人教版高中数学必修一至必修五知识点总结大全
(word完整版)人教版高中数学必修一至必修五知识点总结大全

高中数学必修一常用公式及结论归纳总结1、集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
它具有三大特性:确定性、互异性、无序性。
集合的表示有列举法、描述法。
描述法格式为:{元素|元素的特征},例如},5|{N x x x ∈<且2、常用数集及其表示方法(1)自然数集N (又称非负整数集):0、1、2、3、…… (2)正整数集N *或N + :1、2、3、…… (3)整数集Z :-2、-1、0、1、……(4)有理数集Q :包含分数、整数、有限小数等 (5)实数集R :全体实数的集合 (6)空集Ф:不含任何元素的集合 3、元素与集合的关系:属于∈,不属于∉例如:a 是集合A 的元素,就说a 属于A ,记作a ∈A 4、集合与集合的关系:子集、真子集、相等 (1)子集的概念如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集(如图1),记作B A ⊆或A B ⊇.若集合P 中存在元素不是集合Q 的元素,那么P 不包含于Q ,记作Q P ⊄ (2)真子集的概念若集合A 是集合B 的子集,且B 中至少有一个元素不属于A,B 的真子集(如图2). A ≠⊂B 或B ≠⊃A .(3)集合相等:若集合A 中的元素与集合B 中的元素完全相同则称集合A 等于集合B,记作A=B.B A A B B A =⇔⊆⊆,5、重要结论(1)传递性:若B A ⊆,C B ⊆,则C A ⊆(2)空Ф集是任意集合的子集,是任意非空集合的真子集.6、含有n 个元素的集合,它的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个(即不计空集);非空的真子集有2n–2个.7、集合的运算:交集、并集、补集 (1)一般地,由所有属于A 又属于B 的元素所组成的集合,叫做A,B 记作A ∩B (读作"A 交B "),即A ∩B={x |x ∈A ,且x ∈B }. (2)一般地,对于给定的两个集合A,B 图1)或 (图2)集.记作A ∪B (读作"A 并B "),即A ∪B={x |x ∈A ,或x ∈B }. (3)若A 是全集U 的子集,由U 中不属于A 的元素构成的集合, 叫做A 在U 中的补集,记作AC U ,{}A ,U |A C U ∉∈=x x x 且注:讨论集合的情况时,不要发遗忘了Φ=A 的情况。
高中数学人教A版必修1至必修5基础知识汇总

必修一 (一)集合1.集合的概念(1)集合是数学中的一个不加定义的原始概念,它是指某些指定对象的全体.集合中的每个对象叫做这个集合的元素,它具有三个性质,即确定性、无序性和互异性.(2)根据集合所含元素个数的多少,集合可分为有限集、无限集和空集;根据集合所含元素的性质,集合又可为点集、数集等.空集是不含任何元素的集合,用∅表示.(3)我们约定用N 表示自然数集,用*N 表示正整数集,用Z 表示整数集,用Q 表示有理数集,用R 表示实数集.(4)集合的表示方法有列举法、描述法和图示法(venn 图). 2.集合间的基本关系 (1)集合与元素的关系表示元素和集合之间的关系,有属于“∈”和不属于“∉”两种情形. (2)集合与集合之间的关系集合与集合之间有包含、真包含、不包含、相等等几种关系.若有限集A 中有n 个元素,集合A 的子集个数为2n,非空子集的个数为21n-,真子集的个数为21n -,非空真子集的个数为22n-.3.集合的运算集合与集合之间有交、并、补集三种运算. 4.集合运算中两组常用的结论 (1)①()()()U U U A B A B =IU 痧?;②()()()U UU A B A B =U I 痧?.(2)①A B A B A ⊆⇔=I ;②A B A B B ⊆⇔=U .(二)函数的概念(1)函数的定义设A ,B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x 在集合B 中都有唯一确定的数f (x )和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈.其中x叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}()|f x x A ∈叫做函数的值域.值域是集合B 的子集.③·映射:设A ,B 是两个集合,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个元素在集合B 中都有唯一确定的元素和它对应,那么这样的对应就称为从集合A 到集合B 的映射,记作:f A B →.函数实际上是一种特殊的映射.而映射是一种特殊的对应:一对一,多对一.(2)函数的三要素:定义域、对应关系及值域称为函数的三要素.在函数的三要素中其决定性作用的是定义域及对应关系,定义域及对应关系确定了,这个函数就唯一确定了.(3)相等函数:定义域相同,并且对应关系完全一致的两个函数就称为相等函数.2.函数的表示方法函数的表示方法主要有三种:解析法、图象法、列表法.