北师高中数学必修五知识点归纳(纯)

合集下载

高中数学必修五知识点必备总结

高中数学必修五知识点必备总结

高中数学必修五知识点必备总结其实数学和语文一样,需要记的东西都很多。

在记数学知识点的时候,要注意灵活运用。

下面是小编给大家整理的一些高中数学必修五知识点总结的学习资料,希望对大家有所帮助。

高一年级数学必修五知识点【差数列的基本性质】⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.【等比数列的基本性质】⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a.a.a.…=a.a.a.…..⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}.⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0.⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列.高中数学必修五:等比数列前n项和公式S的基本性质⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论.⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=.⑶若S是以q为公比的等比数列,则有S=S+qS.⑵⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列.⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)升幂公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2降幂公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα, cot(2kπ+α)=cotα,其中k∈Z;(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos.偶数则不变;用角(k·π/2±α)所在的象限确定等式右边三角函数的正负.例:tan(3π/2+α)=-cotα∵在这个式子中k=3,是奇数,因此等式右边应变为cot又,∵角(3π/2+α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα.三角函数在各象限中的正负分布sin:第一第二象限中为正;第三第四象限中为负cos:第一第四象限中为正;第二第三象限中为负cot、tan:第一第三象限中为正;第二第四象限中为负。

北师大版高中数学(必修5)1.1《数列》

北师大版高中数学(必修5)1.1《数列》

• 二、数列的分类 • 1.根据数列的项数,可以将数列分为两 类: • (1)有穷数列:项数⑥________的数列; • (2)无穷数列:项数⑦________的数列.
• 2.根据数列的增减性,可以将数列分为 以下几类: • (1)递增数列:从第2项起,每一项都大于 它前面的一项的数列叫做⑧________; • (2)递减数列:从第2项起,每一项都小于 它前面的一项的数列叫做⑨________; • (3)常数数列:数列的各项都是常数的数列 叫做⑩________; • (4)摆动数列:从第2项起,有些项大于它 的前一项,有些项小于它的前一项的数列
• 友情提示:关于数列概念的理解应注意的 几点事项: • (1)数列是按一定“次序”排成的一列数, 一个数列不仅与组成数列的“数”有关, 而且与这些数的排列顺序有关.因此,如 果组成数列的数相同而排列次序不同,那 么它们就是不同的数列; • (2)数列与数集的区别与联系:数列与数集 都是具有某种共同属性的数的全体.数列 中的数是有序的,而数集中的元素是无序 的,同一个数在数列中可以重复出现,而
• (3)数列的项与它的项数是不同的概念:数 列的项是指这个数列中的某一个确定的数, 是一个函数值,也就是相当于f(n);而项数 是指这个数在数列中的位置序号,它是自 变量的值,相当于f(n)中的n; • (4)次序对于数列来讲是十分重要的,若两 个数列中有几个相同的数,由于它们的排 列次序不同,构成的数列就不是一个相同 的数列,显然数列与数集有本质的区别.
• 1.1 数列的概念 • 1.2 数列的函数特性
• 一、数列的概念 • 按照①________排列着的一列数都和它的序号有 关,排在第一位的数称为这个数列的第1 项(通常也叫做③________),排在第二位 的数称为这个数列的第2项……排在第n位 的数称为这个数列的第n项.所以,数列 的一般形式可以写成a1,a2,a3,…,

