必修五不等式大复习-知识点加练习-适合整章复习

合集下载

高中数学必修5不等式的综合复习(详解)

高中数学必修5不等式的综合复习(详解)

高中数学不等式的综合复习【本讲教育信息】一. 教学内容:不等式的综合应用二. 教学目的:比较熟练的应用不等式解决有关的综合问题三. 教学重点:不等式与函数,方程,数列,导数等知识的联系。

教学难点:不等式与几何知识的综合。

四. 知识概要:1、不等式的功能:不等式的知识已渗透到函数、三角、数列、解析几何、立体几何等内容中,体现了不等式广泛运用的工具功能。

2、建立不等式的途径:运用不等式知识解题的关键是建立不等关系,其途径有:利用几何意义、利用判别式、应用变量的有界性、应用函数的有界性、应用均值不等式。

3、实际应用:应用题中有一类是最优化结果,通常是把问题转化为不等式模型,再求出最值。

【典型例题】(一)基础训练题 例1. (1)(全国2文4)下列四个数中最大的是( )A. 2(ln 2)B. ln(ln 2)C.D. ln 2解:∵ 0ln 21<<,∴ ln (ln2)<0,(ln2)2< ln2,而ln 2=21ln2<ln2,∴ 最大的数是ln2,选D 。

(2)(安徽文8)设a >1,且2log (1),log (1),log (2)a a a m a n a p a =+=-=,则pn m ,,的大小关系为 ( ) A. n >m >p B. m >p >nC. m >n >pD. p >m >n解析:设a >1,∴ 212a a +>,21a a >-,2log (1),log (1),log (2)a a a m a n a p a =+=-=,∴ p n m ,,的大小关系为m >p >n ,选B 。

(3)(北京理7)如果正数a b c d ,,,满足4a b cd +==,那么( ) A. ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B. ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C. ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D. ab c d +≥,且等号成立时a b c d ,,,的取值不唯一解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2()2c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2,选A 。

