全等三角形试卷及答案较难
2024年八年级数学上册《全等三角形》及答案解析
第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A. B.C. D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC的长是()A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.5m2 B.2m2 C.5m2 D.4m22二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°0<x<180,∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB= 50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个【答案】B【分析】根据全等形的定义,全等三角形的判定与性质,即可判断.【详解】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,故④说法正确;说法正确的有③④,共2个.故选:B.【点睛】本题考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.2.下列各组图形中,是全等形的是()A. B.C. D.【答案】B【分析】本题考查全等形,掌握能完全重合的两个图形是全等形是解题的关键.【详解】观察发现:A,C,D选项中两个图形不能完全重合,不是全等形;B选项中两个图形能完全重合,是全等形,故选B.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm【答案】C【分析】此题考查了全等三角形的性质,解题的关键熟练掌握性质的应用.根据全等三角形的对应边相等,再利用线段和差即可求解.【详解】∵△ABC≌△EBD,∴BE=AB=2cm,BC=BD=5cm,∴CE=BC-BE=3cm,故选:C.4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL【答案】B【分析】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.直接利用全等三角形的判定方法即可得出答案.【详解】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°,在△ABO和△DCO中,∠ABO=∠DCOBO=OC=CO∠BOA=∠COD,∴△ABO≌△DCO ASA∴证明△ABO≌△DCO的依据的是ASA,故选:B.5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D【答案】B【分析】本题考查三角形全等的判定,先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断即可,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL是解题的关键.【详解】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,A、添加BC=DE,不能判定△ABC≌△DEF;B、添加AE=DB,能判定△ABC≌△DEF;C、添加∠A=∠DEF,不能判定△ABC≌△DEF;D、添加∠ABC=∠D,不能判定△ABC≌△DEF;故选:B.6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对【答案】C【分析】本题主要考查三角形全等的判定定理,角平分线的性质,熟练掌握三角形全等的判定方程是解题的关键.根据全等三角形的判定分别证明△AOP≌△BOP(SAS),Rt△P AE≌Rt△PBF HL,△OEP≌△OFP (AAS),即可得到答案.【详解】解:∵OP平分∠MON,∴∠AOP=∠BOP,∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS);∴AP=BP,∵OP平分∠MON,PE⊥OM,PF⊥ON∴PE=PF,∵PE⊥OM于点E,PF⊥ON于点F,∴Rt△P AE≌Rt△PBF HL;∵OP平分∠MON,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴△OEP≌△OFP(AAS).∴图中全等三角形有3对故选C.7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点【答案】B【分析】本题考查的是三角形的角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:要使洒水龙头到草坪三条边的距离相等,则洒水龙头的位置应选在三角形三条角平分线的交点,故选:B8.如图,在△ABC 中,CD 平分∠ACB ,DE ⊥BC 于点E ,S △ABC =30,DE =4,BC =10,则AC 的长是()A.5B.6C.7D.8【答案】A 【分析】本题主要考查了角平分线的性质定理.过点D 作DF ⊥AC 于点F ,根据角平分线的性质可得DE =DF =4,再由S △ABC =S △DBC +S △DAC ,即可求解.【详解】解:如图,过点D 作DF ⊥AC 于点F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,DE =4,∴DE =DF =4,∵S △ABC =S △DBC +S △DAC ,S △ABC =30,BC =10,∴30=12DE ×BC +12DF ×AC ,∴30=12×4×10+12×4×AC ,∴AC =5,故选:A .9.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF ,给出下列五个结论:①DE =DF ;②BC =2DB ;③AD ⊥BC ;④AB =3BF ;⑤S △ADB =2S △BDF ;其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A 【分析】本题考查了全等三角形判定和性质,角平分线的性质,等腰三角形的判定和性质,由角平分线的性质和平行线的性质可证∠ACB=∠ABC,可得AC=AB,由等腰三角形的性质可得AD⊥BC,CD= BD,由“ASA”可证△CDE≌△BDF,可得S△CDE=S△BDF,CE=BF,DE=DF,即可求解.【详解】解:∵BC恰好平分∠ABF,∴∠ABC=∠CBF,∵BF∥AC,∴∠ACB=∠CBF,∴∠ACB=∠ABC,∴AC=AB,且AD是△ABC的角平分线,∴AD⊥BC,BC=2DB,故②,③正确,符合题意;在△CDE和△BDF中,∠ACB=∠CBF CD=BD∠CDE=∠BDF,∴△CDE≌△BDF ASA,∴S△CDE=S△BDF,CE=BF,DE=DF,故①正确,符合题意;∵AE=2BF,∴AC=3BF=AB,故④正确,符合题意;∵BD=CD,∴S△ADB=S△ACD,∵AE=2BF,∴S△ADB=S△ACD=3S△CDE=3S△BDF,故⑤错误,不符合题意;故选:A.10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.52m2 B.2m2 C.5m2 D.4m2【答案】A【分析】本题主要考查平行线间的距离,全等三角形的判定与性质,过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,证明△CDA≌△AEB(AAS),得出AE=CD=2m,AD=BE=m,CF=DE=AD+AE=m+2m=3m,再根据=S四边形DEFE-S△ACD×2-S△BCF求解即可【详解】解:过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,则∠CDA=∠AEB=90°,如图,∵a∥b∥c,相邻两条平行线间的距离为m,∴BF⊥直线c,CD=2m,BE=BF=m,∵∠CAB=90°,∠CDA=90°∴∠DCA+∠DAC=90°,∴∠DCA=∠EAB,在△CDA和△AEB中,∠DCA=∠EAB∠CDA=∠AEBAC=AB,∴△CDA≌△AEB(AAS),∴AE=CD=2m,AD=BE=m,∴CF=DE=AD+AE=m+2m=3m∴△ABC的面积=S四边形DEFE -S△ACD×2-S△BCF=3m×2m-12×2m×m×2-12×3m×m=52m2故选:A二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.【答案】130°/130度【分析】本题考查了全等三角形的性质与判定,邻补角的定义,掌握全等三角形的性质与判定是解题的关键.证明△ADC≌△ABE AAS得出∠ADC=∠ABE,根据邻补角即可求解.【详解】解:∵在△ADC和△ABE中,∠C=∠E∠A=∠AAD=AB,∴△ADC≌△ABE AAS,∴∠ADC=∠ABE,∵∠CDE=50°,∴∠ADC=180°-50°=130°,∴∠ABE=130°.故答案为:130°.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.【答案】105【分析】本题考查了全等图形的性质和四边形内角和公式,解题的关键在于熟练掌握全等图形的性质.根据全等的性质求出∠D=∠D ,利用四边形的内角和公式求出∠A的度数即可.【详解】解:∵四边形ABCD≌四边形A B C D .∴∠D=∠D ,∵∠D =105°,∴∠D=105°,∵∠B=90°,∠C=60°,∴∠A=360°-90°-60°-105°=105°,故答案为:105.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.【答案】∠BAD=∠CAE【分析】在△ABE与△ACD中,已知AE=AD,∠AED=∠ADE,即已知一角及角的一边对应相等,根据“AAS”的判定方法,可以添加已知边的对角对应相等即可.本题考查了全等三角形的判定定理:AAS:两角及其中一个角的对边对应相等的两个三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知结合图形及判定方法选择条件是正确解答本题的关键.【详解】解:可添加一个条件:∠BAD=∠CAE,使△ABD≌△ACE.理由:在△ABD与△ACE中,∠BAD=∠CAE∠AED=∠ADEBD=CE,∴△ABD≌△ACE(AAS).故答案为∠BAD=∠CAE14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.【答案】12【分析】根据平移的性质可得AC=A C ,BC=B C ,AC∥A C ,证明△ADC≌△C DA ,得到AD=C D,则S△C DC =12S△ACC,再推出S△ABC=S△ACC=24,则S△C DC=12S△ACC=12.【详解】解:由平移的性质可得AC=A C ,BC=B C ,AC∥A C ,∴∠DCA=∠DA C ,∠DAC=∠DC A ,∴△ADC≌△C DA ASA,∴AD=C D,∴S△C DC =12S△ACC,∵BC=CC ,△ABC的面积为24,∴S△ABC=S△ACC=24,∴S△C DC =12S△ACC=12.故答案为:12.【点睛】本题主要考查了平移的基本性质,全等三角形的性质与判定,三角形中线的性质,熟知平移的性质是解题的关键:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.【答案】52°/52度【分析】本题考查与角平分线有关的三角形的内角和定理.过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.【详解】解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵点M、N是∠ABC与∠ACB三等分线的交点,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=66°,∴∠ABC+∠ACB=180°-∠A=180°-66°=114°,∴∠MBC+∠MCB=23∠ABC+∠ACB=76°,在△BMC中,∠BMC=180°-∠MBC+∠MCB=180°-76°=104°∴∠BMN=12∠BMC=52°.故答案为:52°.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.【答案】3或7或10【分析】本题考查全等三角形的性质,关键是要分情况讨论.分情况,当E在线段AB上,或当E在线段AB延长线上,由HL即可求解.【详解】解:∵CA⊥AB,BM⊥AB,∠CAB=∠DBE=90°,∵ED=CB,当E在线段AB上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3tcm,∴BE=AB-AE=15-3tcm,∴15-3t=6,∴t=3;若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∴AE=0,∴t=0(舍去),当E在线段AB延长线上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3t=AB+BE=15+6=21(cm),∴t=7,若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∵AE=3t=AB+BE=15+15=30(cm),∴t=10,∴当t=3或7或10秒时,△DEB与△BCA全等.故答案为:3或7或10.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.【答案】见解析【分析】本题考查了全等三角形的判定与性质,由∠1=∠2可得∠EAD=∠BAC,再根据条件AB=AE,∠C=∠D,可利用AAS证明△ABC≌△AED AAS,再根据全等三角形对应边相等即可得出结论.【详解】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,∠C=∠D∠BAC=∠EADAB=AE,∴△ABC≌△AED AAS,∴BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.【答案】(1)见解析(2)BC∥AD,理由见解析【分析】本题考查了全等三角形的判定与性质,解决本题的关键是得到△ABC≌△CDA.(1)利用SAS证明△ABC≌△CDA即可;(2)由△ABC≌△CDA,得∠BCA=∠CAD,进而可以判断BC与AD的位置关系.【详解】(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,AB=CD∠BAC=∠ACDAC=CA,∴△ABC≌△CDA SAS;(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.【答案】(1)4;△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF(2)证明见解析【分析】本题主要考查了全等三角形的性质与判定,找出判定三角形全等的条件是解题的关键.(1)结合已知条件,再根据全等三角形的四个判定方法,即可找出所有的全等三角形;(2)先证明△AME≌△CNF SSS,即可证明∠MAE=∠NCF.【详解】(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,理由如下:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS;(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS,∴∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.【答案】(1)详见解析(2)125°【分析】本题考查了平行线性质和全等三角形的性质和判定的应用,证得△ABC≌△CDE是解题的关键.(1)根据平行线求出∠ACD=∠CDE,∠ACB=∠CED,再说明∠B=∠CDE,最后结合AC=CE运用AAS即可证明结论;(2)根据全等三角形性质得出∠A=∠E=55°,进而根据平角定义即可解答.【详解】(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE AAS.(2)解:∵∠A=55°,∵△ABC≌△CDE,∴∠A=∠ECD=55°,∴∠BCD=180°-∠ECD=180°-55°=125°.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.【答案】(1)∠ACE=37°(2)证明见解析(3)15【分析】本题主要考查了邻补角的性质、角平分线的性质与判定定理、三角形的面积等知识点,灵活运用相关知识点成为解答本题的关键.(1)根据邻补角的定义和垂直的定义可得∠ACD=74°、∠CHE=90°,进而得到∠ECH=37°,然后根据∠ACE=∠ACD-∠ECH即可解答;(2)如图:过E点分别作EM⊥BF于M,EN⊥AC与N,根据角平分线的性质定理以及角平分线的定义可得EM=EH、CE平分∠ACD、EN=EH,最后根据角平分线的判定定理即可解答;(3)根据S△ACD=S△ACE+S△CED结合已知条件可得EM=3,最后运用三角形的面积公式即可解答.【详解】(1)解:∵∠ACB=106°,∴∠ACD=180°-106°=74°,∵EH⊥BD,∴∠CHE=90°,∵∠CEH=53°,∴∠ECH=90°-53°=37°,∴∠ACE=∠ACD-∠ECH=74°-37°=37°.(2)证明:如图:过E点分别作EM⊥BF于M,EN⊥AC与N,∵BE平分∠ABC,∴EM=EH,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD )⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴S △ABE =12AB ⋅EM =15.22.问题提出:如图1,在四边形ABCD 中,∠BAD 与∠BCD 互补,∠B 与∠D 互补,AB =AD ,∠BAD =x °0<x <180 ,∠ACB =y °,数学兴趣小组在探究y 与x 的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y 757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y 与x 之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB 到E ,使BE =DC ,连接AE ,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x +y =135,AC =10,求四边形ABCD 的面积.【答案】(1)60,100,15;(2)y =90-12x ,理由见详解;(3)S 四边形ABCD =50【分析】(1)观察表格发现:x 每增加10,y 减小5,由此即可得出α、β、θ的值.(2)根据表格猜想:y =90-12x .延长CB 到E ,使BE =DC ,连接AE ,则可得△ABE ≌△ADE ,进而可得AE =AC ,∠EAB =∠CAD ,则可得∠EAC =x °.在△AEC 中,根据三角形内角和定理即可得出y 于x 之间的关系式.(3)延长CB 到E ,使BE =DC ,连接AE .由(2)得△ABE ≌△ADE ,则S △ABE =S △ADE ,进而可得S 四边形ABCD =S △AEC .由x +y =135,y =90-12x 可得x =90,y =45.则可得∠EAC =90°,∠AEC =∠ACE =45°,进而可得AE =AC =10,可得S △AEC 的值,即可得S 四边形ABCD 的值.【详解】(1)观察表格发现:x每增加10,y减小5,∴α=65-5=60,β=80+2×10=100,θ=40-3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90-12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,y=90-1x.2(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,∴S四边形ABCD∵x+y=135,y=90-1x,2x=135,∴x+90-12解得x=90,y=45,∴∠EAC=90°,∠AEC=∠ACE=45°,∴AE=AC=10,×10×10=50,∴S△AEC=12∴S=50.四边形ABCD【点睛】本题考查了数字类探索规律问题,以及全等三角形的判定和性质,三角形内角和定理.熟练掌握以上知识,证明出y与x之间的关系式是解题的关键.23.(1)【问题解决】如图①,∠AOB =∠DFE =90°,OC 平分∠AOB ,点F 在OC 上,∠DFE 的两边分别与OA ,OB 交于点D ,E .当FE ⊥OB ,FD ⊥OA 时,则FD 与FE 的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F 作两条相互垂直的射线FM ,FN ,分别交OA ,OB 于点M ,N ,判断FM 与FN 的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD ,如图③所示,∠DAB =∠DCB =90°,AC 是∠DAB 的平分线,AB =50m ,AD =30m ,直接写出该空地的面积.【答案】(1)FD =FE ;(2)FM =FN ,理由见详解;(3)1600m 2【分析】(1)根据“角平分线上的点到角两边的距离相等”可得FD =FE ;(2)先根据四边形内角和等于360°可得∠DFE =90°,由∠DFE =∠FMN =90°可得∠DFM =∠EFN ,再根据ASA 证明△DFM ≌△EFN ,则可得FM =FN ;(3)过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点.由(2)得△CFD ≌△CEB ,则可得FD =EB ,S △CFD =S △CEB ,进而可得S 四边形ABCD =S 四边形AECF .证明△ACF ≌△ACE (,则可得AF =AE ,由AE =AB -BE 、AF =AD +DF 可求得BE 的长,进而可得AF 、AE 的长,由此可得S 四边形AECF 的值,即可得S 四边形ABCD 的值.【详解】(1)解:∵OC 平分∠AOB ,点F 在OC 上,且FE ⊥OB ,FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°-∠FDO -∠FEO -∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,∠FDM =∠FENFD =FE ∠DFM =∠EFN,∴△DFM ≌△EFN (ASA ),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB,∴FD=EB,S△CFD=S△CEB,∴S四边形ABCD =S四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB-BE,AF=AD+DF,∴AB-BE=AD+DF,∴50-BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质,熟练掌握以上知识,正确的作出辅助线是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.【答案】(1)见解析;(2)见解析;(3)补全图形见解析,∠PCO=∠PDO或∠PCO+∠PDO=180°【分析】本题是三角形综合题目,考查了全等三角形的判定与性质、角平分线的性质等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键,属于中考常考题型.(1)先证明△DOE≌△COF(SAS),得∠PEC=∠PFD,再证△CPE≌△DPF(AAS),得PE=PF,然后证△OPE≌△OPF(SSS),得∠POE=∠POF,即可得出结论;(2)先证明△OCF≌△ODE(ASA),可得OF=OE,由(1)可得OP平分∠AOB;(3)过点P分别作PM⊥OA于M,PN⊥OB于N,分两种情况进行求解即可.【详解】解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P分别作PM⊥OA于M,PN⊥OB于N,∵OP是∠AOB的平分线,∴PM=PN,∠PMC=∠PND=90°,当PC=PD1时,在Rt△PMC和Rt△PND1中,PC=PD1,PM=PN∴Rt△PMC≌Rt△PND1(HL),∴∠PCO=∠PD1O;当PC=PD2时,同理得Rt△PMC≌Rt△PND2HL,∴∠PCM=∠PD2N;∵∠PD2N+∠PD2O=180°,∴∠PCO+∠PD2O=180°,综上所述,∠PCO与∠PDO的数量关系为∠PCO=∠PDO或∠PCO+∠PDO=180°;25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.【答案】(1)见解析;(2)50;(3)①见解析;63【分析】(1)证明△ABC≌△DAE AAS,即可得证;(2)同(1)法得到△AEP≌△BAG,△CBG≌△DCH,分割法求出图形面积即可;(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,易证△AFB≌△DP A,△AFC ≌△EQA,得到DP=AF,EQ=AF,再证明△DPG≌△EQG AAS,即可得出结论;②根据全等三角形的性质,求出AG的长,进而利用面积公式进行求解即可.【详解】解:(1)证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥CA,DE⊥AE,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ACB=∠DEA∠ABC=∠DAEBA=AD∴△ABC≌△DAE AAS,∴BC=AE.(2)由模型呈现可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CH=BG=3,则S实线围成的图形=12×4+6×3+6+4+3-12×3×6-12×3×6-12×3×4-12×3×4=50.(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q.图3由【模型呈现】可知,△AFB≌△DP A,△AFC≌△EQA,∴DP=AF,EQ=AF∴DP=EQ,∵DP⊥AG,EQ⊥AG∴∠DPG=∠EQG=90°,在△DPG和△EQG中,∠DPG=∠EQG∠DGP=∠EGQDP=EQ∴△DPG≌△EQG AAS,∴DG=GE.②由①可知,BF=AP,FC=AQ,∴BC=BF+FC=AP+AQ,∵BC=21,∴AP+AQ=21,∴AP+AP+PG+GQ=21,由①△DPG≌△EQG得∴PG=GQ,∴AP+AP+PG+PG=21,∴AP+PG=10.5,∴AG=10.5,∴S△ADG=1×10.5×12=63.2。
