第二节三角形的基本概念及全等三角形
初中数学全等三角形知识点
初中数学全等三角形知识点(一)、基本概念1、“全等”的理解全等的图形需要满意:(1)外形相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的'性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)敏捷运用定理证明两个三角形全等,需要依据已知条件与结论,仔细分析图形,精确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。
运用定理证明三角形全等时要留意以下几点。
1、判定两个三角形全等的定理中,需要具备三个条件,且至少要有一组边对应相等,因此在查找全等的条件时,总是先查找边相等的可能性。
2、要擅长发觉和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要擅长敏捷选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)三、疑点、易错点1、对全等三角形书写的错误在书写全等三角形时肯定要把表示对应顶点的字母写在对应的位置上。
切记不要弄错。
2、对全等三角形判定方法理解错误;3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定势的消极影响。
全等三角形ppt课件
HL判定(直角三角形)
在直角三角形中,斜边和一条直 角边分别对应相等的两个三角形 全等。
常见误区及纠正
误区一
认为只要两个三角形有两个角相等,它们就 是全等的。
纠正
必须明确两角和它们的夹边或两角和一角的对 边分别对应相等才能判定全等。
误区二
忽视三角形的边长和角度的对应关系。
纠正
在判断三角形是否全等时,必须确保边长和角度的 对应关系正确。
误区三
错误使用SSS、SAS、ASA、AAS或HL判定方法。
纠正
熟练掌握并正确应用各种全等三角形的判定方法,注意 判定条件的准确性和完整性。
02
全等三角形证明方法
边角边定理及应用
边角边定理:如果两个三角形有两边和 夹角分别对应相等,则这两个三角形全 等。
在几何图形中,通过已知条件寻找全等 三角形,从而推导其他边的长度或角的 大小。
应用
在复杂图形中,通过寻找 角边角关系,简化问题并 求解。
用于证明两个三角形全等 。
直角三角形全等条件
示例:在Rt△ABC和Rt△DEF中, 如果∠C=∠F=90°,AC=DF, BC=EF,则Rt△ABC≌Rt△DEF。
HL定理:在直角三角形中,如果 斜边和一条直角边分别对应相等 ,则这两个直角三角形全等。
相似三角形定义:两个三角形
如果它们的对应角相等,那么
这两个三角形相似。
01
相似比:相似三角形的对应边
之间的比叫做相似比。
02
相似三角形的性质
03
对应角相等;
04
对应边成比例;
05
面积比等于相似比的平方。
06
相似三角形与全等三角形关系
联系
全等三角形是相似三角形的特例 ,即相似比为1:1的相似三角形。
第十二章:第二节:全等三角形的判定
()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧HL AAS ASA SAS SSS 斜边、直角边角角边角边角边角边边边边第十二章 全等三角形第二节 三角形全等的判定☆要点回顾1、三角形的内角和定理:三角形的内角和为180°。
2、平行线的性质及判定:内错角相等,两直线平行。
3、有一个角是90°的三角形为直角三角形。
概念图:三角形全等的条件知识点一:边边边公理(SSS )1、三边对应相等的两个三角形全等,简写成“边边边”或“SSS ”。
2、要证明两个三角形全等,应设法确定这两个三角形三条边对应相等。
3、判断两个三角形全等的推理过程,叫做证明三角形全等。
4、书写格式:在列举两个三角形全等的条件时,把三个条件按顺序排列,并且用大括号将它们括起来,如:在△ABC 和△A'B'C'中,∴△ABC ≌△C B A '''(SSS )。
典型例题:【例1】如图,已知AD=CB,AB=CD.求证:AD ∥BC 。
解析:欲证AD ∥BC ⇒∠ADB=∠CBD ⇒△ABD ≌△CDB.⎪⎩⎪⎨⎧''=''=''=C B BC C A AC B A AB知识点二:边角边公理(SAS)1、两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”2、“SAS”指判定两个三角形全等的条件是两边及这两条边的夹角对应相等,应特别注意其中的夹角是两已知边的夹角而不是其中一边的对角。
3、在列举两个三角形全等的条件时,一定要把夹角相等写在中间,以突出两边及其夹角对应相等。
4、有两边和其中一边的对角对应相等的两个三角形不一定全等。
典型例题:【例2】如图,已知E、F是线段AB上的两点,且AE=BF,AD=BC,∠A=∠B,求证,DF=CE解析:先证明AF=BE,在用“SAS”证明两个三角形全等。
【例3】如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE,(1)求证:AE=CF;(2)求证:AE∥CF。
全等三角形复习专题
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
初二_三角形复习讲义(包括基本概念、全等、勾股定理)
A C B第 8 题D三角形专题复习(一)三角形基本概念:1.三角形的分类三角形按边分类可分为不等边三角形和等腰三角形(等边三角形是等腰三角形的特殊情况);按角分类可分为锐角三角形、直角三角形和钝角三角形,其中锐角三角形、钝角三角形统称为斜角形。
2.一般三角形的性质(1)角与角的关系:三个内角的和等于180°;一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角。
(2)边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。
(3)边与角的大小对应关系:在一个三角形中,等边对等角;等角对等边。
(4)三角形的主要线段的性质(见下表):名称 基本性质 角平分线 ①三角形三条内角平分线相交于一点(内心);内心到三角形三边距离相等;②角平分线上任一点到角的两边距离相等。
中线 三角形的三条中线相交于一点。
高 三角形的三条高相交于一点。
边的垂直平分线 三角形的三边的垂直平分线相交于一点(外心);外心到三角形三个顶点的距离相等。
中位线 三角形的中位线平行于第三边且等于第三边的一半。
3. 几种特殊三角形的特殊性质(1)等腰三角形的特殊性质:①等腰三角形的两个底角相等;②等腰三角形顶角的平分线、底边上的中线和底边上的高是同一条线段,这条线段所在的直线是等腰三角形的对称轴。
(2)等边三角形的特殊性质:①等边三角形每个内角都等于60°;②等边三角形外心、内心合一。
(3)直角三角形的特殊性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;4. 三角形的面积 (1)一般三角形:S △ =21a h ( h 是a 边上的高 )5.多边形的内角和为 ( n – 2 )·180°( n 为边数 ); 多边形的外角和为360°.例题剖析一、填空题1、在△ABC 中,∠A=3∠B=32∠C ,则∠A= ,∠B= ,∠C= ;若∠A+∠B=∠C ,则△ABC 是 __三角形2、如图 在直角三角形ABC 中,∠ACB=900,CD ⊥AB 于点D ,则图中有 _____ 个直角三角形, 它们是_________________;∠A 是 ___ 和 ___ 公共角;互余的角有 3 几对,它们是3、如图,已知在△ABC 中,∠ABC ,∠ACB 的平分线相交于点O ,(1)若∠ABC=500,∠ACB=650,则∠BOC= .; (2)若∠ABC+∠ACB=1300,则∠BOC= (3)若∠A=900,则∠BOC= ; (4)若∠BOC=1000,则∠A= ;AB CO课堂练习(基础题)1.四边形ABCD 中,如果∠A+∠C+∠D=280°,则∠B 的度数是( ) A .80° B .90° C .170° D .20°2.一个多边形的内角和等于1080°,这个多边形的边数是( ) A .9 B .8 C .7 D .6 3.内角和等于外角和2倍的多边形是( )A .五边形B .六边形C .七边形D .八边形 4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______6、(综合题)已知:如图,在四边形ABCD 中,∠A=∠C=90°,BE 平分∠ABC ,•DF 平分∠ADC .BE 与DF 有怎样的位置关系?为什么?7、(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.8、(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A .1个B .2个C .3个D .4个(二)全等三角形1、判定和性质一般三角形直角三角形判定边角边(SAS )、角边角(ASA )角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等注:① 判定两个三角形全等必须 有一组边对应相等;② 全等三角形面积相等.2、证题的思路:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边ASA AAS SAS AAS SSS HL SAS3、有关角平分线的知识:①、把已知角平分成相等的两个角的射线叫这个角的角平分线。
初二数学知识点:全等三角形
初二数学知识点:全等三角形
初二数学知识点:全等三角形
大家都知道,能够完全重合的两个三角形叫做全等三角形(congruent triangles)。
那么接下来的全等三角形知识请同学认真记忆了。
一、知识框架:
二、知识概念:
1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
3.全等三角形的判定定理:
⑴边边边():三边对应相等的两个三角形全等.
