北师高中数学必修五知识点归纳(纯)

合集下载

高中数学必修五知识点必备总结

高中数学必修五知识点必备总结

高中数学必修五知识点必备总结其实数学和语文一样,需要记的东西都很多。

在记数学知识点的时候,要注意灵活运用。

下面是小编给大家整理的一些高中数学必修五知识点总结的学习资料,希望对大家有所帮助。

高一年级数学必修五知识点【差数列的基本性质】⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.【等比数列的基本性质】⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a.a.a.…=a.a.a.…..⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}.⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0.⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列.高中数学必修五:等比数列前n项和公式S的基本性质⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论.⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=.⑶若S是以q为公比的等比数列,则有S=S+qS.⑵⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列.⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)升幂公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2降幂公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα, cot(2kπ+α)=cotα,其中k∈Z;(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos.偶数则不变;用角(k·π/2±α)所在的象限确定等式右边三角函数的正负.例:tan(3π/2+α)=-cotα∵在这个式子中k=3,是奇数,因此等式右边应变为cot又,∵角(3π/2+α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα.三角函数在各象限中的正负分布sin:第一第二象限中为正;第三第四象限中为负cos:第一第四象限中为正;第二第三象限中为负cot、tan:第一第三象限中为正;第二第四象限中为负。

北师大版高中数学(必修5)1.1《数列》

北师大版高中数学(必修5)1.1《数列》

• 二、数列的分类 • 1.根据数列的项数,可以将数列分为两 类: • (1)有穷数列:项数⑥________的数列; • (2)无穷数列:项数⑦________的数列.
• 2.根据数列的增减性,可以将数列分为 以下几类: • (1)递增数列:从第2项起,每一项都大于 它前面的一项的数列叫做⑧________; • (2)递减数列:从第2项起,每一项都小于 它前面的一项的数列叫做⑨________; • (3)常数数列:数列的各项都是常数的数列 叫做⑩________; • (4)摆动数列:从第2项起,有些项大于它 的前一项,有些项小于它的前一项的数列
• 友情提示:关于数列概念的理解应注意的 几点事项: • (1)数列是按一定“次序”排成的一列数, 一个数列不仅与组成数列的“数”有关, 而且与这些数的排列顺序有关.因此,如 果组成数列的数相同而排列次序不同,那 么它们就是不同的数列; • (2)数列与数集的区别与联系:数列与数集 都是具有某种共同属性的数的全体.数列 中的数是有序的,而数集中的元素是无序 的,同一个数在数列中可以重复出现,而
• (3)数列的项与它的项数是不同的概念:数 列的项是指这个数列中的某一个确定的数, 是一个函数值,也就是相当于f(n);而项数 是指这个数在数列中的位置序号,它是自 变量的值,相当于f(n)中的n; • (4)次序对于数列来讲是十分重要的,若两 个数列中有几个相同的数,由于它们的排 列次序不同,构成的数列就不是一个相同 的数列,显然数列与数集有本质的区别.
• 1.1 数列的概念 • 1.2 数列的函数特性
• 一、数列的概念 • 按照①________排列着的一列数都和它的序号有 关,排在第一位的数称为这个数列的第1 项(通常也叫做③________),排在第二位 的数称为这个数列的第2项……排在第n位 的数称为这个数列的第n项.所以,数列 的一般形式可以写成a1,a2,a3,…,

新版高中数学北师大版必修5课件:第一章数列 本章整合

新版高中数学北师大版必修5课件:第一章数列 本章整合
分期付款
真题放送
专题一
专题二
知识建构
综合应用
真题放送
专题一 数列的通项公式的求法 数列的通项公式是给出数列的主要方式,其本质就是函数的解析 式.围绕数列的通项公式,不仅可以判断数列的类型,研究数列的项 的变化趋势与规律,而且有利于求数列的前n项和.求数列的通项公 式是数列的核心问题之一.下面介绍几种常用的求法. 1.辅助数列法 利用数列的递推公式,构造一个新的数列(等差或等比数列),由新 数列的通项公式求得通项公式.
方法如下:由an+1-an=f(n),得 当n≥2时,an-an-1=f(n-1),an-1-an-2=f(n-2),…
a3-a2=f(2),a2-a1=f(1). 将以上n-1个等式叠加,得an-a1=f(n-1)+f(n-2)+…+f(2)+f(1), 所以an=f(n-1)+f(n-2)+…+f(2)+f(1)+a1. 为了书写方便,也可以用横式来写:
∴an+an-1=3(an-1+an-2)或 an-3an-1=-(an-1-3an-2),
∴{an+an-1}是首项为 a2+a1=7,公比为 3 的等比数列,{an-3an-1}
是首项为 a2-3a1=-13,公比为-1 的等比数列.
∴an+an-1=7×3n-2(n≥2),