苏教版高中数学必修五知识讲解_《不等式》全章复习巩固_基础

苏教版高中数学必修五知识讲解_《不等式》全章复习巩固_基础

《不等式》全章复习巩固: :【学习目标】1.能正确的记忆和灵活运用不等式的性质;2.会从实际情境中抽象出一元二次不等式模型和二元一次不等式组,提高数学建模能力;3.掌握一元二次方程,二次函数,一元二次不等式,这三个“二次”的联系,会解一元二次不等式;4.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;5.会用基本不等式解决简单的最大(小)值问题,注意基本不等式适用的条件. 【知识网络】【要点梳理】要点一:不等式的主要性质 (1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,, bd ac d c b a >⇒>>>>0,0(5) 乘方法则:0n na b a b >>⇒>(*1)n N n ∈>且 (6) 开方法则:0a b >>⇒>(*1)n N n ∈>且不等式不等关系与不等式 一元二次不等式及其解法 二元一次不等式(组)与平面区域基本不等式最大(小)值问题简单的线性规划要点诠释:不等式性质中要注意等价双向推出和单向推出关系的不同. 要点二:三个“二次”的关系一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a >的解集:设相应的一元二次方程20ax bx c ++=(0)a >的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数:2A ax bx c =++(0)a > (2)计算判别式∆,分析不等式的解的情况:①0∆>时,求根12;x x (注意灵活运用因式分解和配方法); ②0∆=时,求根abx x 221-==; ③0∆<时,方程无解. (3)写出解集.要点诠释:若0a <,可以转化为0a >的情形解决. 要点三:线性规划用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax+By+C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)线性规划的有关概念: ①线性约束条件:如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=ax+by(a ,b ∈R)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:在线性规划问题中,满足线性约束条件的解(x,y )叫可行解.由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:求线性目标函数在线性约束条件下的最优解的步骤 (1)设变量,建立线性约束条件及线性目标函数; (2) 由二元一次不等式表示的平面区域做出可行域; (3)求出线性目标函数在可行域内的最值(即最优解); (4)作答.要点四:基本不等式 两个重要不等式①,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)②基本不等式:如果,a b 是正数,那么2a b+≥(当且仅当a b =时取等号“=”). 算术平均数和几何平均数 算术平均数:2ba +称为,ab 的算术平均数; 几何平均数:ab 称为,a b 的几何平均数.因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 基本不等式的应用,(0,)x y ∈+∞,且xy P =(定值),那么当x y =时,x y +有最小值 ,(0,)x y ∈+∞,且x y S +=(定值),那么当x y =时,xy 有最大值2S 41.要点诠释 :在用基本不等式求函数的最值时,应具备的三个条件 ① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值 【典型例题】类型一:不等式性质的应用例1.如果成立的是那么下列选项中不一定且满足,0,,,<<<ac a b c c b a ( )A .ac ab > B. 0)(>-a b c C. 22ab cb < D. 0)(<-c a ac 【答案】C【解析】由题可知:ac ab c b a c >⇒>><由,0,0又0)(0>-⇒<-a b c a b0)(0,0<-⇒>-<c a ac c a ac22ab cb <不一定成立,因为当b=0时候,取等号,故选C.【总结升华】判别不等式成立与否,应紧扣不等式性质,当出现字母代数式最常用赋值法. 举一反三:【变式】已知,m n R ∈,则11m n>成立的一个充要条件是( ) A.0m n >> B.0n m >> C.()0mn m n -< D.0m n << 【答案】C例2.如果3042x <<,1624y <<,则(1) x y +的取值范围是 ; (2) xy 的取值范围是 【答案】(1)(46,66);(2)(480,1008)【解析】(1)利用不等式的性质d b c a d c b a +>+⇒>>,可得4666x y <+<; (2)利用不等式的性质bd ac d c b a >⇒>>>>0,0可得4801008xy <<. 【总结升华】注意同向(异向)不等式的两边可以相加(相减),这种转化的正确应用. 举一反三:【变式】如果3042x <<,1624y <<,则(1)2x y -的取值范围是 ; (2)xy的取值范围是 . 【答案】(1)(-18,-10);(2)521(,)48. 例3.已知函数2()f x ax c =-,满足4(1)1f -≤≤-,1(2)5f -≤≤,那么(3)f 的取值范围是 .【解析】解法一:方程思想(换元):由⎩⎨⎧=-=-)2(4)1(f c a f c a ,求得[]1(2)(1)341(1)(2)33a f f c f f ⎧=-⎪⎪⎨⎪=-+⎪⎩∴ )2(38)1(359)3(f f c a f +-=-= 又 340)2(3838,320)1(3535≤≤-≤-≤f f ∴ 20)2(38)1(351≤+-≤-f f ,即20)3(1≤≤-f . 解法二:待定系数法设f(3)=9a-c=mf(1)+nf(2)=m(a-c)+n(4a-c)5-493()---183m m n m n n ⎧=⎪+=⎧⎪⇒⇒⎨⎨=⎩⎪=⎪⎩下略 解法三:数形结合(线性规划)-4(1)-1-4--1-1(2)5-14-5f a c f a c ≤≤≤≤⎧⎧⇒⎨⎨≤≤≤≤⎩⎩ 所确定区域如图:设9-z a c =,将边界点(0,1)(3,7)代入即求出.【总结升华】利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径.举一反三:【变式】已知15a b -≤+≤,13a b -≤-≤,求32a b -的取值范围. 【答案】[-3,10]类型二:一元二次不等式的有关问题例4.不等式ax 2+bx+12>0的解集为{x|-1<x<2},则a=_______, b=________. 【解析】由不等式的解集为{x|-1<x<2}知a<0,且方程ax 2+bx+12=0的两根为-1,2.由根与系数关系得12112(1)22baa⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩解得a=-6, b=6.【总结升华】利用一元二次不等式ax 2+bx+c>0的解集与一元二次方程ax 2 +bx+c=0的根之间的关系,可使问题简单化.举一反三:【变式1】若不等式()(1)0x a x ++≥的解集为(-∞,-1] ∪[2,+ ∞),求实数a 的值 【答案】由题设知 x=2为方程f(x)=0的根, ∴f(2)=0⇔a=-2 ∴所求实数a=-2【变式2】已知关于x 的方程(k-1)x 2+(k+1)x+k+1=0有两个相异实根,求实数k 的取值范围 【答案】5(1,1)(1,)3k ∈- 例5.若关于x 的不等式2(1)(21)20m x m x m --++-≥的解集为一切实数R ,求m 的取值范围. 【解析】当1m =时,原不等式为:310x --≥,不符合题意.当1m <时,原不等式为一元二次不等式,显然不符合题意 当1m >时,只需0∆≤,即2(21)4(1)(2)01m m m m ⎧+---≤⎨>⎩,解得m ∈∅, 综上,m 的取值范围为m ∈∅.【总结升华】①在含参不等式问题中,二次不等式恒成立的充要条件的理论依据: ax 2+bx+c>0对任何x ∈R 恒成立⇔a>0且Δ=b 2-4ac<0; ax 2+bx+c<0对任何x ∈R 恒成立⇔a<0且Δ=b 2-4ac<0. ②与不等式恒成立相互依存,相互支撑与相互转化的最值命题: μ<f(x)恒成立⇔μ<f(x)的最小值 μ>f(x)恒成立⇔μ>f(x)的最大值 举一反三:【变式】若对于任意X ∈R 恒有3x 2+2x+2>m (x 2+x+1)*(m N )∈,求m 的值 【答案】对任意x ∈R 有3x 2+2x+2>m (x 2+x+1)恒成立⇔对任意x ∈R 恒(3-m )x 2+(2-m)x+(2-m)>0成立 23m 0(2m)4(3m)(2m)0->⎧∴⎨∆=----<⎩ m 3m 210m 2m 3<⎧⎪⇔⇔<⎨<>⎪⎩或又因m ∈N *,∴m=1类型三:二元一次方程(组)与平面区域例6.设集合A={(x,y)|x,y,1-x -y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( )【解析】利用三角形的三边关系得:111x y x y x y x y y x x y+>--⎧⎪-<--⎨⎪-<--⎩,即 1,21,21,2x y x y ⎧+>⎪⎪⎪<⎨⎪⎪<⎪⎩表示的平面区域为A 选项. 【总结升华】注意本例中三角形本身的性质. 举一反三:【变式1】不等式组24236x y x y +≥⎧⎨-<⎩所表示的平面区域为( )A B C D 【答案】选B【变式2】不等式组000101x y x y x y ->⎧⎪+≥⎪⎨<<⎪⎪<<⎩在xy 平面上的解的集合为( )A .四边形内部 B. 三角形內部 C.一点D.空集 【答案】不等式组所表示的平面区域图形如下,∴交集为三角形内部,选B.类型四:求线性目标函数在线性约束条件下的最优解例7.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件51122,239,211,x y x y x -≥-⎧⎪+≥⎨⎪≤⎩则1010z x y=+的最大值是( )A .80B .85C .90D .95【答案】C【解析】先画出满足约束条件的可行域,如图阴影部分所示.由{51122,211,x y x -=-= 解得 {5.5,4.5,x y ==但x ∈N *,y ∈N *,结合图知当x=5,y=4时,z max =90.【总结升华】结合实际问题,注意约束条件中变量的取值范围. 举一反三:【变式】设变量x 、y 满足约束条件,2,36,y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩则目标函数z=2x+y 的最小值为( )A .2B .3C .4D .9 【答案】如图可得z min =3,选B类型五:基本不等式的应用例8.一批救灾物资随26辆汽车从某市以x km/h 的速度匀速开往400 km 处的灾区.为安全起见,每两辆汽车的前后间距不得小于220x ⎛⎫⎪⎝⎭km ,问这批物资全部到达灾区,最少要多少小时?【解析】 设全部物资到达灾区所需时间为t 小时,由题意可知,t 相当于:最后一辆车行驶了25个220x ⎛⎫⎪⎝⎭km +400 km 所用的时间,因此,2254002010x t x x ⎛⎫⨯ ⎪⎝⎭=+≥=. 当且仅当25400400x x=,即x =80时取“=”. 故这些汽车以80 km/h 的速度匀速行驶时,所需时间最少要10小时.【总结升华】在解答应用问题时要加强将实际问题的文字语言转化为数学符号语言,用数学式子表达文字语言所反映的数学关系的能力.举一反三:【变式1】求2(3)(03)y x x x =-<<的最大值. 【答案】03,30x x ∴-<<>且为常数2392(3)2()22x x y x x +-∴=-≤⋅=(当且仅当33,2x x x =-=即时取等号) ∴当32x =时,max 92y =. 【变式2】建造一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低造价为 元.【答案】1760【解析】设水池池底的一边长为xm ,则另一边长为4m x,则总造价y 为:4448080(22)2480320()y x x x x=+⨯+⋅⨯=++480320480320221760≥+=+⨯⨯=(元) 当且仅当4x x=即2x =时,y 取最小值为1760. 所以水池的最低造价为1760元.。