新版高中数学北师大版必修5课件:第一章数列 本章整合

新版高中数学北师大版必修5课件:第一章数列 本章整合
分期付款
真题放送
专题一
专题二
知识建构
综合应用
真题放送
专题一 数列的通项公式的求法 数列的通项公式是给出数列的主要方式,其本质就是函数的解析 式.围绕数列的通项公式,不仅可以判断数列的类型,研究数列的项 的变化趋势与规律,而且有利于求数列的前n项和.求数列的通项公 式是数列的核心问题之一.下面介绍几种常用的求法. 1.辅助数列法 利用数列的递推公式,构造一个新的数列(等差或等比数列),由新 数列的通项公式求得通项公式.
方法如下:由an+1-an=f(n),得 当n≥2时,an-an-1=f(n-1),an-1-an-2=f(n-2),…
a3-a2=f(2),a2-a1=f(1). 将以上n-1个等式叠加,得an-a1=f(n-1)+f(n-2)+…+f(2)+f(1), 所以an=f(n-1)+f(n-2)+…+f(2)+f(1)+a1. 为了书写方便,也可以用横式来写:
∴an+an-1=3(an-1+an-2)或 an-3an-1=-(an-1-3an-2),
∴{an+an-1}是首项为 a2+a1=7,公比为 3 的等比数列,{an-3an-1}
是首项为 a2-3a1=-13,公比为-1 的等比数列.
∴an+an-1=7×3n-2(n≥2),

an-3an-1=(-1)n-2(-13)(n≥2),
解:由an+1-an=3n-n, 得an-an-1=3n-1-(n-1), an-1-an-2=3n-2-(n-2), …
a3-a2=32-2,
a2-a1=3-1. 当n≥2时,将以上n-1个等式两端分别相加,得

北师高中数学必修五知识点归纳(纯)

北师高中数学必修五知识点归纳(纯)

必修5知识点第一章解三角形1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.—1—第二章数列7、数列:按照一定顺序排列着的一列数.8、数列的项:数列中的每一个数.9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.19、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.—2—22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S a S a +=奇偶. ②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且nS S a -=奇偶,1S n S n =-奇偶(其中n S na =奇,()1n S n a =-偶). 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. 27、通项公式的变形:①n m nm a a q -=;②()11n n a a q --=;③11n na q a -=;④n m n m a q a -=. 28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.9、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.—3— 30、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.②nn m n m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列.—3第三章不等式31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >;⑧)0,1a b n n >>>∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,2x =()12x x <有两个相等实数根122bx x a==-没有实数根 一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.—4—36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.39、在平面直角坐标系中,已知直线0x y C A +B +=.①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件. 目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y . 可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.41、设a 、b 是两个正数,则2a b+称为正数a 、b a 、b 的几何平均数.—5—42、均值不等式定理: 若0a >,0b >,则a b +≥,即2a b+≥.43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.44、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值.—6—。

北师大版高中数学必修五课件章末归纳整合3

北师大版高中数学必修五课件章末归纳整合3

规律方法 根据问题所给的可行域的情况,一个目标函数 的最值可能有一个或多个,也可能没有.如果目标函数存 在一个最优解,则最优解通常在可行域的顶点处取得;如 果目标函数存在多个最优解,则最优解一般在可行域的边 界上.
命题趋势
1.高考中,对不等式关系的考查,主要放在不等式的性质 上.题型多为选择或填空题,属容易题.单独命题的情况 偶有出现,但更多综合考查,将不等式的性质与充要条件 结合起来,这种命题方式及难度,一般不会改变.
高中数学课件
(金戈铁骑 整理制作)
章末归纳整合
专题一 不等式的基本性质与应用
不等式的性质是本章内容的理论基础,是不等式的证明和 解不等式的主要依据,比较两个实数或代数式的大小常常 用作差法,对差式进行变形并判断差的符号.
【例1】 比较 7+ 10与 3+ 14两数的大小.
[思路探索] 由于 7> 3,但 10< 14,所以此题不便直接 比较 7+ 10与 3+ 14两数的大小.因此,同学们一般都是 根据不等式性质利用比较法来求解的. 解 法一 ∵( 7+ 10)2=17+2 70, ( 3+ 14)2=17+2 42,而 70> 42, ∴17+2 70>17+2 42,即( 7+ 10)2>( 3+ 14)2 ∴ 7+ 10> 3+ 14.
即 x= 2-1 时,f(x)取最小值.此时,f(x)min=2 2-1. (2)当 0<a<1 时,f(x)=x+1+x+a 1-1 若 x+1+x+a 1≥2 a, 则当且仅当 x+1=x+a 1时取等号, 此时 x= a-1<0(不合题意), 因此,上式等号取不到.f(x)在[0,+∞)单调递增, ∴f(x)min=f(0)=a.
法二 比较 7+ 10与 3+ 14两数的大小,
就相当于比较 7- 3与 14- 10两数的大小,即 7- 3

