排列组合典型应用题例题分析

合集下载

行测中数学问题之年龄排列组合问题

行测中数学问题之年龄排列组合问题

行测中数学问题之年龄、排列组合问题解年龄问题,一般要抓住以下三条规律:(1)不论在哪一年,两个人的年龄差总是确定不变的;(2)随着时间向前(过去)或向后(将来)推移,两个人或两个以上人的年龄一定减少或增加相等的数量;(3)随着时间的变化,两个人年龄之间的倍数关系一定会改变。

【例1】妈妈今年 43岁,女儿今年11岁,几年后妈妈的年龄是女儿的3倍?几年前妈妈的年龄是女儿的5倍?【分析】无论在哪一年,妈妈和女儿的年龄总是相差43-11=32(岁)当妈妈的年龄是女儿的3倍时,女儿的年龄为(43-11)÷(3-1)=16(岁)16-11=5(岁)说明那时是在5年后。

同样道理,由11-(43-11)÷(5-1)=3(年)可知,妈妈年龄是女儿的5倍是在3年前。

【例2】今年,父亲的年龄是女儿的4倍,3年前,父亲和女儿年龄的和是49岁。

父亲、女儿今年各是多少岁?【分析】从3年前到今年,父亲、女儿都长了3岁,他们今年的年龄之和为49+3×2=55(岁)由“55 ÷(4+1)”可算出女儿今年11岁,从而,父亲今年44岁。

【例3】陈辉问王老师今年有多少岁,王老师说:“当我像你这么大时,你才3岁;当你像我这么大时,我已经42岁了。

”问王老师今年多少岁?【分析】我们先要明白:如果我比你大a岁,那么“当我像你这么大时”就是在a年前,“当你像我这么大时”就在a年后。

这样便可根据题意画出下图:从图上可看出,a=13,进一步推算得王老师今年29岁。

排列组合问题I一、知识点:分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤) 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.10.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+== 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且组合数的性质1:m n n m n C C -=.规定:10=n C ; 2:m n C 1+=m n C +1-m n C二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.(答案:240)从总体中排除不符合条件的方法数,这是一种间接解题的方法.b 、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条.(答案:30)三、讲解范例:例1 由数字1、2、3、4、5、6、7组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数2、4、6必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将1、3、5、7四个数字排好有44P种不同的排法;第二步将2、4、6三个数字“捆绑”在一起有33P种不同的“捆绑”方法;第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有15P种不同的“插入”方法根据乘法原理共有153344PPP∙∙=720种不同的排法720个符合条件的七位数解(2):因为三个偶数2、4、6互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将1、3、5、7四个数字排好,有44P种不同的排法;第二步将2、4、6分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有35P种“插入”方法根据乘法原理共有3544PP∙=1440种不同的排法所以共有1440个符合条件的七位数例2将A、B、C、D、E、F分成三组,共有多少种不同的分法?解:要将A、B、C、D、E、F分成三组,可以分为三类办法:下面分别计算每一类的方法数:解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有46 C解法二:从六个元素中先取出一个元素作为一个组有16C种选法,再从余下的五个元素中取出一个元素作为一个组有15C种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以2 2 P所以共有221516PCC∙=15种不同的分组方法第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有16C种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有25C种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有2516CC∙=60种不同的分组方法第三类(2-2-2)分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有26C种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有24C种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以33P,因此共有332426PCC∙=15种不同的分组方法根据加法原理,将A、B、C、D、E、F六个元素分成三组共有:15+60+15=90种例3一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有66P种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有35C种不同的“插入”方法根据乘法原理共有3566CP∙=7200种不同的坐法排列组合问题II一、相临问题——整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

排列组合例题与解析

排列组合例题与解析

排列组合例题与解析【公式】r n!P n= (n-r)!rr n! P n n-rC n= r!(n-r)! = r! =C n例题分析:1.首先明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。

分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。

设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定,又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2)=90*2*2,因而本题为360。

例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。

若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?分析:对实际背景的分析可以逐层深入(一)从M到N必须向上走三步,向右走五步,共走八步。

(二)每一步是向上还是向右,决定了不同的走法。

(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。

从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴ 本题答案为:=56。

2.分析是分类还是分步,是排列还是组合注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。

分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。

第一类:A在第一垄,B有3种选择;第二类:A在第二垄,B有2种选择;第三类:A在第三垄,B有一种选择,同理A、B位置互换,共12种。

例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。

排列组合问题经典题型(含解析)

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。

经典排列组合应用题的解法技巧

经典排列组合应用题的解法技巧

经典排列组合应⽤题的解法技巧解排列组合应⽤题的解法技巧⼀. 运⽤两个基本原理加法原理和乘法原理是解排列组合应⽤题的最基本的出发点,可以说对每道应⽤题我们都要考虑在记数的时候进⾏分数或分步处理。

