高中数学必修五-不等式知识点精炼总结

合集下载

高中数学必修五不等式知识点

高中数学必修五不等式知识点

必修五不等式1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①a b b a >⇔<; ②,a b b c a c >>⇒>; ③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1n n a b a b n n >>⇒>∈N >;⑧)0,1a b n n >>⇒>∈N >.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。

在字母比较的选择或填空题中,常采用特值法验证。

3、一元二次不等式解法:(1)化成标准式:20,(0)axbx c a ++>>;(2)求出对应的一元二次方程的根; (3)画出对应的二次函数的图象; (4)根据不等号方向取出相应的解集。

线性规划问题:1.了解线性约束条件、目标函数、可行域、可行解、最优解2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.3.解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值; (4)验证。

两类主要的目标函数的几何意义:①z ax by =+-----直线的截距;②22()()z x a y b =-+------两点的距离或圆的半径;4、均值定理: 若0a >,0b >,则a b +≥,即2a b +≥ ()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;2a b +称为正数a 、b 称为正数a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值. 注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。

高中数学必修5精要——不等 式知识点

高中数学必修5精要——不等    式知识点

不等式1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3)左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,,则;若,,则。

特别提醒:如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。

如(1)对于实数中,给出下列命题:①;②;③;④;⑤;⑥;⑦;⑧,则。

其中正确的命题是______(答:②③⑥⑦⑧);(2)已知,,则的取值范围是______(答:);(3)已知,且则的取值范围是______(答:)2.不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量(一般先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小)或放缩法;(8)图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。

其中比较法(作差、作商)是最基本的方法。

如(1)设,比较的大小(答:当时,(时取等号);当时,(时取等号));(2)设,,,试比较的大小(答:);(3)比较1+与的大小(答:当或时,1+>;当时,1+<;当时,1+=)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。

3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。

常用的方法为:拆、凑、平方。

如(1)下列命题中正确的是A、的最小值是2B、的最小值是2C、的最大值是D、的最小值是(答:C);(2)若,则的最小值是______(答:);(3)正数满足,则的最小值为______(答:);4.常用不等式有:(1)(根据目标不等式左右的运算结构选用) ;(2)a、b、c R,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。

高一必修5不等式知识点

高一必修5不等式知识点

高一必修5不等式知识点不等式是数学中的重要概念之一,它描述了数之间大小关系的不同情况。

在高中数学课程中,不等式的学习是必不可少的,而高一必修5则是学生们初次接触并系统学习不等式的阶段。

本文将为大家介绍高一必修5中的不等式知识点,包括基本概念、性质和解不等式的方法。

一、基本概念在学习不等式之前,我们先来了解一下一些基本概念。

首先是不等号的含义,大于号">"表示大于关系,小于号"<"表示小于关系,而大于等于号"≥"表示大于或等于关系,小于等于号"≤"表示小于或等于关系。

不等式由两个数之间的关系和一个不等号构成,如a>b、c≥d等。

我们可以将不等式理解为一个数轴上的区域,满足不等式的数所构成的集合。

二、性质不等式具有一些重要性质,对于学习和解决不等式问题非常有帮助。

1. 传递性:如果a>b,b>c,那么a>c。

这是因为不等式的比较关系具有传递性,如果一个数大于另一个数,而后者又大于另一个数,那么前者一定大于后者。

2. 加法性:如果a>b,那么a+c>b+c。

这是因为两边同时加上同一个数,不等式的关系仍然成立。

3. 减法性:如果a>b,那么a-c>b-c。

和加法性类似,两边同时减去同一个数,不等式的大小关系不变。

4. 乘法性:如果a>b,且c>0,那么ac>bc。

这是因为两边同乘以一个正数时,不等号的方向不变;而如果c<0,则不等号的方向会改变。

5. 除法性:如果a>b,且c>0,那么a/c>b/c。

和乘法性类似,两边同除以一个正数时,不等号的方向仍然不变;当c<0时,不等号的方向会改变。

三、解不等式的方法解不等式是数学中常见的问题,我们有一些常用的方法来求解不等式。

1. 图像法:将不等式对应的数轴画出来,并标出关键点,然后根据不等号的类型进行填色,最后得到不等式的解集。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结一、基本概念不等式是数学中的一个重要概念,它描述了数值之间的大小关系。

在高中数学中,我们学习了许多不等式的性质和解法。

下面将从基本概念、性质和解法三个方面对高中不等式的知识点进行总结。

1.1 不等式的定义不等式是指两个数或两个代数式之间的大小关系,用符号“<”、“>”、“≤”、“≥”表示。

不等式中的符号有以下含义: - “<”表示小于,例如a < b表示a小于b; - “>”表示大于,例如a > b表示a大于b; - “≤”表示小于等于,例如a ≤ b表示a小于等于b; - “≥”表示大于等于,例如a ≥ b表示a大于等于b。