(完整word版)必修五不等式知识点典型例题,推荐文档

(完整word版)必修五不等式知识点典型例题,推荐文档

高中数学必修5第三章不等式复习一、不等式的主要性质:(1) 对称性: a b b a (2) 传达性: a b,bca c(3) 加法法例: a b a c b c ; a b,c d a c b d (4) 乘法法例: ab,c 0ac bc ; ab,cacbcab0, c d 0ac bd(5) 倒数法例: ab,ab1 1a b(6) 乘方法例: a b 0 a nb n (nN * 且 n 1)(7) 开方法例: abnanb (n N * 且 n1)二、一元二次不等式 ax 2bxc0 和 ax 2 bx c0( a0) 及其解法y ax 2bx cy ax 2 bxc2bx ca( x x 1 )( x x 2 )y axa( x x 1 )( x x 2 )二次函数y ax 2bx c( a 0 )的图象一元二次方程有两相异实根 有两相等实根ax 2bx cb 无实根a 0 的根 x 1 , x 2 ( x 1 x 2 )x 1 x 22aax 2bx c(a 0)的解集ax 2bx c 0(a 0)的解集1 . 一元二次不等式先化标准形式( a 化正)2 . 常用 因式分解法 、求根公式法 求解一元二次不等式顺口溜: 在二次项系数为正的前提下: “大鱼”吃两边, “小鱼”吃中间三、均值不等式1. 均值不等式:假如a,b 是正数,那么a b (当且仅当时取 " " 号).abab22、使用均值不等式的条件:一正、二定、三相等3、均匀不等式:(a、b为正数),即 a 2 b 2 a bab2(当 a = b 时取等)2211a b四、含有绝对值的不等式1.绝对值的几何意义:| x |是指数轴上点x 到原点的距离;| x1x2 |是指数轴上x1, x2两点间的距离a a0代数意义: | a | 0a0a a02、假如a0, 则不等式:| x | a x a或 x a| x | a x a或 x a | x | a a x a| x | a a x a4、解含有绝对值不等式的主要方法:解含绝对值的不等式的基本思想是去掉绝对值符号五、其余常有不等式形式总结:①分式不等式的解法:先移项通分标准化,则f ( x )0 f ( x) g( x ) 0 ;f ( x )0 f ( x )g( x ) 0g( x )g( x)0g( x )②指数不等式:转变为代数不等式a f ( x ) a g ( x ) ( a 1) f ( x ) g( x ) ; a f ( x ) a g ( x ) (0 a 1) f ( x ) g( x)③对数不等式:转变为代数不等式f ( x)0 f ( x )0 log a f ( x ) log a g( x)( a1)g( x )0log a f ( x ) log a g( x )(0 a 1)g( x )0f ( x)g( x ) f ( x )g( x )④高次不等式:数轴穿根法 :奇穿,偶不穿例题:不等式( x23x2)( x4) 20 的解为()x3A.- 1< ≤1 或x≥2B.<- 3 或 1≤x≤ 2x xC.x=4 或- 3<x≤ 1 或x≥2D.x=4 或x<-3 或 1≤x≤ 2六、不等式证明的常用方法做差法、做商法七、线性规划1、二元一次不等式(组)表示的平面地区直线 l : Ax By C 0 (或0 ):直线定界,特别点定域。

