四川省达州市2018-2019学年高一下学期期末检测数学(理)试题 含解析

合集下载

2018-2019学年高一数学下学期期末考试试题(含解析)_36

2018-2019学年高一数学下学期期末考试试题(含解析)_36

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A. B. C. D.【答案】B【解析】【分析】利用诱导公式得到答案.详解】故答案选B【点睛】本题考查了诱导公式,属于简单题.2.在中,若,,,则角的大小为()A. 30°B. 45°或135°C. 60°D. 135°【答案】B【解析】【分析】利用正弦定理得到答案.【详解】在中正弦定理:或故答案选B【点睛】本题考查了正弦定理,属于简单题.3.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l)班先抽,则他们抽到的出场序号小于4的概率为()A. B. C. D.【答案】D【解析】【分析】古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:故答案选D【点睛】本题考查了概率的计算,属于简单题.4.已知,则()A. B. C. D.【答案】C【解析】【分析】利用齐次式,上下同时除以得到答案.【详解】故答案选C【点睛】本题考查了三角函数值的计算,上下同时除以是解题的关键.5.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和平均数分别为()A. 84,85B. 85,84C. 84,85.2D. 86,85【答案】A【解析】【分析】剩余数据为:84.84,86,84,87,计算中位数和平均数.【详解】剩余数据为:84.84,86,84,87则中位数为:84平均数为:故答案为A【点睛】本题考查了中位数和平均数的计算,属于基础题型.6.已知向量,.且,则()A. 2B.C.D.【答案】B【解析】【分析】通过得到,再利用和差公式得到答案.【详解】向量,.且故答案为B【点睛】本题考查了向量平行,正切值的计算,意在考查学生的计算能力.7.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A. 50%B. 30%C. 10%D. 60%【答案】A【解析】【分析】甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.8.已知向量,,,的夹角为45°,若,则()A. B. C. 2 D. 3【答案】C【解析】【分析】利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9.在中,若,则的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰三角形或直角三角形【答案】D【解析】【分析】,两种情况对应求解.【详解】所以或故答案选D【点睛】本题考查了诱导公式,漏解是容易发生的错误.10.函数的图象如图所示,为了得到的图象,可将的图象()A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】A【解析】【分析】函数过代入解得,再通过平移得到的图像.【详解】,函数过向右平移个单位得到的图象故答案选A【点睛】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.11.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.【答案】D【解析】【分析】设,对比得到答案.【详解】设,则故答案为D【点睛】本题考查了向量的计算,意在考查学生的计算能力.12.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.【答案】B【解析】【分析】计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.二、填空题.13.已知三个事件,,两两互斥,且,,,则_______.【答案】0.9【解析】【分析】先计算,再计算【详解】故答案为:0.9【点睛】本题考查了互斥事件的概率,属于基础题型.14.己知函数,,则的值为______.【答案】1【解析】【分析】将代入函数计算得到答案.【详解】函数故答案为:1【点睛】本题考查了三角函数的计算,属于简单题.15.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.【答案】【解析】【分析】直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.16.己知函数,有以下结论:①的图象关于直线轴对称②在区间上单调递减③一个对称中心是④的最大值为则上述说法正确的序号为__________(请填上所有正确序号).【答案】②④【解析】【分析】根据三角函数性质,逐一判断选项得到答案.【详解】,根据图像知:①的图象关于直线轴对称,错误②在区间上单调递减,正确③的一个对称中心是,错误④的最大值为,正确故答案为②④【点睛】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知向量,满足,,且.(1)求;(2)在中,若,,求.【答案】(1) (2)【解析】【分析】(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量夹角,向量的加减计算,意在考查学生的计算能力.18.如图所示,在平面直角坐标系中,锐角、的终边分别与单位圆交于,两点,点.(1)若点,求的值:(2)若,求.【答案】(1) (2)【解析】【分析】(1)根据计算,,代入公式得到答案.(2)根据,得到,根据计算得到答案.