an-3an-1=(-1)n-2(-13)(n≥2),
解:由an+1-an=3n-n, 得an-an-1=3n-1-(n-1), an-1-an-2=3n-2-(n-2), …
a3-a2=32-2,
a2-a1=3-1. 当n≥2时,将以上n-1个等式两端分别相加,得

北师高中数学必修五知识点归纳(纯)

北师高中数学必修五知识点归纳(纯)

必修5知识点第一章解三角形1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.—1—第二章数列7、数列:按照一定顺序排列着的一列数.8、数列的项:数列中的每一个数.9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.19、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.—2—22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S a S a +=奇偶. ②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且nS S a -=奇偶,1S n S n =-奇偶(其中n S na =奇,()1n S n a =-偶). 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. 27、通项公式的变形:①n m nm a a q -=;②()11n n a a q --=;③11n na q a -=;④n m n m a q a -=. 28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.9、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.—3— 30、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.②nn m n m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列.—3第三章不等式31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >;⑧)0,1a b n n >>>∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,2x =()12x x <有两个相等实数根122bx x a==-没有实数根 一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.—4—36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.39、在平面直角坐标系中,已知直线0x y C A +B +=.①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件. 目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y . 可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.41、设a 、b 是两个正数,则2a b+称为正数a 、b a 、b 的几何平均数.—5—42、均值不等式定理: 若0a >,0b >,则a b +≥,即2a b+≥.43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.44、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值.—6—。

北师大版高中数学必修五课件章末归纳整合3

北师大版高中数学必修五课件章末归纳整合3

规律方法 根据问题所给的可行域的情况,一个目标函数 的最值可能有一个或多个,也可能没有.如果目标函数存 在一个最优解,则最优解通常在可行域的顶点处取得;如 果目标函数存在多个最优解,则最优解一般在可行域的边 界上.
命题趋势
1.高考中,对不等式关系的考查,主要放在不等式的性质 上.题型多为选择或填空题,属容易题.单独命题的情况 偶有出现,但更多综合考查,将不等式的性质与充要条件 结合起来,这种命题方式及难度,一般不会改变.
高中数学课件
(金戈铁骑 整理制作)
章末归纳整合
专题一 不等式的基本性质与应用
不等式的性质是本章内容的理论基础,是不等式的证明和 解不等式的主要依据,比较两个实数或代数式的大小常常 用作差法,对差式进行变形并判断差的符号.
【例1】 比较 7+ 10与 3+ 14两数的大小.
[思路探索] 由于 7> 3,但 10< 14,所以此题不便直接 比较 7+ 10与 3+ 14两数的大小.因此,同学们一般都是 根据不等式性质利用比较法来求解的. 解 法一 ∵( 7+ 10)2=17+2 70, ( 3+ 14)2=17+2 42,而 70> 42, ∴17+2 70>17+2 42,即( 7+ 10)2>( 3+ 14)2 ∴ 7+ 10> 3+ 14.
即 x= 2-1 时,f(x)取最小值.此时,f(x)min=2 2-1. (2)当 0<a<1 时,f(x)=x+1+x+a 1-1 若 x+1+x+a 1≥2 a, 则当且仅当 x+1=x+a 1时取等号, 此时 x= a-1<0(不合题意), 因此,上式等号取不到.f(x)在[0,+∞)单调递增, ∴f(x)min=f(0)=a.
法二 比较 7+ 10与 3+ 14两数的大小,
就相当于比较 7- 3与 14- 10两数的大小,即 7- 3