分段函数:在定义域的不同部分上有不同的解析式,这样的函数称为分段函数.(三)函数单调性1.增函数、减函数 设函数()f x 的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数.2.单调性、单调区间如果函数()y f x =在区间D 上是增函数或减函数,那么就说函数()y f x =在这一区间上具有(严格的)单调性,区间D 叫做()y f x =的单调区间.3.利用定义判断(证明)函数单调性的一般步骤: ①设出自变量;②作差(商);③判号;④写出结论.2.函数最值的几何意义是对应函数图像上点的纵坐标的最大值或最小值,即图像的最高点或最低点.3.函数的最值与求函数的值域从概念上看是不同的,函数值域的一些边界值不一定是函数值,函数的最值是函数值域中的一个值,函数取得最值时,一定有相应的x 值. 4.判断函数单调性的常见方法 ①定义法;②图象法;③导数法. ④ 5.求函数最值或值域的方法①单调性法;②配方法;③换元法;④判别式法;⑤图象法;⑥不等式法等. 5.一些重要函数的单调性1y x x=+的单调区间:增区间(,1),(1,)-∞-+∞; 减区间(1,0),(0,1)-.()0,0by ax a b x =+>>的单调区间:增区间(,)-∞+∞;减区间( (四)函数奇偶性 1.奇偶性(1)奇函数、偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数. 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数. (2)奇偶性 如果函数()f x 是奇函数或偶函数,那么就说函数()f x 具有奇偶性.(3)奇函数、偶函数的性质①奇函数、偶函数的定义域皆关于原点对称(此条件是函数具有奇偶性的必要不充分条件); ②奇函数的图象关于原点对称,偶函数的图象关于y 轴对称; ③若奇函数()f x 在x =0处有定义,那么一定有(0)0f =.④在定义域的公共部分内,两个偶函数的和、差、积、商(分母不为零)仍是偶函数;两个奇函数的和、差仍是奇函数;奇数个奇函数的积为奇函数;偶数个奇函数的积为偶函数;一个奇函数与一个偶函数的积为奇函数;一个奇函数与一个偶函数(均不恒为零)的和与差既不是奇函数,也不是偶函数.⑤奇函数在关于原点对称的区间上具有相同的单调性,偶函数在关于原点对称的区间上具有相反的单调性.(五)基本函数:一次二次函数1. 函数(0)y kx b k =+≠叫做一次函数,它的定义域和值域皆为R2. 一次函数性质3. ①当k >0时,为增函数,当k <0时,为减函数;②当b =0时,函数(0)y kx k =≠为正比例函数;③直线y =kx +b 与x 轴的交点为(,0)(0)bk k-≠与y 轴的交点为(0,)b .3.二次函数的解析式的三种形式: ①一般式c bx ax x f ++=2)(; ②顶点式k h x a x f +-=2)()(;③零点式))(()(21x x x x a x f --=;4.二次函数的图象与性质①()222424b ac b f x ax bx c a x a a -⎛⎫=++=++⎪⎝⎭(0)a ≠的图象是一条抛物线,顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴方程为2b x a =-,当0a >时开口向上, 当0a <时开口向下; ②()2400,0bac ∆=->∆=∆<时,抛物线与x 轴有2个(1个、无)交点. ③单调性:当0a >时,()f x 在(,]2b a -∞-减函数; 在(,)2ba-+∞上是增函数.0a <,相反. ④奇偶性:()0当时,为b fx =偶函数;()0当时,b f x ≠既不是奇函数也不是偶函数;(六)指数函数1.幂的有关概念正整数指数幂:n a a a a =ng g g L g 14243n a ;零指数幂:0a=1(0a ≠) ;负整数指数幂:pa -=1p a(0,a p N +≠∈);正分数指数幂:m n a =(0,1a m n N n +>∈>、且); 负分数指数幂:m na-=1m na(0,1a m n N n +>∈>、且);0的正分数指数幂等于0,0的负分数指数幂无意义. 2.幂的运算法则(0,0,ab r s Q >>∈、)r s a a =r s a +;()r s a =rs a ;()r ab =r r a b指数函数图像及性质4.指数函数()x f x a =具有性质:()()()(),1(0,1)f x y f x f y f a a a +==>≠(七)对数函数1.定义:如果)1,0(≠>a aa 且的b 次幂等于N ,就是baN =,那么数b 称以a 为底N 的对数,记作log a b N=,其中a 称对数的底,N 称真数.①以10为底的对数称常用对数,N 10log 记作Nlg ,②以无理数( 2.71828)e e =为底的对数称自然对数,N e log 记作N ln2.基本性质:①真数N 为正数(负数和零无对数), ②log 10a =,③log 1a a =, ④对数恒等式:log a N a N =.3.