【详解】解:(1)因为是锐角,且,在单位圆上,所以,,,∴(2)因为,所以,且,所以,,可得:,且,所以,.【点睛】本题考查了三角函数的计算,意在考查学生对于三角函数定义的理解和应用.19.的内角,,的对边分别为,,,设.(1)求;(2)若,求.【答案】(1) (2)【解析】【分析】(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.20.某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元18)销量(册61)(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.【答案】(1) (2) 当单价应定为22.5元时,可获得最大利润【解析】【分析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:.(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润.【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.21.手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.(1)求;(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.【答案】(1) ;(2) 第1组2人,第3组3人,第4组1人;(3)【解析】【分析】(1)直接计算.(2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,排列出所有可能,再计算满足条件的个数,相除得到答案.【详解】解:(1)由题意可知,,(2)第1,3,4组共有60人,所以抽取的比例是则从第1组抽取的人数为,从第3组抽取的人数为,从第4组抽取的人数为;(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,则从这6人中随机抽取2人有如下种情形:,,,,,,,,,,,,,,共有15个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有,,,共4个基本事件,所以抽取2人来自同一个组的概率.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生解决问题的能力.22.已知函数.(1)求的最小正周期和上的单调增区间:(2)若对任意的和恒成立,求实数的取值范围.【答案】(1) T=π,单调增区间为, (2)【解析】【分析】(1)化简函数得到,再计算周期和单调区间.(2)分情况的不同奇偶性讨论,根据函数的最值得到答案.【详解】解:(1)函数故的最小正周期.由题意可知:,解得:,因为,所以的单调增区间为,(2)由(1)得∵∴,∴,若对任意的和恒成立,则的最小值大于零.当为偶数时,,所以,当为奇数时,,所以,综上所述,的范围为.【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A. B. C. D.【答案】B【分析】利用诱导公式得到答案.详解】故答案选B【点睛】本题考查了诱导公式,属于简单题.2.在中,若,,,则角的大小为()A. 30°B. 45°或135°C. 60°D. 135°【答案】B【解析】【分析】利用正弦定理得到答案.【详解】在中正弦定理:或故答案选B【点睛】本题考查了正弦定理,属于简单题.3.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l)班先抽,则他们抽到的出场序号小于4的概率为()A. B. C. D.【答案】D【解析】【分析】古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:【点睛】本题考查了概率的计算,属于简单题.4.已知,则()A. B. C. D.【答案】C【解析】【分析】利用齐次式,上下同时除以得到答案.【详解】故答案选C【点睛】本题考查了三角函数值的计算,上下同时除以是解题的关键.5.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和平均数分别为()A. 84,85B. 85,84C. 84,85.2D. 86,85【答案】A【解析】【分析】剩余数据为:84.84,86,84,87,计算中位数和平均数.【详解】剩余数据为:84.84,86,84,87则中位数为:84平均数为:【点睛】本题考查了中位数和平均数的计算,属于基础题型.6.已知向量,.且,则()A. 2B.C.D.【答案】B【解析】【分析】通过得到,再利用和差公式得到答案.【详解】向量,.且故答案为B【点睛】本题考查了向量平行,正切值的计算,意在考查学生的计算能力.7.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A. 50%B. 30%C. 10%D. 60%【答案】A【解析】【分析】甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.8.已知向量,,,的夹角为45°,若,则()A. B. C. 2 D. 3【答案】C【解析】【分析】利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9.在中,若,则的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰三角形或直角三角形【答案】D【解析】【分析】,两种情况对应求解.【详解】所以或故答案选D【点睛】本题考查了诱导公式,漏解是容易发生的错误.10.