例1:n个⼈参加某项资格考试,能否通过,有多少种可能的结果?例2:同室四⼈各写了⼀张贺年卡,先集中起来,然后每⼈从中拿⼀张别⼈的贺年卡,则四张贺年卡不同的分配⽅式有()(A)6种(B)9种(C)11种(D)23种练习:1投递问题:3封信2个邮箱有多少投递⽅案2映射个数计算:从集合A={1,2,3,}到集合B={a,b}能建⽴多少映射⼆. 特殊元素(位置)优先----(优待法)所谓“优待法”是指在解决排列组合问题时,对于有限制条件的元素(或位置)要优先考虑.例3:从0,1,……,9这10个数字中选取数字组成偶数,⼀共可以得到⽆重复数字的五位偶数多少个?注0,2,4,6,8是特殊元素,元素0更为特殊,⾸位与末位是特殊的位置。

例4:8⼈站成两排,每排4⼈,甲在前排,⼄不在后排的边上,⼀共有多少种排法?【eg】在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个.〔注〕这道例题是典型的限制排列组合题.解题时,若从元素⼊⼿(即元素优先),常要分类讨论,分类时要注意堵漏防重;若从位置⼊⼿(即位置优待1,常要分步解答,分步时要注意分步完整,各步相连.练习(1)由数字0,1,2,…,9组成没有重复数字的三位数,且能被3整除(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?三. 捆绑法在解决对于某⼏个元素要求相邻的问题时,先整体考虑,将相邻元素视作⼀个⼤元素进⾏排序,然后再考虑⼤元素内部各元素间顺序的解题策略就是捆绑法.例5:8⼈排成⼀排,甲、⼄必须分别紧靠站在丙的两旁,有多少种排法?〔注〕运⽤捆绑法解决排列组合问题时,⼀定要注意“捆绑”起来的⼤元素内部的顺序问题.四. 插空法不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插⼊到它们的间隙及两端位置,故称插空法.例6:排⼀张有8个节⽬的演出表,其中有3个⼩品,既不能排在第⼀个,也不能有两个⼩品排在⼀起,有⼏种排法?注:捆绑法与插⼊法⼀般适⽤于有如上述限制条件的排列问题【eg】⽤1、2、3、4、5、6、7、8组成没有重复数字的⼋位数,要求1与2相邻,2与4相邻,5与6相邻,⽽7与8不相邻。

人教版数学教材 排列组合

人教版数学教材 排列组合

人教版数学教材排列组合排列组合是概率与统计中的一项重要内容,在人教版数学教材中也占据了重要的位置。

通过学习排列组合,我们可以更好地理解数学中的概率问题,解决实际生活中的排列组合应用题。

下面将从基本概念、公式与定理、例题分析等方面对排列组合的相关内容进行探讨。

一、基本概念排列组合是数学中的一种计数方法,它们分别用来求不同情况下的可能性个数。

排列:从n个不同的元素中,按照一定的顺序选择r个元素进行排列,称为从n个元素中取r(r≤n)个进行排列,用P(n,r)表示。

其中,P(n,r)的计算公式为:P(n,r) = n! / (n-r)!组合:从n个不同的元素中,按照一定的顺序选择r个元素进行排列,称为从n个元素中取r(r≤n)个进行组合,用C(n,r)表示。

其中,C(n,r)的计算公式为:C(n,r) = n! / (r! * (n-r)!)在排列组合的概念中,需要注意的是,元素的选取过程中不考虑其顺序。

二、公式与定理1. 互补原理互补原理指的是,设集合A和B是互不相交的有穷集合,则A和B的并集A∪B的基数等于A的基数与B的基数之和。

即|A∪B| = |A| + |B|。

2. 分类计数原理分类计数原理指的是,将问题分成若干个互不相交的部分,分别计算每个部分的情况数,再将各部分的情况数相加,就得到了原问题的情况数。

3. 乘法原理乘法原理指的是,如果一个过程由若干个步骤构成,每个步骤有若干个选择,则整个过程的选择数等于各个步骤选择数的乘积。

4. 排列公式排列公式可以用来计算不同情况下的排列个数,如全排列、重排列等。

常见的排列公式有:- "n个元素全排列"的个数是n的阶乘,即P(n,n) = n!- "从n个元素中取r个元素进行排列"的个数是n个元素中取r个元素的排列数,即P(n,r) = n! / (n-r)!5. 组合公式组合公式可以用来计算不同情况下的组合个数。