1.2 不等式的解集不等式的解集是使不等式成立的所有实数的集合。

根据不等式的类型和题目的要求,解集可以是有限集、无限集或空集。

二、基本性质不等式具有一些基本的性质,了解这些性质可以帮助我们更好地理解和运用不等式。

2.1 不等式的传递性对于任意实数a、b、c,如果a < b且b < c,则有a < c。

这个性质称为不等式的传递性。

利用不等式的传递性,我们可以简化不等式的推导过程。

2.2 不等式的加减性质对于任意实数a、b、c,如果a < b,则有a + c < b + c,a - c < b - c。

这个性质称为不等式的加减性质。

利用不等式的加减性质,我们可以对不等式进行加减运算,从而得到等价的不等式。

2.3 不等式的乘除性质对于任意实数a、b、c(c ≠ 0),如果a < b且c > 0,则有ac < bc;如果a < b且c < 0,则有ac > bc。

这个性质称为不等式的乘除性质。

利用不等式的乘除性质,我们可以对不等式进行乘除运算,从而得到等价的不等式。

2.4 不等式的倒置性质对于任意实数a、b,如果 a < b,则有-b < -a。

高二数学必修5第三章不等式知识点总结

高二数学必修5第三章不等式知识点总结

高二数学必修5第三章不等式知识点总结高中数学不等式知识点不仅是考查重点也是考查难点,很多考生都被高中数学不等式知识点困惑,下面是店铺给大家带来的高二数学必修5第三章第三章不等式知识点总结,希望对你有帮助。

高二数学不等式的定义:① 其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

高二数学不等式的性质:① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

② 关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高二数学不等式易错易混知识点:1、利用均值不等式求最值时,你是否注意到:"一正;二定;三等"。

2、绝对值不等式的解法及其几何意义是什么?3、解分式不等式应注意什么问题?用"根轴法"解整式(分式)不等式的注意事项是什么?4、解含参数不等式的通法是"定义域为前提,函数的单调性为基础,分类讨论是关键",注意解完之后要写上:"综上,原不等式的解集是……"。