全等三角形经典题型50题(含答案)
全等三角形证明经典50 题(含答案)1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求ADAB CD延伸 AD 到 E,使 DE=AD,则三角形ADC全等于三角形EBD即 BE=AC=2 在三角形 ABE 中 ,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又 AD 是整数 ,则 AD=512. 已知: D 是 AB 中点,∠ ACB=90°,求证:CD AB2ADC B3.已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A21B EC F D证明:连结 BF 和 EF。
由于 BC=ED,CF=DF,∠ BCF=∠ EDF。
因此三角形 BCF 全等于三角形 EDF(边角边 )。
因此 BF=EF,∠ CBF=∠ DEF。
连结 BE。
在三角形BEF 中 ,BF=EF。
因此∠ EBF=∠ BEF。
又由于∠ ABC=∠AED。
因此∠ABE=∠AEB。
因此 AB=AE。
在三角形 ABF 和三角形 AEF中, AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF。
因此三角形 ABF 和三角形 AEF全等。
因此∠ BAF=∠ EAF (∠ 1=∠ 2)。
A4. 已知:∠ 1=∠ 2, CD=DE, EF//AB,求证: EF=AC 1 2证明:过 E 点,作 EG//AC,交 AD 延伸线于 G 则∠ DEG=∠ DCA,F ∠DGE=∠ 2又∵CD=DE∴ ⊿ADC≌ ⊿ GDE(AAS)∴EG=AC∵ EF//AB∴∠ DFE=∠ 1∵ ∠ 1=∠ 2∴ ∠ DFE=∠ DGE∴ EF=C EG∴ EF=AC DEB5.已知:AD均分∠ BAC,AC=AB+BD,求证:∠B=2∠C ACB D证明:在 AC上截取AD=AD∴ ⊿ AED≌ ⊿ ABD AE=AB,连结(SASED∵ AD)均分∠ BAC∴ ∠∴ ∠ AED=∠ BEAD=∠ BAD 又∵ AE=AB,,DE=DB∵ AC=AB+BDAC=AE+CE∴ CE=DE∴ ∠ C=∠ EDC∵∠ AED=∠ C+∠ EDC=2∠ C∴∠ B=2∠C6. 已知: AC 均分∠ BAD,CE⊥ AB,∠ B+∠ D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连结 CF 由于 CE⊥AB 因此∠CEB=∠ CEF= 90 °由于 EB= EF, CE= CE,所以△CEB≌△CEF 所以∠B =∠ CFE 由于∠ B+∠ D= 180 ,°∠CFE+∠ CFA= 180°因此∠ D=∠ CFA 由于AC 均分∠ BAD 因此∠ DAC=∠ FAC 又由于AC= AC因此△ ADC≌ △ AFC( SAS)因此 AD= AF 因此 AE= AF+ FE= AD+ BE12.如图,四边形 ABCD 中, AB∥ DC, BE、 CE 分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。
全等三角形证明经典40题(含答案)
1.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延伸AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22.已知:BC=ED,∠B=∠E,∠C=∠D,F 是CD 中点,求证:∠1=∠2证实:衔接BF 和EFADBC∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 衔接BE在三角形BEF 中,BF=EF ∴∠EBF=∠BEF. ∵∠ABC=∠AED. ∴∠ABE=∠AEB. ∴ AB=AE.在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF和三角形AEF全等.∴∠BAF=∠EAF (∠1=∠2).3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点G CG∥EF,可得,∠EFD=CGD DE =DC ∠FDE=∠GDC(对顶角)BA CDF2 1 E∴△EFD≌△CGDEF=CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC4.已知:AD等分∠BAC,AC=AB+BD,求证:∠B=2∠CA证实:延伸AB取点E,使AE=AC,衔接DE∵AD等分∠BAC∴∠EAD=∠C AD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证实:在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC等分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE.CE分离等分∠ABC.∠BCD,且点E在AD上.求证:BC=AB+DC.在BC上截取BF=AB,衔接EF∵BE等分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE又∵∠DCE=∠FCE , CE等分∠BCD ,CE=CE∴⊿DCE≌⊿FCE(AAS)∴CD=CF∴BC=BF+CF=AB+CD7.已知:AB=CD,∠A=∠D,求证:∠B=∠C证实:设线段AB,CD地点的直线交于E,则:△AED是等腰三角形.∴AE=DE而AB=CD∴BE=CE∴△BEC是等腰三角形∴∠B=∠C.8.P是∠BAC等分线AD上一点,AC>AB,求证:PC-PB<AC-AB在AC上取点E, 使AE=AB. ∵A E=ABAP=AP∠EAP=∠BAE,∴△EAP≌△BAP∴PE=PB. PC<EC+PE ∴PC<(AC-AE)+PB ∴PC-PB<AC-AB.9.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证实:延伸BE交AC于点F,可证△ABE≌△AFE∴∠ABE=∠AFE,AB=AF,BE=FE∴AC –AB =FC,FB=2BE∵∠ABC=3∠C∴∠ABE+∠FBC=3∠C∴∠AFB+∠FBC=3∠C∵∠AFB=∠C+∠FBC∴∠C+∠FBC+∠FBC=3∠C∴∠FBC=2∠C即∠FBC=∠C∴FB=FC∴AC-AB=FB=2BE10.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.解:延伸AD至BC于点E, ∵BD=DC ∴△BDC是等腰三角形∴∠DBC=∠DCB又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2即∠ABC=∠ACB ∴△ABC是等腰三角形∴AB=AC在△ABD和△ACD中{AB=AC ∠1=∠2BD=DC∴△ABD和△ACD是全等三角形(边角边)∴∠BAD=∠CAD∴AE是△ABC的中垂线∴AE⊥BC∴AD⊥BC11.如图,OM等分∠POQ,MA⊥OP,MB⊥OQ,A.B为垂足,AB交OM于点N.求证:∠OAB=∠OBA证实:∵OM等分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO=∠MBO=90∵OM=OM∴△AOM≌△BOM (AAS)∴OA=OB∵ON=ON∴△AON≌△BON (SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB12.如图,已知AD∥BC,∠PAB的等分线与∠CBA的等分线订交于E,CE的连线交AP于D.求证:AD+BC=AB.做BE的延伸线,与AP订交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角等分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角等分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC13.如图,△ABC中,AD是∠CAB的等分线,且AB=AC+CD,求证:∠C=2∠B延伸AC到 E 使AE=AC 衔接 ED∵ AB=AC+CD∴ CD=CE 可得∠B=∠E△CDE为等腰∠ACB=2∠B14.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)不雅看图前,在不添帮助线的情形下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出成果,不请求证实):证实:∵DC∥AB∴∠CDE=∠AED∵DE=DE,DC=AE∴△AED≌△EDC∵E为AB中点∴AE=BE∴BE=DC∵DC∥AB∴∠DCE=∠BEC∵CE=CE∴△EBC≌△EDC∴△AED≌△EBC15.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的等分线,BD 的延伸线垂直于过C点的直线于E,直线CE交BA的延伸线于F.求证:BD=2CE.证实:∵∠CEB=∠CAB=90°∴ABCE四点共元∵∠ABE=∠CBE∴AE=CE∴∠ECA=∠EAC取线段BD的中点G,衔接AG,则:AG=BG=DG∴∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)∴∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB∴△AEC≌△AGB∴EC=BG=DG∴BE=2CE16.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.证实:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS)17.如图:AE.BC交于点M,F点在AM上,BE∥CF,BE=CF.求证:AM是△ABC的中线.证实:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴AM是△ABC的中线.18.如图:在△ABC中,BA=BC,D是AC的中点.求证:BD⊥AC.∵△ABD和△BCD的三条边都相等∴△ABD=△BCD∴∠ADB=∠CD∴∠ADB=∠CDB=90°∴BD⊥AC19.AB=AC,DB=DC,F是AD的延伸线上的一点.求证:BF=CF在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC20.如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.AE=DF,CE=FBCE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DC BF=CE△ABF=△CDE∴AF=DE21.公园里有一条“Z”字形道路ABCD,如图所示,个中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试解释三只石凳E,F,M正好在一条直线上.证实:衔接EF ∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM和△CFM中BE=CF∠B=∠CBM=CM∴△BEM≌△CFM(SAS)22.已知:点 A.F.E.C 在统一条直线上, AF =CE,BE∥DF,BE=DF .求证:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD(两直线平行,内错角相等)∵BE=DF∴:△ABE≌△CDF(SAS )23.已知:如图所示,AB =AD,BC =DC,E.F 分离是DC.BC 的中点,求证: AE =AF.衔接BD;∵AB=ADBC=D∴∠ADB=∠ABD∠CDB=∠ABD;两角相加,∠ADC=∠ABC;∵BC=DCE \F 是中点∴DE=BF; ∵AB=ADDE=BF ∠ADC=∠ABC ∴AE=AF.24.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.证实:在△ADC,△ABC 中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA ∴△ADC≌△ABC(两角加一边) ∵AB=AD,BC=CD 在△DEC 与△BEC 中∠BCA=∠DCA,CE=CE,BC=CD ∴△DEC≌△BEC(双方夹一角) ∴∠DEC=∠BEC25.已知AB∥DE,BC∥EF,D,C 在AF 上,且AD =CF,求证:△ABC≌△DEF. ∵AD=DF ∴AC =DF ∵AB//DE ∴∠A=∠EDF 又∵BC//EF∴∠F=∠BCA∴△ABC≌△DEF(ASA )26.已知:如图,AB=AC,BD AC,CE AB,垂足分离为D.E,BD.CE 订交于点F,求证:BE=CD .证实:ACDEF∵BD⊥AC∴∠BDC=90°∵CE⊥AB∴∠BEC=90°∴∠BDC=∠BEC=90°∵AB=AC∴∠DCB=∠EBC∴BC=BC∴Rt△BDC≌Rt△BEC(AAS) ∴BE=CD27.如图,在△AB C中,AD为∠BAC的等分线,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.证实:∵AD是∠BAC的等分线∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED与∠AFD=90°在△AED与△AFD中∠EAD=∠FAD AD=AD∠AED=∠AFD∴△AED≌△AFD(AAS ) ∴AE=AF在△AEO 与△AFO 中 ∠EAO=∠FAO AO=AO AE=AF∴△AEO≌△AFO (SAS )∴∠AOE=∠AOF=90° ∴AD⊥EF28.已知:如图, AC BC 于 C , DE AC 于 E , AD AB 于 A , BC=AE .若AB=5 ,求AD 的长?∵AD⊥AB ∴∠BAC=∠ADE 又∵AC⊥BC 于C,DE⊥AC 于 E 依据三角形角度之和等于180度∴∠ABC=∠DAED CBAE∵BC=AE,△ABC≌△DAE(ASA)∴AD=AB=529.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分离为 E.F,ME=MF.求证:MB=MC证实:∵AB=AC∴∠B=∠C∵ME⊥AB,MF⊥AC∴∠BEM=∠CFM=90°在△BME和△CMF中∵∠B=∠C ∠BEM=∠CFM=90° ME=MF∴△BME≌△CMF(AAS)∴MB=MC.30.在△ABC中,,,直线经由点,且于,于.(1)当直线绕点扭转到图1的地位时,求证:①≌;②;(2)当直线绕点扭转到图2的地位时,(1)中的结论还成立吗?若成立,请给出证实;若不成立,解释来由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE. ∵AC=BC,∴△ADC≌△CEB. ②∵△ADC≌△CEB, ∴CE=AD,CD=BE. ∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE. 又∵AC=BC,∴△ACD≌△CBE. ∴CE=AD,CD=BE. ∴DE=CE﹣CD=AD ﹣BE31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF(1)∵AE⊥AB,AF⊥AC, ∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC, 即∠EAC=∠BAF,AE BM CF在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,依据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.32.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.证实:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN33.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF在△ABF和△CDE中,AB=DE∠A=∠DAF=CD∴△ABF≡△CDE(边角边)∴FB=CE在四边形BCEF中FB=CEBC=EF∴四边形BCEF是平行四边形∴BC‖EF34.如图,已知AC∥BD,EA.EB分离等分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请解释来由在AB上取点N ,使得AN=AC∵∠CAE=∠EAN∴AE为公共, ∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBN∵BE为公共边∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD35.如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.证实:∵AD是△ABC的中线BD=CD ∵DF=DE(已知)∠BDE=∠FDC ∴△BDE≌△FDC 则∠EBD=∠FCD ∴BE∥CF(内错角相等,两直线平行).36.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.求证:.证实:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL )∴AF=CE∠BAF=∠DCE∴AB//CD37.如图,已知∠1=∠2,∠3=∠4,求证:AB=CD ∵,∠3=∠4∴OB=OC在△AOB 和△DOC 中∠1=∠2OB=OC∠AOB=∠DOC△AOB≌△DOC∴AO=DO AO+OC=DO+OB AC=DB在△ACB 和△DBC 中AC=DB A D ECBF,∠3=∠4BC=CB△ACB≌△DBC∴AB=CD38.如图,已知AC⊥AB,DB⊥AB,AC =BE,AE =BD,试猜测线段CE 与DE 的大小与地位关系,并证实你的结论.CE>DE.当∠AEB 越小,则DE 越小.证实:过D 作AE 平行线与AC 交于F,衔接FB由已知前提知AFDE 为平行四边形,ABEC 为矩形 ,且△DFB 为等腰三角形.RT△BAE 中,∠AEB 为锐角,即∠AEB<90°∵DF//AE ∴∠FDB=∠AEB<90°△DFB 中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°RT△AFB 中,∠FBA=90°-∠DBF <45°∠AFB=90°-∠FBA>45°∴AB>AF∵AB=CE AF=DE∴CE>DE 39.(10分)如图,已知AB =DC,AC =DB,BE =CE,求证:AE =DE. ∵AB=DC,AC=DB,BC=BC∴△ABC≌△DCB,A CE D B A B E CD∴∠ABC=∠DCB又∵BE=CE,AB=DC∴△ABE≌△DCE∴AE=DE40.如图9所示,△ABC 是等腰直角三角形,∠ACB=90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F,求证:∠ADC=∠BDE.作CG ⊥AB,交AD 于H, 则∠ACH=45º,∠BCH=45º∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE又∵AC=CB, ∠ACH=∠B=45º∴△ACH≌△CBE, ∴CH=BE 又∵∠DCH=∠B=45º, CD=DB∴△CFD≌△BED∴∠ADC=∠BDE AB CD E F图9。
全等三角形难题集锦(整理)
1、(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图2,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.图1 图22、(1)如图1,现有一正方形ABCD ,将三角尺的指直角顶点放在A 点处,两条直角边也与CB 的延长线、DC 分别交于点E 、F .请你通过观察、测量,判断AE 与AF 之间的数量关系,并说明理由. (2)将三角尺沿对角线平移到图2的位置,PE 、PF 之间有怎样的数量关系,并说明理由.(3)如果将三角尺旋转到图3的位置,PE 、PF 之间是否还具有(2)中的数量关系?如果有,请说明3、E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.4、C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边ABC ∆和等边CDE ∆,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论: ① AD=BE ; ② AE PQ //; ③ AP=BQ ;④ DE=DP ; ⑤ ︒=∠60AOB ⑥CP=CQ ⑦△CPQ 为等边三角形. ⑧共有2对全等三角形 ⑨CO 平分AOE ∠ ⑩CO 平分BCD ∠ 恒成立的结论有______________(把你认为正确的序号都填上).CHF ED BAABC ED O P Q5、D 为等腰ABC Rt ∆斜边AB 的中点,DM ⊥DN ,DM ,DN 分别交BC ,CA 于点E ,F 。
(1)当MDN ∠绕点D 转动时,求证:DE=DF 。
(2)若AB=2,求四边形DECF 的面积。
《全等三角形》期末复习试卷及答案
第一学期八年级数学期末复习专题全等三角形姓名:_______________班级:_______________得分:_______________一选择题:1.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是1000,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对5.要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使,,在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角6.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE7.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( )A.△ABD≌△AFDB.△AFE≌△ADCC.△AEF≌△ACBD.△ABC≌△ADE8.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.410.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( )A.5B.4C.3D.211.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为().A. B. 1 C.2 D.512.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③13.如图所示,△ABC是等边三角形,AQ=PQ, PR⊥AB于R点,PS⊥AC于S点,PR=PS.则四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的结论是( )A.①②③④B.只有①②C.只有②③D.只有①③14.如图,AC=AD,BC=BD,连结CD交AB于点E,F是AB上一点,连结FC,FD,则图中的全等三角形共有()A.3对B.4对C.5对D.6对15.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.416.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有( )A.4个B.3个C.2个D.1个17.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段D K上,正方形BEFG的边长为4,则△DEK的面积为( )A.10B.12C.14D.1618.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )A.1个B.2个C.3个D.4个19.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:⑴BP=CM;⑵△ABQ≌△CAP;⑶∠CMQ的度数始终等于60°;⑷当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.420.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1B.2C.3D.421.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.22.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.23.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.24.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是 .25.如图,△ABC的角平分线交于点P,已知AB,BC,CA的长分别为5,7,6,则S△ABP∶S△BPC∶S△APC=___________.26.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE= .27.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.28.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.29.