经典排列组合问题100题配超详细解析

经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55-n ,那么可知下标的值为69-n,共有69-n-(55-n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C. 38种 D. 108种 【答案】B 【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21-n)……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21-n)……(100-n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5.7中选两个数字,组成无重复数字的四位数.其中偶数的个数为 ( )A.56B. 96C. 36D.360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( ) A. 280种 B. 240种 C. 180种 D. 96种 【答案】B【解析】根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有46360A =种不同的情况,其中包含甲从事翻译工作有3560A =种,乙从事翻译工作的有3560A =种,若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有360-60-60=240种.6.如图,在∠AOB 的两边上分别有A 1、A 2、A 3、A 4和B 1、B 2、B 3、B 4、B 5共9个点,连结线段A i B j (1≤i ≤4,1≤j ≤5),如果其中两条线段不相交,则称之为一对“和睦线”,则图中共有( )对“和睦线”.A .60B .62C .72 D.124 【答案】A【解析】在∠AOB 的两边上分别取,(),i j A A i j <和,()p q B B p q <,可得四边形i j p qA AB B 中,恰有一对“和睦线”(i p AB 和)j q A B ,而在OA 上取两点有25C 种方法,在OB 上取两点有24C 种方法,共有10660⨯=对“和睦线”.7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )A .10B .11C .12D .15 【答案】B【解析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C 42=6(个)第二类:与信息0110有一个对应位置上的数字相同的有C 41=4个,第三类:与信息0110没有一个对应位置上的数字相同的有C 40=1,由分类计数原理知与信息0110至多有两个对应位置数字相同的共有6+4+1=11个8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有 ( )A . 6种B . 12种C . 30种D . 36种 【答案】C【解析】分有一门不相同和二门不相同两种情况,所以共有2112422430C C C C +=9.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有球的个数为( ).A .5个B .8个C .10个D .15个 【答案】D【解析】由于从一个不透明的口袋中摸出红球的概率为1/5,并且袋中红球有3个,设袋中共有球的个数为n,则31,5n =所以15n =. 10.从编号为1,2,3,4的四个不同小球中取三个不同的小球放入编号为1,2,3的三个不同盒子,每个盒子放一球,则1号球不放1号盒子且3号球不放3号盒子的放法总数为A. 10 B. 12 C. 14 D. 16【答案】C【解析】解:由题意知元素的限制条件比较多,要分类解决,当选出的三个球是1、2、3或1、3、4时,以前一组为例,1号球在2号盒子里,2号和3号只有一种方法,1号球在3号盒子里,2号和3号各有两种结果,选1、2、3时共有3种结果,选1、3、4时也有3种结果,当选到1、2、4或2、3、4时,各有C21A22=4种结果,由分类和分步计数原理得到共有3+3+4+4=14种结果,故选C.11..在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有()A.34种B.48种C.96种 D.144种【答案】C【解析】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果.根据分步计数原理知共有2×48=96种结果,故选C.12.由两个1、两个2、一个3、一个4这六个数字组成6位数,要求相同数字不能相邻,则这样的6位数有A. 12个B. 48个C. 84个D. 96个【答案】C【解析】解:因为先排雷1,2,3,4然后将其与的元素插入进去,则根据相同数字不能相邻的原则得到满足题意的6位数有84个。

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加. 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1。

公式:1。

()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m(m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn .1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1。

排列组合典型应用题例题分析

排列组合典型应用题例题分析

组合应用题例题分析⒈ 100件产品中,有98件合格品,2件次品。

从这100件产品中任意抽出3件. (1)一共有多少种不同的抽法;(2)抽出的3件都不是次品的抽法有多少种?(3)抽出的3件中恰好有1件是次品的抽法有多少种? (4)抽出的3件中至少有1件是次品的取法有多少种?解:(1)3100161700C =;(2)398152096C =;(3)12298247539506C C =⨯=;(4)解法一:(直接法)12212982989506989604C C C C +=+=; 解法二:(间接法)33100981617001520969604C C -=-=.⒉ 从8男4女中选出5名学生代表,按下列条件各有多少种选法: ⑴至少有一名女同学;⑵至少有两名女同学,但女甲和女乙有且只有一人当选; ⑶至多有两名女同学; ⑷女生甲、乙不都当选;⑸必须有女同学当选,但不得超过女同学的半数。

解: (1)736C C 58512=-; (2)280C C C C C C 282212381212=+;(3)672C C C C C C 382448145804=++; (4)672C C C 31022512=-;(5)616C C C C 38244814=+.注:至多(至少)问题的解法:①恰当分类;②排除法。

⒊ 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)422131424152426=+-C C C C C C .解法二:分为两类:一类为甲不值周一,也不值周六,有2414C C ;另一类为甲不值周一,但值周六,有2324C C ,∴一共有2414C C +2324C C =42种方法.4. 六本不同的书,按下列要求各有多少种不同的方法? (1)分给甲、乙、丙三人,每人2本; (2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本; (5)分为三份,一份四本,另两份各一本; (6)分给甲、乙、丙三人,每人至少1本。