5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意"同号可倒"即a》b》0,a。

高一必修5不等式知识点及

高一必修5不等式知识点及

高一必修5不等式知识点及应用。

高一必修5不等式知识点及应用在高一数学课程中,不等式是一个重要的内容,也是学生们经常接触到的概念。

不等式是比较两个数的大小关系的数学语句。

在本文中,我们将介绍高一必修5中的一些重要的不等式知识点,并探讨它们在实际问题中的应用。

一、一元二次不等式一元二次不等式是高一必修5中重要的不等式类型之一,也是解不等式的基础。

一元二次不等式是指类似于 ax² + bx + c > 0 或 ax² + bx +c ≤ 0 的形式的不等式。

解一元二次不等式的关键是确定不等式的根号部分与零的关系,通过这个关系来确定不等式的解集。

一元二次不等式的应用非常广泛,尤其在实际问题中。

比如,我们可以利用一元二次不等式来描述一个物体的运动轨迹、确定一个方程的解集范围等等。

一元二次不等式的解集可以帮助我们更好地理解和分析实际问题,提高对问题的解决能力。

二、绝对值不等式绝对值不等式也是高一必修5中一个重要的不等式类型。

绝对值不等式是指类似于 |x - a| > b 或 |x - a| ≤ b 的形式的不等式,其中 a 和 b 是实数。

解绝对值不等式的关键是利用绝对值的定义和性质,将不等式转化为两个简单的不等式,并对每个不等式分别进行求解。

解绝对值不等式的过程可能会有一些繁琐,但是通过理解和掌握绝对值的性质和解绝对值不等式的方法,我们可以更加轻松地解决问题。

绝对值不等式在现实生活中也有广泛的应用。

比如,我们可以利用绝对值不等式来确定一个测量误差的范围、解决某些优化问题等等。

绝对值不等式的应用使我们能够更加准确地处理实际问题,提高解决问题的能力。

三、指数不等式指数不等式也是高一必修5中一个重要的不等式类型。

指数不等式是指形如 a^x > b 或a^x ≤ b 的不等式,其中 a 是正实数且不等于 1, b是正实数。

解指数不等式的关键是利用指数函数的性质和对数函数的性质,将不等式转化为对数形式,并利用对数的性质求解。

高中数学人教版_必修五_不等式_知识点最完全精炼总结

高中数学人教版_必修五_不等式_知识点最完全精炼总结

一 . 不等式知识重点1. 两实数大小的比较ababab a b 0abab2.不等式的性质: 8条性质 .aa2 2b b 222 ab1( ab )22a2整式形式abb23.基aba 2b 2本不 2等式abab 定理2根式形式2 ( a 2b 2 )ba分 式 形 式ba 2 ( a ,b 同 号 )ab1a2a倒数形式aa12aa4.公式:a 12a ba 2b 2ab3.解不等式xb(a0)(1) 一元一次不等式 ax b(a 0)a(2) 一元二次不等式:xb(a0)a鉴别式△>0 △=0△ <0△ =b 2- 4acy=ax 2+bx+c的图象yyy(a> 0)x 1 Ox2xxOO x 1xax 2+bx+c= 0 有两相异实根有两相等实根没有实根x 1, x 2 (x 1< x 2)b(a >0) 的根x 1= x 2= 2aax 2+bx+c> 0 {x|x<x 1,或 {x|x ≠b } R2a(y> 0)的解集x>x 2}ax 2+bx+c< 0 {x|x 1< x <x 2 }ΦΦ(y <0 )的解集一元二次不等式的求解流程 :.一化:化二次项前的系数为正数.二判:判断对应方程的根 .三求:求对应方程的根 .四画:画出对应函数的图象.五解集:依据图象写出不等式的解集.(3)解分式不等式:f ( x)f (x) g( x)g( x)f ( x)f (x)g(x)g(x)g( x)高次不等式:( x a 1 )( x a 2 ) ( x a n )(4)解含参数的不等式: (1) (x –2)(ax –2)>0( 2)x 2 –(a + a 2)x + a 3 >0 ; ( 3)2x 2+ ax +2 > 0 ;注:解形如 ax 2+bx+c> 0 的不等式时分类讨 论的标准有: 1、议论 a 与 0 的大小; 2、议论⊿与 0 的大小; 3、议论两根的大小;二、运用的数学思想:1、分类议论的思想;2、数形联合的思想;3、等与不等的化归思想(4)含参不等式恒建立的问题:.1、函数2、分别参数后用最值3、用图象例 1.已知对于x 的不等式x2(3 a2 )x 2a 10在(–2,0)上恒建立,务实数 a 的取值范围.例 2.对于x的不等式y log 2 ( ax 2ax1)对全部实数 x∈R都建立,求 a 的取值范围.x例3.若对随意x0,a恒建立,x23x 1则 a的取值范围.(5)一元二次方程根的散布问题:方法:依照二次函数的图像特点从:张口方向、鉴别式、对称轴、函数值三个角度列出不等式组,总之都是转变为一元二次不等式组求解 ..二次方程根的分布问题的讨论:f (k )0y1.x1< x2< k b kk2a x10O xx2yf (k)0.1< x2b k2k < x2ax1O x2xky3.x1< k < x2 f (k) 0kx1O x x.4.k1 < x1 < x2 < k25.x1 < k1 < k2 < x2 yyk1k2Ok1k2x1O x2x x1x2xf (k1 )0f (k2 )0k1bk2 2a6.k1< x1< k2< x2< k3f ( k1 ) 0f ( k2 ) 0f ( k2 ) 0f (k1 ) 0f (k2 ) 0yO k2x2k1x1k3x4解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,进而求出目标函数的最大值或最小值。

高中数学人教版必修五不等式知识点最完全精炼总结(K12教育文档)

高中数学人教版必修五不等式知识点最完全精炼总结(K12教育文档)

高中数学人教版必修五不等式知识点最完全精炼总结(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学人教版必修五不等式知识点最完全精炼总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学人教版必修五不等式知识点最完全精炼总结(word版可编辑修改)的全部内容。

4。

公式:3.基 本不等式定理⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧-≤+⇒<≥+⇒>≥+⎪⎪⎩⎪⎪⎨⎧+≤+≥+⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+≤⎪⎭⎫ ⎝⎛+≤+≥+≥+2a 1a 0a 2a 1a 0ab ,a (2b aa b )b a (2b a ab 2b a 2b a ab 2b a ab )b a (21b a ab 2b a 2222222222倒数形式同号)分式形式根式形式整式形式1.两实数大小的比较⎪⎩⎪⎨⎧<-⇔<=-⇔=>-⇔>0b a b a 0b a b a 0b a b a 一.不等式知识要点1122a b a b --+≤≤≤+2.不等式的性质:8条性质.3。

解不等式(1)一元一次不等式 (2)一元二次不等式:⎪⎪⎨⎧<<>>≠>)0a (bx )0a (a bx )0a (b ax一元二次不等式的求 解流程:一化:化二次项前的系数为正数。