函数的图象如图所示,为了得到的图象,可将的图象()A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】A【解析】【分析】函数过代入解得,再通过平移得到的图像.【详解】,函数过向右平移个单位得到的图象故答案选A【点睛】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.11.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.【答案】D【解析】【分析】设,对比得到答案.【详解】设,则故答案为D【点睛】本题考查了向量的计算,意在考查学生的计算能力.12.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.【答案】B【解析】【分析】计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.二、填空题.13.已知三个事件,,两两互斥,且,,,则_______.【答案】0.9【解析】【分析】先计算,再计算【详解】故答案为:0.9【点睛】本题考查了互斥事件的概率,属于基础题型.14.己知函数,,则的值为______.【答案】1【解析】【分析】将代入函数计算得到答案.【详解】函数故答案为:1【点睛】本题考查了三角函数的计算,属于简单题.15.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.【答案】【解析】【分析】直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.16.己知函数,有以下结论:①的图象关于直线轴对称②在区间上单调递减③一个对称中心是④的最大值为则上述说法正确的序号为__________(请填上所有正确序号).【答案】②④【解析】【分析】根据三角函数性质,逐一判断选项得到答案.【详解】,根据图像知:①的图象关于直线轴对称,错误②在区间上单调递减,正确③的一个对称中心是,错误④的最大值为,正确故答案为②④【点睛】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知向量,满足,,且.(1)求;(2)在中,若,,求.【答案】(1) (2)【解析】【分析】(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量夹角,向量的加减计算,意在考查学生的计算能力.18.如图所示,在平面直角坐标系中,锐角、的终边分别与单位圆交于,两点,点.(1)若点,求的值:(2)若,求.【答案】(1) (2)【解析】【分析】(1)根据计算,,代入公式得到答案.(2)根据,得到,根据计算得到答案.【详解】解:(1)因为是锐角,且,在单位圆上,所以,,,∴(2)因为,所以,且,所以,,可得:,且,所以,.【点睛】本题考查了三角函数的计算,意在考查学生对于三角函数定义的理解和应用.19.的内角,,的对边分别为,,,设.(1)求;(2)若,求.【答案】(1) (2)【解析】【分析】(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.20.某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价18(元)销量61(册)(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.【答案】(1) (2) 当单价应定为22.5元时,可获得最大利润【解析】【分析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:.(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润.【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.21.手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.(1)求;(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.【答案】(1) ;(2) 第1组2人,第3组3人,第4组1人;(3)【解析】【分析】(1)直接计算.(2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,排列出所有可能,再计算满足条件的个数,相除得到答案.【详解】解:(1)由题意可知,,(2)第1,3,4组共有60人,所以抽取的比例是则从第1组抽取的人数为,从第3组抽取的人数为,从第4组抽取的人数为;(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,则从这6人中随机抽取2人有如下种情形:,,,,,,,,,,,,,,共有15个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有,,,共4个基本事件,所以抽取2人来自同一个组的概率.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生解决问题的能力.22.已知函数.(1)求的最小正周期和上的单调增区间:(2)若对任意的和恒成立,求实数的取值范围.【答案】(1) T=π,单调增区间为, (2)【解析】【分析】(1)化简函数得到,再计算周期和单调区间.(2)分情况的不同奇偶性讨论,根据函数的最值得到答案.【详解】解:(1)函数故的最小正周期.由题意可知:,解得:,因为,所以的单调增区间为,(2)由(1)得∵∴,∴,若对任意的和恒成立,则的最小值大于零.当为偶数时,,所以,当为奇数时,,所以,综上所述,的范围为.【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.。