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC 上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.30.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为.31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,判断 EC与BF的关系,并说明理由.(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.33.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.34.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC 于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.36.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.37.如图(1)边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1)当点D运动到AB的中点时,求AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半.38.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1、B2、B3、A4、D5、B6、D7、D8、C9、D 10、B 11、C 12、D 13、A14、D 15、C 16、A 17、D.18、C 19、C 20、C 21、2 块. 22、55° 23、4 .24、①②③25、5∶7∶6 26、4; 27、12 cm2.28、9cm .29、1或4 30、2∠α+∠A=180°.31、平行且相等32、【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE.33、1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.35、证:延长AD到G,使得DG=AD.(1分)∵AE=EF∴∠EFA=∠EAF∴∠G=∠EFA∵∠EFA=∠BFG∴∠G=∠BFG∴BG=BF∵AC=BG∴BF=AC(1)证明:连结AD.∵AB=AC ∠BAC=90° D为BC的中点∴∠B=∠BAD=∠DAC=45°,AD⊥BC∴BD=AD, ∠BDA=90°又BE=AF∴△BDE≌△ADF (SAS)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形(2)△DEF仍为等腰直角三角形证明:连结AD∵AB=AC ∠BAC=90° D为BC的中点∴∠DAC=∠BAD=∠ABD=45°,AD⊥BC∴BD=AD, ∠BDA=90°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (SAS)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形37、(1)AE=(2)设AD=x,则CF=x,BD=6-x,BF=6+x∵∠B=60°,∠BDF=90°∴BF=2BD 即6+x=2×(6-x)∴x=2即AD=2 ∴BD=4,DF=∴S △BDF=×4×=(3)不变过F作FM⊥AG延长线于M由AD=CF,∠AED=∠FMC=90°,∠A=∠FCM=60°可得FM=DE易知△DEG≌△FMG由全等可得CM=AE,FG=GM即AC=AE+EC=CM+CE=EG+GM=2GE38、(1)延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论应是EF=BE+DF ;(2)如图,连接EF,延长AE、BF相交于点C,∵∠AOB=40°+90°+(90°﹣80°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣40°)+(80°+50°)=180°,延长FB到G,使BG=AE,连接OG,先证明△AOE≌△BOG,再证明△OEF≌△OGF,可得出结论应是EF=AE+BF ;即EF=2×(50+70)=240海里.答:此时两舰艇之间的距离是240海里.。
鲁教版七年级全等三角形练习50题及参考答案(难度系数0.54)
七年级三角形有关证明(难度系数0.54)一、单选题(共10题;共20分)1.如图,下列条件中,不能证明△ABC≌△DCB的是()A. AB=DC,AC=DBB. AB=DC,∠ABC=∠DCBC. BO=CO,∠A=∠DD. AB=DC,∠DBC=∠ACB【答案】 D【考点】三角形全等的判定2.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A. AB=ACB. BD=CDC. ∠B=∠CD. ∠ BDA=∠CDA【答案】B【考点】三角形全等的判定3.如图,在5×5格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有( )A. 5个B. 6 个C. 7个D. 8 个【答案】B【考点】三角形全等的判定4.下列命题中,真命题是().A. 周长相等的锐角三角形都全等;B. 周长相等的直角三角形都全等;C. 周长相等的钝角三角形都全等;D. 周长相等的等腰直角三角形都全等.【答案】 D【考点】三角形全等的判定5.如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有()A. 3对B. 5对C. 6对D. 7对【答案】D【考点】三角形全等的判定6.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A. 330°B. 315°C. 310°D. 320°【答案】B【考点】三角形全等的判定7.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A. 1B. 1或3C. 1或7D. 3或7【答案】C【考点】三角形全等的判定8.如图,已知△ABC≌△AED,则下列边或角的关系正确的是()A. ∠C=∠DB. ∠CAB=∠AEDC. AC= EDD. BC= AE【答案】A【考点】全等三角形的性质9.如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一个条件,某学习小组在讨论这个条件时给出了如下几种方案:①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有()A. 1种B. 2种C. 3种D. 4种【答案】D【考点】三角形全等的判定10.如图,在△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长为( )A. 3B. 4C. 5D. 6【答案】B【考点】全等三角形的判定与性质二、填空题(共8题;共8分)11.在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于________.【答案】20°【考点】全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质12.如图,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC≌△DEF,还需要的条件可以是________ ;(只填写一个条件)【答案】AB=DE【考点】三角形全等的判定13.如图,AB=AC ,BD=CD ,∠B=20°,则∠C=________°.【答案】20【考点】全等三角形的性质,全等三角形的判定14.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.【答案】50【考点】全等三角形的性质15.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中阴影部分的面积S 是________【答案】18【考点】全等三角形的判定与性质16.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图放置,顶点A、B、C恰好分别落在三条直线上,则△ABC的面积为________.【答案】252【考点】全等三角形的判定与性质17.如图由6个边长等的正方形的组合图形,则∠1+∠2+∠3= ________.【答案】135°.【考点】全等三角形的判定与性质18.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.【答案】55°.【考点】全等三角形的判定与性质三、计算题(共1题;共5分)19.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【答案】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6 ,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6 ,AE=3,∴BE= = = =9,∴AD=9.【考点】全等三角形的判定与性质四、解答题(共15题;共81分)20.已知:如图,AB∥DE,AB=DE,AC=DF.求证:△ABF≌△DEC.【答案】证明:∵AB∥DE,∴∠A=∠D .∵AC=FD,∴AF=DC .在△ABF和△DEC中,∵{AB=DE∠A=∠DAF=DC,∴△ABF≌△DEC(SAS).【考点】平行线的性质,三角形全等的判定21.已知:如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.求证:AB=AD.【答案】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∵在△ABC和△ADC中∴△ABC≌△ADC(AAS),∴AB=AD【考点】全等三角形的判定与性质22.求证:全等三角形对应边上的中线相等(请根据图形,写出已知、求证、证明)已知:求证:证明:【答案】解:已知:△ABC≌△A1B1C1,AD、A1D1分别是对应边BC、B1C1的中线求证:AD=A1D1证明:∵△ABC≌△A1B1C1∴AB=A1B1BC=B1C1∠B=∠B1∵AD、A1D1分别是对应边BC、B1C1的中线∴BD= 12BC;B1D1= 12B1C1∴BD=B1D1在△ABD和△A1B1D1中:{AB=A1B1∠B=∠B1 BD=B1D1∴△ABD≌△A1B1D1(SAS)∴AD=A1D1【考点】全等三角形的判定与性质23.求证:有一条直角边及斜边上的高对应相等的两个直角三角形全等.【答案】解:已知:如图,在Rt△ABC和Rt△A'B'C'中,∠ACB=∠A'C'B'=90°,CD⊥AB于D,C'D'⊥A'B'于D',BC=B'C',CD=C'D',求证:Rt△ABC≌Rt△A'B'C'.证明:∵CD⊥AB于D,C'D'⊥A'B'于D',∴∠CDB=∠C′D′B′=90°在Rt△CDB与Rt△C′D′B′中,∴Rt△CDB≌Rt△C′D′B′(HL),∴∠B=∠B′.在Rt△ABC和Rt△A'B'C'中,∴Rt△ABC≌Rt△A'B'C'.【考点】直角三角形全等的判定24.如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.【答案】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,∴∠BAC=∠DAE,在△ABC和△ADE中{AB=AD∠BAC=∠DAEAC=AE∴△ABC≌△ADE(SAS)【考点】全等三角形的判定25.如图,点E , F 在BC 上,AB =DC , ∠A =∠D , ∠B =∠C .求证:BE =FC .【答案】证明:在△ABF 与△DCE 中 ,{∠A =∠DAB =DC ∠B =∠C∴△ABF ≌△DCE (ASA)∴BF =CE∴BF -EF =CE -EF ,∴BE =CF【考点】全等三角形的判定26.已知:如图,点E ,A ,C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD . 求证:BC =ED .【答案】 证明:∵AB ∥CD ,∴∠BAC =∠ECD ,在△BAC 和△ECD 中 {AB =EC∠BAC =∠ECD AD =CD,∴△BAC ≌△ECD (SAS ),∴BC =ED【考点】三角形全等的判定27.已知如图,D 、E 分别在AB 和AC 上,CD 、BE 交于O ,AD=AE ,BD=CE .求证:OB=OC .【答案】证明:∵AD=AE BD=CE , ∴AB=AC ,在△ABE 和△ACD 中,,∴△ABE≌△ACD(SAS),∴∠B=∠C,在△BOD和△COE中,,∴△BOD≌△COE(AAS),∴OB=OC【考点】全等三角形的判定与性质28.如图,CD=CA,∠1=∠2,∠A=∠D.求证:DE=AB.【答案】证明:∵∠1=∠2,∴∠1+ECA=∠2+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,∠ACB=∠DCE,CA=CD,∠A=∠D,∴△ABC≌△DEC(ASA).∴DE=AB.【考点】全等三角形的判定与性质29.已知:AB=CD,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF.求证:AB∥CD.【答案】证明:∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,在Rt△AEB和Rt△DFC中,,∴Rt△AEB≌Rt△DFC(HL),∴∠B=∠C,∴AB∥CD【考点】全等三角形的判定与性质30.已知:如图,点E,F 在BC 上,BE=CF,∠A=∠D,∠BED=∠AFC,AF 与DE交于点O.求证:OA=OD.【答案】解:∵BE=CF,∠BED=∠AFC,∴BF=CE,∠AFB=∠CED,又∵∠A=∠D,∴△ABF≌△DCE(AAS),∴AF=DE,∵∠AFB=∠CED,∴OE=OF,∴AF-OF=DE-OE,即OA=OD.【考点】全等三角形的判定与性质31.已知:如图,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证:AE=AF【答案】解:连接AC,在△ADC和△ABC中,{AB=AD BC=DCAC=AC)∴△ADC≌△ABC(SSS)∴∠ECA=∠FCA∵点E,F分别是DC、BC的中点,∴2CE=DC,2CF=BC∵DC=BC∴CE=CF;在△AEC和△AFC中,{CE=CF∠ECA=∠FCAAC=AC)∴△AEC≌△AFC(SAS)∴AE=AF.【考点】全等三角形的判定与性质32.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【答案】解:证明:∵∠1=∠2,∠ACB+∠1=180°,∠ACD+∠2=180°,∴∠ACB=∠ACD,又∵∠B=∠C,AC=AC,∴△ABC≅△ADC(AAS)∴CB=CD.【考点】全等三角形的判定与性质33.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=________cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【答案】(1)10-2t(2)解:当t=2.5时,△ABP≌△DCP,∵当t=2.5时,BP=2.5×2=5,∴PC=10-5=5,∵在△ABP和△DCP中,{AB=DC∠B=∠C=90°BP=CP,∴△ABP≌△DCP(SAS)(3)解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6,∴PC=6,∴BP=10-6=4,2t=4,解得:t=2,CQ=BP=4,v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC= 12BC=5,2t=5,解得:t=2.5,CQ=BP=6,v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.【考点】全等三角形的判定与性质34.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【答案】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中{AB=DE∠ABC=∠DEFBC=EF∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF【考点】全等三角形的判定与性质五、综合题(共4题;共41分)35.已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠BDC的度数.【答案】(1)证明:∵ DE⊥AB于E ,∠C=90°,∴∠C=∠DEB=90°,在Rt△BCD与Rt△BED中,∵ DE=DC ,DB=DB,∴Rt△BCD≌Rt△BED(HL),∴∠DBC=∠DBE,∴ BD平分∠ABC;(2)解:∵∠A=36°,∴∠ABC=90°-∠A=54°,∵BD平分∠ABC,∴∠DBC=∠DBE=27°,∴∠BDC=∠A+∠EBD=36°+27°=63°.【考点】三角形内角和定理,三角形的外角性质,全等三角形的判定与性质36.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AC,AB上,且BD=CE,DC=BF,连结DE,EF,DF,∠1=60°(1)求证:△BDF≌△CED.(2)判断△ABC的形状,并说明理由.(3)若BC=10,当BD=________时,DF⊥BC.(只需写出答案,不需写出过程)【答案】(1)证明:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,{BD=CE∠B=∠CBF=CD,∴△BDF≌△CED(SAS);(2)解:△ABC是等边三角形,理由如下:由(1)得:△BDF≌△CED,∴∠BFD=∠CDE,∵∠CDF=∠B+∠BFD=∠1+∠CDE,∴∠B=∠1=60°,∵AB=AC,∴△ABC是等边三角形;(3)103【考点】全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定37.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?【答案】(1)解:经过1秒后,PB=3cm ,PC=5cm ,CQ=3cm ,∵△ABC 中,AB=AC ,∴在△BPD 和△CQP 中,,∴△BPD ≌△CQP (SAS )(2)解:设点Q 的运动速度为x (x≠3)cm/s ,经过ts △BPD 与△CQP 全等;则可知PB=3tcm ,PC=8﹣3tcm ,CQ=xtcm ,∵AB=AC ,∴∠B=∠C ,根据全等三角形的判定定理SAS 可知,有两种情况:①当BD=PC ,BP=CQ 时,②当BD=CQ ,BP=PC 时,两三角形全等;①当BD=PC 且BP=CQ 时,8﹣3t=5且3t=xt ,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ ,BP=PC 时,5=xt 且3t=8﹣3t ,解得:x= ;故若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为cm/s 时,能够使△BPD 与△CQP 全等【考点】三角形全等的判定38.如图,AB =AD ,BC =DC ,点E 在AC 上.(1)求证:AC 平分∠BAD ;(2)求证:BE =DE.【答案】 (1)证明:在△ABC 与△ADC 中, {AB =AD AC =AC BC =DC∴△ABC≌△ADC(SSS)∴∠BAC=∠DAC即AC平分∠BAD(2)证明:由(1)∠BAE=∠DAE在△BAE与△DAE中,得{BA=DA∠BAE=∠DAEAE=AE∴△BAE≌△DAE(SAS)∴BE=DE【考点】全等三角形的判定与性质。
各类型中高难度全等三角形125题(答案版)
1.已知:如图,AB ∥DE ,AC ∥DF ,BE =CF .求证:AB =DE .A DB EC F 【答案】∵ AB ∥ DE ,∴ ∠B =∠DEF∵AC ∥DF ,∴∠F =∠ACB∵ BE =CF ,∴ BE +EC =CF +EC 即 BC =EF∴∆ABC ≌∆DEF ,∴AB =DE .2.图中是一副三角板,45︒的三角板Rt ∆DEF 的直角顶点D 恰好在30︒的三角板Rt ∆ABC 斜边AB 的中点处,∠A = 30︒,∠E = 45︒,∠EDF =∠ACB = 90︒,DE 交AC 于点G ,GM ⊥AB 于M .(1)如图1,当DF 经过点C 时,作CN ⊥AB 于N ,求证:AM =DN .(2)如图2,当DF ∥AC 时,DF 交BC 于H ,作HN ⊥AB 于N ,(1)的结论仍然成立,请你说明理由.FCEGAM D N B图1ECFG HA B图2【答案】⑴ ∵ ∠A = 30︒,∠ACB = 90︒, D 是 AB 的中点,∴ BC =BD , ∠B = 60︒ ∴△BCD 是等边三角形.又∵CN ⊥DB ,∴DN =1DB ,2∵∠EDF = 90︒,∆BCD 是等边三角形.∴∠ADG = 30︒,而∠A = 30︒,∴GA =GD .∵ GM ⊥AB ,∴AM =1 AD 2又∵AD =DB ,∴AM =DN .⑵∵DF ∥AC ,∴∠BDF =∠A = 30︒,∠AGD =∠GDH = 90︒,∴∠ADG = 60︒.∵∠B = 60︒,AD =DB ,∴∆ADG ≌∆DBH ,∴AG =DH ,又∵∠BDF =∠A ,GM ⊥AB ,HN ⊥AB ,∴∆AMG ≌∆DNH .∴AM =DN .3.在正方形ABCD 中,AB 、BC 、CD 三边上分别有点E 、G 、F ,且EF ⊥DG .求证:EF =DG .⎨ ⎩ADA DEEM FFB G CBGC【答案】过点C 作 EF 的平行线,交 AB 于 M .易知CM = EF .从而证的∆BCM ≌ ∆CDG ,从而有 DG = CM ,故 EF = DG .4.在正方形 ABCD 中, E 、 F 、G 、 H 分别是 AB 、 BC 、CD 、 DA 边上的点,且 EG ⊥ FH ,求证: EG = FH .A HD A H N DGGEEMBF CBF C【答案】过点 E 作 EM ⊥ CD ,过点 F 作 FN ⊥ AD ,垂足分别为 M 、N . 由 EM ⊥ CD , FN ⊥ AD , EG ⊥ FH ,易得∠MEG = ∠NFH 因为 EM = BC , BC = CD , CD = NF ,所以 EM = NF 故∆EMG ≌ ∆NFH ,所以 EG = FH .5.∆ABC 中, ∠B = 90︒ , M 为 AB 上一点,使得 AM = BC , N 为 BC 上一点,使得CN = BM ,连 AN 、CM 交于 P 点.试求∠APM 的度数,并写出你的推理证明的过程.AMBN C【答案】∠APM 的度数为45︒证明过程如下:如图过点 M 作 AB 的垂线 MD ,使 MD = CN ,连接 DA 、 DN , 于是因为 MD ∥ CN 且 MD = CN ,所以四边形 MDNC 是平行四边形. 从而∠MDN = ∠MCN ,又因为CN = BM ,得到 DM = BM ,进而在∆MDA 与∆MBC 中, ⎧DM = BM ⎪∠DMA = ∠MBC = 90︒ , ⎪MA = BC PFP⎨ ⎩所以∆DMA ≌ ∆MBC ,这样 DA = MC ,而 MC = DN , 所以 DN = DA .又因为∠ADN = ∠ADM + ∠MDN= ∠ADM + ∠DAM = 90︒ , 所以得到∆ADN 是一个等腰直角三角形,所以∠AND = 45︒ ,利用 MC ∥ DN ,从而得到∠APM = ∠AND = 45︒ .ADB NC6.如图,在Rt ∆ABC 中, AB = AC ,AD ⊥ BC ,垂足为 D . E 、F 分别是CD 、AD 上的点,且CE = AF .如果∠AED = 62︒ ,那么∠DBF = .A【答案】28︒BDE7.E 、F 分别是正方形 ABCD 的 BC 、CD 边上的点,且 BE = CF .求证:AE ⊥ BF .ADF【答案】在∆ABE 和∆BCF 中⎧ AB = BC ⎪∠ABE = ∠BCF⎪BE = CF∴ ∆ABE ≌ ∆BCF BEC∴ ∠BAE = ∠CBF ∵ ∠BAE + ∠AEB = 90︒ ∴ ∠CBF + ∠AEB = 90︒ ∴ AE ⊥ BF8.E 、F 、G 分别是正方形 ABCD 的 BC 、CD 、AB 边上的点,GE ⊥ EF ,GE = EF .求证: BG + CF = BC .AD【答案】显然, ∆BEG ≌ ∆CFE ,GFBECM PC∴ BG = CE , BE = CF ∴ BG + CF = BC9.如图,矩形 ABCD 中, E 是 AD 上一点, CE ⊥ EF 交 AB 于 F 点,若 DE = 2 ,矩形周长为16 ,且CE = EF ,求 AE 的长.AEDFBC【答案】∵ FE ⊥ EC ,∴ ∠AEF + ∠DEC = 90︒ .∵ ∠AEF + ∠AFE = 90︒ , ∴ ∠AFE = ∠DEC .在三角形 AFE 与∆DEC 中, FE = CE , ∠A = ∠D = 90︒ , ∠AFE = ∠DEC , ∴ ∆AFE ≌ ∆DEC . ∴ AE = DC . ∵矩形周长为16 , ∴ AD + DC = 8 . ∵ AD = AE + DE ,∴且 DE = 2 .∴ 2 AE = 8 - DE . 即 AE = 3 .10.如图,已知∆ABC 中,∠ABC = 90︒,AB = BC ,三角形的顶点在相互平行的三条直线l 1 ,l 2 ,l 3 上,且l 1 ,l 2 之间的距离为2 ,l 2 ,l 3 之间的距离为3 ,则 AC 的长是 .Al 1 l 2【答案】2 Bl 311.两个全等的30︒ 、60︒ 的三角板 ADE 、 BAC ,如右下图所示摆放, E 、 A 、C 在一条直线上,连结 BD .取 BD 的中点 M ,连结 ME 、MC ,试判断∆EMC 的形状, 并说明理由.BMDEA C【解析】判断∆EMC 是等腰直角三角形.