2021-2022学年高中数学北师大版必修5讲义:第1章 3.1 第2课时 等比数列的性质

2021-2022学年高中数学北师大版必修5讲义:第1章 3.1 第2课时 等比数列的性质

第2课时 等比数列的性质学 习 目 标核 心 素 养1.结合等差数列的性质,了解等比数列的性质和由来.2.理解等比数列的性质及应用.(重点) 3.掌握等比数列与等差数列的综合应用.(难点)1.通过等比数列性质的研究,培养逻辑推理素养.2.通过学习等比中项的概念,提升数学运算素养.1.等比数列的单调性阅读教材P 23思考交流以下P 24例3以上部分,完成下列问题.对于等比数列{a n },通项公式a n =a 1·q n -1=a 1q ·q n.根据指数函数的单调性,可分析当q >0时的单调性如下表:a 1 a 1>0 a 1<0 q 的范围 0<q <1 q =1 q >1 0<q <1 q =1 q >1 {a n }的 单调性递减 数列常数 列递增 数列递增 数列常数 列递减 数列思考:(1)若等比数列{a n }中,a 1=2,q =12,则数列{a n }的单调性如何? [提示] 递减数列.(2)等比数列{a n }中,若公比q <0,则数列{a n }的单调性如何? [提示] 数列{a n }不具有单调性,是摆动数列. 2.等比中项阅读教材P 25练习2以上最后两段部分,完成下列问题.(1)前提:在a 与b 中间插入一个数G ,使得a ,G ,b 成等比数列. (2)结论:G 叫作a ,b 的等比中项. (3)满足关系式:G 2=ab .思考:(1)任意两个数都有等差中项,任意两个数都有等比中项吗?[提示]不是,两个同号的实数必有等比中项,它们互为相反数,两个异号的实数无等比中项.(2)两个数的等差中项是唯一的,若两个数a,b存在等比中项,唯一吗?[提示]不唯一,如2和8的等比中项是4或-4.1.已知{a n}是等比数列,a2=2,a5=14,则公比q等于()A.-12B.-2C.2 D.12D[由a5=a2q3,得q3=a5a2=142=18,所以q=12,故选D.]2.将公比为q的等比数列{a n}依次取相邻两项的乘积组成新的数列a1a2,a2a3,a3a4,…,则此数列是()A.公比为q的等比数列B.公比为q2的等比数列C.公比为q3的等比数列D.不一定是等比数列B[由于a n a n+1a n-1a n=a na n-1×a n+1a n=q·q=q2,n≥2且n∈N+,所以{a n a n+1}是以q2为公比的等比数列,故选B.]3.等比数列{a n}中,若a1=2,且{a n}是递增数列,则数列{a n}的公比q的取值范围是________.(1,+∞)[因为a1=2>0,要使{a n}是递增数列,则需公比q>1.]4.4-23与4+23的等比中项是________.2或-2[由题意知4-23与4+23的等比中项为±(4-23)(4+23)=±16-12=±2.]等比中项的应用【例1】(2)设a ,b ,c 是实数,若a ,b ,c 成等比数列,且1a ,1b ,1c 成等差数列,则ca +ac 的值为________.(1)-4 (2)2 [(1)由题意得(2x +2)2=x (3x +3), x 2+5x +4=0,解得x =-1或x =-4, 当x =-1时,2x +2=0,不符合题意,舍去, 所以x =-4.(2)由a ,b ,c 成等比数列,1a ,1b ,1c 成等差数列,得 ⎩⎪⎨⎪⎧b 2=ac ,2b =1a +1c ,即4ac =⎝ ⎛⎭⎪⎫1a +1c 2,故(a -c )2=0,则a =c ,所以c a +ac =1+1=2.]应用等比中项解题的两个注意点(1)要证三数a ,G ,b 成等比数列,只需证明G 2=ab ,其中a ,b ,G 均不为零. (2)已知等比数列中的相邻三项a n -1,a n ,a n +1,则a n 是a n -1与a n +1的等比中项,即,运用等比中项解决问题,会大大减少运算过程.[跟进训练]1.