⑵边角边():两边和它们的夹角对应相等的两个三角形全等.
⑶角边角():两角和它们的夹边对应相等的两个三角形全等.
⑷角角边():两角和其中一个角的对边对应相等的两个三角形
全等.
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.
4.角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的'内部到角的两边距离相等的点在角的平分线上.
5.证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶
角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证.
⑶经过分析,找出由已知推出求证的途径,写出证明过程.。
三角形及全等三角形知识点总结
三角形及全等三角形知识点总结知识点1、三角形的三边关系:1、两边之和大于第三边 2、两边之差小于第三边知识点2、三角形的高线定义:过一个三角形的顶点向它的对边所在直线作垂线,顶点与垂足之间的线段叫做三角形的高。
(即三角形的高的两个端点一个为三角形的顶点,一个为顶点所对边上的垂足)性质:1、三角形的高线垂直于三角形一边。
2、三角形高线与所在边所成角为9003、三角形面积=½底1×高1= ½底2×高2另外:锐角三角形三条高线在三角形内,直角三角形斜边上的高线在三角形内,直角边互为高线。
钝角三角形钝角边上的高线在三角形外,钝角所对边上的高线在三角形内。
三角形的高所在直线交于一点,这一点叫垂心。
知识点3、三角形的中线定义:三角形中,连接一个顶点和它的对边中点线段叫做三角形的中线。
中线性质:1、平分三角形一边,2、平分三角形的面积知识点4、三角形的角平分线定义:三角形一个角的平分线与三角形的一边相交,这个角的顶点与交点之间的线段叫三角形的角平分线。
性质:三角形的角平分线平分三角形一角。
知识点5、三角形具有稳定性。
知识点6、与三角形有关的角(1)三角形三个内角的和等于180(2)直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形。
(3)三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和。
知识点7、多边形(1)n 边形的对角线条数:n(n-3)/2。
(2)n 边形内角和为(n-2) 180(3)多边形外角和为360 。
知识点8、全等的概念:能够完全重合的两个图形叫做全等形。
全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。
知识点9、常见的全等三角形的基本图形有平移型、旋转型和翻折型。
知识点10、三角形全等的判定方法:(1)三边分别相等的两个三角全等(边边边,SSS)(2)两边和它们的夹角分别相等的两个三角形全等(边角边,SAS)(3)两角和它们的夹边分别相等的两个三角形全等(角边角,ASA)(4)两个角和其中一个角的对边分别相等的两个三角形全等(角角边,AAS)(5)斜边和一条直角边分别相等的两个直角三角形全等(斜边、直角边,HL)知识点11、角的平分线上的点到角的两边的距离相等。
(遵义专版)2019年中考数学总复习第2节三角形的基本概念及全等三角形(精练)试题
第二节三角形的基本概念及全等三角形1.(荆门中考)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( C )A.5 B.6 C.8 D.10(第1题图)(第2题图)2.(2019怀化中考)如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是( B )A.PC=PD B.∠CPD=∠DOPC.∠CPO=∠DPO D.OC=OD3.(邵阳中考)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是( A )A.AC>BC B.AB=BCC.∠A>∠ABC D.∠A=∠ABC(第3题图)(第4题图)4.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=( B )A.36° B.54° C.18° D.64°5.在平面直角坐标系中,点A(2,2),B(32,32),动点C在x轴上,若以A,B,C三点为顶点的三角形是等腰三角形,则点C的个数为( B )A.2个 B.3个 C.4个 D.5个6.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( C )A.带①去 B.带②去C.带③去 D.带①和②去(第6题图)(第7题图)7.(东莞中考)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若S △ABC =12,则图中阴影部分的面积是__4__.8.(南京中考)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO.下列结论: ①AC ⊥BD ; ②CB=CD ; ③△ABC ≌△ADC ; ④DA=DC.其中所有正确结论的序号是__①②③__.(第8题图)(第9题图)9.(2019黔东南中考)如图,点B ,F ,C ,E 在一条直线上,已知FB =CE ,AC ∥DF ,请你添加一个适当的条件__∠A=∠D(答案不唯一)__使得△ABC≌△DEF.10.(2019温州中考)如图,在五边形ABCDE 中,∠BCD =∠EDC=90°,BC =ED ,AC =AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE 的度数. 解:(1)∵AC=AD , ∴∠ACD =∠ADC,又∵∠BCD =∠EDC=90°, ∴∠ACB =∠ADE, 在△ABC 和△AED 中, ⎩⎪⎨⎪⎧BC =ED ,∠ACB =∠ADE,AC =AD ,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴在五边形ABCDE中,∠BAE=540°-140°×2-90°×2=80°.11.(2019湖州中考)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( C )A.8 B.6C.4 D.212.(陕西中考)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( B )A.7 B.8 C.9 D.10(第12题图)(第13题图)13.(2019大庆中考)如图,从①∠1=∠2,②∠C=∠D,③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( D )A.0 B.1 C.2 D.314.(2019达州中考)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是__1<m<4__.15.(2019武汉中考)如图,点C,F,E,B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE.写出CD与AB之间的关系,并证明你的结论.解:CD=AB,CD∥AB.证明如下:∵CE=BF,∴CF=BE.在△CDF和△BAE中,⎩⎪⎨⎪⎧CF =BE ,∠CFD =∠BEA,DF =AE ,∴△CDF ≌△BAE , ∴AB =CD ,∠C =∠B, ∴AB ∥CD.16.(泰安中考)如图,∠ABC =90°,D ,E 分别在BC ,AC 上,AD ⊥DE ,且AD =DE.点F 是AE 的中点,FD 与AB 相交于点M. (1)求证:∠FMC=∠FCM; (2)AD 与MC 垂直吗?并说明理由.解:(1)∵△ADE 是等腰直角三角形,F 是AE 的中点, ∴DF ⊥AE ,DF =AF =EF.又∵∠ABC=90°,∠DCF ,∠AMF 都与∠MAC 互余, ∴∠DCF =∠AMF.又∵∠DFC=∠AFM=90°, ∴△DFC ≌△AFM ,∴CF =MF ,∴∠FMC =∠FCM;(2)AD⊥MC.理由如下:延长AD 交MC 于点G. 由(1)知∠MFC=90°,FD =FE ,FM =FC , ∴∠FDE =∠FMC=45°, ∴DE ∥CM.∴∠AGC =∠ADE=90°, ∴AG ⊥MC , 即AD⊥MC.17.在四边形ABCD 中,AB =BC =CD =DA ,∠B =∠D=60°,连接AC. (1)如图①,点E ,F 分别在边BC ,CD 上,且BE =CF.求证: ①△ABE≌△ACF; ②△AEF 是等边三角形;(2)若点E 在BC 的延长线上,在直线CD 上是否存在点F ,使△AEF 是等边三角形?