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式:()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合典型例题 详解

排列组合典型例题 详解

典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?典型例题二例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?典型例题四例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.典型例题五例5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?典型例题六例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?典型例题七例5 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?典型例题八例8 从65432、、、、五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.典型例题九例9 计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n m n m n A A A ; (4) !!33!22!1n n ⋅++⋅+⋅+ (5) !1!43!32!21n n -++++ 典型例题十例10 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.对这个题目,A 、B 、C 、D 四位同学各自给出了一种算式:A 的算式是6621A ;B 的算式是441514131211)(A A A A A A ⋅++++;C 的算式是46A ; D 的算式是4426A C ⋅.上面四个算式是否正确,正确的加以解释,不正确的说明理由. 典型例题十一例11 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?典型例题十二例12 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有( ).A .5544A A ⋅B .554433A A A ⋅⋅C .554413A A C ⋅⋅D .554422A A A ⋅⋅典型例题十三例13 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).A .210B .300C .464D .600典型例题十四例14 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).A .24个B .30个C .40个D .60个典型例题十五例15 (1)计算88332211832A A A A ++++ .(2)求!!3!2!1n S n ++++= (10≥n )的个位数字.典型例题十六例16 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?典型例题十七例17 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?典型例题分析1、分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个). ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:)(283914A A A -⋅个∴ 没有重复数字的四位偶数有22961792504)(28391439=+=-⋅+A A A A 个.解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有281515A A A ⋅⋅个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有281414A A A ⋅⋅个∴ 没有重复数字的四位偶数有2296281414281515=⋅⋅+⋅⋅A A A A A A 个.解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.没有重复数字的四位数有39410A A -个. 其中四位奇数有)(283915A A A -个∴ 没有重复数字的四位偶数有28393939283915394105510)(A A A A A A A A A +--⨯=---283954A A +=2828536A A +=2841A =2296=个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.解法2:(间接法)3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的7713A A ⋅种排法和女生排在末位的7713A A ⋅种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有6623A A ⋅种不同的排法,所以共有1440026623771388=+-A A A A A 种不同的排法.解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有144005536=⋅A A 种不同的排法,(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.若以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

高中数学中的排列组合应用题

高中数学中的排列组合应用题

高中数学中的排列组合应用题在高中数学学习中,排列组合是一个非常重要的内容。

它不仅能够帮助我们理解数学概念,还可以应用于实际生活中的问题。

本文将介绍一些高中数学中常见的排列组合应用题,以加深我们对这个概念的理解。

一、购买礼物假设小明要为他的朋友买生日礼物,商店里有3种不同的礼物供他选择。

如果他打算买2件礼物作为生日礼物,那么他有多少种不同的选择方式?解析:根据排列组合的知识,我们可以用组合的公式来计算小明的选择方式。

因为他要购买的礼物是无序的,所以使用组合公式。

根据组合公式,我们有C(3,2) = 3 种不同的选择方式。

二、选课方案某高中有10门不同的选修课供学生选择,每个学生必须选择5门。

那么学生有多少种不同的选课方案?解析:根据排列组合的知识,我们可以用组合的公式来计算学生的选课方案。

因为选修课的顺序对学生来说是无关紧要的,所以使用组合公式。

根据组合公式,我们有C(10,5) = 252 种不同的选课方案。

三、分组问题某班级有20名学生,他们要分成4个小组参加活动。

每个小组的人数可以不同,但要求每个小组至少有1人。

那么有多少种不同的分组方式?解析:根据排列组合的知识,我们可以用组合的公式来计算分组方式。

因为每个小组的人数可以不同,所以使用组合公式。

根据组合公式,我们有C(19,3) * C(16,3) * C(13,3) = 846720 种不同的分组方式。

四、密码问题某交易平台的密码由4位数字组成,每位数字可以是0-9的任意一个数字。

那么共有多少种不同的密码组合?解析:根据排列组合的知识,我们可以用排列的公式来计算密码组合。

因为每位数字可以重复出现,所以使用排列公式。

根据排列公式,我们有P(10,4) = 5040 种不同的密码组合。

五、编码问题某公司对员工的编号规则是3位数字和3位字母的组合,数字和字母都可以重复使用,且顺序可以任意排列。

那么共有多少种不同的员工编号方式?解析:根据排列组合的知识,我们可以用排列的公式来计算员工编号方式。

高中数学排列组合与概率的综合应用题解析与求解

高中数学排列组合与概率的综合应用题解析与求解

高中数学排列组合与概率的综合应用题解析与求解在高中数学中,排列组合与概率是两个重要的概念和技巧。

排列组合主要涉及对对象的选择和排列,而概率则是研究事件发生的可能性。

在解决实际问题时,这两个概念常常会结合起来使用。

本文将通过具体的题目来说明如何应用排列组合与概率的知识解决综合应用题。

题目一:某班有10个男生和8个女生,从中选出3个人组成一个小组,其中至少有1个男生。

求这样的小组的可能数。

解析:这是一个典型的排列组合问题,我们需要从10个男生中选出至少1个男生,再从8个女生中选出剩下的2个人。

根据排列组合的知识,我们可以得出解题步骤如下:1. 选出1个男生的可能数:C(10, 1) = 102. 从8个女生中选出2个人的可能数:C(8, 2) = 283. 将步骤1和步骤2的结果相乘,得到最终的结果:10 * 28 = 280所以,这样的小组的可能数为280。