高中数学必修5第三章《不等式》复习知识点总结与练习

高中数学必修5第三章《不等式》复习知识点总结与练习

高中数学必修5__第三章《不等式》复习知识点总结与练习(一)第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质1.在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.高频考点1. 比较两个数(式)的大小[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a . 2. 不等式的性质(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a-c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C.由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确. 3. 不等式性质的应用典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7.∴α+3β的取值范围为[1,7].第二节一元二次不等式及其解法[知识能否忆起]一元二次不等式的解集二次函数y=ax2+bx+c的图象、一元二次方程ax2+bx+c=0的根与一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集的关系,可归纳为:若a<0时,可以先将二次项系数化为正数,对照上表求解.解一元二次不等式应注意的问题:(1)在解一元二次不等式时,要先把二次项系数化为正数.(2)二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况.(3)解决一元二次不等式恒成立问题要注意二次项系数的符号.(4)一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同高频考点1.一元二次不等式的解法典题导入[例1] 解下列不等式: (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [自主解答] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1,或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a ,或x >-a ;a >0时,解集为{}x |x >5a ,或x <-a .由题悟法1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集.2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.以题试法1.解下列不等式: (1)-3x 2-2x +8≥0;(2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 2.一元二次不等式恒成立问题典题导入[例2] 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.[自主解答] 法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1) 时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3. 要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1 ≤a ≤1. 综上所述,a 的取值范围为[-3,1].法二:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3 ≤a ≤1.所求a 的取值范围是[-3,1].本题中的“x ∈[-1,+∞)改为“x ∈[-1,1)”,求a 的取值范围.解:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,1)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧ Δ>0,a <-1,g (-1)≥0或⎩⎨⎧Δ>0,a >1,g (1)≥0.解得-3≤a ≤1,所求a 的取值范围是[-3,1] .由题悟法1.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.2.一元二次不等式恒成立的条件:(1)ax 2+bx +c >0(a ≠0)(x ∈R ) 恒成立的充要条件是: a >0且b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)(x ∈R )恒成立的充要条件是: a <0且b 2-4ac <0.以题试法2.(2012·九江模拟)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________.解析:由Δ1<0,即a 2-4(-a )<0,得-4<a <0; 由Δ2≥0,即a 2-4(3-a )≥0,得a ≤-6或a ≥2. 答案:(-4,0) (-∞,-6]∪[2,+∞) 2. 一元二次不等式的应用典题导入[例3] 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. [自主解答] (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.由题悟法解不等式应用题,一般可按如下四步进行:(1)认真审题,把握问题中的关键量,找准不等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式; (4)回答实际问题.以题试法3.某同学要把自己的计算机接入因特网.现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP 公司较省钱?解:假设一次上网x 小时,则公司A 收取的费用为1.5x 元,公司B 收取的费用为x (35-x )20元.若能够保证选择A 比选择B 费用少,则x (35-x )20>1.5x (0<x <17), 整理得x 2-5x <0,解得0<x <5,所以当一次上网时间在5小时内时,选择公司A 的费用少;超过5小时,选择公司B 的费用少.练习题[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0 B .等于0 C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推出 ②④成立. 答案:②④[小题能否全取]1.(教材习题改编)不等式x (1-2x )>0的解集是( ) A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎝⎛⎭⎫12,+∞D.⎝⎛⎭⎫12,+∞答案:B2.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-13 B.⎩⎨⎧⎭⎬⎫-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13D .R答案:B3.(2011·福建高考)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.4.(2012·天津高考)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.解析:因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1.答案:-1 15.不等式1x -1<1的解集为________.解析:由1x -1<1得1-1x -1>0,即x -2x -1>0,解得x <1,或x >2.答案:{x |x <1,或x >2}1.(2012·重庆高考)不等式x -1x +2<0的解集为( )A .(1,+∞)B .(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C 原不等式化为(x -1)(x +2)<0,解得-2<x <1,故原不等式的解集为(-2,1).2.(2013·湘潭月考)不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)解析:选B ①当x -2>0即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4. ②当x -2<0即x <2时,原不等式等价于(x -2)2≤4, 解得0≤x <2.3.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5]D .[-3,-2)∪(4,5]解析:选D 原不等式可能为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5]4.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 解析:选C ①m =-1时,不等式为2x -6<0,即x <3,不合题意.②m ≠-1时,⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311.6.(2012·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析:选C ∵f (x )=ax 2-(a +2)x +1, Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.7.若不等式k -3x -3>1的解集为{x |1<x <3},则实数k =________.解析:k -3x -3>1,得1-k -3x -3<0,即x -k x -3<0,(x -k )(x -3)<0,由题意得k =1.答案:18.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________. 解析:原不等式即x 2-2x -a 2+2a +4≤0,在R 上解集为∅, ∴Δ=4-4(-a 2+2a +4)<0, 即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)9.(2012·陕西师大附中模拟)若函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,则m 的取值范围为________.解析:由已知得f (3)=6-m ,①当m ≤3时,6-m ≥3,则f (f (3))=2(6-m )-m =12-3m >6,解得m <2;②当m >3时,6-m <3,则f (f (3))=6-m +5>6,解得3<m <5.综上知,m <2或3<m <5.答案:(-∞,2)∪(3,5) 10.解下列不等式: (1)8x -1≤16x 2;(2)x 2-2ax -3a 2<0(a <0).解:(1)原不等式转化为16x 2-8x +1≥0, 即(4x -1)2 ≥0,则x ∈R , 故原不等式的解集为R .(2)原不等式转化为(x +a )(x -3a )<0, ∵a <0,∴3a <-a ,得3a <x <-a .故原不等式的解集为{x |3a <x <-a }.11.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元).(1)该厂月产量多大时,月利润不少于1 300元?(2)当月产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,月利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500.由月利润不少于1 300元,得-2x 2+130x -500≥1 300. 即x 2-65x +900≤0,解得20≤x ≤45.故该厂月产量在20~45件时,月利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当月产量为32或33件时,可获最大利润,最大利润为1 612元.12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0 的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .。

必修五-不等式知识点汇总复习课程

必修五-不等式知识点汇总复习课程

必修五-不等式知识点汇总不等式总结一、不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>; d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法0>∆0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象))((212x x x x a cbx ax y --=++=))((212x x x x a c bx ax y --=++=c bx ax y ++=2一元二次方程()的根002>=++a c bx ax 有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x x x<<∅∅注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式1.均值不等式:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba2、使用均值不等式的条件:一正、二定、三相等3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数),即2112a ba b+≥+(当a = b时取等)四、含有绝对值的不等式1.绝对值的几何意义:||x是指数轴上点x到原点的距离;12||x x-是指数轴上12,x x两点间的距离2、则不等式:如果,0>aaxaxax-<><=>>或||axaxax-≤≥<=>≥或||axaax<<-<=><||axaax≤≤-<=>≤||3.当0c>时,||ax b c ax b c+>⇔+>或ax b c+<-,||ax b c c ax b c+<⇔-<+<;当0c<时,||ax b c x R+>⇔∈,||ax b c xφ+<⇔∈.4、解含有绝对值不等式的主要方法:①解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;②去掉绝对值的主要方法有:(1)公式法:|| (0)x a a a x a<>⇔-<<,|| (0)x a a x a>>⇔>或x a<-.(2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.五、其他常见不等式形式总结:①分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f xg xf x f xf xg xg xg x g x≥⎧>⇔>≥⇔⎨≠⎩②无理不等式:转化为有理不等式求解()0()0()()f xg xf xg x⎧≥⎫⇒⎪⎬≥⎨⎭⎪>⎩定义域⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)()()]([)()()()()(2xgxfxgxfxgxfxgxf或⎪⎩⎪⎨⎧<≥≥⇔<2)]([)()()()()(xgxfxgxfxgxf③指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lgf xg x f x g xf xa a a f x g x a a a f x g xa b a b f x a b>>⇔>><<⇔<>>>⇔⋅>④对数不等式:转化为代数不等式()0()0 log()log()(1)()0;log()log()(01)()0()()()()a a a af x f xf xg x a g x f x g x a g xf xg x f x g x>>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩六、三角不等式:|b||a||ba||b|-|a|+≤+≤七、不等式证明的几种常用方法比较法(做差法、做商法)、综合法、分析法、换元法、反证法、放缩法。

数学必修五不等式复习

数学必修五不等式复习

典型例题
题型四、线性规划问题
已知:函数 f(x)a2xc,满足
4 f( 1 ) 1 , 1 f( 2 ) 5
求: f (3) 的取值范围.
解:因为f(x)=ax2-c,
f (1) a c
所以
f
(2)
4a
பைடு நூலகம்
c
解之得
a c
1[ 3 1 3
f f
(2) (2)
f
4 3
(1)] f (1)
典型例题
所以f(3)=9a-c= 8 f (2) 5 f (1)
3
3
因为 4 f( 1 ) 1 , 1 f( 2 ) 5
所以
8≤8 f(2)≤40
33
3
5≤5 f(1)≤20
33
3
还有其它 解法吗?
两式相加得-1≤f(3) ≤20.
提示:整体构造 f(3)f(1 )f(2)利用对应系数相等
ab,c0 a cb;a cb,c0 a cbc a b 0 ,c d 0 a c bd
ab0 anbn; ab0 nanb ab,ab011 ab
基础知识回顾
二、一元二次不等式 ax2bxc00及其解法
△=b2-4ac
△>0
△=0
△<0
ax2bxc0
xxx2或 xx1
xR
x
b 2a
R
ax2bxc0 xx1xx2
典型例题
题型二、求一元二次不等的解集
例 2 、若x 关 的于 不 a2 x等 b x 2 式 0 的解 (, 集 1) (1 是 ,)
23 则 a等 b_于 ___
例 3 、不a 等 2 x4 x 式 a 1 2 x2 对x 一 R 恒 切 , 成 则立 a 实 的