(1)已知1既是a 2与b 2的等比中项,又是1a 与1b 的等差中项,则a +b a 2+b 2的值是( )A .1或12B .1或-12C .1或13 D .1或-13(2)已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________. (1)D (2)4×⎝ ⎛⎭⎪⎫32n -1[(1)由题意得,a 2b 2=(ab )2=1,1a +1b =2,所以⎩⎨⎧ ab =1,a +b =2或⎩⎨⎧ab =-1,a +b =-2.因此a +b a 2+b 2的值为1或-13. (2)由已知可得(a +1)2=(a -1)(a +4), 解得a =5,所以a 1=4,a 2=6, 所以q =a 2a 1=64=32,所以a n =4×⎝ ⎛⎭⎪⎫32n -1.]巧设等比数列解题【例2】 8,后三个数依次成等差数列,它们的积是-80,则这四个数为________.1,-2,4,10或-45,-2,-5,-8 [由题意设此四个数分别为bq ,b ,bq ,a ,则b 3=-8,解得b =-2,q 与a 可通过解方程组⎩⎨⎧2bq =a +b ,ab 2q =-80求出,即为⎩⎨⎧a =10,b =-2,q =-2或⎩⎪⎨⎪⎧a =-8,b =-2,q =52,所以此四个数为1,-2,4,10或-45,-2,-5,-8.]灵活设项求解等比数列的技巧 (1)三个数成等比数列设为,a ,aq .(2)四个符号相同的数成等比数列设为,aq ,aq 3.(3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3.[跟进训练]2.已知三个数成等比数列,其积为1,第2项与第3项之和为-32,则这三个数依次为________.-25,1,-52 [设这三个数分别为aq ,a ,aq , 则⎩⎪⎨⎪⎧a 3=1,a +aq =-32, 解得a =1,q =-52,所以这三个数依次为-25,1,-52.]等比数列的性质及应用[1.在等差数列{a n }中,a n =a m +(n -m )d ,类比等差数列中通项公式的推广,你能得出等比数列通项公式推广的结论吗?[提示] a n =a m ·q n -m .2.在等差数列{a n }中,由2a 2=a 1+a 3,2a 3=a 2+a 4,…我们推广得到若2p =m +n ,则2a p =a m +a n ,若{a n }是等比数列,我们能得到什么类似的结论.[提示] 若2p =m +n ,则a 2p =a m ·a n . 3.在等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ,类比这个性质,若{a n }是等比数列,有哪个结论成立?[提示] 若m +n =p +q ,则a m ·a n =a p ·a q .【例3】 (1)在等比数列{a n }中,a n >0,若a 3·a 5=4,则a 1a 2a 3a 4a 5a 6a 7=________.(2)设{a n }为公比q >1的等比数列,若a 2 020和a 2 021是方程4x 2-8x +3=0的两根,则a 2 030+a 2 031=________.(3)在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比q 为整数,则a n =________.思路探究:利用等比数列的性质求解.(1)128 (2)2·310 (3)-(-2)n -1 [(1)a 3a 5=a 24=4,又a n >0,所以a 4=2, a 1a 2a 3a 4a 5a 6a 7=(a 1·a 7)·(a 2·a 6)·(a 3·a 5)·a 4=a 24·a 24·a 24·a 4=a 74=27=128.(2)解方程4x 2-8x +3=0得x 1=12,x 2=32,由q >1,得a 2 020=12,a 2 021=32,q =3,所以a 2 030+a 2 031=(a 2 020+a 2 021)q 10=2·310.