请证明你的结论.(图②备用)解:(1)①∵AB=BC ,∠B =60°, ∴△ABC 是等边三角形.∴AB =AC.同理,△ADC 也是等边三角形, ∴∠ACF =∠B=60°.又∵BE=CF ,∴△ABE ≌△ACF(SAS);②∵△ABE≌△ACF,∴AE=AF,∠BAE=∠CAF.∵∠BAE+∠CAE=60°,∴∠CAF+∠CAE=60°,即∠EAF=60°.∴△AEF是等边三角形;(2)存在,在CD延长线上取点F,使CF=BE,连接AE,EF,AF.与(1)①同理可证△ABE≌△ACF,∴AE=AF,∠BAE=∠CAF.∴∠CAF-∠CAE=∠BAE-∠CAE.∴∠EAF=∠BAC=60°.∴△AEF是等边三角形.2019-2020学年数学中考模拟试卷一、选择题1.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS2.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A. B.C. D.3.将如图所示的图形绕中心按逆时针方向旋转120°后可得到的图形是()A.B.C.D.4.由三角函数定义,对于任意锐角A,有sinA=cos(90°-A)及sin2A+cos2A=1成立.如图,在△ABC中,∠A,∠B是锐角,BC=a,AC=b,AB=c,CD⊥AB于D,DE//AC交BC于E,设CD=h,BE=a’,DE=b’,BD=c’,则下列条件中能判断△ABC是直角三角形的个数是()(1)a2+b2=c2(2)aa’+bb’=cc’ (3)sin2A+sin2B=1 (4)+=A.1个B.2个C.3个D.4个5.关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有三个整数解,则a 的取值范围是( )A .5924a -<-… B .5924a -<<- C .5924a --剟D .5924a -<-… 6.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE 的长为( )ABC.D.7.下列运算正确的是( ) A .5210()a a -= B .6262144a a a a-÷⋅=- C .32264()a b a b -=D .23a a a -+=-8.下列运算中,正确的是( ) A .(﹣12)﹣1=﹣2 B .a 3•a 6=a 18C .6a 6÷3a 2=2a 3D .(﹣2ab 2)2=2a 2b 49.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( )A .2B .8CD .10.计算2231366x x x x x+-⋅-+的结果为( ) A.6x x+ B.6x x - C.6x x + D.6x +11.一元二次方程2x 2﹣5x ﹣4=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判定该方程根的情况12.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA+MD+ME 的最小值为( )D.10二、填空题13.已知关于x 的方程240x x m -+=有一个根为3,则m 的值为_______.14.用一组,a b ab =”是错误的,这组值可以是a =____,b =_____. 15.分解因式:= .16.如图,A 、B 是反比例函数y=图象上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5).若△ABC 的面积为7,则点B 的坐标为 .17.计算﹣(﹣2)+(﹣2)0的值是_____.18.一个圆锥的底面积是40cm 2,高12cm ,体积是__________cm 3. 三、解答题19.如图是一张锐角三角形纸片,AD 是BC 边上的高,BC=40cm ,AD=30cm ,现从硬纸片上剪下一个长是宽2倍的周长最大的矩形,则所剪得的矩形周长为_____________cm .20.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处若∠AGE =32°,则∠GHC 等于多少度?21.如图,AB 是⊙O 的直径,AD 、BD 是半圆的弦,且∠PDA =∠PBD . (1)求证:PD 是⊙O 的切线;(2)如果tan BDE ∠=PD ,求PA 的长.22.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④…… (1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明. 23.(1)先化简,再求值:211121a a a a -÷+++,其中a =2; (2)如图,在▱ABCD 中,E 为BC 边上的中点,将△ABE 沿AE 折叠,点B 的对应点为点F ,延长AF 与CD 交于点G ,求证:GC =GF .24.如图,在平行四边形ABCD 中,CE ⊥BC 交AD 于点E ,连接BE ,点F 是BE 上一点,连接CF . (1)如图1,若∠ECD =30°,BC =4,DC =2,求tan ∠CBE 的值;(2)如图2,若BC =EC ,过点E 作EM ⊥CF ,交CF 延长线于点M ,延长ME 、CD 相交于点G ,连接BG 交CM 于点N 且CM =MG ,①在射线GM 上是否存在一点P ,使得△BCP ≌△ECG ?若存在,请指出点P 的位置并证明这对全等三角形;若没有,请说明理由. ②求证:EG =2MN .25.如图所示,一次函数y =x+3与x 轴、y 轴分别交于点A 、B ,将直线AB 向下平移与反比例函数m y x =(x >0)交于点C 、D ,连接BC 交x 轴于点E ,连接AC ,已知BE =3CE ,且S △ACE =94.(1)求直线BC 和反比例函数解析式;(2)连接BD ,求△BCD 的面积.【参考答案】*** 一、选择题二、填空题 13.14.1-答案不唯一 1答案不唯一 15.(m+2)(m ﹣2). 16.(,3). 17.3 18.160 三、解答题19.72cm【解析】【分析】设所剪得的矩形的长为2xcm ,宽为xcm ,根据相似三角形的对应高的比等于相似比即可列方程求解.【详解】解:设所剪得的矩形的长为2xcm ,宽为xcm ,由题意得2304030x x -=或3024030x x -= 解得x=12或12011x = 则周长为()2412272cm +⨯=或2401207202cm 111111⎛⎫+⨯=⎪⎝⎭ 因为7207211> 所以所剪得的矩形周长为72cm.故答案为:72cm【点睛】相似三角形的应用相似三角形的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20.∠GHC =106°【解析】【分析】由折叠的性质可得∠DGH 的度数,再根据两直线平行,同旁内角互补,即可得到结论.【详解】∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH 12=∠DGE=74°. ∵AD ∥BC ,∴∠GHC=180°﹣∠DGH=106°.【点睛】本题考查了平行线的性质和折叠的性质,解题时注意:两直线平行,同旁内角互补.21.(1)证明见解析;(2)PA=1.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA.【详解】(1)证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)∵BE是⊙O的切线,∴∠EBA=90°∵∠BED=60°,∴∠P=30°∵PD为⊙O的切线,∴∠PDO=90°在Rt△PDO中,∠P=30°,PD∴tan30°=ODPD,解得OD=1∴PO 2∴PA=PO-AO=2-1=1【点睛】此题考查了切线的判定及三角函数的有关计算等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.(1)4×6+1=52,9×11+1=102;(2)(n﹣1)(n+1)+1=n2;证明见解析.【解析】【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为:4×6+1=52,9×11+1=102;(2)第n 个式子为(n ﹣1)(n+1)+1=n 2,证明:左边=n 2﹣1+1=n 2,右边=n 2,∴左边=右边,即(n ﹣1)(n+1)+1=n 2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.23.(1)3;(2)见解析.