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结一.算术平均数与几何平均数1.算术平均数设a 、b 是两个正数,则2a b +称为正数a 、b 的算术平均数 2.几何平均数a 、b 的几何平均数二基本不等式1.基本不等式: 若0a >,0b >,则a b +≥,即2a b +≥ 2.基本不等式适用的条件一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s若xy p =(积为定值),则当x y =时,和x y +取得最小值三相等:必须有等号成立的条件注:当题目中没有明显的定值时,要会凑定值3.常用的基本不等式(1)()222,a b ab a b R +≥∈ (2)()22,2a b ab a b R +≤∈ (3)()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭(4)()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭. 三.跟踪训练1.下列各函数中,最小值为2的是 ( )A .1y x x =+B .1sin sin y x x =+,(0,)2x π∈C .2y = D .1y x =+- 2.当02x π<<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D.3.x >0,当x 取什么值,x +1x的值最小?最小值是多少?4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折?5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少?6.设0,0x y >>且21x y +=,求11x y+的最小值是多少?7.设矩形ABCD(AB>AD)的周长是24,把∆ABC沿AC向∆ADC折叠,AB折过去后交CD与点P,设AB=x ,求∆ADP的面积最大值及相应x 的值。

高中数学人教版_必修五_不等式_知识点最完全精炼总结

高中数学人教版_必修五_不等式_知识点最完全精炼总结

一 . 不等式知识重点1. 两实数大小的比较ababab a b 0abab2.不等式的性质: 8条性质 .aa2 2b b 222 ab1( ab )22a2整式形式abb23.基aba 2b 2本不 2等式abab 定理2根式形式2 ( a 2b 2 )ba分 式 形 式ba 2 ( a ,b 同 号 )ab1a2a倒数形式aa12aa4.公式:a 12a ba 2b 2ab3.解不等式xb(a0)(1) 一元一次不等式 ax b(a 0)a(2) 一元二次不等式:xb(a0)a鉴别式△>0 △=0△ <0△ =b 2- 4acy=ax 2+bx+c的图象yyy(a> 0)x 1 Ox2xxOO x 1xax 2+bx+c= 0 有两相异实根有两相等实根没有实根x 1, x 2 (x 1< x 2)b(a >0) 的根x 1= x 2= 2aax 2+bx+c> 0 {x|x<x 1,或 {x|x ≠b } R2a(y> 0)的解集x>x 2}ax 2+bx+c< 0 {x|x 1< x <x 2 }ΦΦ(y <0 )的解集一元二次不等式的求解流程 :.一化:化二次项前的系数为正数.二判:判断对应方程的根 .三求:求对应方程的根 .四画:画出对应函数的图象.五解集:依据图象写出不等式的解集.(3)解分式不等式:f ( x)f (x) g( x)g( x)f ( x)f (x)g(x)g(x)g( x)高次不等式:( x a 1 )( x a 2 ) ( x a n )(4)解含参数的不等式: (1) (x –2)(ax –2)>0( 2)x 2 –(a + a 2)x + a 3 >0 ; ( 3)2x 2+ ax +2 > 0 ;注:解形如 ax 2+bx+c> 0 的不等式时分类讨 论的标准有: 1、议论 a 与 0 的大小; 2、议论⊿与 0 的大小; 3、议论两根的大小;二、运用的数学思想:1、分类议论的思想;2、数形联合的思想;3、等与不等的化归思想(4)含参不等式恒建立的问题:.1、函数2、分别参数后用最值3、用图象例 1.已知对于x 的不等式x2(3 a2 )x 2a 10在(–2,0)上恒建立,务实数 a 的取值范围.例 2.对于x的不等式y log 2 ( ax 2ax1)对全部实数 x∈R都建立,求 a 的取值范围.x例3.若对随意x0,a恒建立,x23x 1则 a的取值范围.(5)一元二次方程根的散布问题:方法:依照二次函数的图像特点从:张口方向、鉴别式、对称轴、函数值三个角度列出不等式组,总之都是转变为一元二次不等式组求解 ..二次方程根的分布问题的讨论:f (k )0y1.x1< x2< k b kk2a x10O xx2yf (k)0.1< x2b k2k < x2ax1O x2xky3.x1< k < x2 f (k) 0kx1O x x.4.k1 < x1 < x2 < k25.x1 < k1 < k2 < x2 yyk1k2Ok1k2x1O x2x x1x2xf (k1 )0f (k2 )0k1bk2 2a6.k1< x1< k2< x2< k3f ( k1 ) 0f ( k2 ) 0f ( k2 ) 0f (k1 ) 0f (k2 ) 0yO k2x2k1x1k3x4解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,进而求出目标函数的最大值或最小值。

高中数学必修五第三章不等式复习知识点与例题

高中数学必修五第三章不等式复习知识点与例题

一对一个性化辅导教案例1:解下列不等式题型2:简单的无理不等式的解法例1 :解下列不等式(2) x 2x 2 1题型3 :指数、对数不等式2例1 :若log a 1,则a 的取值范围是()3A. a 1B . 0 a —C - — a 133练习:1 2x 1 .x 1 ;(1) x 3 4x 0 ;2 2(2) (x 1) (x 5x 6) 0 ;(3)2x 2 x 1 2x 1练习: 解不等式(1)3x 5 x 2 2x 3(2) (2x 1)2(x 7)3(3 2x)(x 4)6D. 0 a -或 a 131、不等式2x 3 4x的解集是__________________ 。

2、不等式log1(x 2) 0的解集是_____________ 。

22e x 1x 23、设f(x)=‘1则不等式f(x) 2的解集为( )log3(x2 1),x 2,A. (1,2) (3, ) B . (710, ) C. (1,2) ) D . (1,2)题型4 :不等式恒成立问题1 2例1:若关于x的不等式一X 2x mx的解集是{x |0 x 2},则m的值是2练习:2 1 1一元二次不等式ax bx 2 0的解集是(一,—),贝U a b的值是( )2 3A. 10 B . 10 C. 14 D . 14例2:已知不等式x2 (a 1)x a 0,(1)若不等式的解集为(1,3),则实数a的值是_________________ 。