二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. (3)解分式不等式:高次不等式:(4)解含参数的不等式:(1) (x – 2)(ax – 2)>0(2)x 2 – (a +a 2)x +a 3>0;(3)2x 2+ax +2 > 0;注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有:1、讨论a 与0的大小;2、讨论⊿与0的大小;3、讨论两根的大小; 二、运用的数学思想:1、分类讨论的思想;2、数形结合的思想;3、等与不等的化归思想(4)含参不等式恒成立的问题: ⎪⎩⎪⎨⎧用图象分离参数后用最值函数、、、321⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧≠≤⋅⇔≤>⋅⇔>0)x (g 0)x (g )x (f 0)x (g )x (f 0)x (g )x (f 0)x (g )x (f 0)())((21>---n a x a x a x高中数学人教版必修五不等式知识点最完全精炼总结(word 版可编辑修改)例1.已知关于x 的不等式在(–2,0)上恒成立,求实数a 的取值范围.例2.关于x 的不等式 对所有实数x ∈R 都成立,求a 的取值范围。

完整版高中数学不等式知识点总结

完整版高中数学不等式知识点总结

完整版高中数学不等式知识点总结高中数学中的不等式是学习数学中非常重要的一部分,在中高考中,不等式占据了较多的分数比重。

本文将对高中数学中的不等式进行全面的总结,内容涵盖了不等式的概念、基础知识、理论与定理、解题思路、常用不等式以及与其他章节的联系等方面。

一、不等式的概念与基础知识不等式是指含有不等关系的算式,一般表示成 a<b 或a>b,其中 a、b 可以是实数、分数或代数式等。

当 a<b 时,称 a 小于 b,也可以写成 b 大于 a;当 a>b 时,称 a 大于b,也可以写成 b 小于 a。

在不等式中,表示关系的符号“<”和“>”称为不等号。

解不等式可以用图像法、正推反证法和直接法等方法。

图像法:绘制不等式所代表的曲线或图形,在图形中表示不等关系所代表的区域,最终得出解不等式的集合。

正推反证法:通过推理判断得出不等式的解,其中正推法是根据不等式的性质进行推导和运算,而反证法则是通过推翻假设得出结论。

直接法:对不等式进行变形、化简和运算,得出解的过程。

不等式的基础知识:1. 加减法原则:若 a<b,则 a+c<b+c,a-c<b-c(c 为任意实数)。

2. 乘除法原则:若 a<b 且 c>0,则 ac<bc,a/c<b/c;若 a<b 且 c<0,则 ac>bc,a/c>b/c。

3. 平均值不等式:对于任意两个正数 a 和 b,有(a+b)/2>=√ab,等号当且仅当 a=b 时取到。

二、不等式的理论与定理1. 不等式传递性:若 a<b,b<c,则 a<c。

2. 柯西-施瓦茨不等式:对于任意两个实数序列a1,a2,...,an 和 b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2<=((a1^2+a2^2+...+an^2)(b1^2+b2^ 2+...+bn^2)),等号当且仅当 a1/b1=a2/b2=...=an/bn 时取到。

不等式知识点总结

不等式知识点总结

不等式知识点总结一、不等式的基本概念。

1. 不等式的定义。

- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。

例如:3x + 2>5,x - 1≤slant2x等。

2. 不等式的解与解集。

- 不等式的解:使不等式成立的未知数的值叫做不等式的解。

例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。

- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。

3. 解不等式。

- 求不等式解集的过程叫做解不等式。

例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。

二、不等式的基本性质。

1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。

例如5>3,那么3 < 5。

2. 性质2(传递性)- 如果a>b,b>c,那么a>c。

例如7>5,5>3,那么7>3。

3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。

例如3>1,那么3+2>1 + 2,即5>3。

- 推论:如果a>b,c>d,那么a + c>b + d。

例如4>2,3>1,那么4 + 3>2+1,即7>3。

4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。

例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。

必修五--不等式的知识点归纳

必修五--不等式的知识点归纳

知识点一:不等式关系与不等式一、不等式的主要性质:1.对称性:a>bob<a2.传递性:a>b,b>c=>a>c3.加法法则:a>b=>a+c>b+c; a>b,c>d=a+c>b+d4.乘法法则:a>b,c>O=>ac>he;a>h,c<0=>ac<hc;a>b>0,c>d>0=>ac>hd5.倒数法则:a>h,ab>0=>—<—6.乘方法则:a>b>0=>a n>b n(neN*⅛w>1)ab7.开方法则:a>b>bn爪>底(JIEN*且冷>1)二、含有绝对值的不等式1.绝对值的几何意义:IX1是指数轴上点X到原点的距离;|玉-々1是指数轴上不,W两点间的距离2、如果。