理由:如图,连结 AM .17MBA C∵ ∠DAE = 30︒ , ∠BAC = 60︒ ,∴ ∠DAB = 90︒ ∵ ∆ADE ≌ ∆BAC ,∴ AD = AB又∵ M 是 BD 的中点,∴ AM = DM = BM ∴ ∠ADM = ∠MAB = 45︒ ∴ ∠EDM = ∠EDA + ∠ADM = 60︒ + 45︒ = 105︒ ∴ ∠MAC = ∠MAB + ∠BAC = 45︒ + 60︒ = 105︒ ∴ ∠EDM = ∠MAC ∵ ED = CA ,∴ ∆EDM ≌ ∆CAM ∴ EM = CM , ∠DME = ∠AMC而∠DME + ∠EMA = 90︒ ,∴ ∠AMC + ∠EMA = 90︒ 即∠EMC = 90︒ ,∴ ∆EMC 是等腰直角三角形.12.已知等腰直角三角形 ABC , ∠C 为直角, M 为 BC 的中点. CD ⊥ AM .求证: ∠AMC = ∠DMB .求证: ∠AMC = ∠DMB .CA DB【答案】法一:如图,过 B 作 EB ⊥ BC ,交CD 延长线于 E .CE∵ ∠3 + ∠1 = 90︒ , ∠4 + ∠1 = 90︒ ,∴ ∠3 = ∠4 .又 AC = CB ,∴ Rt ∆CBE ≌ Rt ∆AMC ,∴ BE = CM , ∠5 = ∠1 . 又 BM = CM ,∴ BE = BM .∴ ∠MBD + ∠EBD = 90︒ ,而∠MBD = 45︒ ,∴ ∠EBD =∠MBD . 又 BD 为公共边,∴ ∆BED ≌ ∆BMD .∴ ∠5 = ∠2 .解法二:如图,作底边 AB 的高CE 交 AM 于 F ,则CE 亦为中线和角平分线,3 1 M4 2 ADB5 MDC ∴AE =CE =BE .又∠3 +∠CDE =∠4 +∠CDE = 90︒.∴∠3 =∠4 ,∴Rt∆DCE = Rt∆FAE ,∴AMA E D B=CE=2,∴∠EDF = 45︒=∠B ,故CM AC 1DF ∥BC .又 E 、M 为AB 、BC 的中点,∴连接EM ,则EM ∥AC .∴AC ⊥BC ,∴EM ⊥BC ,故EM ⊥DF .∴EM 为DF 的中垂线.∴∠FME =∠DME .而∠FME +∠1 =∠DME +∠2 = 90︒,∴∠1 =∠2 .解法三:如图,作CG =AG 的平分线CF 交AM 于F ,CA DB 则∠ACF =∠MCF = 45︒,即ACF =∠CBD = 45︒.∵AC ⊥BC ,C D ⊥AM ,∴∠CAF +∠CMF =∠BCD +∠CMF = 90︒.∴BM=1.AC 2又∠B =∠CAD ,∴∆ACF ≌∆CBD .∴CF =BD .又CM =BM ,∠MCF =∠MBD .∴∆CFM ≌∆BDM .∴∠FMC =∠DMB .解法四:如图,过D 作DG ⊥CB .CA∵∠B = 45︒,∴DG =BG .∵∠DCG +∠AMC =∠FAC +∠AMC = 90︒,∴∠DCG =∠FAC .∴∆DCG ∽∆MAC .∴DG∶CG =CM∶AC = 1∶2 ,则BG∶CG = 1∶2 .∵DG ∥AC ,∴BD∶AD = 1∶2 ,而BM∶AC = 1∶2 , B =∠CAD .∴∆BMD ∽∆ACD ,∴∠BMD =∠ACD .而∠ACD =MGM F3 1FM24AMC ,解法五:如图,延长CB 到 E ,使 BE = BC .连接 AE ,延长CD 交 AE 于G ,则 AC = BC = BE ,CE∴AM = CE = 2 .CM AC 1 ∴ Rt ∆ACM ∽ Rt ∆ECA .∴ ∠CAM = ∠E . ∵ ∠CAM + ∠ACF = 90︒ , ∠GCE + ∠ACF = 90︒ , ∴ ∠CAM = ∠GCE .即∠GCE = ∠E .∴ CG = GE . ∵ ∠CAE + ∠E = 90︒ , ∠ACG + ∠GCE = 90︒ ,∴ ∠CAE = ∠ACG ,∴ CG = AG ,从而 AG = GE .又∵ BC = BE ,所以 D 为∆AEC 的重心,∴ BD = 1.而 BM = 1 , ∠B = ∠CAD . AD 2AC 2∴ ∆BMD ∽ ∆ACD ,∴ ∠BMD =∠ACD . 而 ∠AMC = ∠ACF ,∴ ∠BMD = ∠AMC .解法六:如图,过 A 作 AH ⊥ AM ,与 BC 的延长交于 H .HD B∵ ∠1 + ∠2 = 90︒ , ∠1 + ∠AMC = 90︒ , ∴ ∠2 = ∠AMC , ∴ Rt ∆AHC ∽ Rt ∆MAC ,∴ HC = AC= 2 . AC MC而 AC = BC ,∴HC= 2 .BC∵ HA ∥ C D ,∴ AD = HC= 2 .BD BC又∵ AC BM = 2 , ∠CAD = ∠B ,∴ ∆ADC ∽ ∆BDM ,C MFFMAD BG而∠AMC = ∠ACD ,∴ ∠AMC = ∠BMD .解法七:如图,过 D 作 DE ⊥ BM ,垂足为 E .CA∵ ∠CAM + ∠CMA = 90︒ , ∠ECD + ∠CMA = 90︒ , ∴ ∠CAM = ∠ECD , ∴ Rt ∆CAM ∽ Rt ECD ,∴ DE = MC = 1 .CEAC2∵ ∠B = 45︒ , ∠DEB = 90︒ ,∴ DE = BE ,∴ BE = 1. CE 2设 ME = x ,CM = BE = a ,∴a - x = 1 ,∴ x = a. a + x 2 3∴ DE = BE = a - a = 2a ,∴ ME = 1 = MC,3 3 ∴ Rt ∆CAM ∽ Rt ∆EDM , ∴ ∠AMC = ∠BMD .DE 2 AC13.如图所示,已知在等腰直角三角形 ABC 中, ∠BAC 是直角, D 是 AC 上一点, AE ⊥ BD ,AE 的延长线交 BC 于 F ,若∠ADB = ∠FDC ,求证:D 是 AC 的中点.AFC【答案】过C 作CH 垂直于 AC 交 AF 延长线于 H 点;易证∆ABD ≌∆AHC , HC = AD ;进而证明∆FHC ≌∆FDC ,得到 HC = CD ,则 D 为 AC 中点.A14.如图所示,在等边∆ABC 中, DE ∥ BC , O 为∆ADE 的中心, M 为 BE 的中点, 求证OM ⊥ CM .M EDE【答案】如图所示,延长OM 至点 N ,使OM = MN ,连接OA 、OE 、OC 、 BN 、CN .AAD OEO N D EMMBCNB C因为OM = NM , BM = ME , ∠OME = ∠NMB , 故∆BMN ≌ ∆EMO ,则 BN = EO , ∠OEM =∠NBM . 因为 DE ∥ BC ,则∠DEB = ∠CBE , ∠OED = ∠CBN .因为O 为∆ADE 的中心,则OA = OE = BN , ∠OAE = ∠OED = 30︒ = ∠CBN . 因为 AC = BC ,故∆AOC ≌ ∆BNC ,从而OC = CN . 因为OM = MN ,故OM ⊥ CM .【点评】如果具备三角形相似的知识,我们就可以采取下面的解法. 如图所示,取 AE 的中点 N ,连接 MN 、OA 、ON 、OC . 因为O 为∆ADE 的中心,故∠OAN = 30︒ , OA =2ON . 因为 AN = NE , BM = EM ,故 AB = 2MN = AC .因为ON ⊥ AC , MN ∥ AB ,故∠MNE = 60︒ ,因为∠ONM = 30︒ ,故∆OAC ∽ ∆ONM ,∠OMN = ∠OCN ,则O 、M 、C 、N 四点共圆.因为ON ⊥ AC ,故OM ⊥ CM .15.已知 P 为等腰直角∆ABC 的斜边 AB 上任意一点, PE 、PF 分别为 AC 、BC 之垂线,垂足为 E 、 F . M 为 AB 之中点.则 E 、 M 、 F 组成等腰直角三角形.A ECF B【答案】解法一:如图,连接CM ,则CM 为 AB 之中线,亦为 AB 之高.P MAECFB∴ ∠CMA = 90︒ . ∵ ∠PEC = ∠PFC = ∠ECF = 90︒ , ∴ ECFP 为矩形,故 PE = CF . 又∵ ∠A = 45︒ ,∴ ∆AEP 为等腰直角三角形,∴ AE = PE .∴ AE = CF . 又∵ CM = AM , ∠MCF = ∠A = 45︒ , ∴ ∆AEM ≌ ∆CFM ,∴ ∠AME = ∠CMF , EM = FM . ∵ ∠CME + ∠AME = 90︒ ,∴ ∠CME + ∠CMF = 90︒ ,即∠EMF = 90︒ . ∴ ∆EMF 为等腰直角三角形. 解法二:如图,由 M 作 ME ' ⊥ AC , MF ' ⊥ BC ,则显然由于 M 为 AB 之中点, AC = BC , AC ⊥ BC ,AE E'CF F'B∴ ME 'CF ' 为正方形,故 ME ' = MF ' . 又设 ME ' 交 PF 于Q , 则∵ PE ⊥ AC , PF ⊥ BC ,∴ ∠EPF = ∠C = 90︒ .而∠PEE ' = ∠EE 'Q = 90︒ . ∴ EE 'QP 为矩形,故 EE ' = PQ . 同理 FF ' = QM .又∵ PF ∥ AC ,∴ ∠QPM = ∠A = 45︒ . ∴ ∆PQM 为等腰直角三角形, ∴ PQ = QM ,故 EE ' = FF ' .又 ME ' = MF ' , ∠EE 'M = ∠FF 'M = 90︒ . ∴ ∆EE 'M ≌ ∆FF 'M ,∴ ∠EME ' = ∠FMF ' , EM =FM . 又∠E 'MF + ∠FMF ' = 90︒ , ∴ ∠E 'MF + ∠EME ' = 90︒ .即∠EMF = 90︒ ,故∆MEF 为等腰直角三角形.解法三:如图,延长 FM 到Q ,使 MQ = FM ,连接 AQ .PMPMQ2 2 2 A QECFB∵ AM = BM ,∴ A 、 F 、 B 、Q 4 点组成平行四边形. ∴ AQ = FB , AQ ∥ FB .又∵ BC ⊥ AC ,∴ AQ ⊥ AC , ∴ ∠QAE = ∠FCE = 90︒ .又∵ PF ⊥ BC , ∠B = 45︒ ,∴ FP = FB .同理 EP = AE . ∵ ECFP 为矩形,∴ FP = CE , EP = CF ,故 AB .而CM ⊥ AB , ∴ AQ = CE , A E = CF . ∴ Rt ∆AEQ ≌ Rt ∆CFE . ∴ EQ = FE , ∠AQE = ∠CEF , ∠QEA = ∠EFC . ∵ ∠AQE + ∠QEA = 90︒ ,∴ ∠CEF + ∠QEA = 90︒ .故 PF= .QF∴ ∆FEQ 为等腰直角三角形.而 M 为底边之中点,所以∆EMF 亦为等腰直角三角形.解法四:如图,连接CM ,则因为 M 为 AB 之中点,所以CM ⊥ AB ,CM 平分∠ACB , 即∠MCB = 45︒ .由 F 向 MB 引垂线 FQ ,向CM 引垂线 FF ' ,显然 F 'FQM 为矩形.则 FF ' = MQ .AECFB又∵ ∆CF 'F 为等腰直角三角形, CF = 2FF ' = 2MQ . 又∵ PE ⊥ AC , PF ⊥ BC , AC ⊥ BC , ∴ ECFP 为矩形,故 EP = CF = 2MQ . 于是在Rt ∆EPF 和Rt ∆MQF 中, PF = FB =2QF , PF = , EP= ,∴ PF = EP ,QF MQQF MQ∴ ∆EPF ∽ ∆MQF ,故∠EFP =∠MFQ . 又∵ ∠PFM + ∠MFQ = 45︒ , ∵ ∠PFM + ∠EFP = 45︒ ,即 PF = BF .同理∠FEM = 45︒ , ∆EMF 为等腰直角三角形.PMPM QF'E解法五:如图,连接CP 、CM .AECFB∵ PF = BF , ∆ABC 为等腰直角三角形, ∴ ∠BPF = ∠BCM = 45︒ .∴ P 、C 、 F 、 M 4 点共圆.∴ ∠CMF = ∠CPF .又∵ ∠CPF = ∠CEF ,∴ ∠CEF = ∠CMF ,∴ E 、C 、 F 、 M 4 点共圆.∴ ∠MEF = ∠MCF = 45︒ , ∠MFE = ∠MCE = 45︒ ,∴ iEMF 是等腰直角三角形.16.长方形 ABCD 中, AB = 4 , BC = 7 , ∠BAD 的角平分线交 BC 于点 E , EF ⊥ ED 交 AB 于 F ,则 EF = .ADFBEC【解析】由 AB = 4 ,AE 平分∠BAD 可知 BE = AB = CD = 4 .由基本图可知∆BEF ≌∆CDE , 故 EF = DE又 BC = 7 , BE = 4 ,故CE = 3 .由勾股定理可知, DE = 5 . 从而可知 EF = 5 .【答案】517.如图,设∆ABC 和∆CDE 都是正三角形,且∠EBD = 62︒ ,则∠AEB A .124︒ B .122︒ C .120︒ D .118︒的度数是( )ABCD【答案】分析 既然题目这样问,说明这两个角之间必然能找到一定的联系. 解 易知∠ACE = ∠BCD , ∆AEC ≌ ∆BDC ,于是∠EAC = ∠DBC ,从而∠EBD = ∠CBD + ∠CBE = ∠EAC + ∠CBE ,在考虑到∠EAC + ∠AEC + ∠ACE + ∠CEB + ∠ECB + ∠EBD = 360,有:∠BEC + ∠AEC = 360 - 60 - 62 = 360 - ∠AEB 从而∠AEB = 122 ,选B 。
八年级数学上册 全等三角形单元试卷(word版含答案)
八年级数学上册全等三角形单元试卷(word版含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=22,∴OA=OP=22,∴P的坐标是(﹣22,0).综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.3.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据32ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE 即为CM+MN 的最小值,∵BC=32,∠ABC=45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE=BC•cos45°=32×22=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.4.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】如图1,当点D 在线段AB 上,且A D BC '时,45A DB B '∠=∠=︒,45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.5.如图,在四边形ABCD 中,∠A +∠C =180°,E 、F 分别在BC 、CD 上,且AB =BE ,AD =DF ,M 为EF 的中点,DM =3,BM =4,则五边形ABEFD 的面积是_____.【答案】12【解析】【分析】延长BM 至G ,使MG =BM ,连接FG 、DG ,证明△BME ≌△GMF (SAS ),得出FG =BE ,∠MBE =∠MGF ,证出AB =FG ,证明△DAB ≌△DFG (SAS ),得出DB =DG ,由等腰三角形的性质即可得DM ⊥BM ,由五边形ABEFD 的面积=△DBG 的面积,可求解.【详解】延长BM 至G ,使MG =BM =4,连接FG 、DG ,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.6.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值【详解】解:作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR 周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR 周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB ,PP″⊥OA ,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.7.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .8.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO 时,△POQ 是等腰三角形,如图2所示当点P 在BO 上时∵PO=AP-AO=2t-10,OQ=t当PO=QO 时,210t t -=解得10t =故答案为:103或10 【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.9.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.【详解】延长BD 交AC 于点E ,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD 平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC -CE=8-5=3,∵A ABD ∠=∠,∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD构建全等三角形是证明此题的关键.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF 的长,即B′F的长.【详解】解:根据折叠的性质可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC =-=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85,故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A (3,2),点B (1,0),以线段AB 为边作等腰三角形ABP ,使得点P 在坐标轴上.则这样的P 点有( )A .4个B .5个C .6个D .7个【答案】D【解析】【分析】 本题是开放性试题,由题意知A 、B 是定点,P 是动点,所以要分情况讨论:以AP 、AB 为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.13.如图,△ABC中,AB=AC,且∠ABC=60°,D为△ABC内一点,且DA=DB,E为△ABC 外一点,BE=AB,且∠EBD=∠CBD,连DE,CE. 下列结论:①∠DAC=∠DBC;②BE⊥AC ;③∠DEB=30°. 其中正确的是()A .①...B .①③...C .② ...D .①②③【答案】B【解析】【分析】 连接DC,证ACD BCD DAC DBC ∠∠≅=得出①,再证BED BCD ≅,得出BED BCD 30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】解:证明:连接DC ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠ACB=60°,∵DB=DA ,DC=DC ,在△ACD 与△BCD 中,AB BC DB DA DC DC =⎧⎪=⎨⎪=⎩, ∴△ACD ≌△BCD (SSS ),由此得出结论①正确;∴∠BCD=∠ACD=1302ACB ∠=︒ ∵BE=AB ,∴BE=BC ,∵∠DBE=∠DBC ,BD=BD , 在△BED 与△BCD 中,BE BC DBE DBC BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△BCD (SAS ),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC ∥AD ,∴∠DAC=∠ECA ,∵∠DBE=∠DBC ,∠DAC=∠DBC ,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA ,∴BE=BC ,∴∠BCE=∠BEC=60°+∠1,在△BCE 中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE 是AC 边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC ∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.14.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.15.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若△ABC 的周长为24,CE =4,则△ABD 的周长为( )A .16B .18C .20D .24【答案】A【解析】【分析】 根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE 是BC 的垂直平分线,∴DB=DC ,BC=2CE=8又∵AABC 的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD 的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,在直线AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .6个B .5个C .4个D .3个【答案】C【解析】【分析】根据等腰三角形的判定定理即可得到结论.【详解】解:根据题意,∵△PAB为等腰三角形,∴可分为:PA=PB,PA=AB,PB=AB三种情况,如图所示:∴符合条件的点P共有4个;故选择:C.【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.17.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(1,0)、(2,3),若顶点C 落在坐标轴上,则符合条件的点C有( )个.A.9 B.7 C.8 D.6【答案】C【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若CA=CB,②若BC=BA,③若AC=AB)讨论,通过画图就可解决问题.【详解】①若CA=CB,则点C在AB的垂直平分线上.∵A(1,0),B(2,3),∴AB的垂直平分线与坐标轴有2个交点C1,C2.②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有3个交点(A点除外)C3,C4,C5;③若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点C6,C7,C8,C9.而C8(0,-3)与A、B在同一直线上,不能构成三角形,故此时满足条件的点有3个.综上所述:符合条件的点C的个数有8个.故选C.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解答本题的关键.18.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.19.如图,ABC△是等边三角形,ABD△是等腰直角三角形,∠BAD=90°,AE⊥BD于点E.连CD分别交AE,AB于点F,G,过点A做AH⊥CD交BD于点H,则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△ADF≌△BAH;⑤DF=2EH.其中正确结论的个数为()A.5 B.4 C.3 D.2【答案】B【解析】【分析】①根据△ABC为等边三角形,△ABD为等腰直角三角形,可以得出各角的度数以及DA=AC,即可作出判断;②分别求出∠AFG和∠AGD的度数,即可作出判断;④根据三角形内角和定理求出∠HAB的度数,求证EHG DFA∠=∠,利用AAS即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH,又由③可知AH DF=,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,在DAF △和ABH 中 ()AFD BHA DAF ABHAAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF △≌ABH .∴DF AH =.⑤正确:∵150CAD ︒∠=,AH CD ⊥,∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.20.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x 轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】由点A、B的坐标可得到AB=22,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=22,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.。
全等三角形证明题分难度训练(含答案)