(2) __________________________________________________________ 若不等式在(1,3)上有解,则实数a 的取值范围是 _______________________________________________________ 。

(3) ____________________________________________________________ 若不等式在(1,3)上恒成立,则实数a的取值范围是 _____________________________________________________ 。

必修五不等式专题复习

必修五不等式专题复习

《不等式》专题复习知识回顾一. 不等式的主要性质:(1) 对称性: ⑵传递性: ⑶加法法则: (4)乘法法则:(同向同正可乘)⑸倒数法则: ⑹乘方法则:⑺开方法则:2、应用不等式的性质比较两个实数的大小:作差法(作差一一变形一一判断符号一一结论) 3、应用不等式性质证明不等式二. 解不等式1.一元二次不等式axbx c - 0或ax 2bx • c ::: O a = 0的解集:2、简单的一元高次不等式的解法:(穿根法)其步骤是:(1) 分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2) 将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画 曲线;并注意奇穿过偶不过;(3 )根据曲线显现f(x)的符号变化规律,写出不等式的解集,**2 *3如口:(x +1'f x —1) (x —2) <03、 分式不等式的解法(转化为常规不等式)f(x)f(x) c- f(x)g(x)—O0二 f(x)g(x) 0;0二g(x)g(x) l g(x )工 0注意:右边不是零时,先移项再通分,化为上两种情况再处理4、 不等式的恒成立问题:同向可加)1是偶重根应用函数方程思想和“分离变量法”转化为最值问题若不等式f (x)A A在区间D上恒成立,则等价于在区间D上f (x )mi n > A若不等式f(x)<B在区间D上恒成立,则等价于在区间D上f(x h ax£B三、线性规划1、用二元一次不等式(组)表示平面区域2、二元一次不等式表示哪个平面区域的判断方法:定点法3、线性规划的有关概念:①线性约束条件②线性目标函数③线性规划问题④可行解、可行域和最优解:4、求线性目标函数在线性约束条件下的最优解的步骤:(1)寻找线性约束条件,列出线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)依据线性目标函数作参照直线ax+by二0,在可行域内平移参照直线求目标函数的最优解四.均值不等式1. 若a,b€ R,则a2+b2>2ab,当且仅当a=b时取等号|2. 如果a,b是正数,那么- ab(当且仅当a二b时取"二"号).2变形:①a+b > 2 ab ;F、2② ab< '口i , 当且仅当a=b时取等号II 2丿—注: (1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的重要条件“一正,二定,三取等”3. 常用不等式有:(1)a;" -殳右--了七(根据目标不等式左右的运算结构选用);a b2 2 2(2)a、b、c・ R, a b c - ab bc ca (当且仅当a=b=c时,取等号);(3)若a b 0,m 0,则--一m(糖水的浓度问题)。

202X年高中数学人教版必修五不等式知识点最完全精炼总结

202X年高中数学人教版必修五不等式知识点最完全精炼总结

千里之行,始于足下。

202X年高中数学人教版必修五不等式学问点最完全精炼总结高中数学人教版必修五中的不等式部分是数学中格外重要的一个章节,把握好不等式的学问对于解决很多其他数学问题都是至关重要的。

下面是对202X年高中数学人教版必修五不等式学问点的最完全精炼总结,总计。

一、基本概念与性质1. 不等式的基本性质:加减等于一个不等式,两边乘(除)同一个正(负)数不等号方向不变,两边乘(除)同一个非负数不等号方向可能转变。

2. 确定值不等式的性质:|a| < b 等价于 -b < a < b;|a| > b 等价于a < -b 或 a > b。

3. 等式的确定值不等式:若 |a| = b,则 a = b 或 a = -b。

二、一次不等式1. 一次不等式的解集表示法:解集用数学符号表示为 { x | x ∈ R, x >a } 或 (a, +∞)。

2. 一次不等式的求解方法:移项、换边、乘除法求解。

3. 不等式的区间解法:将解集表示为一个或多个区间的并集。

4. 求不等式的整数解:通过查找使不等式成立的整数解来确定整数解集。

第1页/共3页锲而不舍,金石可镂。

5. 不等关系的性质:不等式两边同时加上(减去)一个相同的数不等号方向不变,两边同时乘(除)一个正数不等号方向不变,两边同时乘(除)一个负数不等号方向转变。

三、二次不等式1. 二次不等式的解集表示法:解集用数学符号表示为 { x | x ∈ R, x > a, x < b } 或 (a, b)。

2. 二次函数与二次不等式的关系:二次函数的图像与二次不等式的解集有亲密关系。

3. 二次不等式的判别法:依据二次不等式的判别式Δ = b^2 - 4ac 的正负确定二次不等式的解集。

4. 二次不等式的求解方法:配方法、因式分解法、二次函数法等。

5. 不等式组的解集:将多个不等式组合在一起,求解出满足全部不等式的解。

高一下学期期末复习之——必修五不等式知识点及主要题型_讲义含解答

高一下学期期末复习之——必修五不等式知识点及主要题型_讲义含解答

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加) (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式 (二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:2、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩3、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤:(1)寻找线性约束条件,列出线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域;(3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解2a b+ 1.若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号. 2.如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 变形: 有:a+b ≥ab 2;ab ≤22⎪⎭⎫⎝⎛+b a ,当且仅当a=b 时取等号.3.如果a,b ∈R+,a ·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;如果a,b ∈R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值42S .注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等”4.常用不等式有:(1)2211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ;(2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。