2021-2022学年高中数学北师大版必修5讲义:第1章 3.1 第2课时 等比数列的性质

2021-2022学年高中数学北师大版必修5讲义:第1章 3.1 第2课时 等比数列的性质

第2课时 等比数列的性质学 习 目 标核 心 素 养1.结合等差数列的性质,了解等比数列的性质和由来.2.理解等比数列的性质及应用.(重点) 3.掌握等比数列与等差数列的综合应用.(难点)1.通过等比数列性质的研究,培养逻辑推理素养.2.通过学习等比中项的概念,提升数学运算素养.1.等比数列的单调性阅读教材P 23思考交流以下P 24例3以上部分,完成下列问题.对于等比数列{a n },通项公式a n =a 1·q n -1=a 1q ·q n.根据指数函数的单调性,可分析当q >0时的单调性如下表:a 1 a 1>0 a 1<0 q 的范围 0<q <1 q =1 q >1 0<q <1 q =1 q >1 {a n }的 单调性递减 数列常数 列递增 数列递增 数列常数 列递减 数列思考:(1)若等比数列{a n }中,a 1=2,q =12,则数列{a n }的单调性如何? [提示] 递减数列.(2)等比数列{a n }中,若公比q <0,则数列{a n }的单调性如何? [提示] 数列{a n }不具有单调性,是摆动数列. 2.等比中项阅读教材P 25练习2以上最后两段部分,完成下列问题.(1)前提:在a 与b 中间插入一个数G ,使得a ,G ,b 成等比数列. (2)结论:G 叫作a ,b 的等比中项. (3)满足关系式:G 2=ab .思考:(1)任意两个数都有等差中项,任意两个数都有等比中项吗?[提示]不是,两个同号的实数必有等比中项,它们互为相反数,两个异号的实数无等比中项.(2)两个数的等差中项是唯一的,若两个数a,b存在等比中项,唯一吗?[提示]不唯一,如2和8的等比中项是4或-4.1.已知{a n}是等比数列,a2=2,a5=14,则公比q等于()A.-12B.-2C.2 D.12D[由a5=a2q3,得q3=a5a2=142=18,所以q=12,故选D.]2.将公比为q的等比数列{a n}依次取相邻两项的乘积组成新的数列a1a2,a2a3,a3a4,…,则此数列是()A.公比为q的等比数列B.公比为q2的等比数列C.公比为q3的等比数列D.不一定是等比数列B[由于a n a n+1a n-1a n=a na n-1×a n+1a n=q·q=q2,n≥2且n∈N+,所以{a n a n+1}是以q2为公比的等比数列,故选B.]3.等比数列{a n}中,若a1=2,且{a n}是递增数列,则数列{a n}的公比q的取值范围是________.(1,+∞)[因为a1=2>0,要使{a n}是递增数列,则需公比q>1.]4.4-23与4+23的等比中项是________.2或-2[由题意知4-23与4+23的等比中项为±(4-23)(4+23)=±16-12=±2.]等比中项的应用【例1】(2)设a ,b ,c 是实数,若a ,b ,c 成等比数列,且1a ,1b ,1c 成等差数列,则ca +ac 的值为________.(1)-4 (2)2 [(1)由题意得(2x +2)2=x (3x +3), x 2+5x +4=0,解得x =-1或x =-4, 当x =-1时,2x +2=0,不符合题意,舍去, 所以x =-4.(2)由a ,b ,c 成等比数列,1a ,1b ,1c 成等差数列,得 ⎩⎪⎨⎪⎧b 2=ac ,2b =1a +1c ,即4ac =⎝ ⎛⎭⎪⎫1a +1c 2,故(a -c )2=0,则a =c ,所以c a +ac =1+1=2.]应用等比中项解题的两个注意点(1)要证三数a ,G ,b 成等比数列,只需证明G 2=ab ,其中a ,b ,G 均不为零. (2)已知等比数列中的相邻三项a n -1,a n ,a n +1,则a n 是a n -1与a n +1的等比中项,即,运用等比中项解决问题,会大大减少运算过程.[跟进训练]1.(1)已知1既是a 2与b 2的等比中项,又是1a 与1b 的等差中项,则a +b a 2+b 2的值是( )A .1或12B .1或-12C .1或13 D .1或-13(2)已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________. (1)D (2)4×⎝ ⎛⎭⎪⎫32n -1[(1)由题意得,a 2b 2=(ab )2=1,1a +1b =2,所以⎩⎨⎧ ab =1,a +b =2或⎩⎨⎧ab =-1,a +b =-2.因此a +b a 2+b 2的值为1或-13. (2)由已知可得(a +1)2=(a -1)(a +4), 解得a =5,所以a 1=4,a 2=6, 所以q =a 2a 1=64=32,所以a n =4×⎝ ⎛⎭⎪⎫32n -1.]巧设等比数列解题【例2】 8,后三个数依次成等差数列,它们的积是-80,则这四个数为________.1,-2,4,10或-45,-2,-5,-8 [由题意设此四个数分别为bq ,b ,bq ,a ,则b 3=-8,解得b =-2,q 与a 可通过解方程组⎩⎨⎧2bq =a +b ,ab 2q =-80求出,即为⎩⎨⎧a =10,b =-2,q =-2或⎩⎪⎨⎪⎧a =-8,b =-2,q =52,所以此四个数为1,-2,4,10或-45,-2,-5,-8.]灵活设项求解等比数列的技巧 (1)三个数成等比数列设为,a ,aq .(2)四个符号相同的数成等比数列设为,aq ,aq 3.(3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3.[跟进训练]2.已知三个数成等比数列,其积为1,第2项与第3项之和为-32,则这三个数依次为________.-25,1,-52 [设这三个数分别为aq ,a ,aq , 则⎩⎪⎨⎪⎧a 3=1,a +aq =-32, 解得a =1,q =-52,所以这三个数依次为-25,1,-52.]