>0,则不等式:∖x∖>a<=>X> <-a ∖x∖<a<=>-a<x<aIx∣≥α<=>x≥a^x≤-a∣x∣≤«<=>-a≤x<a3.当c>0时,I依+〃|>co双+/?>c或Or+bv-c,∖ax+b∖<c<^>-c<ax+b<c;当CVO时,ItU:+b∣>cox∈R,∖ax+h∖<cx≡φ.4、解含有绝对值不等式的主要方法:①解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;②去掉绝对值的主要方法有:(1)公式法:∣x∣<4(α>0)o-α<x<4,|/|>4(々>0)0]>。

或不<一。

.(2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.三、其他常见不等式形式总结:①分式不等式的解法:先移项通分标准化,贝IJ/(x)>o°"χm>o∙/(χ)≥OOP(X)g(χR0②指数不等式:转化为代数不等式"'3>d3(α>∣)of(x)>g(x);〃⑶>αS3(0<"<1)=f(x)<g(x)/⑺>b(α>O力>0)=/(x)∙1g0>1g∕>③对数不等式:转化为代数不等式]og,j(χ)>iog,g(χ)(α>i)o.g(χ)>O;IOgaf(X)>1og“g(χ)(O<α<1)=,g(x)>O/(x)>g(x) /(x)<g(x)四、三角不等式: ∣a∣-∣b∣≤∣a+b∣≤∣a∣+∣b∣五、不等式证明的几种常用方法比较法(做差法、做商法)、综合法、分析法、换元法、反证法、放缩法。