全等三角形证明题分难度训练难度一1个小问1.如图,AB//CD,AD和BC相交于点O,OA=OD.求证OB=OC.2.如图,在△ABC中,AB>AC,点D在AB上,且BD=CA,过点D作DE//AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证△DEB≌△ABC.3.如图,在△ABC中,∠ACB=90∘,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.4.如图,AB与CD交于点E,点E是线段AB的中点,∠A=∠B,连接AC、BD.求证:AC=BD.5.在四边形ABCD中,∠ABC=∠ADC=90°,BE⊥AC于E,DF⊥AC于F,CF=AE,BC=DA.求证:Rt△ABE≌Rt△CDF.第2页,共21页6.如图,点C,F在BE上,BF=EC,AB=DE,AC=DF.求证:∠A=∠D.难度二2个小问7.如图,AD=BC,AB//DE,∠DAB=70∘,∠E=40∘.(1)求∠DAE的度数;(2)若∠B=30∘,求证:AB=AE.8.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,求证:BC=BD-BE.9.如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.(1)求证:AE=BD;(2)求∠AFD的度数.第4页,共21页10.如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.11.如图,在△ABC中,点D是BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.12.如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE // AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.难度三含辅助线13.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系并证明.第6页,共21页14.已知△ABC、△CDE中,AB=BC,DC=DE,∠BAC=∠BCA=α,∠DCE=∠DEC=β,F是AE的中点,连接BF、DF.(1)如图1,当α+β=90°时,C、E、A三点在同一直线上,求证:BF⊥DF;(2)如图2,若BF⊥DF,且α+2β=130°,直接写出∠ABC的度数.15.如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连接AN,CM交于P点,求证:∠APM=45°.16.已知,如图,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°,试探究线段AD与EF的数量和位置关系,并加以证明.17.如图,在ABC中,∠ABC=45∘,AD,BE分别为BC,AC边上的高,连接DE,过点D作DF⊥DE于点D,G为BE中点,连接AF,DG.(1)如图1,若点F与点G重合,求证:AF⊥DF;(2)如图2,请写出AF与DG之间的关系并证明.第8页,共21页18.已知:如图,Rt△ABC中,AC>BC,∠ACB=90°,CD是△ABC的中线,点E在CD上,且∠AED=∠B.求证:AE=BC.第10页,共21页 参考答案1.证明:∵AD 与BC 相交于点O , ∴∠AOB =∠DOC . ∵AB //CD , ∴∠B =∠C . 在△AOB 和△DOC 中,{∠B =∠C,∠AOB =∠DOC,OA =OD,∴△AOB ≌△DOC (AAS ). ∴OB =OC .2.证明:∵DE //AC , ∴∠EDB =∠A . 在△DEB 和△ABC 中,{DE =AB,∠EDB =∠A,BD =CA,∴△DEB ≌△ABC (SAS ).3.证明 ∵ED ⊥AB ,∠ACB =90∘, ∴∠ADE =∠ACB =90∘,在△ABC 与△AED 中,{∠A =∠A,∠ACB =∠ADE,BC =ED,∴△ABC ≌△AED (AAS ), ∴AE =AB ,AC =AD , ∴AE -AC =AB -AD , ∴CE =DB .4.证明:∵点E是线段AB的中点,∴AE=BE,在△ACE和△BDE中,{∠A=∠BAE=BE∠AEC=∠BED,∴△ACE≌△BDE(ASA),∴AC=BD.5.解:如图,在Rt△ADC与Rt△CBA中,{DA=BCAC=CA,∴Rt△ADC≌Rt△CBA(HL),∴DC=BA.又∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠CFD=90°,在Rt△ABE与Rt△CDF中,{AE=CFAB=CD,∴Rt△ABE≌Rt△CDF(HL).6.证明:∵BF=EC,∴BF+FC=EC+FC,即BC=EF,在△ABC和△DEF中,{AB=DE BC=EF AC=DF,∴△ABC≌△DEF(SSS),∴∠A=∠D.7.解:(1)∵AB//DE,∴∠E=∠CAB=40∘,∵∠DAB=70∘,∴;(2)由(1)得,又∵,∴∠B=∠DAE,在▵ADE和▵BCA中,∴▵ADE≌▵BCA(AAS)∴AB=AE(全等三角形的对应边相等).8.(1)证明:∵∠BAC=DAE,∴∠BAC-∠BAE=∠DAE-∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)证明:∵∠BAC=∠DAE,∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE-BE=BD-BE.第12页,共21页9.解:(1)∵AC⊥BC,DC⊥EC,∴∠ACB=∠DCE=90°,∴∠ACE=∠BCD,在△ACE和△BCD中,{AC=BC∠ACE=∠BCD CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵∠ACB=90°,∴∠A+∠ANC=90°,∵△ACE≌△BCD,∴∠A=∠B,∵∠ANC=∠BNF,∴∠B+∠BNF=∠A+∠ANC=90°,∴∠AFD=∠B+∠BNF=90°.10.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,{AB=DB∠ABE=∠DBEBE=BE,∴△ABE≌△DBE(SAS);(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=12∠ABC=15°,在△ABE中,∠AEB=180°-∠A-∠ABE=180°-100°-15°=65°.11.(1)证明:∵D是BC的中点,∴BD=CD.在△ABD和△ECD中,{BD=CD,∠ADB=∠EDC, AD=ED,∴△ABD≌△ECD(SAS).(2)解:在△ABC中,点D是边BC的中点,∴S△ABD=S△ACD.∵△ABD≌△ECD,∴S△ABD=S△ECD.∵S△ABD=5,∴S△ACE=S△ACD+S△ECD=5+5=10.12.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,{BC=CE∠ABC=∠DCE AB=DC,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°-∠D-∠ECD=180°-22°-50°=108°,第14页,共21页∴∠AFG =∠DFC =∠CED -∠ACE =108°-22°=86°.13.(1)证明:在△AOB 和△AOC 中,{OB =OC ∠BOA =∠COA OA =OA,∴△AOB ≌△AOC (SSS ).(2)在CB 上截取CE =CA ,∵CD 平分∠ACB ,∴∠ACD =∠BCD ,在△ACD 和△ECD 中,{AC =CE ∠ACD =∠ECD CD =CD,∴△ACD ≌△ECD (SAS ),∴∠CAD =∠CED =60°, ∵∠ACB =90°, ∴∠B =30°, ∴∠EDB =30°, 即∠EDB =∠B ,∴DE =EB ,∵BC =CE +BE ,∴BC =AC +DE ,∴BC =AC +AD .14.证明:(1)如图1,延长DF 至G ,使FD =FG ,连接AG ,BG ,BD ,∵F是AE的中点,∴AF=FE,∵∠AFG=∠EFD,∴△AFG≌△EFD(SAS),∴AG=DE,∠GAF=∠DEF,∴∠GAB=∠GAF−∠BAC=∠DEF−∠BAC=180°−β−α=90°,∵∠BCD=α+β=90°,∴∠GAB=∠BCD,∵DE=DC,∴AG=CD,∵AB=BC,∴△BAG≌△BCD(SAS),∴BG=BD,∵FG=FD,∴BF⊥DF;(2)解:如图2,延长DF至G,使FD=FG,连接AG,BG,BD,由(1)同理得:△AFG≌△EFD(SAS),∴AG=ED=DC,∠AGF=∠EDF,设∠AGF=x,∠AGB=y,∵FG=FD,BF⊥DF,∴BG=BD,∵AB=BC,∴△ABG≌△CBD(SSS),∴∠BDF=∠BGF=x+y,∠ABG=∠CBD∵∠EDF=∠AGF=x,∠BDC=∠AGB=y,△CDE中,∠CED+∠DCE+∠CDE=180°,第16页,共21页∴2β+2x+2y=180°,∵∠ABG=∠CBD,∴∠ABC=∠DBG,∴2α=2x+2y,∴α=x+y,∴α+β=90°,∵α+2β=130°,∴α=50°,∴∠ABC=180°−2α=80°.15.证明:如图,把线段CN沿CM方向,平移线段CM的长度到ME,连接NE,AE,则CN // ME,CN=ME,CM // EN,CM=EN,∴∠APM=∠ANE,∠MCN=∠BNE=∠MEN,∠B=∠BME,又∵∠B=90°,∴∠AME=∠BME=∠B =90°,由CN=BM,CN=ME,∴BM=ME,在△AME和△CBM中,{ME=BM∠AME=∠CBM=90°AM=CB,∴△AME≌△CBM(SAS),∴AE=CM=EN,∠MAE=∠BCM,∴∠AEM+∠MEN=∠AEM+∠BCM=∠AEM+∠MAE=90°,∴△AEN为等腰直角三角形,∴∠ANE=45°,∴∠APM=45°.16.解:EF=2AD,EF⊥AD.证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,∴AD=DM,AM=2AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△MCD中,{AD=DM∠ADB=∠MDC BD=CD,∴△ABD≌△MCD,(SAS)∴AB=MC,∠BAD=∠M,∵AB=AE,∴AE=MC,∵AE⊥AB,AF⊥AC,∴∠EAB=∠FAC=90°,∵∠FAC+∠BAC+∠EAB+∠EAF=360°,∴∠BAC+∠EAF=180°,∵∠CAD+∠M+∠MCA=180°,∴∠CAD+∠BAD+∠MCA=180°,即∠BAC+∠MCA=180°,∴∠EAF=∠MCA.在△AEF和△CMA中,{AF=AC∠EAF=∠MCAAE=CM,第18页,共21页∴△AEF≌△CMA,∴EF=AM,∠CAM=∠F,∴EF=2AD;∵∠CAF=90°,∴∠CAM+∠FAN=90°,∵∠CAM=∠F,∴∠F+∠FAN=90°,∴∠ANF=90°,∴EF⊥AD.17.(1)证明:设BE交AD于点H,如图1所示:∵AD,BE分别为BC,AC边上的高,∴∠BEA=∠ADB=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AHE=∠BHD,∴∠DAC=∠DBH,∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF,在△DAE和△DBF中,∵{∠DAE=∠DBFAD=BD∠ADE=∠BDF,∴△DAE≌△DBF(ASA),∴BF=AE,DF=DE,∴△FDE是等腰直角三角形,∴∠DFE=45°,∵G为BE中点,∴BF=EF,∴AE=EF,∴△AEF是等腰直角三角形,∴∠AFE=45°,∴∠AFD=90°,∴AF⊥DF;(2)解:AF=2DG,且AF⊥DG;理由如下:延长DG至M,使GM=DG,交AF于H,连接BM,如图2所示:由(1)可得,∠FED=∠EFD=45°,∠DAC=∠DBE,DE=DF,∠ADE=∠BDF,在△BGM和△EGD中,∵{BG=GE∠BGM=∠DGEMG=DG,∴△BGM≌△EGD(SAS),∴∠MBE=∠FED=∠EFD=45°,BM=DE=DF,∴∠MBD=∠MBE+∠DBE=45∘+∠DBE,∠EFD=45∘=∠DBE+∠BDF,∴∠BDF=45°−∠DBE,∵∠ADE=∠BDF,∴∠ADF=90°−∠BDF=45°+∠DBE=∠MBD,在△BDM和△DAF中,∵{BM=DF∠MBD=∠ADFBD=AD,∴△BDM≌△DAF(SAS),第20页,共21页∴DM=AF=2DG,∠FAD=∠BDM,∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°,∴∠AHD=90°,∴AF⊥DG,∴AF=2DG,且AF⊥DG.18.证明:延长CD到F使DF=CD,连接AF,∵CD是△ABC的中线,∴AD=BD,在△ADF与△BCD中,{AD=BD∠ADF=∠BDC DF=DC,∴△ADF≌△BCD,∴∠F=∠BCD,BC=AF,∵∠ACB=90°,CD是△ABC的中线,∴CD=BD,∴∠B=∠BCD,∵∠AED=∠F,∴AE=AF,∴AE=BC.。
(完整版)全等三角形竞赛试题(含答案),推荐文档
全等三角形提高练习1.如图所示,△AB C≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。
2.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A′OB′,边A′B′与边OB 交于点C (A′不在OB 上),则∠A′CO 的度数为多少?3.如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数是多少?4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A′B′C,A′B′交AC 于点D ,若∠A′DC=90°,则∠A=5.已知,如图所示,AB=AC ,A D⊥BC 于D ,且AB+AC+BC=50cm,而AB+BD+AD=40cm ,则AD 是多少?6.如图,Rt△ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,则DE=7.如图,AD 是△ABC 的角平分线,DE⊥AB,DF⊥AC,垂足分别是E 、F ,连接EF ,交AD 于G ,AD 与EF垂直吗?证明你的结论。
8.如图所示,在△ABC 中,AD 为∠BAC 的角平分线,D E⊥AB 于E ,DF⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。
AB'CAB9.已知,如图:AB=AE ,∠B=∠E,∠BAC=∠EAD,∠CAF=∠DAF,求证:AF⊥CD10.如图,AD=BD ,A D⊥BC 于D ,BE⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?11.如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD ,求证:B E⊥AC12.△DAC、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,求证:(1)AE=BD(2)CM=CN(3)△CMN 为等边三角形 (4)MN∥BC13.如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH 平分∠AHD;④∠AHC=60°;⑤△BFGA .3个 B. 4个 C. 5个 D. 6个14.已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC ,点G 在CE 的延长线上,CG=AB ,求证:A G⊥AF15.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 求证:(1)AD=AG(2)AD 与AG 的位置关系如何CBBA AAB B17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE求证:AF=AD-CF18.如图所示,已知△ABC 中,AB=AC ,D 是CB 延长线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB ,求证:AC=BE+BC19.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC,DF⊥AC,垂足为F ,DB=DC ,求证:BE=CF20.已知如图:AB=DE ,直线AE 、BD 相交于C ,∠B+∠D=180°,AF∥DE,交BD 于F ,求证:CF=CD21.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD⊥OA 于D ,PE⊥OB 于E ,F 是OC 上一点,连接DF和EF ,求证:DF=EF22.已知:如图,BF⊥AC 于点F ,CE⊥AB 于点E ,且BD=CD ,求证:(1(2) 点D 在∠A 的平分线上23.如图,已知AB∥CD,O 是∠ACD 与∠BAC 的平分线的交点,OE⊥AC于E ,且OE=2,则AB 与CD 之间的距离是多少?24.如图,过线段AB 的两个端点作射线AM 、BN ,使AM∥BN,按下列要求画图并回答:画∠MAB、∠NBA 的平分线交于E (1)∠AEB 是什么角?DBC(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB;②AD+BC=CD 谁成立?并说明理由。
全等三角形的判定压轴题附答案
全等三角形压轴题一.选择题(共9小题)1.(2013•邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC第1题第2题第3题2.(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.A B=AC B.∠BAC=90°C.B D=AC D.∠B=45°3.(2011•南昌)如图,在下列条件中,不能直接证明△ABD≌△ACD的是()A.B D=DC,AB=AC B.∠ADB=∠ADC,BD=DC C.∠B=∠C,BAD=∠CAD D.∠B=∠C,BD=DC 4.(2011•梧州)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA第4题第5题第6题5.(2009•武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③=2;④.其中结论正确的是()A.只有①②B.只有①②④C.只有③④D.①②③④6.(2008•沈阳)如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,则图中全等三角形共有()A.1对B.2对C.3对D.4对7.(2002•鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③8.(2001•湖州)根据下列已知条件,能唯一画出△ABC的是()A.A B=3,BC=4,AC=8 B.A B=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=69.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个第9题第10题第11题二.填空题(共7小题)10.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=_________.11.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有_________对全等三角形.12.(2010•钦州)如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,要使△ABC≌△BAD.你补充的条件是_________(只填一个).第12题第14题第15题13.(2009•遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_________个.14.(2009•湘潭)如图,△ABC中,D,E,F分别是AB,BC,AC上的点,已知DF∥BC,EF∥AB,请补充一个条件:_________,使△ADF≌△FEC.15.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有_________(填序号).16.如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_________,使△ABD≌△CBE.三.解答题(共8小题)17.(2012•河源)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.18.(2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.19.(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=_________度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.20.(2009•青海)请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60度.请证明:∠NOC=60度.(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN=_________,且∠DON=_________度.(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=_________,且∠EON=_________度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:_________.21.(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF 为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.22.(2007•山西)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)23.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C l,∠C=∠C l.求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整.)证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.24.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,求证:△CDE≌△EAF.2014年11月27日wcjzhoulan的初中数学组卷参考答案与试题解析一.选择题(共9小题)1.(2013•邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC考点:全等三角形的判定;矩形的性质.专题:压轴题.分析:根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.解答:解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,,∴△AOD≌△EOD(SAS);∵在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.点评:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.A B=AC B.∠BAC=90°C.B D=AC D.∠B=45°考点:全等三角形的判定.专题:压轴题.分析:此题是开放型题型,根据题目现有条件,AD=AD,∠ADB=∠ADC=90°,可以用HL判断确定,也可以用SAS,AAS,SSS判断两个三角形全等.解答:解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.点评:本题主要考查了学生对三角形全等判断的几种方法的应用能力,既可以用直角三角形全等的特殊方法,又可以用一般方法判定全等,关键是熟练掌握全等三角形的判定定理.3.(2011•南昌)如图,在下列条件中,不能直接证明△ABD≌△ACD的是()A.B D=DC,AB=AC B.∠ADB=∠ADC,BD=DC C.∠B=∠C,D.∠B=∠C,BD=DC∠BAD=∠CAD考点:全等三角形的判定.专题:压轴题.分析:两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:解:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,故正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,故正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,故正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,故错误.故选:D.点评:本题考查了全等三角形的几种判定方法.关键是根据图形条件,角与边的位置关系是否符合判定的条件,逐一检验.4.(2011•梧州)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA考点:全等三角形的判定;等边三角形的性质.专题:压轴题.分析:首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.解答:解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.点评:此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.5.(2009•武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③=2;④.A.只有①②B.只有①②④C.只有③④D.①②③④考点:全等三角形的判定;等边三角形的判定;直角梯形.专题:压轴题.分析:根据题意,对选项进行一一论证,排除错误答案.解答:解:由题意可知△ACD和△ACE全等,故①正确;又因为∠BCE=15°,所以∠ACE=45°﹣15°=30°,所以∠ECD=60°,所以△CDE是等边三角形,故②正确;∵AE=AE,△ACD≌△ACE,△CDE是等边三角形,∴∠EAH=∠ADH=45°,AD=AE,∴AH=EH=DH,AH⊥DE,假设AH=EH=DH=x,∴AE=x,CE=2x,∴CH=x,∴AC=(1+)x,∵AB=BC,∴AB2+BC2=[(1+)x]2,解得:AB=x,BE=x,∴==,故③错误;④∵Rt△EBC与Rt△EHC共斜边EC,∴S△EBC:S△EHC=(BE×BC):(HE×HC)=(EC×sin15°×EC×cos15°):(EC×sin30°×EC×cos30°)=(EC2×sin30°):(EC2×sin60°)=sin30°:sin60°=1:=EH:CH=AH:CH,故④正确.故其中结论正确的是①②④.故选B.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.6.(2008•沈阳)如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,A.1对B.2对C.3对D.4对考点:全等三角形的判定;正方形的性质.专题:压轴题.分析:根据正方形的性质可得出:正方形的一条对角线平分一组对角,而且四边相等,根据边角边公理可证出△ABD≌△CBD,△ABF≌△CBF,△AFD≌△CFD,有三对全等的三角形,解答:解:∵AD=CD,∠ADB=∠CDB=45°,DF=DF;∴△ADF≌△CDF;同理可得:△ABF≌△CBF;∵AD=CD,AB=BC,BD=BD∴△ABD≌△CBD.