运算性质:如果,0,0,1,0>>≠>N M a a 则①log ()log log a a a MN M N=+;②log log log aa a MM N N=-; ③log log n aa M n M =.4.换底公式:log log log m a m NN a=(0,1,0,1,0),a a m m N >≠>≠>①log log 1a b b a ⋅=, ②log log m na a nb b m=. 5.对数函数的图像与性质(八)幂函数:,y x =2y x =3,y x =1y x=12y x =的图像1.当0a>时,幂函数()y x R αα=∈有下列性质:(1)图像都通过点(1,1);(2)在第一象限内,随x 的增大而增大; (3)在第一象限内,1α>时图像下凸,01α<<时图像上凸.(4)在第一象限内,过()1,1点后,图像向右上方无限伸展.2.当a<0时,幂函数()y x R αα=∈有下列性质:(1)图像都通过点(1,1);(2)在第一象限内,函数值随x 的增大而减小,图像是向下凸的; (3)在第一象限内,图像向上与y 轴无限地接近,向右与x 轴无限地接近;(4)在第一象限内,过()1,1点后,α越大,图像下落的速度越快.(九)函数图像变换1.平移变换错误!未找到引用源。
人教版高中数学知识点汇总(全册版)

① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是
提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.
人教版高中数学必修一知识点归纳总结

人教版高中数学必修一知识点归纳总结
本文档总结了人教版高中数学必修一的重要知识点,旨在帮助学生复和梳理相关内容。
第一章:集合与常用数集
- 集合的表示和运算
- 常用数集:自然数集、整数集、有理数集、实数集
- 数集的划分和分类
第二章:集合的运算与应用
- 集合的运算:交集、并集、差集、补集
- 集合间关系的判定和表示
- 集合的应用:概率、分类、调查统计等
第三章:函数基本概念与性质
- 函数的定义和表示
- 函数的自变量、因变量和值域
- 函数的性质:奇偶性、周期性等
第四章:一元一次方程与不等式
- 一元一次方程的解法
- 一元一次不等式的解法
- 一次方程和一次不等式的应用
第五章:平面坐标系与直线的基本性质
- 平面直角坐标系的建立和使用
- 直线方程的表示和性质
- 直线的斜率和截距
第六章:平面向量的基本概念
- 向量的定义和表示
- 向量的运算:加法、数乘
- 向量的模、方向和单位向量
第七章:平面向量的数量积
- 向量的数量积定义和性质
- 向量之间的夹角
- 向量的投影和垂直
以上是人教版高中数学必修一的知识点归纳总结,希望对学生们进行知识回顾和复有所帮助。
更多详细内容请参考教材。
高中数学必修一至必修五知识点总结人教版

必修1第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性: 1.元素的确定性;2.元素的互异性;3.元素的无序性非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a∉A二、集合间的基本关系任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊂B,且B⊄ A那就说集合A是集合B的真子集,记作A⊆ B(或B⊇ A)3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.(即找公共部分)记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
(即A和B中所有的元素)记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)(即除去A剩下的元素组成的集合)四、函数的有关概念定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
高中数学复习全册知识总结,必修1-5重点归纳,赶快背

高中数学复习全册知识总结,必修1-5重点
归纳,赶快背
高中数学必修1-5重点归纳如下:
一、必修一:函数与导数
1、定义域,值域;函数的分类以及函数的性质判断;
2、延拓函数定义及延拓函数的图象;
3、定义导数,求解一次函数的导数,包括指数函数和对数函数的导数;
4、求极限,利用极限的运算求导数;
5、求多变量函数的偏导数,梯度和方向导数;
二、必修二:应用类函数几何
1、单调函数,偶函数,周期函数及其变换;
2、指数函数,对数函数及其变换;
3、不定积分,定积分,面积函数及其在定义域上的性质;
4、反函数及其图象;
三、必修三:统计与概率
1、实践统计,频率表;
2、概率的定义及其分类,概率的计算;
3、随机事件的相互独立性,正、多项式分布,正态分布;
四、必修四:空间初步
1、定义空间中的点,直线,平面;
2、平行线,平行平面,非平行线,空间的顶点;
3、空间的距离,空间的弦长,空间的体积;
4、垂心线,平面斜率,直线斜率,平面及直线的相交;
五、必修五:曲面与向量
1、曲线求法,勒让德定理;
2、向量的定义,向量的运算;
3、平行四边形,平行四边形内角和;