人教版高三数学必修5知识点:《不等式》知识点总结

人教版高三数学必修5知识点:《不等式》知识点总结

人教版高三数学必修5知识点:《不等式》知识点总结
数学在科学发展和现代生活生产中的应用非常广泛,小编准备了人教版高三数学必修5知识点,具体请看以下内容。

(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。

②通过函数图象了解一元二次不等式与相应函数、方程的联系。

③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例
3)。

(4)基本不等式:。

①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的最大(小)值问题(参见例4)。

高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的人教版高三数学必修5知识点,希望大家喜欢。

必修五不等式知识汇总5篇

必修五不等式知识汇总5篇

必修五不等式知识汇总5篇第一篇:必修五不等式知识汇总必修五不等式知识汇总1.实数的三歧性:任意两个实数a、b,a>b,a=b,a0⇔a>b⎧⎪⎨a-b=0⇔a=b⎪⎩a-b<0⇔a.2.不等式的性质:性质1(对称性)a>b⇔bb,b>c⇒a>c;性质3(可加性)a>b⇒a+c>b+c.移项法则:不等式中的任意一项都可以变成它的相反数后从一边移到另一边.a>b⎫a>b⎫⎬⎬⇒acbc;c>0⎭c<0⎭性质5(同向可加性)a>b,c>d⇒a+c>b+d;性质6(同向可乘性)a>b>0⎫⎬⇒ac>bd; c>d>0⎭性质7(不等式的乘方法则)a>b>0⇒an>bn(n∈N+且n>1);性质8(不等式的开方法则)a>b>0⇒a>b(n∈N+且n>1).3.一元二次不等式与二次函数、一元二次方程的关系:4.常见不等式的解法:(1)分式不等式的解法f(x)A先通分化为一边为一边为0的形式,再等价转化为整式不等式.⇔A·B>0;Bg(x)⎧⎧B≥0B≤0⎪A·⎪A·AAA⎨⎨⇔A·B<0;≥0⇔;≤0⇔.BBB⎪B≠0⎪B≠0⎩⎩如果用去分母的方法,一定要考虑分母的符号.(2)高次不等式的解法只要求会解可化为一边为0,另一边可分解为一次或二次的积式的,解法用穿根法,要注意穿根时“奇过偶不过”.如(x-1)(x+1)2(x+2)3>0穿根时,-2点穿过,-1点返回,故解为x<-2或x>1.(3)含绝对值不等式的解法:一是令每个绝对值式为0,找出其零点作为分界点,分段讨论,二是平方法.(4)含根号的不等式解法,一是换元法,二是平方法.(5)解含参数的不等式时,要对参数分类讨论(常见的有一次项系数含字母、二次项系数含字母、二次不等式的判别式Δ、指对不等式中的底数含参数等).(6)超越不等式问题可用图象法.5.二元一次不等式Ax+By+C>0(或Ax+By+C<0)表示的平面区域.(1)在平面直角坐标系中作出直线Ax+By+C=0;(2)在直线的一侧任取一点P(x0,y0),特别地,当C≠0时,常把原点作为此特殊点.(3)若Ax0+By0+C>0,则包含点P的半平面为不等式Ax+By+C>0所表示的平面区域,不包含点P的半平面为不等式Ax+By+C<0所表示的平面区域.(4)主要看不等号与B的符号是否同向,若同向则在直线上方,若异向则在直线下方,简记为“同上异下”,这叫B值判断法.一般地说,直线不过原点时用原点判断法或B值判断法,直线过原点时用B值判断法或用(1,0)点判断.注意:画不等式Ax+By+C≥0(或Ax+By+C≤0)所表示的平面区域时,区域包括边界直线Ax+By+C=0上的点,因此应将其画为实线.把等号去掉,则直线为虚线.6.线性规划的有关概念(1)约束条件——目标函数中的变量所要满足的不等式组.(2)线性目标函数——目标函数关于变量是一次函数.(3)线性约束条件——约束条件是关于变量的一次不等式组.(4)可行解——满足线性约束条件的解.(5)可行域——由所有可行解组成的集合.(6)最优解——在可行域中使目标函数取得最值的解.(7)线性规划问题——求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.7.利用图解法解决线性规划问题的一般步骤(1)作出可行域.将约束条件中的每一个不等式所表示的平面区域作出,找出其公共部分.(2)作出目标函数的等值线.(3)确定最优解.①在可行域内平行移动目标函数等值线,最先通过或最后通过的顶点便是最优解对应的点,从而确定最优解.②利用围成可行域的直线的斜率来判断.若围成可行域的直线l1、l2、…、ln的斜率分别为k18.(1)重要不等式a2+b2≥2a·b(a、b∈R);a+b+(2)基本不等式ab(a、b∈R); 2(3)均值定理.①x、y∈(0,+∞),且xy=P(定值),那么当x=y时,x+y有最小值P.S2②x、y∈(0,+∞),且x+y=S(定值),那么当x=y时,xy 有最大值.4(4)证明不等式常用方法有:综合法、比较法、分析法、反证法及利用函数单调性等.误区警示:1.两个同向不等式的两边不能分别相减,也不能分别相除,在需要求差或商时,可利用不等式的性质转化为同向不等式相加或相乘.2.a≥b的含义是“a>b”或“a=b”,只要其中一个成立,则a≥b就成立.3.特别注意不等式性质成立的条件.对每一条性质,要弄清条件和结论,注意条件加强和放宽后,条件和结论之间关系发生的变化;避免由于忽略某些限制条件而造成解题失误,特别注意关于符号的限制条件.a>b>0⎫a>b⎫如:a>b⎫⎪1111⎬⇒⎬⎬但a>b⇒是错误的,⇒ac>bd是成立的,但ababc>d>0c>d⎭⎭⎪ab>0⎭⇒ac>bd是错误的.a>b>0⇒an>bn(n∈N*)是正确的,但a>b⇒an>bn是错误的,若规定n为正奇数时,a>b⇒an>bn是正确的.4.解决含有绝对值不等式问题的基本思想是设法去掉绝对值符号,化归为不含绝对值符号的不等式去解.脱去绝对值符号的方法主要有:(1)定义法:|x|≤a(a>0)⇔-a≤x≤a,|x|≥a(a>0)⇔x≥a或x≤-a 分段讨论,含多个绝对值符号(高考限于2个)的情形,可令每一个为0,找出分界点再分段,特别注意a>0的条件.(2)平方法:只有在不等式两端同号的情况下才适用.(3)客观题还常结合几何意义求解.5.在利用均值定理求最值时,要紧扣“一正、二定、三相等”的条件.“一正”是说每个项都必须为正值,“二定”是说各个项的和(或积)必须为定值.“三相等”是说各个项中字母取某个值时,能够使得各项的值相等.其中,通过对所给式进行巧妙分拆、变形、组合、添加系数使之能够出现定值是解题的关键.多次使用均值不等式时,要保持每次等号成立条件的一致性.6.①写一元二次不等式的解集时,一定要将图象的开口方向与判别式结合起来.②当二次项系数含有参数时,不能忽略二次项系数为零的情形.如ax2-ax-1<0的解-b+集为R,求实数a的范围.解答时应对a=0,a≠0进行分类讨论.还应注意a<02a-b-Δ<2a③解对数不等式时,莫忘定义域的限制.④换元法解不等式时,要注意把求得的新元的范围等价转化为原来未知数的取值范围.⑤解不等式的每一步变形要保持等价.7.解线性规划问题时:①在求解应用问题时要特别注意题目中变量的取值范围,防止将范围扩大.②对线性目标函数z=Ax+By中的B的符号一定要注意.当B>0时,直线过可行域且在y轴上截距最大时,z值最大,在y 轴上截距最小时,z值最小;当B<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.③解线性规划问题的关键步骤是在图上完成的,所以作图应尽可能精确,图上操作尽可能规范.求最优解时,若没有特殊要求,一般为边界交点.若实际问题要求的最优解是整数解.而我们利用图解法得到的解为非整数解,应作适当调整.其方法应以与线性目标函数直线的距离为依据,在直线附近寻求与直线距离最近的整点,但必须是在可行域内寻找.但考虑到作图毕竟还是会有误差,假若图上的最优点并不明显易辨时,应将最优解附近的整点都找出来,然后逐一检查,以“验明正身”.第二篇:必修五基本不等式知识点第三章:不等式、不等式解法、线性规划1.不等式的基本概念不等(等)号的定义:a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.不等式的基本性质(1)a>b⇔b<a(对称性)(2)a>b,b>c⇒a>c(传递性)(3)a>b⇒a+c>b+c(加法单调性)(4)a>b,c>d⇒a+c>b+d(同向不等式相加)(5)a>b,c<d⇒a-c>b-d(异向不等式相减)(6)a.>b,c>0⇒ac>bc(7)a>b,c<0⇒ac<bc(乘法单调性)(8)a>b>0,c>d>0⇒ac>bd(同向不等式相乘)(9)a>b>0,0<c<d⇒11ab(异向不等式相除)(10)a>b,ab>0⇒<(倒数关系)>abcd(11)a>b>0⇒an>bn(n∈Z,且n>1)(平方法则)(12)a>b>0⇒a>b(n∈Z,且n>1)(开方法则)练习:(1)对于实数a,b,c中,给出下列命题:①若a>b,则ac>bc;②若ac>bc,则a>b;③若a<b<0,则a>ab>b;④若a<b<0,则⑤若a<b<0,则22222211<; abba>;⑥若a<b<0,则a>b; abab11⑦若c>a>b>0,则;⑧若a>b,>,则a>0,b<0。