因此本题共有3对全等三角形,故选C.点评:本题主要考查正方形的性质和全等三角形的判定,是基础知识要熟练掌握.7.(2002•鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③考点:全等三角形的判定.专题:压轴题.分析:结合已知条件与全等三角形的判定方法进行思考,要综合运用判定方法求解.注意高的位置的讨论.解答:解:①正确.可以用AAS或者ASA判定两个三角形全等;②正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等;如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选A.点评:本题考查了全等三角形的判定方法;要根据选项提供的已知条件逐个分析,分析时看是否符合全等三角形的判定方法,注意SSA是不能判得三角形全等的.8.(2001•湖州)根据下列已知条件,能唯一画出△ABC的是()A.A B=3,BC=4,AC=8 B.A B=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.9.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个考点:全等三角形的判定.专题:压轴题.分析:根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.解答:解:延长DA、BC使它们相交于点F.∵∠DAB=∠BCD,∠AED=∠BEC,∴∠B=∠D,又∵∠F=∠F,AB=CD,∴△FAB≌△FCD∴AF=FC,FD=FB,∴AD=BC∴△ADE≌△CBE①对同理可得②对∵AE=CE,AB=CD∴DE=BE又∵∠AED=∠BEC∴△ADE≌△CBE(SAS)③对同理可得④对连接BD,∵AD=CB,AB=CD,BD=BD,∴△ADB≌△CBD,∴∠A=∠C,∴△ADE≌△CBE故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.难点在于添加辅助线来构造三角形全等.关键在于应根据所给的条件判断应证明哪两个三角形全等.二.填空题(共7小题)10.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.考点:全等三角形的性质.专题:压轴题.分析:先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.解答:解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.点评:本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.11.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.考点:全等三角形的判定.专题:压轴题.分析:根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.解答:解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目12.(2010•钦州)如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,要使△ABC≌△BAD.你补充的条件是AC=BD或∠CBA=∠DAB(只填一个).考点:全等三角形的判定.专题:压轴题;开放型.分析:根据已知条件在三角形中位置结合三角形全等的判定方法寻找条件.已知给出了一边对应相等,由一条公共边,还缺少角或边,于是答案可得.解答:解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD或∠CBA=∠DAB.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.13.(2009•遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.考点:全等三角形的判定.专题:压轴题.分析:只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.解答:解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为:7.点评:本题考查了全等三角形的作法;做三角形时要根据全等的判断方法的要求,正确对每种情况进行讨论是解决本题的关键.14.(2009•湘潭)如图,△ABC中,D,E,F分别是AB,BC,AC上的点,已知DF∥BC,EF∥AB,请补充一个条件:AF=FC或DF=EC或AD=FE或F为AC中点或DF为中位线或EF为中位线或DE∥AC,使△ADF≌△FEC.考点:全等三角形的判定.专题:压轴题;开放型.分析:要使△ADF≌△FEC,现有条件是两平行线,可得三角形中两角对应相等,根据全等三角形的判定方法还需边对应相等,于是答案可得.解答:解:若添加AF=FC,已知DF∥BC,EF∥AB,得出∠ADF=∠ABC=∠FEC,∠AFD=∠C,可以根据AAS 来判定其全等,同理添加DF=EC,或AD=FC,均可以利用AAS来判定其全等.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.15.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有①②③(填序号).考点:全等三角形的判定.专题:压轴题.分析:由已知条件,可直接得到三角形全等,得到结论,采用排除法,对各个选项进行验证从而确定正确的结论.解答:解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).所以正确结论有①②③.故填①②③.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.得到三角形全等是正确解决本题的关键.16.如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:BD=BE 或AD=CE或BA=BC,使△ABD≌△CEB.考点:全等三角形的判定.专题:压轴题;开放型.分析:要使△ABD≌△CEB,现有一对直角相等,根据全等三角形的判定方法进行分析,还需要一边对应相等,观察图形可得到答案.解答:解:已知∠B=∠B,∠BDA=∠BEC=90°,则再添加一个边相等即可,所以可添加BD=BE或AD=CE或BA=BC,从而利用AAS或ASA来判定△ABD≌△CEB,故答案为:BD=BE或AD=CE或BA=BC.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.三.解答题(共8小题)17.(2012•河源)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.考点:全等三角形的判定.专题:证明题;压轴题.分析:(1)由已知可以利用AAS来判定其全等;(2)再根据等腰三角形三线合一的性质即可求得其为直角.解答:(1)证明:在△AOB和△COD中∵∴△AOB≌△COD(AAS)(2)解:∵△AOB≌△COD,∴AO=DO∵E是AD的中点∴OE⊥AD∴∠AEO=90°点评:此题考查了学生对全等三角形的判定及等腰三角形的性质的掌握,要熟练掌握这些性质并能灵活运用.18.(2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.考点:全等三角形的判定;平行四边形的判定;菱形的判定.专题:几何综合题;压轴题.分析:(1)根据等边三角形的性质可得AB=AC,AE=AD,∠BAC=∠EAD=60°,然后求出∠BAE=∠CAD,再利用“边角边”证明△AEB和△ADC全等;②四边形BCGE是平行四边形,因为△AEB≌△ADC,所以可得∠ABE=∠C=60°,进而证明∠ABE=∠BAC,则可得到EB∥GC又EG∥BC,所以四边形BCGE是平行四边形;(2)根据(1)的思路解答即可.(3)当CD=CB时,四边形BCGE是菱形,由(1)可知△AEB≌△ADC,可得BE=CD,再证明BE=CB,即邻边相等的平行四边形是菱形.解答:证明:(1)①∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°.又∵∠EAB=∠EAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠EAB=∠DAC,∴△AEB≌△ADC(SAS).②方法一:由①得△AEB≌△ADC,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC,∴EB∥GC.又∵EG∥BC,∴四边形BCGE是平行四边形.方法二:证出△AEG≌△ADB,得EG=AB=BC.∵EG∥BC,∴四边形BCGE是平行四边形.(2)①②都成立.(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.理由:方法一:由①得△AEB≌△ADC,∴BE=CD又∵CD=CB,∴BE=CB.由②得四边形BCGE是平行四边形,∴四边形BCGE是菱形.方法二:由①得△AEB≌△ADC,∴BE=CD.又∵四边形BCGE是菱形,∴BE=CB∴CD=CB.方法三:∵四边形BCGE是平行四边形,∴BE∥CG,EG∥BC,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°∴∠F=∠FBE=60°,∴△BEF是等边三角形.又∵AB=BC,四边形BCGE是菱形,∴AB=BE=BF,∴AE⊥FG∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30°.点评:本题主要考了平行线四边形的判定和性质、等边三角形的性质、全等三角形的判定和性质以及菱形的判定,解题关键在于根据题意画出图形,通过求证三角形全等,推出等量关系,即可推出结论.19.(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=90度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.考点:全等三角形的判定;等腰三角形的性质.专题:压轴题.分析:(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.解答:解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.点评:本题考查三角形全等的判定,以及全等三角形的性质;两者综合运用,促进角与角相互转换,将未知角转化为已知角是关键.本题的亮点是由特例引出一般情况.20.(2009•青海)请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60度.请证明:∠NOC=60度.(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN=,且∠DON=度.(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=,且∠EON=度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:.考点:全等三角形的判定;等边三角形的性质;正多边形和圆.专题:压轴题;阅读型.分析:(1)利用△ABC是正三角形,可得∠A=∠ABC=60°,AB=BC,又因BM=AN,所以△ABN≌△BCM,∠ABN=∠BCM,所以∠NOC=∠BCM+∠OBC=∠ABN+∠OBC=60°;(2)同(1)利用三角形全等,可知在正方形中,AN=DM,∠DON=90°;(3)同(1),利用三角形全等可知在正五边形中,AN=EM,∠EON=108°;(4)以上所求的角恰好等于正n边形的内角.(10分)解答:(1)证明:∵△ABC是正三角形,∴∠A=∠ABC=60°,AB=BC,在△ABN和△BCM中,,∴△ABN≌△BCM,(2分)∴∠ABN=∠BCM,又∵∠ABN+∠OBC=60°,∴∠BCM+∠OBC=60°,∴∠NOC=60°;(2)解:∵四边形ABCD是正方形,∴∠DAM=∠ABN=90°,AD=AB,又∵AM=BN,∴△ABN≌△DAM(SAS),∴AN=DM,∠ADM=∠BAN,又∵∠ADM+∠AMD=90°,∴∠BAN+∠AMD=90°∴∠AOM=90°;即∠DON=90°.(3)解:∵五边形ABCDE是正五边形,∴∠A=∠B,AB=AE,又∵AM=BN,∴△ABN≌△EAM,∴AN=ME,∴∠AEM=∠BAN,∴∠NOE=∠NAE+∠AEM=∠NAE+∠BAN=∠BAE=108°;(4)解:以上所求的角恰好等于正n边形的内角.(10分)注:学生的表述只要合理或有其它等价且正确的结论,均给分.本题结论着重强调角和角的度数.点评:本题需仔细分析图形,利用三角形全等即可解决问题,本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF 为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.考点:全等三角形的判定;等边三角形的判定.专题:证明题;压轴题.分析:(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF≌△CDE.(2)有(1)中的全等关系,可得出∠AFE=∠CED,再结合△DEF是等边三角形,可知∠DEF=60°,从而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC是等边三角形.解答:证明:(1)∵BF=AC,AB=AE(已知)∴FA=EC(等量加等量和相等).(1分)∵△DEF是等边三角形(已知),∴EF=DE(等边三角形的性质).(2分)又∵AE=CD(已知),∴△AEF≌△CDE(SSS).(4分)(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),∴∠DEF=60°(等边三角形的性质),∴∠BCA=60°(等量代换),由△AEF≌△CDE,得∠EFA=∠DEC,∵∠DEC+∠FEC=60°,∴∠EFA+∠FEC=60°,又∠BAC是△AEF的外角,∴∠BAC=∠EFA+∠FEC=60°,∴△ABC中,AB=BC(等角对等边).(6分)∴△ABC是等边三角形(等边三角形的判定).(7分)点评:本题利用了等量加等量和相等,全等三角形的判定和性质,还有三角形的外角等不相邻的两个内角之和,等边三角形的判定(三个角都是60°,那么就是等边三角形).22.(2007•山西)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)考点:全等三角形的判定;正方形的性质.专题:压轴题;探究型.分析:根据正方形的性质得到相关的条件找出全等的三角形:△ADE≌△ABC,△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;利用全等的关系求出∠AHD=90°,得到AE⊥DF;同时可判定BM=MC.解答:解:(1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.(2)AE⊥DF.证明:设AE与DF相交于点H.。
(完整版)全等三角形证明经典50题(含答案)
证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。
: / ABC= / AED 。
二 / ABE= / AEB 。
• AB=AE 。
在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。
•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。
连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。
全等三角形证明50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=2ADBC2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 EEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC∴△ADC ≌△AFC (SAS ) ∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DEADB C∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。
全等三角形难题集锦
全等三角形难题集锦1.已知△ABC中,∠ABC=45°,CD⊥XXX于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。
1)证明BF=AC;2)证明CE=BF/2;3)推导CE与BC的大小关系。
2.已知△ABC为等边三角形,点D为直线BC上的一动点,以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF。
1)当点D在边BC上时,证明BD=CF和AC=CF+CD;2)当点D在边BC的延长线上时,AC≠CF+CD,AC、CF、CD之间存在什么数量关系;3)当点D在边BC的延长线上时,补全图形并直接写出AC、CF、CD之间的数量关系。
3.在△ABC中,BC边在直线l上,AC⊥BC,且AC=BC。
△EFP的边FP也在直线l上,XXX与XXX重合,且EF=FP。
1)通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;2)将△EFP沿直线l向左平移到图中的位置时,猜想并写出BQ与AP所满足的数量关系和位置关系,并证明猜想;3)将△EFP沿直线l向左平移到图中的位置时,EP的延长线交AC的延长线于点Q,猜想并说明BQ与AP的数量关系和位置关系是否仍然成立。
4.△AOB,△COD均为等腰直角三角形,∠AOB=∠COD=90º。
1)在图1中,证明AC与BD相等且垂直;2)当△COD绕点O顺时针旋转到图2的位置时,AC与BD不相等且不垂直;3)当△COD绕点O顺时针旋转到图3的位置时,AC与BD不相等但仍然垂直。
复“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”XXX是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.解答:1)由已知得,∠QAP=∠BAC。
全等三角形易错题(Word版 含答案)
全等三角形易错题(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.在直角坐标系中,O 为坐标原点,已知点 A(1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点P 的坐标为_____________.【答案】5 4),0,4⎛⎫⎪⎝⎭【解析】【分析】有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,求出OA即可;②以A为圆心,以OA为半径画弧交y轴于P,求出OP即可;③作OA的垂直平分线交y轴于C,则AC=OC,根据勾股定理求出OC即可.【详解】有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,则OA=OD==∴D(0);②以A为圆心,以OA为半径画弧交y轴于P,OP=2×y A=4,∴P(0,4);③作OA的垂直平分线交y轴于C,则AC=OC,由勾股定理得:OC=AC,∴OC=54,∴C(0,54);故答案为:5 4),0,4⎛⎫⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.3.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB=6,∵AC=BC=2AB=23,∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=12BC=3.故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.4.如图,在ABC∆中,点D是BC的中点,点E是AD上一点,BE AC=.若70C∠=︒,50DAC∠=︒则EBD∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.5.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB;④12ABCAEPFS S∆=四边形,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.6.如图,在ABC∆中,AB AC=,点D和点A在直线BC的同侧,,82,38BD BC BAC DBC=∠=︒∠=︒,连接,AD CD,则ADB∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.7.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【解析】【分析】 根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.8.如图,已知∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 2=4,则△A n B n A n +1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.9.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30 ,CF=43,则DH=______.【答案】23【解析】连接AF.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=∠BAC=60°.∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBFBF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=23.故答案为23.点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.10.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠ =01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠= 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A (3,2),点B (1,0),以线段AB 为边作等腰三角形ABP ,使得点P 在坐标轴上.则这样的P 点有( )A .4个B .5个C .6个D .7个【答案】D【解析】【分析】 本题是开放性试题,由题意知A 、B 是定点,P 是动点,所以要分情况讨论:以AP 、AB 为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )A .40︒B .50︒C .100︒D .140︒【答案】C【解析】【分析】 设点P 关于OM 、ON 对称点分别为P '、P '',当点A 、B 在P P '''上时,PAB ∆周长为PA AB BP P P ++=''',此时周长最小.根据轴对称的性质,可求出APB ∠的度数.【详解】分别作点P 关于OM 、ON 的对称点P '、P '',连接OP '、OP ''、P P ''',P P '''交OM 、ON 于点A 、B ,连接PA 、PB ,此时PAB ∆周长的最小值等于P P '''.由轴对称性质可得,OP OP OP '=''=,P OA POA ∠'=∠,P OB POB ∠''=∠,224080P OP MON ∴∠'''=∠=⨯︒=︒,(18080)250OP P OP P ∴∠'''=∠'''=︒-︒÷=︒,又50BPO OP B ∠=∠''=︒,50APO AP O ∠=∠'=︒,100APB APO BPO ∴∠=∠+∠=︒.故选:C .【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.13.如图,坐标平面内一点A(2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .5【答案】C【解析】 以O 点为圆心,OA 为半径作圆与x 轴有两交点,这两点显然符合题意.以A 点为圆心,OA 为半径作圆与x 轴交与两点(O 点除外).以OA 中点为圆心OA 长一半为半径作圆与x 轴有一交点.共4个点符合,14.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A .1B .2C .3D .4【解析】【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB ⊥AC .∴∠BAC =90°,∵∠BAC+∠ABC+∠ACB =180°,∴∠ABC+∠ACB =90°∵CD 、BE 分别是△ABC 的角平分线,∴2∠FBC+2∠FCB =90°∴∠FBC+∠FCB =45°∴∠BFC =135°故④正确.∵AG ∥BC ,∴∠BAG =∠ABC∵∠ABC =2∠ABF∴∠BAG =2∠ABF 故①正确.∵AB ⊥AC ,∴∠ABC+∠ACB =90°,∵AG ⊥BG ,∴∠ABG+∠GAB =90°∵∠BAG =∠ABC ,∴∠ABG =∠ACB 故③正确.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.15.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】A【分析】根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.【详解】∵CE 垂直平分AD∴AC=CD =6cm ,ACE ECD ∠=∠∵CD 平分BCE ∠∴BCD ECD ∠=∠∴30ACE ECD DCB ︒∠=∠=∠=∴60A ︒∠=∴30B BCD ︒∠==∠∴6CD BD AC cm ===故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.16.