通过这个题目,我们可以看到排列组合的应用,以及如何将多个步骤结合起来求解问题。

这对于高中学生来说,是一个很好的练习。

题目二:某班有10个男生和8个女生,从中随机选出3个人组成一个小组,求这样的小组中至少有1个男生的概率。

解析:这是一个概率问题,我们需要计算满足条件的小组数与总的小组数的比值。

根据概率的定义,我们可以得出解题步骤如下:1. 满足条件的小组数:根据题目一的解析,我们已经知道满足条件的小组数为280。

2. 总的小组数:从18个人中选出3个人的可能数为C(18, 3) = 816。

3. 将步骤1除以步骤2,得到最终的结果:280 / 816 ≈ 0.343。

所以,这样的小组中至少有1个男生的概率约为0.343。

通过这个题目,我们可以看到概率的应用,以及如何计算概率的具体步骤。

这对于高中学生来说,是一个很好的练习。

题目三:某班有10个男生和8个女生,从中选出3个人组成一个小组,求这样的小组中至少有2个男生的概率。

解析:这是一个概率问题,我们需要计算满足条件的小组数与总的小组数的比值。

排列组合应用题求解专题

排列组合应用题求解专题

有4种颜色可供选择,则不同的着色方法共有
种.
解:符合条件的要求着色至少
2
须要三种颜色,故可分为: 3
1
5
(1)使用三种颜色时,
4
A 2与4同色且3与5同色,共有 3 种方法 4
(2)使用四种颜色时,
A 若2与4同色,有
4 4
种方法;若3与5
同色,也有 A44 种方法
所以不同的着色方法共有 A43 2A44 72 种
(2)2张2一起出,3张A分两次出,有种 C32 A53 方法
(3)2张2一起出,3张A分三次出,有种 A54 方法
(4)2张2分开出,3张A一起出,有种 A53 方法
(5)2张2分开出,3张A分两次出,有 C32 A54 种方法.
(6) 2张2分开出,3张A分三次出,有 A55 种方法
因此,共有不同的出牌方法 A55 A52 A54 C32 A53 A53 C32 A54
7、全体学生手拉手站成一圈
7、机会均等法:七个人站成一圈,有七个
接点,从不同的接点剪开后得到的排列数就
是七人的全排 A77 ,而七个人站成一圈,只
有顺序之分,无位置之分,所以满足条件的
排法为 A77 种
7
练习
例题一、12个相同的小球放入编号为 1、 2、3、4的盒子中:
(1)、每个盒子中至少有一个小球的不同方 法有多少种?
法 能一 满样 足,条有件,C和53 种(放1)法的解法一样,有 C53
种放法
练习
例题一、 按以下要求分配6本不同的书, 各有几种分法?
(1) 平均分给甲、乙、丙三人,每人2本;
(2) 平均分成三份,每份2本;
(3)分成三份,一份一本,一份2本,一份3本;

排列组合典型题大全含答案

排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少? 5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案排列组合问题经典题型解析排列组合问题是高中数学中常见且重要的数学问题类型之一。

本文将从基本概念入手,逐步解析几个经典的排列组合问题,并附带解答。

# 1. 排列问题排列是指从给定的一组对象中选出若干个进行有序的排列。

下面以“abcd”为例,演示几个经典的排列问题。

## 1.1 无重复元素的排列问题描述:从元素集合{a, b, c, d}中,选取3个元素进行排列。

解答思路:首先来分析问题中的条件和要求。

问题中给出了四个元素{a, b, c, d},要求选取其中的三个元素进行排列,即考虑顺序。

根据排列的定义,我们知道从n个元素中选取k个元素进行排列,共有A(n, k)种情况。

其中,A(n, k)表示从n个元素中选取k个元素的排列数,计算公式为:A(n, k) = n! / (n-k)!对于本问题,选取3个元素进行排列,即A(4, 3),计算结果为:A(4, 3) = 4! / (4-3)! = 4! = 4 * 3 * 2 * 1 = 24。