2018-2019学年高一数学下学期期末考试试题(含解析)_11

2018-2019学年高一数学下学期期末考试试题(含解析)_11

2018-2019学年高一数学下学期期末考试试题(含解析)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则()A. B. C. D.【答案】B【解析】【分析】分别计算集合,集合,再求.【详解】由,得,即,由,得,所以,所以,所以.故答案选B【点睛】本题考查了集合的交集,属于简单题.2.已知,,,,则下列不等式中恒成立的是( ).A. 若,,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】选项均可找到反例说明不恒成立;根据不等式的性质可知正确.【详解】选项:若,,,,则,;此时,可知错误;选项:若,则,可知错误;选项:,则;若,则,可知错误;选项:若,根据不等式性质可知,正确.本题正确选项:【点睛】本题考查不等式的性质,可采用排除法得到结果,属于基础题.3.如图所示的是希腊著名数学家欧几里德在证明勾股定理时所绘制的一个图形,该图形由三个边长分别为,,的正方形和一个直角三角形围成,现已知,,若从该图形中随机取一点,则该点取自其中的阴影部分的概率为()A. B. C. D.【答案】C【解析】【分析】先计算总面积,再计算阴影部分面积,相除得到答案.【详解】图形总面积为:阴影部分面积为:概率为:故答案选C【点睛】本题考查了几何概型计算概率,意在考查学生的计算能力.4.已知,,,则A. B. C. D.【答案】A【解析】【分析】根据指数函数单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【详解】由对数函数的性质可得,由指数函数的性质可得,,所以,故选A.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.5.已知数列是等差数列,若,则()A. 18B. 20C. 22D. 24【答案】C【解析】【分析】根据等差数列性质计算,再计算得到答案.【详解】∵数列等差数列,∴,∴,.故答案选C【点睛】本题考查了数列求和,利用等差数列性质可以简化运算.6.函数(其中为自然对数的底数)的图象大致为()A. B. C.D.【答案】C【解析】【分析】判断函数为奇函数,排除AB,再通过特殊值排除D,得到答案.【详解】为奇函数,排除A,B.当时,排除D故答案选C【点睛】本题考查了函数的图像,利用奇偶性和特殊值可以简化运算.7.在中,角,,的对边分别为,,,已知,,,则()A. 30°B. 45°C. 150°D. 45°或135°【答案】B【解析】【分析】利用正弦定理得到,通过大角对大边,排除一个得到答案.【详解】由正弦定理得,即,∴.又,∴,∴.故答案选B【点睛】本题考查了正弦定理,没有排除多余答案是容易犯的错误.8.已知正实数,满足,则的最小值为()A. 4B. 6C. 9D. 10【答案】C【解析】【分析】变换展开利用均值不等式得到答案.【详解】∵,,,∴,当且仅当时,即时取“”.故答案选C【点睛】本题考查了均值不等式,1的代换是解题的关键.9.执行如图所示程序框图,输出的结果为( )A. B.C. D.【答案】D【解析】【分析】根据循环确定求和,再根据等比数列求和公式得结果.【详解】由图知输出的结果.故选D.【点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10.等差数列中,已知,,则的前项和的最小值为()A. B. C. D.【答案】C【解析】【分析】先通过数列性质判断,再通过数列的正负判断的最小值.【详解】∵等差数列中,,∴,即.又,∴的前项和的最小值为.故答案选C【点睛】本题考查了数列和的最小值,将的最小值转化为的正负关系是解题的关键.11.将函数的图象上各点的横坐标变为原来的(纵坐标不变),所得图象对应的函数在区间上的值域为()A. B. C. D.【答案】D【解析】【分析】先计算变换后的函数表达式,再计算,得到值域.【详解】将函数的图象上各点的横坐标变为原来的,可得的图象,∵,∴,∴的最大值为1,最小值为.故答案选D【点睛】本题考查了三角函数的变换,值域,意在考查学生的计算能力.12.圆周率是圆的周长与直径的比值,一般用希腊字母表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第7位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计如下实验来估计的值:在区间内随机抽取200个数,构成100个数对,其中以原点为圆心,1为半径的圆的内部的数对共有78个,则用随机模拟的方法得到的的近似值为()A. B. C. D.【答案】C【解析】【分析】计算,又由于频率为取相等得到的近似值.【详解】根据几何概型公式知:故答案选C【点睛】本题考查了几何概型,意在考查学生解决问题的能力.第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量,,若,则__________.【答案】【解析】【分析】根据,计算,代入得到.【详解】∵,∴,∴,∴.故答案为【点睛】本题考查了向量的计算,属于简单题.14.若变量,满足约束条件则的最大值为__________.【答案】16【解析】【分析】画出可行域和目标函数,通过平移得到最大值.【详解】由约束条件作出可行域如图所示,可化为,当直线过点时,取最大值,即.故答案为16【点睛】本题考查了线性规划,求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.15.某市某年各月的日最高气温(℃)数据的茎叶图如图所示,若图中所有数据的中位数与平均数相等,则__________.【答案】18【解析】【分析】先计算数据的中位数为12,再利用平均值公式得到答案。

2018-2019学年高一数学下学期期末考试试题理(含解析)

2018-2019学年高一数学下学期期末考试试题理(含解析)