【解析】【分析】(1)根据分式的除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题;(2)根据题意,作出合适的辅助线,然后利用平行四边形的性质即可证明结论成立.【详解】(1)211121a a a a -÷+++ 21(1)11a a a +=⋅+- 11a a +=- 当a=2时,原式2121+==-3; (2)连接FC . ∵四边形ABCD 是平行四边形,E 为BC 边上的中点,将△ABE 沿AE 折叠,点B 的对应点为点F ,∴BE=EC=EF ,∠B=∠AFE ,AB ∥DC ,∴∠EFC=∠ECF ,∠B+∠BCD=180°.∵∠AFE+∠EFG=180°,∴∠EFG=∠BCD ,∴∠GCF=∠CGF ,∴GC=GF .【点睛】本题考查了分式的化简求值、平行四边形的性质、翻折变化,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)4;(2)①详见解析;②详见解析. 【解析】【分析】 (1)由平行四边形的性质和已知条件得出∠BCE =∠CED =90°,由直角三角形的性质得出DE =12CD =1,CE (2)①由等腰直角三角形的性质得出∠MCG =∠MGC =45°,由线段垂直平分线的性质得出CP =CG ,得出∠CPM =∠CGM =45°,求出∠PCG =90°,得出∠BCP =∠ECG ,由SAS 证明△BCP ≌△ECG 即可; ②由全等三角形的性质得出BP =EG ,∠BPC =∠EGC =45°,得出∠BPG =90°,证出BP ∥MN ,得出BN =GN ,MN 是△PBG 的中位线,由三角形中位线定理得出BP =2MN ,即可得出结论.【详解】(1)解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵CE ⊥BC ,∴CE ⊥AD ,∴∠BCE =∠CED =90°,∵∠ECD =30°,DC =2,∴DE =12CD =1,∴CE∴tan ∠CBE =CE BC (2)①解:在射线GM 上存在一点P ,MP =MG 时,△BCP ≌△ECG ;理由如下:如图2所示:∵CM =MG ,∴△CMG 是等腰直角三角形,∴∠MCG =∠MGC =45°,∵MP =MG ,EM ⊥CF ,∴∠CPM =∠CGM =45°,∴∠PCG =90°,∴CP ⊥CG ,∵∠BCE =∠PCG =90°,∴∠BCP =∠ECG ,在△BCP 和△ECG 中,BC EC BCP ECG CP CG =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ECG (SAS );②证明:由①得:△BCP ≌△ECG ,∴BP =EG ,∠BPC =∠EGC =45°,∴∠BPG =90°,∴BP ∥MN ,∵PM =GM ,∴BN =GN ,∴MN 是△PBG 的中位线,∴BP =2MN ,∴EG =2MN【点睛】本题是四边形综合题目,考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、线段垂直平分线的性质、三角函数等知识;本题综合性强,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.25.(1)BC =,2y x =-;(2)S △BCD =32 . 【解析】【分析】(1)作CF ⊥x 轴于F ,根据BE =3CE ,且S △ACE =94 求得S △ABE =274,根据三角形面积求得AE ,从而求得OE 和CF ,由三角形相似求得EF ,得到C 点的坐标,即可根据勾股定理求得BC ,根据反比例函数图象上点的坐标特征求得反比例函数的解析式;(2)设直线CD 的解析式为y =x+b ,令直线CD 交y 轴于H ,根据待定系数法求得解析式,从而求得H 点的坐标,联立方程求得D 点的坐标,然后根据S △BCD =S △BCH ﹣S △BDH 求得即可.(1)作CF⊥x轴于F,由直线y=x+3可知,A(﹣3,0),B(0,3),∵BE=3CE,且S△ACE=94,∴S△ABE=274,∴12AE•OB=274,即12AE•3=274,∴AE=92,∴OE=32,∵S△ACE=12AE•CF=94,∴CF=1,∵CF∥OB,∴△ECF∽△EBO,∴EF CFOE OB=,即32EF=13,∴EF=12,∴OF=OE+DF=2,∴C(2,﹣1),∴BC=,∵反比例函数y=mx(x>0)经过点C,∴m=2×(﹣1)=﹣2,∴反比例函数解析式为y=﹣2x;(2)∵将直线AB向下平移与反比例函数y=mx(x>0)交于点C、D,∴设直线CD的解析式为y=x+b,令直线CD交y轴于H,把C(2,﹣1)代入得,﹣1=2+b,∴b=﹣3,∴直线CD的解析式为y=x﹣3,∴H(0,﹣3),解321212y xx xy yyx=-⎧==⎧⎧⎪⎨⎨⎨=-=-=⎩⎩⎪⎩得或,∴D(1,﹣2),∴S△BCD=S△BCH﹣S△BDH=12×3×2﹣12×3×1=32.【点睛】此题考查反比例函数与一次函数的交点问题,三角形的面积,反比例函数系数k的几何意义,解题关键在于作辅助线2019-2020学年数学中考模拟试卷一、选择题1.如图,⊙O与BC相切于点B,弦AB∥OC,若∠C=40°,则∠AOB的度数是()A.60B.70°C.80°D.90°2.计算的值等于()A.1B.C.D.3.下列运算正确的是( )A.(﹣2x2)3=﹣6x6B.(y+x)(﹣y+x)=y2﹣x2C.2x+2y=4xy D.x4÷x2=x24.如图,直线,若,,则的大小为()A. B. C. D.5.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为()A.1个B.2个C.3个D.4个6.如图,等边三角形ABC,B点在坐标原点,C点的坐标为(4,0),则点A的坐标为()A.(2,3)B.(2,)C.(,2)D.(2,7.2018年,淮南市经济运行总体保持平稳增长,全年GDP约为1130亿元,GDP在全省排名第十三.将1130亿用科学记数法表示为()A.11.3×1010B.1.13×1010C.1.13×1011D.1.13×10128.如果a:b=3:2,且b是a、c的比例中项,那么b:c等于()A.4:3 B.3:4 C.2:3 D.3:29.如图,点A、B、C在半径为2的圆O上,且∠BAC=60°,作OM⊥AB于点M,ON⊥AC于点N,连接MN,则MN的长为()A.1 C.210.在半径为8cm的圆中,垂直平分半径的弦长为( )A.4cm B.C.8cm D.11.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是2612.如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3作x轴的垂线,交直线y=2x于点B3;按B3此规律作下去,则点B n的坐标为()A.(2n,2n﹣1)B.(2n,2n+1)C.(2n+1,2n)D.(2n﹣1,2n)二、填空题13.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为_____.14.﹣3的绝对值的倒数的相反数是_____.15.一个不透明的口袋中有3个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是白球的概率是_____.16.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为______.17.已知a 2+2a=-2,则22(21)(4)a a a +++的值为________. 18.如图所示,是一个运算程序示意图,若第一次输人k 的值为216,则第2019次输出的结果是______.三、解答题19.如图是某种品牌的篮球架实物图与示意图,已知底座BC =0.6米,底座BC 与支架AC 所成的角∠ACB =75°,支架AF 的长为2.5米,篮板顶端F 点到篮框D 的距离FD =1.4米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,求篮框D 到地面的距离.(精确到0.1米.参考数据:cos75°≈0.3,sin75°≈0.9,≈1.4)20.某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90x+50 90任务完成后,统计发现销售员小王90天内日销售量p(件)与时间(第x天)满足一次函数关系p=﹣2x+200.设小王第x天销售利润为W元.(1)直接写出W与x之间的函数关系式,井注明自变量x的取值范围;(2)求小生第几天的销售量最大?最大利润是多少?