等比数列的性质及应用[1.在等差数列{a n }中,a n =a m +(n -m )d ,类比等差数列中通项公式的推广,你能得出等比数列通项公式推广的结论吗?[提示] a n =a m ·q n -m .2.在等差数列{a n }中,由2a 2=a 1+a 3,2a 3=a 2+a 4,…我们推广得到若2p =m +n ,则2a p =a m +a n ,若{a n }是等比数列,我们能得到什么类似的结论.[提示] 若2p =m +n ,则a 2p =a m ·a n . 3.在等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ,类比这个性质,若{a n }是等比数列,有哪个结论成立?[提示] 若m +n =p +q ,则a m ·a n =a p ·a q .【例3】 (1)在等比数列{a n }中,a n >0,若a 3·a 5=4,则a 1a 2a 3a 4a 5a 6a 7=________.(2)设{a n }为公比q >1的等比数列,若a 2 020和a 2 021是方程4x 2-8x +3=0的两根,则a 2 030+a 2 031=________.(3)在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比q 为整数,则a n =________.思路探究:利用等比数列的性质求解.(1)128 (2)2·310 (3)-(-2)n -1 [(1)a 3a 5=a 24=4,又a n >0,所以a 4=2, a 1a 2a 3a 4a 5a 6a 7=(a 1·a 7)·(a 2·a 6)·(a 3·a 5)·a 4=a 24·a 24·a 24·a 4=a 74=27=128.(2)解方程4x 2-8x +3=0得x 1=12,x 2=32,由q >1,得a 2 020=12,a 2 021=32,q =3,所以a 2 030+a 2 031=(a 2 020+a 2 021)q 10=2·310.(3)在等比数列{a n }中,由a 4a 7=-512得a 3a 8=-512, 又a 3+a 8=124,解得a 3=-4,a 8=128或a 3=128,a 8=-4, 因为公比q 为整数,所以q =5a 8a 3=-51284=-2, 故a n =-4×(-2)n -3=-(-2)n -1.]1.(变条件)将例3(3)中等比数列满足的条件改为“a 4+a 7=2,a 5a 6=-8”,求a 1+a 10.[解] 因为{a n }是等比数列,所以a 5a 6=a 4a 7=-8, 又a 4+a 7=2,解得a 4=4,a 7=-2或a 4=-2,a 7=4, 当a 4=4,a 7=-2时,q 3=-12,a 1+a 10=a 4q 3+a 7q 3=-7, 当a 4=-2,a 7=4时,q 3=-2,a 1+a 10=a 4q 3+a 7q 3=-7. 故a 1+a 10=-7.2.(变结论)例3(3)题的条件不变,求log 4|a 2|+log 4|a 3|+log 4|a 8|+log 4|a 9|. [解] 因为a 4a 7=-512,所以a 2a 9=a 3a 8=-512, 故log 4|a 2|+log 4|a 3|+log 4|a 8|+log 4|a 9| =log 4(|a 2a 9|·|a 3a 8|)=log 45122=log 229=9.等比数列的常用性质性质1:通项公式的推广:a n=a m·q n-m(m,n∈N+).性质2:若{a n}为等比数列,且k+l=m+n(k,l,m,n∈N+),则a k·a l=a m·a n.特别的,若k+φ=2m(m,k,φ∈N),则a k·aφ=+性质3:若{a n},{b n}(项数相同)是等比数列,则{λb n},仍是等比数列.性质4:在等比数列{a n}中,序号成等差数列的项仍成等比数列.性质5:递增;递减;q=1⇔{a n}为常数列;q<0⇔{a n}为摆动数列.1.在解决与等比数列有关的计算问题时,我们首先想到的方法是通法,即通过解方程组求两个基本量首项a1和公比q,求解过程中要注意整体代换方法的应用,但是有些问题合理地选择性质求解,可以减少运算量,提高解题效率.2.解数列的实际应用题时,首先要分清是哪种数列模型,是求某一项,还是求某些项的和,再用相应的公式求解.1.判断正误(正确的打“√”,错误的打“×”)(1)数列{-2n-1}是递减数列.()(2)等比数列{a n}中,a1>1,q<0,则数列|a1|,|a2|,|a3|,…,|a n|,…是递增数列.()(3)若G是a,b的等比中项,则G2=ab,反之也成立.()[答案] (1)√ (2)× (3)×[提示] (1)正确;(2)不正确,如a 1=2,q =-12,则|a n |=2×12n -1=12n -2是递减数列;(3)不正确,当G 是a ,b 的等比中项时,G 2=ab 成立,但当G 2=ab 时,G 不一定是a ,b 的等比中项,如G =a =b =0.2.在等比数列{a n }中,a 4=6,则a 2a 6的值为( ) A .4 B .8 C .36D .32C [因为{a n }是等比数列,所以a 2a 6=a 24=36.]3.在等比数列{a n }中,a 888=3,a 891=81,则公比q = ____________________________________________________. 3 [因为a 891=a 888q 891-888=a 888q 3,所以q 3=a 891a 888=813=27.所以q =3.]4.在等比数列{a n }中,a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.[解] 在等比数列{a n }中,由a 3a 4a 5=a 34=8,得a 4=2,又因为a 2a 6=a 3a 5=a 24,所以a 2a 3a 4a 5a 6=a 54=25=32.。