必修五 第三章 不等式知识点总结及练习

必修五 第三章 不等式知识点总结及练习

不等式31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n na b a b n n >>⇒>∈N >;⑧()0,1nn a b a b n n >>⇒>∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-±∆=()12x x <有两个相等实数根122b x x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方.②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方. 39、在平面直角坐标系中,已知直线0x y C A +B +=. ①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域. ②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y .可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解. 41、设a 、b 是两个正数,则2a b+称为正数a 、b 的算术平均数,ab 称为正数a 、b 的几何平均数.42、均值不等式定理: 若0a >,0b >,则2a b ab +≥,即2a bab +≥. 43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.44、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值2p .不等式与不等关系1.实数x 大于10,用不等式表示为( )A .x <10B .x ≤10C .x >10D .x ≥102.设a =3x 2-x +1,b =2x 2+x ,x ∈R ,则( )A .a >bB .a <bC .a ≥bD .a ≤b4.比较x 6+1与x 4+x 2的大小,其中x ∈R .一、选择题1.某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要想安全通过隧道,应使车载货物高度h 满足关系为( )A .h <4.5B .h >4.5C .h ≤4.5D .h ≥4.5 2.实数x 的绝对值不大于2,则可用不等式表示为( ) A .|x|>2 B .|x|≥2X k b 1 . c o m C .|x|<2 D .|x|≤2 3.下列不等式中不成立的是( ) A .-1>-2 B .-1<2 C .-1≥-1 D .-1≤-2 4.某高速公路对行驶的各种车辆的速度v 的最大限速为120 km/h ,行驶过程中,同一车道上的车间距d 不得小于10 m ,则可用不等式表示为( )A.⎩⎪⎨⎪⎧v ≤120km/h d ≥10m B .v ≤120(km/h)或d ≥10(m) C .v ≤120(km/h) D .d ≥10(m)5.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( ) A .A ≤B B .A ≥B C .A<B 或A>B D .A>B6.已知M =x 2+y 2-4x +2y ,N =-5,若x ≠2或y ≠-1,则( ) A .M>N B .M<N C .M =N D .不能确定答案:1.C 2.D 3.D 4.A 5.B 6.A1.对于任意实数a ,b ,c ,d ,命题:①若a>b ,c ≠0,则ac>bc ;②若a>b ,则ac 2>bc 2;③若ac 2>bc 2,则a>b. 其中真命题的个数是( )A .0B .1C .2D .3解析:当c<0时,①不正确; 当c =0时,②不正确;只有③正确. 答案:B 2.如果a>b ,给出下列不等式,其中成立的是( ) ①1a <1b ;②a 3>b 3;③a 2+1>b 2+1;④2a >2b . A .②③ B .①③ C .③④ D .②④ 解析:∵a 、b 符号不定,故①不正确,③不正确.∵y =x 3是增函数,∴a>b 时,a 3>b 3,故②正确.∵y =2x 是增函数,∴a>b 时,2a >2b,故④正确. 答案:D 3.已知a ,b 为非零实数,且a<b ,则( )A .a 2<b 2B .a 2b<ab 2C .2a -2b<0 D.1a >1b解析:取a =-4,b =2即可判断选项A 、B 、D 错. 答案:C 4.已知a 、b 满足0<a<b<1,下列不等式中成立的是( )A .a a <b bB .a a <b aC .b b <a bD .b b >b a解析:取特殊值法.令a =14,b =12,则a a =(14)14=(12)12, b b=(12)12,∴A 错.a b =(14)12<(12)12=b b ,∴C 错. b b =(12)12<(12)14=b a,∴D 错. 答案:B5.设0<b<a<1,则下列不等式成立的是( )A .ab<b 2<1 B .log 12b<log 12a<0C .2b <2a <2D .a 2<ab<1解析:∵y =2x 是单调递增函数,且0<b<a<1, ∴2b <2a <21,即2b <2a<2. 答案:C 6.若1a <1b <0,则下列不等式:①a +b<ab ;②|a|>|b|;③a<b ;④b a +ab >2中,正确的不等式是A .①②B .②③C .①④D .③④解析:取a =-1,b =-2,验证排除②③. 答案:C7.一个棱长为2的正方体的上底面有一点A ,下底面有一点B ,则A 、B 两点间的距离d 满足的不等式为________.解析:最短距离是棱长2,最长距离是正方体的体对角线长2 3.故2≤d ≤2 3. 答案:2≤d ≤2 38.若a >b >0,则1a ________1b.解析:∵1a -1b =b -aab ,b -a <0,ab >0,∴b -a ab <0, ∴1a <1b. 答案:< 9.若实数a >b ,则a 2-ab________ba -b 2.(填“>”或“<”)解析:因为(a 2-ab)-(ba -b 2)=(a -b)2,又a >b ,所以(a -b)2>0,即a 2-ab >ba -b 2.7.已知三个不等式:ab>0,bc -ad>0,c a -db>0(其中a 、b 、c 、d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是____个.解析:由ab>0,bc -ad>0. 两端同除以ab ,得c a -db>0.同样由c a -db>0,ab>0可得bc -ad>0.⎩⎪⎨⎪⎧bc -ad>0c a -d b>0⇒⎩⎪⎨⎪⎧bc -ad>0bc -adab>0⇒ab>0. 答案:38.下列四个不等式:①a<0<b ;②b<a<0;③b<0<a ;④0<b<a ,其中能使1a <1b成立的充分条件有________.解析:1a <1b ⇔b -a ab<0⇔b -a 与ab 异号,因此①②④能使b -a 与ab 异号. 答案:①②④ 9.(2011·三明模拟)给出下列四个命题:①若a>b>0,则1a >1b ; ②若a>b>0,则a -1a >b -1b ;③若a>b>0,则2a +b a +2b >a b ; ④设a ,b 是互不相等的正数,则|a -b|+1a -b≥2.其中正确命题的序号是________.(把你认为正确命题的序号都填上)解析:①作差可得1a -1b =b -a ab ,而a>b>0,则b -a ab <0,此式错误.②a>b>0,则1a <1b,进而可得-1a >-1b ,所以可得a -1a >b -1b 正确.③2a +b a +2b -a b =b 2a +b -a a +2b a +2b b =b 2-a 2a +2b b =b -a b +a a +2b b<0,错误.④a -b<0时此式不成立,错误. 答案:②一元二次不等式练习:判断下列式子是不是一元二次不等式?(依据是…)(2)03≤+xy (3)(0)3)(2<-+x x (4))1(32->-x x x x 2.如何解一元二次不等式?(1)将不等式化为标准式(等号右边为0,二次项的系数为正) (2)判断△的符号.(3)求方程的根.(4)根据图象写解集.例1:(1)40142>+-x x (2)0322>-+-x x(1)0432>--x x (2)0652<+-x x例2.自变量x 在什么范围取值时,下列函数的值等于0?大于0呢?小于0呢?(1)y=3x 2-6x+2 (2) y=25-x 2例3.求下列函数的定义域 :(1)y=log 2(x 2-3x-4) (2)622--=x x y4.若关于x 的一元二次方程x 2-(m+1)x-m=0有两个不相等的实数根,求m 的取值范围5.已知函数f(x)=213324x x --, 求使函数值大于0的x 的取值范围 4.已知不等式ax 2+bx+6<0的解集是 {x ︳x<-2或x>3 (1)求a,b 的值 (2)求不等式x 2+bx+a>0的解集.例 2 若关于x 的不等式 mx 2-(2m+1)x+m-1≥0 的解集为空集,求m 的取值范围.变式 1:若解集为非空,求m 的取值范围变式2. 若解集为R ,求m 的取值范围不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点.②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 x 2-4x+13x 2-7x+2≤1解:(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图不等式解集为{x ∣x>2或x<-4且x ≠5}. (2)变形为(2x-1)(x-1)(3x-1)(x-2)≥0根据穿根法如图不等式解集为{x |x<1 3 或 1 2≤x ≤1或x>2}. 一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x 10、0121632>-+x x 11、0123732>+-x x 12、071522≤++x x 13、0121122≥++x x 14、10732>-x x 15、05622<-+-x x 16、02033102≤+-x x 17、0542<+-x x 18、0442>-+-x x 19、2230x x --+≥ 20、0262≤+--x x 21、0532>+-x x22、02732<+-x x 23、0162≤-+x x 24、03442>-+x x 25、061122<++x x 26、041132>+--x x 27、042≤-x28、031452≤-+x x 29、0127122>-+x x 30、0211122≥--x x 31、03282>--x x 32、031082≥-+x x 33、041542<--x x 34、02122>--x x 35、021842>-+x x 36、05842<--x x 37、0121752≤-+x x 38、0611102>--x x 39、038162>--x x 40、038162<-+x x 41、0127102≥--x x 42、02102>-+x x 43、0242942≤--x x 44、0182142>--x x 45、08692>-+x x 46、0316122>-+x x 47、0942<-x 48、0320122>+-x x 49、0142562≤++x x 50、0941202≤+-x x 51、(2)(3)6x x +-< 52、03222<--a ax x 53、0)1(2<--+a x a x221 1 3 1二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为__________. 3、不等式2310x x -++>的解集是 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ; 9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合M N = ; 10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为_______ 12、不等式0<x 2+x-2≤4的解集是_________13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.9.已知一元二次不等式(m -2)x 2+2(m -2)x +4>0的解集为R ,求m 的取值范围2.求函数()2110lg 2+-=x x y 的定义域。