2018-2019学年高一数学下学期期末考试试题理(含解析)一、选择题(本大题共12个小题,每题5分,共60分)1.已知集合,,则()A. B. C. D.【答案】A【解析】分析】根据交集的定义可得结果.【详解】由交集定义可得:本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.2.若,下列不等式一定成立的是()A. B. C. D.【答案】D【解析】【分析】通过反例、作差法、不等式的性质可依次判断各个选项即可.【详解】若,,则,错误;,则,错误;,,则,错误;,则等价于,成立,正确.本题正确选项:【点睛】本题考查不等式的性质,属于基础题.3.若直线与直线平行,则的值为()A. 7B. 0或7C. 0D. 4【答案】B【解析】【分析】根据直线和直线平行则斜率相等,故,求解即可。

【详解】∵直线与直线平行,∴,∴或7,经检验,都符合题意,故选B.【点睛】本题属于基础题,利用直线的平行关系,斜率相等求解参数。

4.若对任意的正数a,b满足,则的最小值为A. 6B. 8C. 12D. 24【答案】C【解析】【分析】利用“1”的代换结合基本不等式求最值即可【详解】∵两个正数a,b 满足即a+3b=1则=当且仅当时取等号.故选:C【点睛】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.5.已知是两条不同直线,是两个不同的平面,则下列命题正确的是A. ,则B. ,则C. ,则D. ,则【答案】D【分析】根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.6.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.【答案】A【分析】根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.7.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A. B. C. D.【答案】B【解析】由题可知每天织的布的多少构成等差数列,其中第一天为首项,一月按30天计可得,从第2天起每天比前一天多织的即为公差.又,解得 .故本题选B.8.如图所示,在正方形ABCD中,E为AB的中点,F为CE 的中点,则A. B.C. D.【答案】D【解析】【分析】由平面向量基本定理和向量运算求解即可【详解】根据题意得:,又,,所以.故选D.【点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础题.9.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为()A. B. C. D.【答案】A【解析】分析】直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选:.【点睛】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.10.已知是定义在上的奇函数,且满足,当时,,则等于( )A. −1B.C.D. 1【答案】C【解析】【分析】根据求得函数的周期,再结合奇偶性求得所求表达式的值.【详解】由于故函数是周期为的周期函数,故,故选C.【点睛】本小题主要考查函数的周期性,考查函数的奇偶性,考查函数值的求法,属于基础题.11.函数图象向右平移个单位长度,所得图象关于原点对称,则在上的单调递增区间为()A. B. C. D.【答案】A【解析】【分析】根据三角函数的图象平移关系结合函数关于原点对称的性质求出的值,结合函数的单调性进行求解即可.详解】解:函数图象向右平移个单位长度,得到,所得图象关于原点对称,则,得,,∵,∴当时,,则,由,,得,,即的单调递增区间为,,∵,∴当时,,即,即在上的单调递增区间为,故选:A.【点睛】本题主要考查三角函数的图象和性质,求出函数的解析式结合三角函数的单调性是解决本题的关键.12.直三棱柱ABC—A1B1C1中,BB1中点为M,BC中点为N,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与MN所成角的余弦值为A. 1B.C.D. 0【答案】D【解析】【分析】先找到直线异面直线AB1与MN所成角为∠,再通过解三角形求出它的余弦值.【详解】由题得,所以∠就是异面直线AB1与MN所成角或补角.由题得,,因为,所以异面直线AB1与MN所成角的余弦值为0.故选:D【点睛】本题主要考查异面直线所成角的求法,考查余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题(本大题共4个小题,每题5分,共20分)13.在等比数列中,,,则_____.【答案】1【解析】【分析】由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.14.已知,,若,则____【答案】【解析】【分析】由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【点睛】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.15.若,则________.【答案】【解析】由题意可得:,即:,解方程可得:.16.已知三棱锥外接球的表面积为,面,则该三棱锥体积的最大值为____。