2022年必修五数学基本不等式知识点总结

2022年必修五数学基本不等式知识点总结

必修五数学基本不等式知识点总结想要学好数学就要勤于思索,不能偷懒。

对于自己弄不懂的题目和解题思路,不要急着问老师,静下心来仔细分析和讨论,做到自己解决,实在是想不出来在问老师。

下面是我整理的必修五数学基本不等式学问点总结,仅供参考盼望能够关心到大家。

必修五数学基本不等式学问点总结1.用符号〉,=,〈号连接的式子叫不等式。

2.性质:①假如xy,那么yy;(对称性)②假如xy,yz;那么xz;(传递性)③假如xy,而z为任意实数或整式,那么x+zy+z;(加法原则,或叫同向不等式可加性)④ 假如xy,z0,那么xzyz;假如xy,z0,那么xz⑤假如xy,mn,那么x+my+n;(充分不必要条件)⑥假如xy0,mn0,那么xmyn;⑦假如xy0,那么x的n次幂y的n次幂(n为正数),x的n次幂。

或者说,不等式的基本性质有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。

3.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.不等式考点:①解一元一次不等式(组)②依据详细问题中的数量关系列不等式(组)并解决简洁实际问题③用数轴表示一元一次不等式(组)的解集注:不等式两边相加或相减同一个数或式子,不等号的方向不变。

(移项要变号)不等式两边相乘或相除同一个正数,不等号的方向不变。

(相当系数化1,这是得正数才能使用)不等式两边乘或除以同一个负数,不等号的方向转变。

(÷或×1个负数的时候要变号)数学思维方法1代数思想这是基本的数学思想之一,学校阶段的设未知数x,学校阶段的一系列的用字母代表数,这都是代数思想,也是代数这门学科最基础的根!2数形结合是数学中最重要的,也是最基本的思想方法之一,是解决很多数学问题的有效思想。

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结高中数学中,不等式是一个重要的内容,它是解决数学问题的一种有力工具。