北师大版高中数学必修五课件章末归纳整合1

北师大版高中数学必修五课件章末归纳整合1

已知 【例 2】{an}为等差数列,分别根据下列条件写出它的通项公 式. (1)a3=5,a7=13; (2)前三项为:a,2a-1,3-a. (3)am=n,an=m,m≠n,求am+n. [思路探索]欲写出等差数列的通项公式,只需确定它的首 项a1与公差d,代入an=a1+(n-1)d即得.

利用公式 an=Sn-Sn-1(n≥2)可使数列 {an}的前 n 项和公式 Sn 与通项公式 an 之间相互转化.在使用 an=Sn-Sn-1(n≥2)时, 必须验证 n= 1 时是否也成立,否则通项公式只能用 an =
S1 n= 1, Sn- Sn-1 n≥ 2
来表示.
(1)法一 设首项为 a1,公差为 d,则
a1= 1, 解得 d= 2.
a3= a1+ 2d= 5, a7= a1+ 6d= 13,
∴ an=a1+ (n- 1)d=1+ (n- 1)×2= 2n-1. ∴通项公式是 an=2n- 1. 法二 a7- a3 13-5 ∵ d= = = 2, 7- 3 7- 3

由于函数
9 2 105 9 f(x) =- 2 x- + 在 0, 上是增函数,在 4 8 4
9 ,+∞ 上是减函数,故当 4
n= 2 时,f(n)=- 2n2+ 9n+ 3 取
得最大值 13,所以数列{- 2n2+ 9n+ 3}的最大项为 a2= 13.
(2)当 n≤ 17, n∈ N+时, n n- 1 |a1|+ |a2|+…+ |an|= a1+ a2+…+ an= na1+ d= 2 3 2 103 - n+ n, 2 2 当 n≥ 18, n∈ N+ 时 |a1 |+ |a2 |+…+ |an |= a1 + a2+…+ a17 - a18- a19-…- an= 3 2 103 2(a1+ a2+…+ a17)- (a1+ a2+…+ an)= n - n+ 884, 2 2 3 2 103 ∴当 n≤ 17, n∈ N+时,{|an|}前 n 项和为- n + n, 2 2 3 2 103 当 n≥ 18, n∈ N+ 时,{|an|}前 n 项和为 n - n+ 884. 2 2