(3)任务完成后,统计发现平均每个销售员每天销售利润为4800公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金.请计算小王一共可获得多少元奖金?21.某校为了解七年级学生体育课足球运球的掌握情况,随机抽取部分七年级学生足球运球的测试成绩作为一个样本,按A、B、C、D四个等级进行统计,制成了如图所示的不完整的统计图:根据所给信息,解答以下问题:(1)在扇形统计图中,求等级C对应的扇形圆心角的度数,并补全条形统计图;(2)该校七年级有300名学生,请估计足球运球测试成绩达到A等级的学生有多少人?22.某水果零售商店,通过对市场行情的调查,了解到两种水果销路比较好,一种是冰糖橙,一种是睡美人西瓜.通过两次订货购进情况分析发现,买40箱冰糖橙和15箱睡美人西瓜花去2000元,买20箱冰糖橙和30箱睡美人西瓜花去1900元.(1)请求出购进这两种水果每箱的价格是多少元?(2)该水果零售商在五一期间共购进了这两种水果200箱,冰糖橙每箱以40元价格出售,西瓜以每箱50元的价格出售,获得的利润为w元.设购进的冰糖橙箱数为a箱,求w关于a的函数关系式;(3)在条件(2)的销售情况下,但是每种水果进货箱数不少于30箱,西瓜的箱数不少于冰糖橙箱数的5倍,请你设计进货方案,并计算出该水果零售商店能获得的最大利润是多少?23.某单位需要购买一些钢笔和笔记本.若购买2支钢笔和1本笔记本需42元,购买3支钢笔和2本笔记本需68元.(1)求买一支钢笔要多少钱?(2)若购买了钢笔和笔记本共50件,付款可能是810元吗?说明理由.24.如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)25.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=PA•PE;(3)若AE-AP=PC=4,求圆O的半径.【参考答案】***一、选择题二、填空题13.1514.-13 15.1316.113y x =-+ 17.618.三、解答题19.篮框D 到地面的距离是2.9米.【解析】【分析】延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,解直角三角形即可得到结论.【详解】解:延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,在Rt △ABC 中,tan ∠ACB =,AB BC∴AB =BC•tan75°=0.60×3.732=2.22,∴GM =AB =2.22,在Rt △AGF 中,∵∠FAG =∠FHE =60°,sin ∠FAG =,FG AF∴sin60°=,2.52FG = ∴FG =2.125,∴DM =FG+GM ﹣DF≈2.9米.答:篮框D 到地面的距离是2.9米.【点睛】考查解直角三角形的应用,构造直角三角形,选择合适的锐角三角函数是解题的关键.20.(1)221802000(150)W=10010000(5090)x x xx x⎧-++≤<⎨-+≤≤⎩;(2)小王第45天的销售利润最大,最大利润为6050元;(3)小王一共可获得6200元奖金.【解析】【分析】(1)依据题意销售利润=销售量×(售价-进价)易得出销售利润为W(元)与x(天)之间的函数关系式;(2)依据(1)中函数的增减性求得最大利润;(3)根据销售利润为W(元)与x(天)之间的函数关系式,求出利润超过4800元的天数即可求得可获得的奖金金额.【详解】(1)依题意:(50)(150) W=90(5090)p x xp x+≤<⎧⎨≤≤⎩,整理得221802000(150) W=10010000(5090)x x xx x⎧-++≤<⎨-+≤≤⎩;(2)①当1≤x<50时,W=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵﹣2<0,∴抛物线开口向下,∴当x=45时,W有最大值为6050;②当50≤x≤90时,W=﹣100x+10000,∵﹣100<0,∴W随x的增大而减小,∴当x=50时,W有最大值为5000,∵6050>5000,∴当x=45时,W的值最大,最大值为6050,即小王第45天的销售利润最大,最大利润为6050元;(3)①当1≤x<50时,令W=4800,得W=﹣2(x﹣45)2+6050=4800,解得x1=20,x2=70,∴当W>4800时,20<x<70,∵1≤x<50,∴20<x<50;②当50≤x≤90时,令W>4800,W=﹣100x+10000>4800,解得x<52,∵50≤x≤90,∴50≤x<52,综上所述:当20<x<50时,W>4800,即共有51﹣21+1=31天的销售利润超过4800元,∴可获得奖金200×31=6200元,即小王一共可获得6200元奖金.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.21.(1)117°;补图见解析;(2)30人.【解析】【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得,根据以上所求结果即可补全图形;(2)总人数乘以样本中A等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×1340=117°,补全条形图如下:(2)估计足球运球测试成绩达到A级的学生有300×440=30人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)每箱冰糖橙进价为35元,每箱睡美人西瓜进价为40元;(2)w=﹣5a+2000;(3)当购买冰糖橙30箱,则购买睡美人西瓜170箱该水果零售商店能获得的最大利润,最大利润为1850元.【解析】【分析】(1)设每箱冰糖橙x元,每箱睡美人西瓜y元,根据“买40箱冰糖橙和15箱睡美人西瓜花去2000元,买20箱冰糖橙和30箱睡美人西瓜花去1900元”列出方程组并解答;(2)根据(1)的结论以及“利润=售价﹣成本”解答即可;(3)设购买冰糖橙a箱,则购买睡美人西瓜为(200﹣a)箱,根据“每种水果进货箱数不少于30箱,西瓜的箱数不少于冰糖橙箱数的5倍”列出不等式并求得a的取值范围,再根据一次函数的性质解答即可.【详解】(1)设每箱冰糖橙进价为x元,每箱睡美人西瓜进价为y元,由题意,得40152000 20301900x yx y+=⎧⎨+=⎩,解得:3540 xy=⎧⎨=⎩,即设每箱冰糖橙进价为35元,每箱睡美人西瓜进价为40元;(2)根据题意得,w=(40﹣35)a+(50﹣40)(200﹣a)=﹣5a+2000;(3)设购买冰糖橙a箱,则购买睡美人西瓜为(200﹣a)箱,则200﹣a≥5a且a≥30,解得30≤a1 333≤,由(2)得w=﹣5a+2000,∵﹣5,w随a的增大而减小,∴当a=30时,y最大.即当a=30时,w最大=﹣5×30+2000=1850(元).答:当购买冰糖橙30箱,则购买睡美人西瓜170箱该水果零售商店能获得的最大利润,最大利润为1850元.【点睛】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.23.(1)16;(2)不可能,理由见解析.【解析】【分析】(1)设一支钢笔x元,一本笔记本y元,根据“购买2支钢笔和1本笔记本需42元,购买3支钢笔和2本笔记本需68元.”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设学校购买m支钢笔,则购买(50﹣m)本笔记本,根据总价=单价×数量结合购买的费用为810元,即可得出关于m的一元一次方程,解得m的值为不大于50的正整数即可.【详解】解:(1)设一支钢笔x元,一本笔记本y元,根据题意得:242 3268 x yx y+=⎧⎨+=⎩,解得:1610 xy=⎧⎨=⎩.答:一支钢笔16元,一本笔记本10元.(2)设学校购买m支钢笔,则购买(50﹣m)本笔记本,根据题意得:16m+10(50﹣m)=810,解得:m=52>50,不符合题意.答:若购买了钢笔和笔记本共50件,付款不可能是810元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次方程.24.篮板顶端D到地面的距离约为3.7m.【分析】延长AC、DE交于点F,则四边形BCFE为矩形,根据sin∠BAC=BCAB,求EF,根据tan∠DBE=DEBE,求DE,再求DF即可.【详解】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=BC AB,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=DE BE,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.