(3)在等比数列{a n }中,由a 4a 7=-512得a 3a 8=-512, 又a 3+a 8=124,解得a 3=-4,a 8=128或a 3=128,a 8=-4, 因为公比q 为整数,所以q =5a 8a 3=-51284=-2, 故a n =-4×(-2)n -3=-(-2)n -1.]1.(变条件)将例3(3)中等比数列满足的条件改为“a 4+a 7=2,a 5a 6=-8”,求a 1+a 10.[解] 因为{a n }是等比数列,所以a 5a 6=a 4a 7=-8, 又a 4+a 7=2,解得a 4=4,a 7=-2或a 4=-2,a 7=4, 当a 4=4,a 7=-2时,q 3=-12,a 1+a 10=a 4q 3+a 7q 3=-7, 当a 4=-2,a 7=4时,q 3=-2,a 1+a 10=a 4q 3+a 7q 3=-7. 故a 1+a 10=-7.2.(变结论)例3(3)题的条件不变,求log 4|a 2|+log 4|a 3|+log 4|a 8|+log 4|a 9|. [解] 因为a 4a 7=-512,所以a 2a 9=a 3a 8=-512, 故log 4|a 2|+log 4|a 3|+log 4|a 8|+log 4|a 9| =log 4(|a 2a 9|·|a 3a 8|)=log 45122=log 229=9.等比数列的常用性质性质1:通项公式的推广:a n=a m·q n-m(m,n∈N+).性质2:若{a n}为等比数列,且k+l=m+n(k,l,m,n∈N+),则a k·a l=a m·a n.特别的,若k+φ=2m(m,k,φ∈N),则a k·aφ=+性质3:若{a n},{b n}(项数相同)是等比数列,则{λb n},仍是等比数列.性质4:在等比数列{a n}中,序号成等差数列的项仍成等比数列.性质5:递增;递减;q=1⇔{a n}为常数列;q<0⇔{a n}为摆动数列.1.在解决与等比数列有关的计算问题时,我们首先想到的方法是通法,即通过解方程组求两个基本量首项a1和公比q,求解过程中要注意整体代换方法的应用,但是有些问题合理地选择性质求解,可以减少运算量,提高解题效率.2.解数列的实际应用题时,首先要分清是哪种数列模型,是求某一项,还是求某些项的和,再用相应的公式求解.1.判断正误(正确的打“√”,错误的打“×”)(1)数列{-2n-1}是递减数列.()(2)等比数列{a n}中,a1>1,q<0,则数列|a1|,|a2|,|a3|,…,|a n|,…是递增数列.()(3)若G是a,b的等比中项,则G2=ab,反之也成立.()[答案] (1)√ (2)× (3)×[提示] (1)正确;(2)不正确,如a 1=2,q =-12,则|a n |=2×12n -1=12n -2是递减数列;(3)不正确,当G 是a ,b 的等比中项时,G 2=ab 成立,但当G 2=ab 时,G 不一定是a ,b 的等比中项,如G =a =b =0.2.在等比数列{a n }中,a 4=6,则a 2a 6的值为( ) A .4 B .8 C .36D .32C [因为{a n }是等比数列,所以a 2a 6=a 24=36.]3.在等比数列{a n }中,a 888=3,a 891=81,则公比q = ____________________________________________________. 3 [因为a 891=a 888q 891-888=a 888q 3,所以q 3=a 891a 888=813=27.所以q =3.]4.在等比数列{a n }中,a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.[解] 在等比数列{a n }中,由a 3a 4a 5=a 34=8,得a 4=2,又因为a 2a 6=a 3a 5=a 24,所以a 2a 3a 4a 5a 6=a 54=25=32.。