高中数学必修5的知识点

高中数学必修5的知识点

2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:
(1)将数据列成表格; ( 2)列出约束条件与目标函数; ( 3)根据求最值方法:①画:画可行域;②移:移
与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;
( 4)验证。
两类主要的目标函数的几何意义 :
高中数学必修 5 知识点总结
(一)解三角形:
1、正弦定理:在
C 中, a 、 b 、 c 分别为角 、 、 C 的对边,,则有 a
b
c 2R
sin sin sin C
( R为
C 的外接圆的半径 )
2、正弦定理的变形公式:① a 2Rsin , b 2Rsin , c 2Rsin C ;
② sin
a , sin
ap aq Sn , S3n
S2 n 成等差数列
则 am an a p aq 3. Sn , S2n Sn , S3n
S2n 成等比
数列
(三)不等式
1、 a b 0 a b ; a b 0 a b ; a b 0 a b .
2、不等式的性质: ① a b b a ; ② a b, b c a c ; ③ a b a c b c ;
5、均值定理的应用:设 x 、 y 都为正数,则有
s2 ⑴若 x y s (和为定值) ,则当 x y 时,积 xy 取得最大值 .
4
⑵若 xy p (积为定值) ,则当 x y 时,和 x y 取得最小值 2 p .
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高考试题来源: /zyk/gkst/
赠送以下资料
英语万能作文 (模板型) Along with the advance of the society more and more problems are brought to our

北师大版高中数学必修五《数列知识点总结》.pdf

北师大版高中数学必修五《数列知识点总结》.pdf

北师⼤版⾼中数学必修五《数列知识点总结》.pdf S=a+a+……+a+an12n?1n相加2S=a+a+a+a+…+a+a…()()()n1n2n?11nS=a+a+……+a+annn?121?2x[练习]已知fx()=,则21+x111f(1)+f(2)+f+f(3)+f+f(4)+f=2342122??11xxx由f(x)+f=+=+=12222x1+x1+x1+x11+x11111∴原式=f(1)+f(2)+f+f(3)+f+f(4)+f=+1+1+1=323422(附:a.⽤倒序相加法求数列的前n项和如果⼀个数列{an},与⾸末项等距的两项之和等于⾸末两项之和,可采⽤把正着写与倒着写的两个和式相加,就得到⼀个常数列的和,这⼀求和⽅法称为倒序相加法。

我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同⼀类知识的⼯具,例如:等差数列前n项和公式的推导,⽤的就是“倒序相加法”。

b.⽤公式法求数列的前n项和对等差数列、等⽐数列,求前n项和Sn可直接⽤等差、等⽐数列的前n项和公式进⾏求解。

运⽤公式求解的注意事项:⾸先要注意公式的应⽤范围,确定公式适⽤于这个数列之后,再计算。

c.⽤裂项相消法求数列的前n项和裂项相消法是将数列的⼀项拆成两项或多项,使得前后项相抵消,留下有限项,从⽽求出数列的前n项和。

d.⽤错位相减法求数列的前n项和错位相减法是⼀种常⽤的数列求和⽅法,应⽤于等⽐数列与等差数列相乘的形式。

即若在数列{an·bn}中,{an}成等差数列,{bn}成等⽐数列,在和式的两边同乘以公⽐,再与原式错位相减整理后即可以求出前n项和。

e.⽤迭加法求数列的前n项和迭加法主要应⽤于数列{an}满⾜an+1=an+f(n),其中f(n)是等差数列或等⽐数列的条件下,可把这个式⼦变成a-a=f(n),代⼊各项,得到⼀系列式⼦,把所有的式⼦加到⼀起,经过整理,可求出a,n+1nn从⽽求出S。

高中数学北师大版必修五提纲

高中数学北师大版必修五提纲

高中数学北师大版必修五提纲数学是所有学生的噩梦,不仅是女生,就是男生也感觉学好太难了。

可能只是缺少了一个复习提纲,下面小编给大家分享一些高中数学北师大版必修五提纲,希望能够帮助大家,欢迎阅读高中数学北师大版必修五提纲(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a ≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.(三)、函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a ≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x&gt;0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.(四)、函数的奇偶性1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高中数学必修5知识点总结归纳8篇