因此,从元素集合{a, b, c, d}中选取3个元素进行排列,共有24种情况。

## 1.2 有重复元素的排列问题描述:从元素集合{a, b, b, c}中,选取3个元素进行排列。

解答思路:与上一个问题类似,只是在元素集合中存在重复元素。

排列问题的解法是一样的,只是在计算结果时需要考虑重复元素。

对于本问题,选取3个元素进行排列,即A(4, 3),计算结果为:A(4, 3) = 4! / 2! = 4 * 3 * 2 * 1 / 2 * 1 = 12。

因此,从元素集合{a, b, b, c}中选取3个元素进行排列,共有12种情况。

# 2. 组合问题组合是指从给定的一组对象中选取若干个进行无序的组合。

下面以“abcd”为例,演示几个经典的组合问题。

## 2.1 无重复元素的组合问题描述:从元素集合{a, b, c, d}中,选取3个元素进行组合。

高中数学排列组合与概率的综合应用题解析

高中数学排列组合与概率的综合应用题解析

高中数学排列组合与概率的综合应用题解析在高中数学中,排列组合与概率是一个重要的知识点,也是学生们较为薄弱的部分。

本文将通过具体的题目举例,分析其考点,并给出解题技巧,以帮助高中学生和他们的父母更好地理解和应用这一知识点。

一、题目一:从1、2、3、4、5、6六个数字中任选三个数字,组成三位数,求能被3整除的三位数的个数。

解析:这是一个典型的排列组合问题。

我们需要从六个数字中任选三个数字,组成三位数。

首先,我们可以确定百位上的数字只能是1、2、3,因为0不能作为三位数的百位数。

然后,十位和个位上的数字可以是任意的。

所以,我们需要计算的是从1、2、3中选取一个数字作为百位数,从1、2、3、4、5、6中选取两个数字作为十位和个位数的排列数。

根据排列组合的知识,我们知道从n个不同元素中取出m个元素的排列数可以表示为P(n,m) = n!/(n-m)!,其中,n!表示n的阶乘。

根据题目要求,我们可以得到P(3,1) * P(6,2) = 3!/(3-1)! * 6!/(6-2)! = 3 * 6 * 5 = 90。

所以,能被3整除的三位数的个数为90个。

二、题目二:有6个红球,4个蓝球和2个绿球,从中任选5个球,求至少选到一个红球的概率。

解析:这是一个概率问题。

我们需要计算从12个球中任选5个球至少选到一个红球的概率。

首先,我们可以计算从12个球中任选5个球的总的可能性,即C(12,5) =12!/(5!*(12-5)!) = 792。

然后,我们需要计算选到至少一个红球的情况。

选到至少一个红球可以分为两种情况:选到1个红球和4个其他球,或者选到2个红球和3个其他球。

对于第一种情况,我们可以计算C(6,1) * C(6,4) =6!/(1!*(6-1)!) * 6!/(4!*(6-4)!) = 6 * 15 = 90。

对于第二种情况,我们可以计算C(6,2)* C(6,3) = 6!/(2!*(6-2)!) * 6!/(3!*(6-3)!) = 15 * 20 = 300。

排列组合应用题基本解法举例

排列组合应用题基本解法举例

排列组合应用题基本解法举例〔关键词〕排列;组合;间接法;捆绑法;插空法;消序法虽然关于排列、组合的应用题是千变万化的,但其解题思路却离不开“分步相乘,分类相加,有序排列,无序组合”的原则.要熟练掌握解题技巧,我们还必须掌握处理排列、组合问题的一些基本技巧、方法.下面举列说明.1. 特殊位置法例1:从10人中选3人站成一排,其中甲不站首位,共有多少种不同排法?分析:首位是特殊位置,先排首位有A种排法,再排其余两位有A种排法,分步相乘得AA=648.2. 间接法例2:有7人站成一排,其中甲不站首位,且乙不站末位,共有多少种不同排法?分析:可用间接法得A-2A+A.其中甲站首位的方法有A种,乙站末位的方法有A种,包含甲站首位且乙站末位的情况有A种.3. 捆绑法例3:6件不同商品排成一排,其中甲、乙、丙3件商品一定要排在一起,共有多少种不同排法?分析:先把甲、乙、丙捆绑起来当一个元素参加排列有A种排法,然后这3件商品内部再排列有A种排法.分步相乘得AA=144.对于有相邻要求的排列组合题,可用此法.4. 插空法例4:有5个男生和4个女生排成一排,其中女生不能相邻,有多少种不同排法?分析:第一步,先排5个男生有A种排法;第二步,5个男生之间(包括两端)的6个空位中插入4个女生有A种排法.由分步相乘法得AA=43200.5. 先选后排法例5:从8个男生和4个女生中选3个男生2个女生,担任5种不同的工作,有多少种方法?分析:AA为错解,因为漏掉了男、女生的混合排列.正确解法用先选后排法,即先按要求选出5人有CC种方法,后进行排列有A种方法,由分步相乘法得CCA=40320.6. 消序法例6:有身高各不相同的10个人站成一排,要求甲、乙、丙3人从左边顺次一个比一个低(可以不相邻),共有多少种不同排法?分析:首先不考虑限制条件,共有A种不同排法;其次对甲、乙、丙3人的排列消序得:=604800,即共有604800种排法.7. 平均分组法例7:A、B、C、D、E、F 6人平均分成三组下棋,有多少种不同分法?分析:CCC为错解,其中有重复.如:6人中先选A、B为一组,再在剩余4人中选C、E为一组,最后剩余2人D、F为一组;6人中先选C、E为一组,再在剩余4人中选A、B为一组,最后剩余2人D、F为一组.以上两种不同分法得到的结果是完全相同的,即A、B为一组,C、E为一组,D、F为一组.不难发现,错解对这一种分法算了6次.故易得,正确解法为=15.8. 查字典法例8:由0、1、2、3、4、5六个数字,可以组成多少个没有重复数字且比324105大的六位数?分析:从高位排查如下:(1)查首位有4×××××、5×××××,故有2A个数;(2)查前两位有34××××、35××××,故有2A个数;(3)查前三位有325×××,故有A个数;(4)查前四位有3245××,故有A个数;(5)查前五位有324150,故有1个数.故共有:2A+2A+A+A+1=297个数.。