【点睛】本题考查的是解直角三角形的应用,掌握正切、正弦的概念、熟记锐角三角函数的定义是解题的关键.25.(1)证明见解析;(2)证明见解析;(3)5.【解析】【分析】(1)OA=OC,则∠OCA=∠OAC,CD∥AP,则∠OCA=∠PAC,即可求解;(2)证明△PAC∽△PCE,即可求解;(3)利用△PAC∽△CAB、PC2=AC2-PA2,AC2=AB2-BC2,即可求解.【详解】解:(1)∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠PAC,∴∠OAC=∠PAC,∴AC平分∠BAP;(2)连接AD,∵CD为圆的直径,∴∠CAD=90°,∴∠DCA+∠D=90°,∵CD∥PA,∴∠DCA=∠PAC,又∠PAC+∠PCA=90°,∴∠PAC=∠D=∠E,∴△PAC∽△PCE,∴PA PC PC PE,∴PC2=PA•PE;(3)AE=AP+PC=AP+4,由(2)得16=PA(PA+PA+4),PA2+2PA-8=0,解得,PA=2,连接BC,∵CP是切线,则∠PCA=∠CBA,Rt△PAC∽Rt△CAB,AP AC PC==,而PC2=AC2-PA2,AC2=AB2-BC2,AC AB BC其中PA=2,解得:AB=10,则圆O的半径为5.【点睛】此题属于圆的综合题,涉及了三角形相似、勾股定理运用的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。
两边及一角的平分线相等的三角形全等
三角形是初中数学中重要的几何形状,而全等三角形是其中的一个重要概念。
全等三角形具有相同的形状和相同的大小,是重要的几何性质之一。
在本文中,我们将探讨两边及一角的平分线相等的三角形全等的性质和应用。
一、全等三角形的定义1.1 两个三角形全等的定义全等三角形是指在几何形状上,两个三角形的对应边相等,对应角相等的情况下,两个三角形全等。
1.2 全等三角形的符号表示两个全等三角形可以用符号来表示,常用的表示方法是△ABC ≌ △DEF,其中△ABC 代表一个三角形,△DEF 表示另一个三角形。
二、两边及一角的平分线相等的三角形全等的条件2.1 两个三角形的对应边相等当两个三角形的对应边分别相等时,可以推断这两个三角形全等。
2.2 两边及一角的平分线相等若两个三角形的一个角和它们的两边的切线相等,则这两个三角形全等。
2.3 证明方法要证明两边及一角的平分线相等的三角形全等,可以通过 SSS 全等判据(三边对应相等判据)、SAS 全等判据(两边及夹角对应相等判据)、AAS 全等判据(两角及夹边对应相等判据)进行证明。
三、全等三角形的性质和应用3.1 全等三角形的性质全等三角形具有以下性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等(3)全等三角形的面积相等3.2 全等三角形的应用全等三角形的性质和条件在几何问题中有着广泛的应用:(1)在证明几何定理时,可以利用全等三角形的性质进行证明。
(2)在计算三角形的面积时,可以利用全等三角形的面积相等性质,简化计算步骤。
(3)在解决实际问题中,可以利用全等三角形的特性,求解未知长度和角度。
四、如何判断两边及一角的平分线相等的三角形全等4.1 观察三角形的给定条件要判断两边及一角的平分线相等的三角形全等,需要观察给定的三角形条件,看是否满足两边及一角的平分线相等的条件。
4.2 应用全等三角形的判定条件根据全等三角形的判定条件,可以利用SSS 全等判据、SAS 全等判据、AAS 全等判据等进行判断。
【全】初中数学三角形与全等三角形知识点总结
三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:从边形的一个顶点出发可以引条对角线,全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。
换句话说,全等形就是能够完全重合的图形。
能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
两个三角形全等用符号“≌”表示。
如∆ABC≌∆A'B'C'。
全等三角形单元大概念
全等三角形单元大概念一、全等三角形1、概念:能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”1、全等三角形的概念能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC 全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
全等三角形及性质PPT课件
角角边定理
两角和一边对应相等的两个三角 形全等,简称AAS。
若两个三角形有两个角相等,且 其中一个角的对边也相等,则这
两个三角形全等。
举例:若△ABC和△DEF中, ∠A=∠D,∠B=∠E,BC=EF,则
△ABC≌△DEF。
04
全等三角形与相似三角形关系
相似三角形定义及性质
定义:两个三角形如果它们 的对应角相等,则称这两个
行推导。
全等三角形在几何证明中作用
01
02
03
04
证明线段相等
通过全等三角形的对应边相等 来证明两条线段相等。
证明角相等
通过全等三角形的对应角相等 来证明两个角相等。
证明垂直关系
通过全等三角形的性质来证明 两条直线垂直。
证明平行关系
通过全等三角形的性质来证明 两条直线平行。
典型例题解析
例题1
已知△ABC和△DEF全等,且AB=DE,BC=EF,∠B=∠E。 求证:AC=DF。
HL全等(直角三角形)
在直角三角形中,斜边和一条直 角边分别相等的两个三角形全等 。
典型例题解析
解析
根据SAS全等的判定方法,已知两边和夹角分别相等,因 此可以判定△ABC和△DEF全等。
例2
已知△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC 于D,DE⊥AB于E,且AB = 6cm,求△DEB的周长。
边角边判定
如果两个多边形的一组对 应边和它们之间的对应角 都相等,则它们是全等的 。
角边角判定
如果两个多边形的一组对 应角和它们之间的夹边都 相等,则它们是全等的。
典型例题解析
1. 例题一
已知两个四边形ABCD和EFGH,其中AB=EF, BC=FG, CD=GH, DA=HE,且∠A=∠E, ∠B=∠F, ∠C=∠G, ∠D=∠H。求证:四边形ABCD与四边形EFGH全等。
全等三角形总结
全等三角形总结三角形是几何学中最基本的图形之一,而全等三角形则是其中的一个特殊类型。
在数学学习中,我们常常会遇到全等三角形的概念和相关的性质。
本文将对全等三角形进行总结,探讨其定义、性质、判定条件以及一些常见的应用。
一、定义全等三角形是指具有完全相等的三边和三角形的对应角度的三角形。
当两个三角形的所有边长和对应的角度均相等时,我们就可以说它们是全等三角形。
二、性质1. 全等三角形的对应边长相等。
根据定义,全等三角形的边长相等,这意味着它们的边长可以一一对应。
2. 全等三角形的对应角度相等。
由于全等三角形具有相等的边长和角度,它们的对应角度也必然相等。
3. 全等三角形的面积相等。
由于两个全等三角形的边长和角度均相等,它们的面积也必然相等。
三、判定条件1. SSS判定法。
当两个三角形的三边分别相等时,可以判定它们是全等三角形。
2. SAS判定法。
当两个三角形的两边和夹角分别相等时,可以判定它们是全等三角形。
3. ASA判定法。
当两个三角形的一个角度和两边对应的两个角度分别相等时,可以判定它们是全等三角形。
4. AAS判定法。
当两个三角形的两个角度和对应两边的角度分别相等时,可以判定它们是全等三角形。
四、应用1. 三角形的构造。
在实际应用中,我们经常需要构造与已知三角形全等的新三角形。
掌握全等三角形的判定条件,可以帮助我们准确地进行构造。
2. 解决几何问题。
在解决几何问题时,我们经常需要利用全等三角形的性质推理和证明一些结论。
全等三角形的性质可以为我们提供一些有力的推理依据。
3. 计算三角形的面积。
利用全等三角形的面积性质,我们可以简化三角形的面积计算过程。
通过找到一个已知三角形的全等三角形,我们只需要计算已知三角形的面积,然后将结果乘以对应边长的比例因子,即可得到另一个三角形的面积。
总结:全等三角形是具有完全相等的三边和三角形的对应角度的三角形。
它们的性质包括对应边长相等、对应角度相等以及面积相等。
第十四章第二节全等三角形的复习与探究课件
2. 如图,在△AFD和△CEB中,点A、E、F、 C在同一直线上,有下列四个论断:
①AD=CB,
②AF=CE,
③∠ D =∠ B , ④ ∠A=∠C.