4、向量积,叉积及其共面与垂直;。
【高考必备】高中数学必修一至必修五知识点总结

高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一常用公式及结论归纳总结1、集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
它具有三大特性:确定性、互异性、无序性。
集合的表示有列举法、描述法。
描述法格式为:{元素|元素的特征},例如},5|{N x x x ∈<且 2、常用数集及其表示方法(1)自然数集N (又称非负整数集):0、1、2、3、…… (2)正整数集N *或N + :1、2、3、…… (3)整数集Z :-2、-1、0、1、……(4)有理数集Q :包含分数、整数、有限小数等 (5)实数集R :全体实数的集合 (6)空集Ф:不含任何元素的集合 3、元素与集合的关系:属于∈,不属于∉例如:a 是集合A 的元素,就说a 属于A ,记作a ∈A 4、集合与集合的关系:子集、真子集、相等 (1)子集的概念如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集(如图1),记作B A ⊆或A B ⊇.若集合P 中存在元素不是集合Q 的元素,那么P 不包含于Q , 记作Q P ⊄ (2)真子集的概念若集合A 是集合B 的子集,且B 中至少有一个元素不属于A,那么集合A(如图2). A ≠⊂B 或B ≠⊃A .(3)集合相等:若集合A 中的元素与集合B中的元素完全相同则称集合A 等于集合B,记作A=B. 5、重要结论(1)传递性:若B A ⊆,C B ⊆,则C A ⊆(2)空Ф集是任意集合的子集,是任意非空集合的真子集.6、含有n 个元素的集合,它的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个(即不计空集);非空的真子集有2n–2个.7、集合的运算:交集、并集、补集(1)一般地,由所有属于A 又属于B 的元素所组成的集合,叫做A,B 的交集.记作A ∩B (读作"A 交B "),即A ∩B={x|x ∈A ,且x ∈B }.(2)一般地,对于给定的两个集合A,B 记作A ∪B (读作"A 并B "),即A ∪B={x|x ∈A ,或x ∈B }.图1)或 (图2)(3)若A 是全集U 的子集,由U 中不属于A 的元素构成的集合, 叫做A 在U 中的补集,记作AC U ,{}A ,U |A C U ∉∈=x x x 且注:讨论集合的情况时,不要发遗忘了Φ=A 的情况。
8、映射观点下的函数概念如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (C ⊆B )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x).9、分段函数:在定义域的不同部分,有不同的对应法则的函数。
如⎩⎨⎧--+=3122x x y 00≤>x x 10、求函数的定义域的原则:(解决任何函数问题,必须要考虑其定义域)①分式的分母不为零;01,11:≠--=x x y 则如 ②偶次方根的被开方数大于或等于零;05,5:≥--=x x y 则如 ③对数的底数大于0且不等于1;10),2(log :≠>-=a a x y a 且则如④对数的真数大于0;02),2(log :>--=x x y a 则如 ⑤指数为0的底不能为零;xm y )1(:-=如,则01≠-m11、函数的奇偶性(在整个定义域内考虑)(1)奇函数满足)()(x f x f -=-, 奇函数的图象关于原点对称;(2)偶函数满足)()(x f x f =-, 偶函数的图象关于y 轴对称;注:①具有奇偶性的函数,其定义域关于原点对称; ②若奇函数在原点有定义,则0)0(=f③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
12、函数的单调性(在定义域的某个区间内考虑)当21x x <时,都有)()(21x f x f <,则)(x f 在该区间上是增函数,图象从左到右上升; 当21x x <时,都有)()(21x f x f >,则)(x f 在该区间上是减函数,图象从左到右下降。
函数)(x f 在某区间上是增函数或减函数,那么说)(x f 在该区间具有单调性,该区间叫做单调(增/减)区间13、一元二次方程20ax bx c ++=(0)a ≠(1)求根公式:aac b b x 2422,1-±-= (2)判别式:ac b 42-=∆(3)0>∆时方程有两个不等实根;0=∆时方程有一个实根;0<∆时方程无实根。
(4)根与系数的关系——韦达定理:a b x x -=+21,acx x =⋅2114、二次函数:一般式c bx ax y ++=2(0)a ≠; 两根式))((21x x x x a y --=(0)a ≠(1)顶点坐标为24(,)24b ac b a a--;(2)对称轴方程为:x=a b 2-;(3)当0>a 时,图象是开口向上的抛物线,在x=a b2-处取得最小值a b ac 442-当0<a 时,图象是开口向下的抛物线,在x=ab2-处取得最大值a b ac 442-(4)二次函数图象与x 轴的交点个数和判别式∆的关系:0>∆时,有两个交点;0=∆时,有一个交点(即顶点);0<∆时,无交点。