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=…… 2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m n m n m m m==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

高中数学_2-3_排列组合典型例题__第二节解析

高中数学_2-3_排列组合典型例题__第二节解析

高中数学_2-3_排列组合典型例题__第二节解析排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

高中数学练习题附带解析排列与组合的应用与计算

高中数学练习题附带解析排列与组合的应用与计算

高中数学练习题附带解析排列与组合的应用与计算高中数学练习题附带解析——排列与组合的应用与计算在高中数学学习中,排列与组合是一个重要的概念。

排列是指从一组元素中选取若干个元素进行排列,并且排列的顺序很重要;组合是指在一组元素中选取若干个元素,组合的顺序不重要。

这两个概念在实际生活中也有广泛的应用。

本文将通过多道数学练习题来探讨排列与组合的应用与计算方法。

1. 排列的应用与计算方法题目:一家电影院有10个座位,有5个人来买票,其中3个人有特殊要求,必须坐在相邻的位置,问有多少种不同的就座方式?解析:首先,我们可以将这道题目看作是一个排列组合问题中的全排列问题。

因为这道题目中不同的“就座方式”就是从10个座位中选取5个人进行排序。

因此,全排列的结果为10 × 9 × 8 × 7 × 6。

此外,这道题目还有一个特殊的限制条件,即3个人必须坐在相邻的位置。

因此,我们需要把这3个人看成一个整体,把他们的全排列除以3!,即可得到他们的所有排列方式。

因此,最终的答案为:(10 × 9 × 8 × 7 ×6)/(3 × 2 × 1)= 5,040 种不同的就座方式。

2. 组合的应用与计算方法题目:从6个数中选出4个数,问有多少种不同的选法?解析:这道题目涉及到了组合,因为题目中不考虑数字的先后顺序,只关心选出的4个数。

因此,我们需要将这4个数看成一个组合体,从中选取出任意4个数的选法都算作一种结果。

这就是我们熟知的组合数学问题。

通过组合数学的公式,我们可以得到该问题的答案:C (6,4)= 15。

其中,C(n,m)表示从 n 个不同元素中取出 m 个不同元素的组合数。

3. 排列组合的综合应用题目:有8个人排成一列,其中有4个男生和4个女生,请问有多少种不同的排列方式,使得男女两个组内的人都不相邻?解析:这道题目中既有排列,又有组合,因此需要综合运用排列与组合的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合应用题例题分析
⒈100件产品中,有98件合格品,2件次品。

从这100件产品中任意抽出3件.
(1)一共有多少种不同的抽法;
(2)抽出的3件都不是次品的抽法有多少种?
(3)抽出的3件中恰好有1件是次品的抽法有多少种?
(4)抽出的3件中至少有1件是次品的取法有多少种?
⒉从8男4女中选出5名学生代表,按下列条件各有多少种选法:
⑴至少有一名女同学;
⑵至少有两名女同学,但女甲和女乙有且只有一人当选;
⑶至多有两名女同学;
⑷女生甲、乙不都当选;
⑸必须有女同学当选,但不得超过女同学的半数。

⒊甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可
以排出多少种不同的值周表?
4. 六本不同的书,按下列要求各有多少种不同的方法?
(1)分给甲、乙、丙三人,每人2本;
(2)分为三份,每份2本;
(3)分为三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;
(5)分为三份,一份四本,另两份各一本;
(6)分给甲、乙、丙三人,每人至少1本。