请用其中三个作为条件,余下一个作为结论,编一道 数学问题,并说出解答过程。
已知:
D A
__________________
说明:
E F
__________________
1、生态作业:P70—71页
2、练习册:P53—54页 P64页
①要视察待说明的线段或角:在哪两个可能全等的三 角形中。
②要说明两个三角形全等的思路:
题目给的直接条件是什么?图形的隐含条件 是什么?需要说明的间接条件是什么?
三、图形变化中探究全等三角形
1、两个大小不同的等腰直角三角板摆放成如图1所示的 情况,图2是由它抽象出的几何图形,B、C、E在同一 条直线上,联结BE、DC。
已知两角: 找它们的夹边(A.S.A)
找其中一角的对边(A.A.S)
C
(1)△ACE ≌△ ADE (A.A.S) 3
(2)△ACB ≌△ ADB (S.A.S)
1 A
E
2
B
4
(3)△BCE ≌△ BDE
D
(S.A.S) 或(S.S.S)或(A.A.S)或(A.S.A)
二、全等三角形性质与判定的综合应用
找这条边的邻角(AAS)
如图2
找这个角的邻边 (SSA)
图1
不能用来判定一般三角形全等
图2
说明两个三角形全等的基本思路:
(3) 已知两角
找两角的夹边(ASA) 找夹边外的任意边(AAS)
二、全等三角形性质与判定的综合应用
全等三角形知识点梳理
全等三角形知识点梳理全等三角形是指具有相同形状和相等大小的三角形。
在几何学中,全等三角形是一个重要的概念,它们具有许多有趣的性质和定理。
本文将对全等三角形的相关知识进行梳理,以帮助读者更好地理解和应用这一概念。
一、全等三角形的定义全等三角形是指具有相同形状和相等大小的三角形。
当两个三角形的对应边长和对应角度都相等时,我们可以说它们是全等三角形。
二、全等三角形的判定条件判定两个三角形是否全等有多种方法,常用的有以下几种:1. SSS判定法:如果两个三角形的三边分别相等,则它们是全等的。
2. SAS判定法:如果两个三角形的两边和夹角分别相等,则它们是全等的。
3. ASA判定法:如果两个三角形的两角和夹边分别相等,则它们是全等的。
4. RHS判定法:如果两个直角三角形的斜边和两个直角边分别相等,则它们是全等的。
三、全等三角形的性质和定理全等三角形具有以下性质和定理:1. 全等三角形的对应角度相等:如果两个三角形全等,它们的对应角度一定相等。
这是全等三角形的基本性质之一。
2. 全等三角形的对应边长相等:如果两个三角形全等,它们的对应边长一定相等。
这也是全等三角形的基本性质之一。
3. 全等三角形的性质可以推导其他性质:由全等三角形的性质,我们可以推导出许多有用的结论,如对应边角相等、对应角边相等等。
4. 全等三角形的周长和面积相等:如果两个三角形全等,它们的周长和面积一定相等。
这是全等三角形的重要性质之一。
5. 全等三角形的角平分线相等:如果两个三角形全等,它们的对应角的角平分线也是相等的。
这是有关全等三角形的重要定理之一。
6. 全等三角形的高线相等:如果两个三角形全等,它们的对应边的高线也是相等的。
这是有关全等三角形的重要定理之一。
四、全等三角形的应用全等三角形的概念和定理在几何学中有广泛的应用,例如:1. 在证明几何定理时,可以利用全等三角形的性质进行推导和证明。
2. 在计算几何问题中,可以利用全等三角形的性质求解未知量。
14.3 全等三角形的概念与性质
第十四章 第二节 《全等三角形》§14.3全等三角形的概念与性质知识概要1.全等形:能够重合的两个图形叫做全等形.2.全等三角形:两个三角形是全等形,就说它们是全等三角形。
两个全等三角形,经过运动后一定重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。
如:若ABC ∆和DEF ∆是全等三角形,记作ABC ∆≌DEF ∆,符号“≌”表示全等,读作“全等于”,其中A 和D 、B 和E 、C 和F 分别是对应顶点;AB 和DE 、BC 和EF 、CA 和FD 分别是对应边;A ∠和D ∠、B ∠和E ∠、C ∠和F ∠分别是对应角。
注意:用符号表示两个全等三角形时,通常把对应顶点的字母写在对应的位置上。
3.全等三角形的性质:全等三角形的对应边相等,对应角相等。
4.画三角形:一个三角形有6个元素(三条边和三个内角),要完全确定一个三角形的形状和大小,关键就是确定它的三个顶点的相对位置。
如果确定下列情况之一中的三个元素,所画三角形也就确定了:(1)两角及其夹边;(2)两边及其夹角;(3)三边;(4)两角及其对边。
经典题型精析(一)全等三角形的概念例1.下列说法正确的是( )A .所有的等边三角形都是全等B .所有的直角三角形都全等C .有两边对应相等的两个直角三角形全等D .斜边对应相等的两个等腰直角三角形全等随堂练习:下列说法正确的是( )A .全等三角形是指形状相同的两个三角形B .全等三角形的周长和面积都相等C .全等三角形是指面积相等的两个三角形D .所有的等边三角形都是全等三角形例2.如图,ABC ∆≌AED ∆,写出其中的对应边与对应角。
随堂练习:(1)如图,ABC ∆≌ADE ∆,D B ∠=∠,则AC 与_________是对应边,=∠CAB _________.(2)如图,ABC ∆中,090=∠BCA ,AC BC =,以AC 为斜边作ACD Rt ∆,CD 与AB 相交于点E ,作CE BF ⊥,垂足为F ,若BF 平分CBE ∠,则图中共有全等三角形( )A .3对B .2对C .1对D .0对(二)全等三角形的性质例3.已知ABC ∆≌C B A ''∆,068=∠A ,070=∠B ,cm B A 13='',求AB 与C '∠的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节三角形的基本概念及全等三角形第二节三角形的基本概念及全等三角形河北8年中考命题规律,河北8年中考真题及模拟)三角形三边关系(2次)1.(2019河北15题3分)如图(1),M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图(2).则下列说法正确的是( )A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远 D.点M在BC上,且距点C较近,距点B较远2.(2019河北10题3分)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为( ) A.2 B.3 C.5 D.13三角形内外角关系(3次)3.(2019河北4题2分)如图,平面上直线a,b分别过线段OK的两端点(数据如图),则a,b相交所成的锐角是( )A.20° B.30° C.70° D.80°4.(2019河北20题3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.三角形的四条重要线段(2次)5.(2019河北2题2分)如图,在△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=( )A.2 B.3 C.4 D.56.(2019邢台模拟)下列各组数中,能成为一个三角形的三条边长的是( ) A.2,3,4 B.2,2,4 C.1,2,3 D.1,2,67.(2019邯郸模拟)三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是( )A.2或4 B.11或13 C.11 D.138.(2019唐山一模)在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( )A.3个 B.4个 C.5个 D.6个9.(2019保定模拟)等腰三角形的两条边长分别为3和52,那么这个三角形的周长是( )A.3+52 B.3+102C.43+52或23+2D.4+10.(2019沧州模拟)如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当点P在BC上从点B向点C移动而点R不动时,下列结论成立的是( )A.线段EF的长逐渐增大 B.线段EF的长逐渐增小 C.线段EF的长不改变 D.线段EF的长不能确定(第10题图)(第11题图)11.(2019邯郸模拟)如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE,若AC=5,BC=3,则BD的长为( )A.2.5 B.1.5 C.2 D.112.(2019唐山二模)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,求证:AB=DC.,中考考点清单)三角形分类及三边关系1.三角形分类 (1)按角分类(2)2.三边关系:三角形任意两边之和________第三边,任意两边之差小于第三边,如图,________>c,|a-b|3.判断几条线段能否构成三角形:运用三角形三边关系判定三条线段能否构成三角形,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成一个三角形.三角形内角和定理及内外角关系4.内角和定理:三角形的内角和等于________.5.内外角关系:三角形的一个外角________与它不相邻的两个内角之和.三角形的一个外角大于任何一个和它不相邻的内角.三角形中的四条重要线段6.