北师大版高中数学必修五课件章末归纳整合1

北师大版高中数学必修五课件章末归纳整合1

已知 【例 2】{an}为等差数列,分别根据下列条件写出它的通项公 式. (1)a3=5,a7=13; (2)前三项为:a,2a-1,3-a. (3)am=n,an=m,m≠n,求am+n. [思路探索]欲写出等差数列的通项公式,只需确定它的首 项a1与公差d,代入an=a1+(n-1)d即得.

利用公式 an=Sn-Sn-1(n≥2)可使数列 {an}的前 n 项和公式 Sn 与通项公式 an 之间相互转化.在使用 an=Sn-Sn-1(n≥2)时, 必须验证 n= 1 时是否也成立,否则通项公式只能用 an =
S1 n= 1, Sn- Sn-1 n≥ 2
来表示.
(1)法一 设首项为 a1,公差为 d,则
a1= 1, 解得 d= 2.
a3= a1+ 2d= 5, a7= a1+ 6d= 13,
∴ an=a1+ (n- 1)d=1+ (n- 1)×2= 2n-1. ∴通项公式是 an=2n- 1. 法二 a7- a3 13-5 ∵ d= = = 2, 7- 3 7- 3

由于函数
9 2 105 9 f(x) =- 2 x- + 在 0, 上是增函数,在 4 8 4
9 ,+∞ 上是减函数,故当 4
n= 2 时,f(n)=- 2n2+ 9n+ 3 取
得最大值 13,所以数列{- 2n2+ 9n+ 3}的最大项为 a2= 13.
(2)当 n≤ 17, n∈ N+时, n n- 1 |a1|+ |a2|+…+ |an|= a1+ a2+…+ an= na1+ d= 2 3 2 103 - n+ n, 2 2 当 n≥ 18, n∈ N+ 时 |a1 |+ |a2 |+…+ |an |= a1 + a2+…+ a17 - a18- a19-…- an= 3 2 103 2(a1+ a2+…+ a17)- (a1+ a2+…+ an)= n - n+ 884, 2 2 3 2 103 ∴当 n≤ 17, n∈ N+时,{|an|}前 n 项和为- n + n, 2 2 3 2 103 当 n≥ 18, n∈ N+ 时,{|an|}前 n 项和为 n - n+ 884. 2 2

高中数学必修5的知识点

高中数学必修5的知识点

2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:
(1)将数据列成表格; ( 2)列出约束条件与目标函数; ( 3)根据求最值方法:①画:画可行域;②移:移
与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;
( 4)验证。
两类主要的目标函数的几何意义 :
高中数学必修 5 知识点总结
(一)解三角形:
1、正弦定理:在
C 中, a 、 b 、 c 分别为角 、 、 C 的对边,,则有 a
b
c 2R
sin sin sin C
( R为
C 的外接圆的半径 )
2、正弦定理的变形公式:① a 2Rsin , b 2Rsin , c 2Rsin C ;
② sin
a , sin
ap aq Sn , S3n
S2 n 成等差数列
则 am an a p aq 3. Sn , S2n Sn , S3n
S2n 成等比
数列
(三)不等式
1、 a b 0 a b ; a b 0 a b ; a b 0 a b .
2、不等式的性质: ① a b b a ; ② a b, b c a c ; ③ a b a c b c ;
5、均值定理的应用:设 x 、 y 都为正数,则有
s2 ⑴若 x y s (和为定值) ,则当 x y 时,积 xy 取得最大值 .
4
⑵若 xy p (积为定值) ,则当 x y 时,和 x y 取得最小值 2 p .
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高考试题来源: /zyk/gkst/
赠送以下资料
英语万能作文 (模板型) Along with the advance of the society more and more problems are brought to our
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5知识点第一章解三角形1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.—1—第二章数列7、数列:按照一定顺序排列着的一列数.8、数列的项:数列中的每一个数.9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.19、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.—2—22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S a S a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. 27、通项公式的变形:①n m nm a a q -=;②()11n n a a q --=;③11n na q a -=;④n m n m a q a -=. 28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.9、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.—3— 30、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.②nn m n m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列.—3第三章不等式31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >; ⑧()0,1n n a b a b n n >>⇒>∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,2b x -±∆=()12x x <有两个相等实数根122bx x a==-没有实数根 一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.—4—36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.39、在平面直角坐标系中,已知直线0x y C A +B +=.①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件. 目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y . 可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.41、设a 、b 是两个正数,则2a b+称为正数a 、b a 、b 的几何平均数.—5—42、均值不等式定理: 若0a >,0b >,则a b +≥,即2a b+≥.43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.44、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值.—6—。

相关文档
最新文档