高中数学必修5知识点总结归纳8篇

高中数学必修5知识点总结归纳8篇篇1一、引言高中数学必修5是整个数学学科体系中重要的一部分,它涵盖了代数、几何、三角学等多个领域的知识点。

本文将对该课程的核心知识点进行系统的总结归纳,以便学生更好地掌握数学基础知识,提高数学应用能力。

二、代数部分1. 集合与函数:集合的运算、集合的表示方法、函数的定义、函数的性质、函数的图像等。

2. 不等式:不等式的性质、一元二次不等式的解法、绝对值不等式的解法等。

3. 数列与极限:数列的定义、等差数列与等比数列、数列的极限等。

三、几何部分1. 平面解析几何:直线的方程、圆的方程、二次曲线的方程及其性质等。

2. 立体几何:空间向量、空间角、距离公式、几何体的表面积与体积等。

四、三角学部分1. 三角函数:三角函数的定义、性质、图像,三角函数的和差公式、倍角公式等。

2. 解三角形:正弦定理、余弦定理、三角形的面积公式等。

五、知识点详解1. 代数式的化简与求值:掌握代数式的运算规则,能够对方程进行化简和求值。

2. 不等式的解法:掌握一元二次不等式和绝对值不等式的解法,能够解决实际问题中的不等式问题。

3. 数列的性质与应用:了解数列的定义、性质,掌握等差数列与等比数列的通项公式和求和公式,能够应用数列知识解决实际问题。

4. 平面解析几何:掌握直线与二次曲线的方程,能够求解与几何图形相关的问题。

5. 立体几何的体积与表面积:熟悉几何体的体积与表面积公式,能够计算不规则几何体的体积与表面积。

6. 三角函数的性质与应用:掌握三角函数的性质,如周期性、奇偶性,熟悉三角函数的和差公式和倍角公式,能够应用三角函数解决实际问题。

7. 解三角形的方法:掌握正弦定理和余弦定理,能够解决与三角形相关的问题,如三角形的角度、边长等。

六、学习方法与建议1. 掌握基础知识:牢固掌握必修5中的基本概念和性质,这是解题的基础。

2. 多做练习:通过大量的练习来巩固知识点,提高解题能力。

3. 归纳总结:对学过的知识点进行总结归纳,形成知识体系和框架。

北师大版高中数学必修5第一章数列知识点及方法总结

北师大版高中数学必修5第一章数列知识点及方法总结

数列知识点知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n -=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图像表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图像是一群孤立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。

(6 )数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥注意:此公式较重要!!!等差数列知识点1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