必修五不等式专题复习

必修五不等式专题复习

《不等式》专题复习知识回顾一.不等式的主要性质:(1)对称性: (2)传递性:(3)加法法则: (同向可加) (4)乘法法则:(同向同正可乘)(5)倒数法则: (6)乘方法则: (7)开方法则:2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式二.解不等式1.一元二次不等式()00或022≠<++>++a c bx ax c bx ax 的解集:2、简单的一元高次不等式的解法:(穿根法)其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶不过;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法(转化为常规不等式)()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ 注意:右边不是零时,先移项再通分,化为上两种情况再处理4、不等式的恒成立问题:应用函数方程思想和“分离变量法”转化为最值问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <三、线性规划1、用二元一次不等式(组)表示平面区域2、二元一次不等式表示哪个平面区域的判断方法:定点法3、线性规划的有关概念:①线性约束条件 ②线性目标函数③线性规划问题 ④可行解、可行域和最优解:4、求线性目标函数在线性约束条件下的最优解的步骤: (1)寻找线性约束条件,列出线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解四.均值不等式1.若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号.2.如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba变形: ① a+b ≥ab 2;②ab ≤22⎪⎭⎫⎝⎛+b a , 当且仅当a=b 时取等号.注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 3.常用不等式有:(12222211a b a b ab a b++≥≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五不等式综合
一.不等式的性质:
1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若
,a b c d ><,则a c b d ->-)
,但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,
但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b
c >);
3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >>
4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11
a b
>。


练习一、:
(1)对于实数c b a ,,中,给出下列命题:
①22,bc ac b a >>则若; ②b a bc ac >>则若,22;
③22,0b ab a b a >><<则若; ④b
a b a 1
1,0<<<则若;
⑤b
a
a b b a ><<则若,0; ⑥b a b a ><<则若,0;
⑦b c b a c a b a c ->
->>>则若,0; ⑧11
,a b a b
>>若,则0,0a b ><。

其中正确的命题是______
(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______
(3)已知c b a >>,且,0=++c b a 则a
c
的取值范围是______
二.不等式大小比较的常用方法:
1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;
5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ;
8.图象法。

其中比较法(作差、作商)是最基本的方法。

练习二;(1)设0,10>≠>t a a 且,比较21
log log 21+t t a a 和的大小
(2)设2a >,1
2
p a a =+-,2422-+-=a a q ,试比较q p ,的大小
(3)比较1+3log x 与)10(2log 2≠>x x x 且的大小
三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积
定和最小”这17字方针。

如 (1)下列命题中正确的是
A 、1
y x x =+的最小值是2
B 、2
y =的最小值是2
C 、4
23(0)y x x x =-->的最大值是2-
D 、4
23(0)y x x x
=-->的最小值是2-
(2)若21x y +=,则24x y +的最小值是______

(3)正数,x y 满足21x y +=,则
y
x 1
1+的最小值为______
五.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)
后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。

).
常用的放缩技巧
六.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的
积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。


练习三:
(1)解不等式2(1)(2)0x x -+≥。

(2)不等式(0x -的解集是____ (3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x >的解集为______
七.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将
分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。


练习四:
(1)解不等式2
5123
x
x x -<--- (2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式
02
>-+x b
ax 的解集为____________
八.绝对值不等式的解法:
1.分段讨论法(最后结果应取各段的并集):如解不等式|2
1
|2|432|+-≥-
x x (2)利用绝对值的定义;
(3)数形结合;如解不等式|||1|3x x +-> (4)两边平方:如
若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。

九.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。

注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如
(1)若2
log 13
a <,则a 的取值范围是__________
(2)解不等式
2
()1
ax x a R ax >∈-
十一.含绝对值不等式的性质:
a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.
如设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+
十二.(难点)不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方
式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题
若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >
若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <
如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______
(答:)
1,+∞)
; (2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____ (答:1a <);
(3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____
(答:(
712-,31
2
+));
(4)若不等式n
a n n
1
)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是
_____
(答:3
[2,)2
-);
(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.
(答:1
2
m >-)
2). 能成立问题
若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;
若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如
已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____
(答:1a >)
3). 恰成立问题
若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .。

相关文档
最新文档