在Rt ABC ∆中,90ACB ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?( )A .9个B .7个C .6个D .5个【答案】B【解析】【分析】先以Rt ABC ∆三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B为圆心,BC长为半径画弧,交AB于点D,则∆BCD就是等腰三角形;②如图2,以A为圆心,AC长为半径画弧,交AB于点E,则∆ACE就是等腰三角形;③如图3,以C为圆心,BC长为半径画弧,交AB于M,交AC于点F,则∆BCM、∆BCF是等腰三角形;④如图4,作AC的垂直平分线交AB于点H,则∆ACH就是等腰三角形;⑤如图5,作AB的垂直平分线交AC于点G,则∆AGB就是等腰三角形;⑥如图6,作BC的垂直平分线交AB于I,则∆BCI就是等腰三角形.故选:B.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.17.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确; ③根据全等三角形的性质得到∠CAD=∠CBE ,AD=BE ,AC=BC 根据线段的中点的定义得到AM=BN ,根据全等三角形的性质得到CM=CN ,∠ACM=∠BCN ,得到∠MCN=α,推出△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,根据全等三角形的性质得到CH=CG ,根据角平分线的判定定理即可得到OC 平分∠AOE ,故④正确.【详解】解:①∵CA=CB ,CD=CE ,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎪∠⎪⎩∠⎧⎨=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ;故①正确;②设CD 与BE 交于F ,∵△ACD ≌△BCE ,∴∠ADC=∠BEC ,∵∠CFE=∠DFO ,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,AD=BE ,AC=BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD ,BN=12BE , ∴AM=BN ,在△ACM 和△BCN 中 AC BC CAM CBN AM BN ⎪∠⎪⎩∠⎧⎨=== ∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH ,CE=CD ,∴△CGE ≌△CHD (AAS ),∴CH=CG ,∴OC 平分∠AOE ,故④正确,故选:B .【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.18.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.19.如图,在Rt △ABC 中,AC =BC ,∠ACB =90°,D 为AB 的中点,E 为线段AD 上一点,过E 点的线段FG 交CD 的延长线于G 点,交AC 于F 点,且EG =AE ,分别延长CE ,BG 交于点H ,若EH 平分∠AEG ,HD 平分∠CHG 则下列说法:①∠GDH =45°;②GD =ED ;③EF =2DM ;④CG =2DE +AE ,正确的是( )A .①②③B .①②④C .②③④D .①②③④【答案】B【解析】【分析】 首先证明△AEC ≌△GEC (SAS ),推出CA =CG ,∠A =∠CGE =45°,推出DE =DG ,故②正确;再证明△EDC ≌△GDB ,推出∠CED =∠BGD ,ED =GD ,由三角形外角的性质得出∠HDG =∠HDE ,进而得出∠GDH =∠EDH =45°,即可判断①正确;通过证明△EDC 和△EMD 是等腰直角三角形,得到ED 2MD ,再通过证明△EFC ≌△EDC ,得到EF =ED ,从而可判断③错误;由CG =CD +DG ,CD =AD ,ED =GD ,变形即可判断④正确.【详解】∵AC =BC ,∠ACB =90°,AD =DB ,∴CD ⊥AB ,CD =AD =DB ,∠A =∠CBD =45°.∵EH 平分∠AEG ,∴∠AEH =∠GEH .∵∠AEH +∠AEC =180°,∠GEH +∠CEG =180°,∴∠AEC =∠CEG .∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.20.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.。
全等三角形经典题目测试含答案
全等三角形经典题目测试含答案(总19页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March一.选择题(共13小题,共39分)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()(第1题)(第2题)(第3题)(第4题)A.B.4C.D.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.54.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.56.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()(第7题)(第8题)A.330°B.315°C.310°D.320°8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定11.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()(第11题)(第12题)(第13题)A.3B.4C.5D.612.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个13.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C二.填空题(共7小题,共21分)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_________.(第14题)(第15题)15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=_________cm.(第16题)(第17题)(第18题)17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_________度.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有_________对全等三角形.19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:_________,使OC=OD(只添一个即可).20.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_________度.三.解答题(共6小题,共60分)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.24.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.25.如图,在∆ABC中,AB=AC,点D是BC的中点,点E在AD上.⑴求证:BE=CE;⑵若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:∆AEF≌∆BCF.26.(10分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.EAF ADE一.选择题(共13小题)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC,∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.B.4C.D.考点:全等三角形的判定与性质.分析:先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△CDA,利用全等三角形对应边相等就可得到答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.点评:此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.5考点:角平分线的性质;全等三角形的判定与性质.专题:计算题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.4.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BADC.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD考点:全等三角形的判定.分析:根据全等三角形的判定方法,对每个选项分别分析、解答出即可;解答:解:A、BC=BD,∠BAC=∠BAD,又由图可知AB为公共边,不能证明△ABC和△ABD全等,故本项错误,符合题意;B、∠C=∠D,∠BAC=∠BAD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;C、∠BAC=∠BAD,∠ABC=∠ABD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意;D、BC=BD,AC=AD,又AB=AB,能证明△ABC和△ABD全等,故本项正确,不符合题意.故选A.点评:本题主要考查了全等三角形的判定方法,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5考点:角平分线的性质;三角形的面积.分析:首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.解答:解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=×4×2×AC×2,∴AC=3.故选B.点评:本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.6.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°考点:全等三角形的判定与性质.专题:网格型.分析:利用正方形的性质,分别求出多组三角形全等,如∠1和∠7的余角所在的三角形全等,得到∠1+∠7=90°等,可得所求结论.解答:解:由图中可知:①∠4=×90°=45°,②∠1和∠7的余角所在的三角形全等∴∠1+∠7=90°同理∠2+∠6=90°,∠3+∠5=90°∠4=45°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°故选B.点评:考查了全等三角形的性质与判定;做题时主要利用全等三角形的对应角相等,得到几对角的和的关系,认真观察图形,找到其中的特点是比较关键的.8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP考点:角平分线的性质.分析:本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.解答:解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.点评:本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE是解决的关键.9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组考点:全等三角形的判定.分析:要判断能不能使△ABC≌△DEF一定要熟练运用判定方法判断,做题时注意两边与其中一边的对角相等的两个三角形不一定全等,要根据已知条件的位置来选择判定方法.解答:解:根据全等三角形的判定方法可知:①AB=DE,BC=EF,AC=DF,用的判定方法是“边边边”;②AB=DE,∠B=∠E,BC=EF,用的判定方法是“边角边”;③∠B=∠E,BC=EF,∠C=∠F用的判定方法是“角边角”;④AC=DF,∠A=∠D,∠B=∠E,用的判定方法是“角角边”;因此能使△ABC≌△DEF的条件共有4组.故选D.点评:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2008•新疆)如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,下列结论正确的是()A.h1>h2B.h1<h2C.h1=h2D.无法确定考点:全等三角形的判定与性质.分析:本题可通过构建全等三角形进行求解.过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;因此只要证明△AMC≌△FNE,即可得出h1=h2.解答:解:过点A作AM⊥BC交BC于点M,过点F作FN⊥DE交DE的延长线于点N,则有AM=h1,FN=h2;在△AMC和△FNE中,∵AM⊥BC,FN⊥DE,∴∠AMC=∠FNE;∵∠FED=115°,∴∠FEN=65°=∠ACB;∵又AC=FE,∴△AMC≌△FNE;∴AM=FN,∴h1=h2.故选C.点评:本题主要考查了全等三角形的判定几性质;做题中通过作辅助线构造了全等三角形是解决本题的关键,也是一种很重要的方法,要注意学习、掌握.11.(2007•义乌市)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6考点:角平分线的性质.分析:已知条件给出了角平分线还有PE⊥AC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解.解答:解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选A.点评:本题主要考查了角平分线上的一点到角的两边的距离相等的性质.做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题.12.(2006•十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或夹已知角的另一边.解答:解:∠1=∠2,AC=AD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.13.(2005•乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是()A.B B′⊥AC B.B C=B′C C.∠ACB=∠ACB′D.∠ABC=∠AB′C考点:角平分线的性质.分析:根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△ABC≌△AB′C即可.解答:解:如图:∵AC平分∠PAQ,点B,B′分别在边AP,AQ上,A:若BB′⊥AC,在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,∴△ABC≌△AB′C,AB=AB′;B:若BC=B′C,不能证明△ABC≌△AB′C,即不能证明AB=AB′;C:若∠ACB=∠ACB′,则在△ABC与△AB'C中,∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′;D:若∠ABC=∠AB′C,则∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′.故选B.点评:本题考查的是三角形角平分线的性质及三角形全等的判定;做题时要结合已知条件在图形上的位置对选项逐个验证.二.填空题(共7小题)14.(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.考点:角平分线的性质.分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.解答:解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.点评:本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.15.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=3cm.考点:全等三角形的判定与性质.分析:根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FEC全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.解答:解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.点评:本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.17.(2011•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=45度.考点:直角三角形全等的判定;全等三角形的性质.分析:根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.解答:解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.考点:全等三角形的判定.分析:根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.解答:解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目19.(2008•大兴安岭)如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD,使OC=OD(只添一个即可).考点:全等三角形的判定.专题:开放型.分析:本题可通过全等三角形来证简单的线段相等.△AOD和△BOC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=OD.也可直接添加AC=BD,然后联立OA=OB,即可得出OC=OD.解答:解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.20.(2005•荆门)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=135度.考点:全等三角形的判定与性质.专题:网格型.分析:根据对称性可得∠1+∠3=90°,∠2=45°.解答:解:观察图形可知,∠1所在的三角形与角3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.三.解答题(共6小题)21.(2013•陕西)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.考点:全等三角形的判定与性质.专题:证明题.分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.解答:证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.22.(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.考点:全等三角形的判定.专题:证明题.分析:根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.解答:证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).点评:此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.23.(2011•乌鲁木齐)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.考点:全等三角形的判定.专题:证明题.分析:根据垂直的定义以及等量代换可知∠CBE=∠ACD,根据已知条件∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,根据全等三角形的判定AAS即可证明△BEC≌△CDA.解答:证明:∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,∴△BEC≌△CDA.点评:本题考查了全等三角形的判定定理,本题根据AAS证明两三角形全等,难度适中.24.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).考点:直角三角形全等的判定;三角形内角和定理.专题:几何综合题.分析:由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.解答:解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.25.(2005•扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.考点:全等三角形的判定与性质.专题:证明题;探究型.分析:(1)根据已知可利用AAS证明①△ADC≌△CEB,由此可证②DE=AD+BE;(2)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=AD﹣BE;(3)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=BE﹣AD.解答:解:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.26.(2012•密云县二模)已知:如图,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证:AB=FE.考点:全等三角形的判定与性质.专题:证明题.分析:首先证明∠B=∠2,再加上条件AE=BC,∠FAF=∠BCA,可利用ASA证明△ABC≌△FEA,再根据全等三角形对应边相等可得AB=FE.解答:证明:∵EF⊥AB于点D,∴∠ADE=90°.∴∠1+∠2=90°,又∵∠C=90°,∴∠1+∠B=90°.∴∠B=∠2,在△ABC和△FEA中,,∴△ABC≌△FEA(ASA)∴AB=FE.。
全等三角形难度题含答案