全等三角形及其性质7.定义:能完全重合的两个三角形叫做全等三角形.8.性质:(1)全等三角形的对应边________,对应角________.(2)全等三角形的对应线段(角平分线、中线、高线、中位线)相等,对应________相等,对应面积________.全等三角形的判定(高频考点)全等三角形的证明及性质是河北中考的必考点,单独考查过,考查方式均为在解题过程中利用三角形全等的证明及性质得到相关结论.涉及到的背景有:①与三角形结合;②与四边形结合;③与圆结合.每年都在图形的平移、旋转及位似等图形变换的猜想证明题中考查,设问方式为证明线段之间的数量关系.9【方法技巧】证明三角形全等的思路判定边为角的对边→找任一角→AAS三错误!错误! 角已知一边找夹角的另一边边为角的邻边形和一角找夹边的另一角→ASA全找边的对角→AAS等已知两角找夹边找任一边→AAS找夹角已知两边找直角→HL或SAS找另一边→SSS,中考重难点突破)三角形三边关系【例1】(2019邯郸一模)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间距离的最大值为( )A.5 B.6 C.7 D.10【解析】已知4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,则三边长为5、4、6;5-4②选3+4、6、2作为三角形,则三边长为2、7、6;6-2离为7;③选4+6、2、3作为三角形,则三边长为10、2、3;2+31.(2019玉林中考)在等腰△ABC中,AB=AC,其周长为20m,则AB边的取值范围是( ) A.1cm三角形的内角和外角关系【例2】(2019原创预测)如图,CD是△ABC外角∠ACE的平分线,AB∥CD,∠A=50°,则∠B的大小是( ) A.50° B.60° C.40° D.30°【解析】∵AB∥CD,∴∠A=∠ACD=50°,又∵CD是△ABC外角∠ACE的平分线,∴∠ACD=∠DCE=50°,∴∠ACE=2∠ACD=100°,由三角形内外角关系可得∠B+∠A=∠ACE,∴∠B=∠ACE-∠A=100°-50°=50°.【学生解答】2.(2019舟山中考)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )A.15° B.17.5° C.20° D.22.5°三角形中重要线段的应用1【例3】在△ABC中,D为AB的中点,E为AC上一点,CE=AC,BE、CD交于点O,BE =5cm,则OE3=________cm.(例3题图)(例3题解图)11【解析】如解图,过D作DF∥BE,那么DF就是三角形ABE的中位线,∴DF=,AF=EF,又∵CE2311AC,∴CF=EF,∴OE就是三角形CDF的中位线,∵OE=BE=1.25cm.24【学生解答】3.如图,已知点D在AC上,点B在AE上,△ABC≌△ADE,且∠A=∠ABD.若∠A∶∠C=5∶3,则∠BDE等于________.全等三角形的证明及性质【例4】如图,已知点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.若点M在DE上,且DC=DM,试探究线段ME与BD的数量关系,并说明理由.【解析】连接MC,先证△BDC≌△ADC,再证△ADC≌△EMC. 【学生解答】4.(2019牡丹江中考)如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件________,使△ABC≌△DEF.图形旋转中全等三角形的判定与性质【例5】(2019苏州中考)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC 上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【解析】(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE.(2)由(1)可知△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.【学生解答】5.(2019陕西中考)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.求证:AB=BF.,中考备考方略)1.(新冀教八下P132练习第1题改编)三角形三边的长分别为5,7,10,连接各边中点所构成的三角形的周长为( )A.10 B.11 C.12 D.132.(新冀教七下P111习题A组第1题改编)如图,AD,AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE的度数为( )A.20° B.18° C.38° D.40°(第2题图)(第3题图)3.(2019石家庄模拟)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( ) A.165° B.120° C.150° D.135°4.(2019遂宁中考)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.3 B.4 C.6 D.5(第4题图)(第5题图)5.(2019威海中考)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°6.(2019保定二模)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE,下列结论中:①CE=BD;②△ADC是等腰直角三角形;③△AEC≌△AEB;④△CGD∽△CDF,一定正确的结论有( )A.1个 B.2个 C.3个 D.4个7.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去 B.带②去C.带③去 D.带①和②去8.(2019东莞中考)如图,△ABC三边的中线AD,BE,CF的公共点G,若S△ABC=12,则图中阴影部分面积是________.(第8题图)(第9题图)9.(2019保定模拟)如图,等腰三角形ABC中,∠A=40°,D是底边BC上一点,E、F分别是两腰上的点,且DB=CF,DC=BE,则∠EDF=________.10.(2019武汉中考)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF,求证:(1)△ABC≌△DEF.(2)AB∥DE.111.(2019原创预测)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CECD,过点B作3BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为( )A.6 B.7 C.8 D.10(第11题图)(第12题图)12.(2019石家庄模拟)如图,已知△ABC的面积为10cm2,BP为∠ABC的平分线,AP垂直BP于点P,则△PBC的面积为( )A.4cm2 B.5cm2 C.6cm2 D.7cm213.(2019石家庄联考)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( ) A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC(第13题图)(第14题图)14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则△ABC的周长是( )A.38 B.39 C.40 D.4115.(2019张家口模拟)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M. (1)求证:△ABC≌△DCB.(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的评论.16.(2019重庆中考)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE 平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME. 求证:①ME⊥BC;②DE=DN.17.(2019湖州中考)问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点.(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF. 小王同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立.思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程;(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图(2),若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比AC是3∶1,求的值.HFBC(3)延伸拓展:如图(3),若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D、E的运动速AB度相等,式用含mACHF(直接写出结果,不必写解答过程).。