15、函数的零点使0)(=x f 的实数0x 叫做函数的零点。
例如10-=x 是函数1)(2-=x x f 的一个零点。
注:函数()x f y =有零点 ⇔ 函数()x f y =的图象与x 轴有交点 ⇔ 方程()0=x f 有实根 16、函数零点的判定:如果函数()x f y =在区间[]b a ,上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f 。
那么,函数()x f y =在区间()b a ,内有零点,即存在()()0,,=∈c f b a c 使得。
17、分数指数幂 (0,,a m n N *>∈,且1n >) (1)n m nma a=.如233x x =;(2) nmnm nm a a a11==-. 如2331-=xx ;(3)()nn a a =;(4)当n 为奇数时,nn a a =; 当n 为偶数时,,0||,0n n a a a a a a ≥⎧==⎨-<⎩. 18、有理指数幂的运算性质(Q s r a ∈>,,0)(1)sr sraa a +=⋅; (2)rssr a a =)(; (3)rrrb a ab =)(19、指数函数xa y =(0>a 且1≠a ),其中x 是自变量,a 叫做底数,定义域是R则 叫做以 为20、若N a b=,作:bN a =log 底N 的对数。
记(1,0≠>a a,0>N )的底数,N 叫做对其中,a 叫做对数数的真数。
注:指数式与对数式的互化公式:log b a N b a N =⇔=(0,1,0)a a N >≠>21、对数的性质1>a10<<a图 象性 质(1)定义域:R (2)值域:(0,+∞) (3)过定点(0,1),即x=0时,y=1(4)在 R 上是增函数(4)在R 上是减函数xy1xy1(1)零和负数没有对数,即N a log 中0>N ;(2)1的对数等于0,即 01log =a ;底数的对数等于1,即1log =a a22、常用对数N lg :以10为底的对数叫做常用对数,记为:NN lg log 10=自然对数N ln :以e(e=…)为底的对数叫做自然对数,记为:N N e ln log = 23、对数恒等式:N aNa =log24、对数的运算性质(a >0,a ≠1,M >0,N >0)(1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈ (注意公式的逆用) 25、对数的换底公式 log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论①或1log log a b b a =; ②log log m na a nb b m=.26、对数函数x y a log =(0>a,且1≠a ):其中,x 是自变量,a 叫做底数,定义域是),0(+∞图像性质定义域:(0, ∞)值域:R 过定点(1,0) 增函数减函数 取值范围0<x<1时,y<0 x>1时,y>00<x<1时,y>0 x>1时,y<027、指数函数xa y =与对数函数x y a log =互为反函数;它们图象关于直线x y =对称.28、幂函数αx y =(R ∈α),其中x 是自变量。
要求掌握3,2,1,21,1-=α这五种情况(如下图)29、幂函数αx y =的性质及图象变化规律:(Ⅰ)所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(Ⅱ)当0α>时,幂函数的图象都通过原点,并且在区间),0[+∞上是增函数. 1y1xx必修230、边长为a 的等边三角形面积243a S =∆正 31、柱体体积:h 底柱=S V , 锥体体积:h 锥底=S 31V 球表面积公式:24R S π=球, 球体积公式:334R V π=(上述四个公式不要求记忆)32、四个公理:① 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
② 过不在一条直线上的三点,有且仅有一个平面。
③ 如果两个不重合的平面有一个公共点,那么它们有且仅有一条过该点的公共直线。
④ 平行于同一直线的两条直线平行(平行的传递性)。
33、等角定理:空间中如果两个角的两边对应平行,那么这两个角相等或互补(如图)34、两条直线的位置关系:⎪⎩⎪⎨⎧⎩⎨⎧异面直线 相交平行共面直线 直线与平面的位置关系:(1)直线在平面上;(2)直线在平面外(包括直线与平面平行,直线与平面相交) 两个平面的位置关系:(1)两个平面平行;(2)两个平面相交 35、直线与平面平行:定义 一条直线与一个平面没有公共点,则这条直线与这个平面平行。
判定 平面外一条直线与此平面内的一直线平行,则该直线与此平面平行。
性质 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
36、平面与平面平行:定义 两个平面没有公共点,则这两平面平行。
判定 若一个平面内有两条相交直线与另一个平面平行,则这两个平面平 行。