高中必修五数学知识点大全

高中必修五数学知识点大全

高中必修五数学知识点大全高中必修五数学知识点大全高中数学是学习数学的重要阶段,也是学习数学的关键时期。

高中必修五数学是高中数学课程中的重要部分,是将学生对初中数学知识的继续掌握和拓展。

高中必修五数学涵盖了数学的各个方面,包括函数、几何、三角函数、导数等。

下面将详细介绍高中必修五数学中的重要知识点。

1.函数函数是高中数学中的重要知识点,是学习数学的重要基础。

函数是一种关系,它将一个变量的值映射到一个输出值。

在高中数学中,函数是一个可以用符号表示的数学对象,其形式为f(x)。

其中,x是自变量,f(x)是函数值或者因变量。

高中必修五数学中,我们要学习函数的基本概念、函数的性质和图像、一次函数、二次函数、三次函数、反比例函数、指数函数和对数函数等概念和相关内容。

2.几何几何是高中必修五数学中的重要内容,绝大部分高中生在初中就曾学习过基本几何概念。

在高中必修五数学中,我们需要更加深入的理解几何概念,如向量、平面几何、解析几何等等。

平面几何是数学的基本分支之一,它研究图形的形状、大小、位置、相似、全等等。

在高中必修五数学中,通过研究平面几何,我们可以更好地理解图形的属性和运动规律,并学习到三角形、圆形、多边形等形状的性质。

3.三角函数在高中必修五数学中,学习三角函数是必不可少的。

三角函数是从直角三角形上发展而来的,三角函数的基本概念是三角函数的值在坐标系中的表示和图形。

高中数学中,我们将学习正弦函数、余弦函数、正切函数和余切函数等内容。

通过学习三角函数,我们可以更好地理解三角函数的性质和应用,如周期性、对称性、偶函数和奇函数等。

4.导数导数是高中必修五数学中的重要内容,也是微积分的基础。

导数是表示某个函数在某一点处斜率的概念。

导数可以用于解决各种问题,包括最值、切线和曲线的性质等问题。

在高中必修五数学中,我们将学习导数的基本概念、导数的定义、常用导数公式、导数的运算法则等内容。

通过学习导数,我们可以更好地理解数学与物理的相互关系,并可以更好地理解微积分的相关知识。

数学必修五知识点归纳

数学必修五知识点归纳

数学必修五知识点归纳【数学必修五知识点归纳(上)】一、函数与导数1. 函数及其图像的性质:定义域、值域、单调性、奇偶性、周期性、反函数2. 函数的运算:和、差、积、商、复合函数3. 导数的概念及其意义:导数的定义、导数的几何意义、导数的物理意义4. 导数的计算:导数的四则运算、链式法则、反函数求导法、隐函数求导法、参数方程求导法5. 应用:切线方程、法线方程、最值问题、凹凸性判别、用导数研究函数的单调性、函数的极值及最值,曲率与几何和物理的应用二、不等式与极限1. 不等式性质:同增性、奇偶性、加减倍数不等式、取等条件2. 一元二次不等式及其应用3. 数列基本概念:项、项数、通项公式、公式和、等差数列、等比数列、等比数列的和4. 数列极限的概念及性质:极限的定义、唯一性、极限的四则运算、夹逼准则、单调有界原理5. 无穷数列的极限:等比数列的通项公式、通项求和公式、有限项和公式、无限项和公式【数学必修五知识点归纳(下)】三、三角函数1. 正弦、余弦函数及其图像、对称轴、周期、定义域、值域、单调性等2. 正切、余切函数及其图像、对称轴、周期、定义域、值域、单调性等3. 三角函数的基本性质:同角关系、和角公式、差角公式、倍角公式、半角公式、余角公式4. 三角函数的图像变换:平移、反转、伸缩5. 应用:三角函数在平面直角坐标系中的应用、导数的运算、解最值、求交点、航空与航海问题中的运用四、解析几何1. 点、向量、向量的基本运算、数量积、向量积及其基本性质2. 直线的表示方法、两条非平行直线的位置关系、直线的方程一般式、点斜式、两点式、截距式及其相互转化3. 平面的表示方法、平面的解析方程、点与平面的位置关系、直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系4. 球面的基本性质、球面的方程及其应用、空间直角坐标系、空间直角坐标系下的图形方程五、概率统计与选修课内容1. 随机事件与概率、概率的基本性质、几何概型、条件概率、独立性、全概率公式、贝叶斯公式、重复试验及其概率2. 随机变量的概念、离散随机变量及其概率分布、连续随机变量及其概率密度函数、随机变量的数学期望、方差及标准差等基本概念3. 统计学基础:样本、总体、样本均值、标准差、Z分数、t分数与t分布、样本容量与抽样分布、样本相关系数4. 必修三选修一:容斥原理、锦标赛问题、排队论、模拟算法、线性规划、动态规划、离散数学常用算法。

高中必修五数学知识点笔记整理

高中必修五数学知识点笔记整理

高中必修五数学知识点笔记整理高中必修五数学知识点一、基础知识(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)区分逆命题与命题的否定;(2)理解充分条件与必要条件;(3)椭圆、双曲线与抛物线的定义;(4)椭圆与双曲线的几何性质,特别是离心率问题;(5)直线与圆锥曲线的位置关系问题;(6)直线与圆锥曲线中的弦长与面积问题;(7)直线与圆锥曲线问题中的参数求解与性质证明;(8)轨迹与轨迹求法;(9)运用空间向量求空间中的角度与距离;(10)立体几何中的动态问题探究.高中必修五数学必背知识点一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。

必修5数学知识点总结

必修5数学知识点总结

必修5数学知识点总结关于必修5数学知识点总结指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈,当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。

此时,的次方根用符号表示。

式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

当是偶数时,正数的次方根有两个,这两个数互为相反数。

此时,正数的正的次方根用符号表示,负的次方根用符号—表示。

正的次方根与负的次方根可以合并成±(0)。

由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,2、分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5知识点第一章解三角形1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.—1—第二章数列7、数列:按照一定顺序排列着的一列数.8、数列的项:数列中的每一个数.9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.19、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.—2—22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S a S a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. 27、通项公式的变形:①n m nm a a q -=;②()11n n a a q --=;③11n na q a -=;④n m n m a q a -=. 28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.9、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.—3— 30、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.②nn m n m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列.—3第三章不等式31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >; ⑧()0,1n n a b a b n n >>⇒>∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,2b x -±∆=()12x x <有两个相等实数根122bx x a==-没有实数根 一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.—4—36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.39、在平面直角坐标系中,已知直线0x y C A +B +=.①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件. 目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y . 可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.41、设a 、b 是两个正数,则2a b+称为正数a 、b a 、b 的几何平均数.—5—42、均值不等式定理: 若0a >,0b >,则a b +≥,即2a b+≥.43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.44、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值.—6—。

相关文档
最新文档