A B
5. 10个人分乘4辆相同的汽车,两辆汽车各坐3人,另两辆汽车各坐2人,有多少种分配方案?
6.(1) 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法? (2) 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?
7.(1) 将6名运动员分到四所学校,每校至少一名,有多少种不同的分法? (2)从四所学校选6名运动员,每校至少一人,有多少种不同的方案?
8.一楼梯分10级,某人上楼一步可上一级,也可,规定8步走完,共有多少种不同的走法?
变题1: 一楼梯分10级,某人上楼一步可上一级,也可上两级,一共有多少种走法?
变题2: 若有n 个台阶又如何?
9.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?
10.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如
果6可以当作9使用,问可以组成多少个三位数?
解:可以分为两类情况:① 若取出6,则有)(21
7171228C C C A +种方法;
②若不取6,则有2
717A C 种方法,
根据分类计数原理,一共有)(217171228C C C A ++2
717A C =602种方法。

11.如图是由12个小正方形组成的43⨯矩形网格,一质点沿网格线从点A 到点B 的不同
路径之中,最短路径有 条。

12.平面内有10个点,其中有4个红点,6个白点,除了3个白点共线外,其余无三点共线,求过同色的点所作的直线条数?
13.半圆的直径AB 上有异于A 、B 的4个点,半圆周上有异于A 、B 的6个点, ⑴以这10个点中的3点作三角形,共有多少个? ⑵以这10个点中的3点作圆,共有多少个? ⑶以这10个点中的4点作四边形共有多少个?
14.一个圆周上有12个点,每两个点连一条弦,⑴共有多少条弦? ⑵如果任意三条弦在圆周内都不共点,则这些弦在圆周内的交点有多少个?
15.平面上有9条直线,按下列条件,可围成多少个三角形? ⑴其中有4条平行,此外无任何两条平行,也无任何三线共点? ⑵其中有4线共点,此外无任何两条平行,也无任何三线共点?
16. 在∠AOB 的边OA 上除了顶点O 外有5个点,OB 边上除点O 外有6个点,用这些点(包括点O )作顶点,能组成多少个三角形?
17.从1-9九个数字中任取三个作直线0c by ax =++中的a 、b 、c 且c b a >>,则有多少条不同的直线?
18.⑴正方体的12条棱中共有多少条异面直线?
⑵用正方体的八个顶点中的两点连线,可构成多少对异面直线? (3)以正方体的8个顶点中的4个为顶点,可组成多少个四面体?
19.⑴四面体的一个顶点为A ,从其它顶点及各棱的中点中取三个点,使它们和A 点在同一平面内,不同的取法有多少种?
⑵四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点的不同取法有多少种?
20.一条直线和圆相离,直线上有6个点,圆周上有4个点,通过两点作直线,最少可作多少条直线?
21
乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球部放回,直到其中有一人去的白球时终止。

用X 表示取球终止时取球的总次数。

(1)求袋中原有白球的个数;
(2)求随机变量X 的概率分布及数学期望()E X 。

22. 在一次抗洪抢险中,准备用射击的方法引爆从河上游漂流而下的一只巨大汽油罐。

已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功.每次射击命中
的概率都是32
,每次命中与否互相独立。

(I)求恰好射击5次引爆油罐的概率;
(II)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望。

23.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了五种不同的荤菜,若要保证每位顾客有200种以上不同选择,则餐厅至少还需准备不同的素菜品种?(要求写出必要的解答过程)
18、(本题满分12分)用0,1,2,3,4,5这六个数字 (1) 可组成多少个不同的自然数? (2) 可组成多少个无重复数字的五位数? (3) 可组成多少个无重复数字的五位奇数?
(4) 可组成多少个无重复数字的能被5整除的五位数? 24.已知7722107)21(x a x a x a a x ++++=- ,
求(1)710a a a +++ 的值(2)6420a a a a +++及7531a a a a +++的值;各项二项式系数和
25.某种产品有3只次品和6只正品,每次取出一只测试,直到3只次品全部测出为止,求第三只次品在第6次测试时被发现的不同的测试情况有多少种. 分析:排列与组合的混合题,一般采用先组合后排列的方法.
26.有六本不同的书分给甲、乙、丙三名同学,按下列条件,各有多少种不同的分法? (1) 每人各得两本;
(2) 甲得一本,乙得两本,丙得三本; (3) 一人一本,一人两本,一人三本; (4) 甲得四本,乙得一本,丙得一本; (5) 一人四本,另两人各一本。

27.证明:(1)3)11(2<+
≤n
n
,其中*N n ∈; (2)证明:对任意非负整数n ,1263
3--n n
可被676整除。

相关文档
最新文档