不等式是一种用于描述数值的大小关系的数学语句,它包含“大于”、“小于”、“大于等于”、“小于等于”等符号。

在数学考试中,不等式问题常常出现在基础知识和综合应用的部分,所以对不等式的学习是非常必要的。

下面我将为大家总结一下高中数学中关于不等式的知识点。

一、不等式的基本概念1. 不等式的定义:不等式是数值之间大小关系的表达式,由关系符号和数值构成。

2. 关系符号的含义:- 大于:表示前面的数比后面的数要大,如a>b。

- 小于:表示前面的数比后面的数要小,如a<b。

- 大于等于:表示前面的数比后面的数大或相等,如a≥b。

- 小于等于:表示前面的数比后面的数小或相等,如a≤b。

二、不等式的性质及常用规则1. 不等式的性质:- 若a>b,则-a<-b。

- 若a>b,则a+c>b+c。

- 若a>b,则ac>bc(当c为正数时)。

- 若a>b,则ac<bc(当c为负数时)。

- 若a>b,且c>0,那么a/c>b/c。

- 若a>b,且c<0,那么a/c<b/c。

2. 不等式的常用规则:- 加法规则:若a>b,则a+c>b+c。

- 减法规则:若a>b,则a-c>b-c。

- 乘法规则:若a>b(c>0),则ac>bc;若a<b(c<0),则ac<bc。

- 除法规则:若a>b(c>0),则a/c>b/c;若a<b(c<0),则a/c<b/c。

- 对称性:若a>b,则-b<-a。

三、一元一次不等式1. 一元一次不等式的解集表示法:- 解集用区间表示。

- 开区间:解集中的数不包括端点。

- 闭区间:解集中的数包括端点。

2. 不等式的性质应用举例:- 若a>0,则-1/a<0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五-不等式知识点精炼总结
4.公式:
3.解不等式
(1)一元一次不等式
3.基 本不等式定理

⎪⎪


⎪⎪⎪⎪⎪⎪⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧-≤+⇒<≥+⇒>≥+
⎪⎪⎩
⎪⎪⎨⎧+≤+≥+⎪⎪
⎪⎪
⎪⎩⎪⎪⎪⎪⎪⎨
⎧+≤⎪⎭⎫ ⎝⎛+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a
a b )b a (2b a ab 2
b a 2b a ab 2b a ab )b a (2
1b a ab 2b a 2
22222
2
222倒数形式同号)分式形式根式形式整式形
式11
22a b a b --+≤≤≤+⎪⎩⎪⎨

<<>>
≠>)0a (a
b
x )0a (a b
x )0a (b ax 2.不等式的性质:8条性质.
(2)一元二次不等式: +bx+c
x 1 x 2
x y O
y
x
O x 1
y
x
O
一元二次不等式的求 解流程:
一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式:
高次不等式:
(4)解含参数的不等式:(1) (x – 2)(ax – 2)>0
(2)x 2 – (a +a 2)x +a 3>0;
(3)2x 2 +ax +2 > 0;
注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有:
1、讨论a 与0的大小;
2、讨论⊿与0的大小;
3、讨论两根的大小;
二、运用的数学思想:
1、分类讨论的思想;
2、数形结合的思想;
3、等与不等的化归思想 (4)含参不等式恒成立的问题:
⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧≠≤⋅⇔≤>⋅⇔>0)x (g 0)x (g )x (f 0)
x (g )x (f 0)x (g )x (f 0)x (g )
x (f 0
)())((21>---n a x a x a x Λ
例1.已知关于x 的不等式 在(–2,0)上恒成立,求实数a 的取值范围. 例2.关于x 的不等式
对所有实数x ∈R 都成立,求a 的取值范围.
(5)一元二次方程根的分布问题:
方法:依据二次函数的图像特征从:开口方向、判别式、对称轴、 函数值三个角度列出不等式组,总之都是转化为一元二次不等式组求解.
⎪⎩⎪
⎨⎧用图象
分离参数后用最值函数、、、3
2
1
20,31
x
x a x x >≤++恒成立,
例3.若对任意
则 的取值范围.
a
22(3)210x a x a +-+-<)
1(log 22++-=ax ax y
二次方程根的分布问题的讨论:
()0
f k
<3.x 1< k < x 2
()020
f k b k a >⎧⎪⎪
->⎨⎪∆>⎪⎩2.k < x 1< x 2
()020
f k b k a >⎧⎪⎪
-<⎨⎪∆>⎪⎩1.x 1< x 2< k
4. k 1 < x 1 < x 2 < k 2 5. x 1 < k 1 < k 2 < x 2
1212()0()00
2f k f k b k k a >⎧⎪
>⎪⎪
⎨∆>⎪
⎪<-<⎪⎩
12
()0()0f k f k >⎧⎨>⎩
6. k 1 <x 1 < k 2 < x 2< k 3
122
()0
()0()0f k f k f k >⎧⎪
<⎨⎪>⎩ 4解线性规划问题的一般步骤:
第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值。

z ax by
=+2
2y
x z +=y
z x
=
x
y
O
x 2
x 1
k 1
k 2
O x 2
x 1
k 1 k 2
x
y y O
x 2
x 1
k 1 k 2 k 3
x
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的个数。

4.求函数 的最小值.
5.已知两个正数 满足 求使
恒成立的
的取值范围. 221
2.()2log (01)log f x x x x
=++<<求函的最大值;1
4.f(x)=x+
1
x ≥+(x 4)的最小值2(1)4()(1)1
x f x x x ++=>-+19
x y
1.已知x>0,y>0,且
+=1,求x+y的最小值.4,a b +=,a b 28
m a b
+≥m 6 3。

相关文档
最新文档