪⎩
⎪⎨⎧>≤-+≤-+0,087032y x y x y x ,求目标函数y x k +=3的最大值。