全等三角形测试题荟萃(1)一.选择题1.如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.4个B.3个C.2个D.1个【解】∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF∴BE=CF∠BAE=∠CAF∠BAE﹣∠BAC=∠CAF﹣∠BAC∴∠1=∠2△ABE≌△ACF∴∠B=∠C,AB=AC又∠BAC=∠CAB△ACN≌△ABM.④CD=DN不能证明成立,3个结论对.故选:B.2.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A.2 B.3 C.1 D.2【解】∵△ABC是等边三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE.∴∠APD=∠ABP+∠PAB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴PF=.故选:A.3.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①②B.①②③C.①③D.②③【解答】解:∵OA⊥OB,OC⊥OD,∴∠AOB=∠COD=90°.∴∠AOB+∠AOC=∠COD+∠AOC,即∠COB=∠AOD.在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD,∠ABO=∠CDO.在△AOD和△COB中,∴△AOD≌△COB(SAS)∴∠CBO=∠ADO,∴∠ABO﹣∠CBO=∠CDO﹣∠ADO,即∠ABC=∠CDA.综上所述,①②③都是正确的.故选:B.二.解答题4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.【解答】证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE和△ACD中∴△ABE≌△ACD ∴∠ABD=∠ACD(2)∵∠BOC是△ABO和△DCO的外角∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC∴∠ABD+∠BAC=∠ACD+∠BDC∵∠ABD=∠ACD∴∠BAC=∠BDC∵∠ACB=65°,AB=AC∴∠ABC=∠ACB=65°∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°∴∠BDC=∠BAC=50°.5.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.【解答】解:(1)证明:延长AE交DC的延长线于点F,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠F,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠BAE=∠EAD,∵AB∥CD,∴∠BAE=∠F,∴∠EAD=∠F,∴AD=DF,∴AD=DF=DC+CF=DC+AB,(2)如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF,6.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【解】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.7.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【解】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.8.如图,在Rt△ABC,∠ACB=90°,AC=BC,分别过A、B作直线l的垂线,垂足分别为M、N.(1)求证:△AMC≌△CNB;(2)若AM=3,BN=5,求AB的长.【解】:(1)∵AM⊥l,BN⊥l,∠ACB=90°,∴∠AMC=∠ACB=∠BNC=90°,∴∠MAC+∠MCA=90°,∠MCA+∠NCB=180°﹣90°=90°,∴∠MAC=∠NCB,在△AMC和△CNB中,,∴△AMC≌△CNB(AAS);(2)∵△AMC≌△CNB,∴CM=BN=5,∴Rt△ACM中,AC===,∵Rt△ABC,∠ACB=90°,AC=BC=,∴AB===2.9.已知,如图,在等腰直角三角形中,∠C=90°,D是AB的中点,DE⊥DF,点E、F在AC、BC上,求证:DE=DF.【解】证明:连接CD.∵在等腰直角三角形ABC中,D是AB的中点.∴CD为等腰直角三角形ABC 斜边BC上的中线.∴CD⊥AB,∠ACD=∠BCD=45°,CD=BD=AD.又∵DE⊥DF∴∠EDC=∠FDB在△ECD和△FBD中∴△ECD≌△FDB(ASA)∴DE=DF10.如图,OC是∠MON内的一条射线,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A,B,PA=PB,连接AB,AB与OP交于点E.(1)求证:△OPA≌△OPB;(2)若AB=6,求AE的长.【解】(1)∵PA⊥OM,PB⊥ON,∴∠PAO=∠PBO=90°,又∵PA=PB,PO=PO,∴Rt△AOP≌Rt△BOP;(2)∵△OPA≌△OPB,∴∠APE=∠BPE,又∵PA=PB,∴AE=BE,∴AE=AB=3.11.如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(2)若∠BAC=90°,求证:BF2+CD2=FD2.【解】(1)CD=BE,理由如下:∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB与△CAD中,∴△EAB≌△CAD,∴BE=CD,(2)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF2+BE2=EF2,∵AF平分DE,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF2+CD2=FD212.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA,PE⊥OB,垂足分别为D,E.F是OC上另一点,连接DF,EF.求证:DF=EF.【解】证明:∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA,PE⊥OB,∴∠DOP=∠EOP,PD=PE.在Rt△POD和Rt△POE中,,∴Rt△POD≌Rt△POE(HL),∴OD=OE.在△ODF和△OEF中,,∴△ODF≌△OEF(SAS),∴DF=EF.13.如图,OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,点M在OA上,点N 在OB上,且PM=PN.求证:EM=FN.【解】证明:∵点P在∠AOB的平分线上,PE丄0A于E,PF丄OB于F,∴PF=PE,在Rt△PEM和Rt△PEN中,∴Rt△PEM≌Rt△PEN(HL),∴EM=FN.14.如图,△ABC中,D为BC边上一点,BE⊥AD的延长线于E,CF⊥AD于F,BE=CF.求证:D为BC的中点.【解】证明:∵BE⊥AD的延长线于E,CF⊥AD于F,∴∠CFD=∠BED=90°,在△BED和△CFD中,∴△CDF≌△BDE(AAS)∴CD=BD.∴D为BC的中点.全等三角形测试题荟萃(2)2、 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
全等三角形测试题共三套附答案
全等三角形姓名一.填空题(每题3分,共30分)1.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:_______.2.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_________.3. 已知:如图,△ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.4. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.5. 已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.6.已知:如图 , AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC=AE.若AB=5 , 则AD=___________.7.已知:△ABC≌△A’B’C’,△A’B’C’的周长为12cm,则△ABC的周长为 .8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB≌△A EC , 根据是_________再证△BDE≌△______ , 根据是__________.4321EDBA9.如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________.10.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.AB CD12AA'B CC'二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CAD C.BE=DC D.AD=DE14. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有(除去∠DFE=∠BFC)()A.5对B.4对C.3对D.2对CDEABO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为()A.50°B.30°C.45°D.25°20. 如图 , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ()A.70°B.80°C.100°D.90°三.解答题(每题8分,共40分)21. 已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A答案1.BC 和BC,CD 和CA,BD 和AB2.AB 和AC,AD 和AE,BD 和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃ 11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B 21.由ASA 可证 22. 因为AC=CD EC=BC ∠ACB=∠ECD 所以 △ABC ≌△CED AB=ED 23.证△ABC ≌△FED 得∠ACB=∠F 所以AC ∥DF 24.证△BED ≌△CFD 得∠E=∠CFD 所以CF ∥BE 25.由AAS 证△ABC ≌△CED AC=EF.全等三角形 B 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.4. 如图4,△ABC ≌△AED ,若AE AB =,︒=∠271,则=∠2 .图1图25.如图5,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE ,则图中共有 对全等三角形.6.如图6,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,则图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .8.如图8,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.9.若△ABC ≌△A ′B ′C ′,AD 和A ′D′分别是对应边BC 和B ′C ′的高,则△ABD ≌△A ′B ′D ′,理由是_______________.10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,则∠AOB =_________. 二.选择题:(每题3分,共24分)11.如图9,△ABC ≌△BAD ,A 和B.C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为 ( )A.4cmB.5cmC.6cmD.以上都不对 12.下列说法正确的是 ( ) A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )图5 图6A EB O FC 图8 A CD 图9A.∠AB.∠BC.∠CD.∠B 或∠C 14.下列条件中,能判定△ABC ≌△DEF 的是( ) A.AB =DE ,BC =ED ,∠A =∠D B.∠A =∠D ,∠C =∠F ,AC =EF C.∠B =∠E ,∠A =∠D ,AC =EF D.∠B =∠E ,∠A =∠D ,AB =DE15.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A.AD >1 B.AD <5 C.1<AD <5 D.2<AD <10 16.下列命题正确的是 ( ) A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( )A.3对B.4对C.5对D.6对18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点图10图 11B DOCAC. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点三.解答题(共46分)19. (8分)如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?21. (7分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.AB E CD22. (8分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.ABEO FDCACDB24. (8分)如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A.C作BD的垂线,垂足分别为E.F,求证:EF=CF-AE.答案1.△ADC2. ∠B=∠C或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135°11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC≌△CON 21.先证△ABC≌△DBC得∠ABC=∠DCB,再证△ABE≌△CED 22.垂直 23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO≌△COD 24.证△ABF≌△BCF图 5人教课标版八年级(上)数学检测试卷全等三角形 C 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,若△ABC ≌△ADE ,∠EAC=35°,则∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm ,DM=5cm ,∠DAM=300,则AN= cm ,NM= cm ,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,则∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF , (1)若以“SAS ”为依据,还须添加的一个条件为________________. (2)若以“ASA ”为依据,还须添加的一个条件为________________. (3)若以“AAS ”为依据,还须添加的一个条件为________________.5.如图5,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则△______≌△_______..ABCDE图1ABCDMN 图2A9. 如图9,AB=CD ,AD=BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若︒=∠60ADB ,EO=10,则∠DBC= ,FO= .10. 如图10,△DEF ≌△ABC ,且AC >BC >AB 则在△DEF 中,______< ______< _____.图 10二.选择题(每题3分,共30分)11. 在ABC ∆和C B A '''∆中,下列各组条件中,不能保证:C B A ABC '''∆≅∆的是( ) ① B A AB ''= ② C B BC ''= ③ C A AC ''= ④ A A '∠=∠⑤ B B '∠=∠ ⑥ C C '∠=∠A. 具备①②③B. 具备①②④C. 具备③④⑤D. 具备②③⑥12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边ABCDEFA. 一定全等B. 一定不全等C. 不一定全等D. 面积相等14. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的15A. 150°B.40°C.80°D. 90°A . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形D. 有三个角对应相等的两个三角形是全等三角形18.下列说法错误的是()A. 全等三角形对应边上的中线相等B. 面积相等的两个三角形是全等三角形C. 全等三角形对应边上的高相等D. 全等三角形对应角平分线相等19.已知:如图,O为AB中点,BD⊥CD,AC⊥CD,OE⊥CD,则下列结论不一定成立的是()A. CE=EDB. OC=ODC. ∠ACO=∠ODBD. OE=21CDA BCED A BCDEF12A DB CEF20.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A..90°-∠A B. 90°-21∠A C. 180°-∠A D. 45°-21∠A 三.解答题(共40分)21.(8分)如图,△ABC ≌△ADE ,∠E 和∠C 是对应角,AB 与AD 是对应边,写出另外两组对应边和对应角;22.(8分)如图,A 、E 、F 、C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?23.(7分)如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由..3421DCBAFEDCBA24.(8分)如图,AB ∥CD ,AD ∥BC ,那么AD=BC ,AB=BC ,你能说明其中的道理吗?25.(9分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.CE DB AO答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠D5.ACD,AED6.28°7.58.SAS9.60°,10 10.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B 21.AE 和AC,ED 和BC, ∠B 和∠D, ∠BAC 和∠DAE 22.AD=BC,AE=CF,DE=BF,AD ∥BC, △ACD ≌△ACB,AB ∥CD 等 23.相等, △AOB ≌△DOC 24.连AC,证△ADC ≌△ABC25.(1)证DE=EC (2) 设BE 与CD 交于F,通过全等证DF=CF.B。
(完整版)全等三角形证明经典50题(含答案)
1.已知: AB=4 , AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD解:延伸 AD 到 E,使 AD=DE ∵ D 是 BC 中点∴ BD=DC在△ ACD 和△ BDE 中 AD=DE ∠ BDE= ∠ ADCBD=DC ∴△ ACD ≌△ BDE∴AC=BE=2 ∵在△ ABE 中 AB-BE < AE <AB+BE ∵ AB=4即4-2< 2AD < 4+21< AD < 3∴AD=22. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B延伸 CD 与 P,使 D 为 CP 中点。
连结AP,BP∵DP=DC,DA=DB ∴ ACBP 为平行四边形又∠ ACB=90 ∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠ B=∠ E,∠ C=∠ D ,F 是 CD 中点,求证:∠ 1=∠ 2A12B EC F D证明:连结 BF 和 EF∵ BC=ED,CF=DF, ∠ BCF= ∠ EDF∴三角形 BCF 全等于三角形 EDF( 边角边 )∴BF=EF, ∠CBF= ∠ DEF 连结 BE 在三角形 BEF 中 ,BF=EF∴∠EBF= ∠ BEF 。
∵ ∠ ABC= ∠ AED 。
∴ ∠ABE= ∠ AEB 。
∴AB=AE 。
在三角形 ABF 和三角形 AEF 中 AB=AE,BF=EF,∠ABF= ∠ ABE+ ∠ EBF= ∠ AEB+ ∠ BEF= ∠AEF∴三角形 ABF 和三角形 AEF 全等。
∴∠ BAF=∠ EAF (∠ 1=∠ 2) 4.已知:∠ 1=∠2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB过 C 作 CG∥ EF 交 AD 的延伸线于点G CG∥ EF,可得,∠ EFD= CGDDE= DC ∠ FDE=∠ GDC(对顶角)∴ △ EFD≌ △ CGD EF= CG ∠ CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠ 1 ∠ 1= ∠2 ∴∠ CGD=∠ 2∴ △AGC 为等腰三角形,AC= CG 又 EF= CG∴ EF=AC5.已知: AD 均分∠ BAC ,AC=AB+BD ,求证:∠ B=2 ∠ C A证明:延伸AB 取点 E,使 AE = AC ,连结 DE∵AD 均分∠ BAC∴∠ EAD =∠ CAD∵AE =AC , AD = AD∴△ AED ≌△ ACD(SAS)∴∠ E=∠ C∵AC =AB+BD∴AE = AB+BD∵AE = AB+BE∴ BD =BE∴∠ BDE =∠ E∵∠ ABC =∠ E+ ∠ BDE∴∠ ABC = 2∠E∴∠ ABC = 2∠C6.已知: AC 均分∠ BAD ,CE⊥AB ,∠ B+ ∠ D=180 °,求证: AE=AD+BE证明:在AE 上取 F,使 EF=EB ,连结 CF∵ CE⊥ AB∴∠ CEB =∠ CEF= 90°∵ EB= EF, CE= CE,∴△ CEB ≌△ CEF∴∠ B =∠ CFE∵∠ B +∠ D= 180°,∠ CFE+∠ CFA = 180°∴∠ D =∠ CFA∵AC 均分∠ BAD∴∠ DAC =∠ FAC∵AC =AC∴△ ADC ≌△ AFC ( SAS)∴AD =AF ∴AE =AF + FE=AD + BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、CE 分别均分∠ ABC 、∠ BCD ,且点 E在AD 上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度全等三角形单元测试卷
总分:120分; 考试时间:120分钟; 难度系数:0.70 命题人:张少春
学校:___________姓名:___________分数:___________
一、选择题(共30分,每题3分) 1.下列命题中正确的是( ) A .有两条边相等的两个等腰三角形全等 B .两腰对应相等的两个等腰三角形全等 C .两角对应相等的两个等腰三角形全等 D .一边对应相等的两个等边三角形全等 2.面积相等的两个三角形( ) A .必定全等 B .必定不全等 C .不一定全等 D .以上答案都不对
3.如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,AC ∥DB ,且AC=BD ,那么Rt △AEC ≌Rt △BFC 的理由是( )
A .SSS
B .AAS
C .SAS
D .HL
4.如图,在△ABC 中,AB=AC , AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,则下列说法:①DA 平分∠EDF ;②AE=AF ,DE=DF ;③AD 上任意一点到B 、C 两点的距离相等;④图中共有3对全等三角形,其中正确的有
A .4个
B .3个
C .2个
D .1个
5.如图,△ABC ≌△AEF ,AB=AE ,∠B=∠E ,则对于结论①AC=AF ,②∠FAB=∠EAB ,③EF=BC ,④∠EAB=∠FAC ,其中正确结论的个数是( )
A .1个
B .2个
C .3个
D .4个
6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( )
A .8
B .6
C .4
D .2
7.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC=3cm ,那么
第3题
第5
第3题
第4题
AE+DE 等于( )
A .2cm
B .3cm
C .4cm
D .5cm
8.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( ) A .4 B .3 C .6 D .5
9.如图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA=PB ,下列确定P 点的方法正确的是( ) A .P 是∠A 与∠B 两角平分线的交点
B .P 为∠A 的角平分线与AB 的垂直平分线的交点
C .P 为AC 、AB 两边上的高的交点
D .P 为AC 、AB 两边的垂直平分线的交点
10.如图,在△ABC 中,∠C=90°,∠CAB=50°,按以下步骤作图: ①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于EF 长为半径画弧,两弧相交于点G ; ③作射线AG ,交BC 边于点D .则∠ADC 的度数为( )
A .40°
B .55°
C .65°
D .75°
二、填空题(共24分,每小题3分)
11.如图,△ABD ≌△CBD ,若∠A=80°,∠ABC=70°,则∠ADC 的度数为 . 12.如图,在△ABC 中,∠A=50°,BO 、CO 分别是∠ABC 、∠ACB 的角平分线,则∠BOC=_______________.
13.如图,用直尺和圆规作一个角等于己知角的示意图如图所示,则说明∠A'O'B'=∠AOB 的依据是________.
A 、SSS
B 、SAS
C 、ASA
D 、AAS
14.如图,已知ABC ∆中,︒=∠45ABC , F 是高AD 和BE 的交点,4=CD ,则线段DF 的长度为 。
第7题 第8题 第9题 第10题
第11题 第12题
第13题
第14题
15.如图,△ABC的周长为28cm,把△ABC的边AC对折,使顶点C和点A重合,折痕
交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则△ABD 的周长是 cm .
16.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM =FN;②AF//EB;③
∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有_______ .
17.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,
连接EC,则∠AEC的度数是.
第15题第16题第17题
18.在△ABC中,AB=10,AC=6,AD是BC边上的中线,则AD的取值范围是.
三、解答题(共66分,19题7分,20-21题各8分,22题9分,23题10分,24-25题各12分)
19.如图,点D、E分别在AB、AC上,且AD=AE,∠BDC=∠CEB,则BD=CE吗?请说
明理由。
(7分)
20.已知:如图,△ABC和△CDE都是等边三角形,点D在BC边上.求证:AD=BE.(8
分)
21.如图,在△ABC中,AD是BC边上的中线,分别过点C、B作射线AD的垂线段,垂
足分别为E、F.求证:BF=CE.(8分)
22.在△ABC 中,AB=BC ,∠ABC=90°,D 是AB 上一点,AE ⊥CD 交其延长线
于点E ,且AE= 1 2
CD ,BD=8cm ,求D 到AC 的距离。
(9分)
E
D
C
B
A
23.锐角△ABC 中,BD 和CE 是两条高,相交于点M ,BF 和CG 是两条角平分线,相交于点N ,如果∠BMC=100°,求∠BNC 的度数.(10分)
24.若∠C=α,∠EAC+∠FBC=β
(1)如图①,AM 是∠EAC 的平分线,BN 是∠FBC 的平分线,若AM ∥BN ,则α与β有何关系?并说明理由.(4分)
(2)如图②,若∠EAC 的平分线所在直线与∠FBC 平分线所在直线交于P ,试探究∠APB 与α、β的关系是 .(用α、β表示)(4分)
(3)如图③,若
α
≥
β,∠EAC 与∠FBC 的平分线相交于1P ,
112EAP FBP P ∠∠与的平分线交于;依此类推,
则5P ∠= (用α、β表示)((4分)
25.在等腰直角△ABC 中,∠BAC=90°,AB=AC ,
(1)如图1,点D 、E 分别是AB 、AC 边的中点,AF ⊥BE 交BC 于点F ,连结EF 、CD 交于点H.求证,EF ⊥CD ;(6分)(提示:过点C 做CM 垂直于AC,交AF 延长线于M 点,证明2次全等)
(2)如图2,AD=AE ,AF ⊥BE 于点G 交BC 于点F ,过F 作FP ⊥CD 交BE 的延长线于点P ,试探究线段BP,FP,AF 之间的数量关系,并说明理由.(6分)(提示:过点C 做CM 垂直于AC,交AF 延长线于M 点)
P P A
B
E
F
C
图③
A
B
E
F
C
图②
图①C
N
M F
E
B
A
A B
C
E
D
F
G
H
C
H
F G
E P
B D
A
图1 图2。