2018-2019学年高一数学下学期期末考试试题(含解析)_44

2018-2019学年高一数学下学期期末考试试题(含解析)_44

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知三个内角、、的对边分别是,若,则等于( )A. B. C. D.【答案】A【解析】【分析】根据直角三角形中角所对的直角边等于斜边的一半求解【详解】由条件可知,故选.【点睛】本题考查解三角形,属于基础题.2.已知三个内角、、的对边分别是,若则的面积等于( )A. B. C. D.【答案】B【解析】根据三角的面积公式求解.详解】,故选.【点睛】本题考查三角形的面积计算.三角形有两个面积公式:和,选择合适的进行计算.3.从总数为的一批零件中随机抽取一个容量为的样本,若每个零件被抽中的可能性为,则为( )A. B. C. D.【答案】C【解析】【分析】根据古典概型的概率公式求解.【详解】由,得.故选.【点睛】本题考查古典概型的概率,属于基础题.4.在等比数列中,若,则的值为()A. B. C. D.【答案】B【分析】根据等比数列的性质:若,则.【详解】等比数列中,,,故选B.【点睛】本题考查等比数列的通项公式和性质,此题也可用通项公式求解.5.已知三个内角、、的对边分别是,若,则等于( )A. B. C. D.【答案】D【解析】【分析】根据正弦定理把边化为对角的正弦求解.【详解】【点睛】本题考查正弦定理,边角互换是正弦定理的重要应用,注意增根的排除.6.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是( )A. B.C. D.【答案】B【解析】【分析】先求出直线的倾斜角,进而得出所求直线的倾斜角和斜率,再根据点斜式写直线的方程.【详解】已知直线的斜率为,则倾斜角为,故所求直线的倾斜角为,斜率为,由直线的点斜式得,即。

故选B.【点睛】本题考查直线的性质与方程,属于基础题.7.已知,若,则下列不等式成立的是 ( )A. B. C. D.【答案】C【解析】【分析】根据不等式的性质对每一个选项进行证明,或找反例进行排除.【详解】解:选项A:取,此时满足条件,则,显然,所以选项A错误;选项B:取,此时满足条件,则,显然,所以选项B错误;选项C:因为,所以,因为,所以,选项C正确;选项D:取,当,则,所以,所以选项D错误;故本题选C.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题的关键.8.已知函数,则不等式的解集为( )A. B. C. D.【答案】B【解析】【分析】先判断函数的单调性,把转化为自变量的不等式求解.【详解】可知函数为减函数,由,可得,整理得,解得,所以不等式的解集为.故选B.【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.9.在长方体中,,,,则异面直线与所成角的大小为( )A. B. C. D. 或【答案】C【解析】【分析】平移CD到AB,则即为异面直线与所成的角,在直角三角形中即可求解.【详解】连接AC1,CD//AB,可知即为异面直线与所成的角,在中,,故选.【点睛】本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.10.不等式的解集是( )A. B.C. D.【答案】D【解析】试题分析:且且,化简得解集为考点:分式不等式解法11.点关于直线的对称点的坐标为()A. B. C. D.【答案】D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.12.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯。

2018-2019学年高一数学下学期期末考试试题(含解析)_41

2018-2019学年高一数学下学期期末考试试题(含解析)_41

2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线的倾斜角为()A. B. C. D.【答案】B【解析】【分析】根据直线方程求得直线的斜率,由此求得直线倾斜角.【详解】依题意可知直线的斜率为,故倾斜角为,故选B.【点睛】本小题主要考查直线斜率与倾斜角,属于基础题.2.某校有高一学生人,高二学生人,高三学生人,现教育局督导组欲用分层抽样的方法抽取名学生进行问卷调查,则下列判断正确的是()A. 高一学生被抽到的可能性最大B. 高二学生被抽到的可能性最大C. 高三学生被抽到的可能性最大D. 每位学生被抽到的可能性相等【答案】D【解析】【分析】根据分层抽样是等可能的选出正确答案.【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D.【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.3.如图,正方体的棱长为,那么四棱锥的体积是()A.B.C.D.【答案】B【解析】【分析】根据锥体体积公式,求得四棱锥的体积.【详解】根据正方体的几何性质可知平面,所以,故选B.【点睛】本小题主要考查四棱锥体积的计算,属于基础题.4.已知向量,,若与平行,则实数的值为()A. B. C. D.【答案】D【解析】分析】先求得与,然后根据两个向量平行的条件列方程,解方程求得的值.【详解】依题意与,由于与平行,所以,,解得,故选D.【点睛】本小题主要考查平面向量坐标的线性运算,考查两个向量平行的条件,属于基础题.5.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.【答案】D【解析】【分析】先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【点睛】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.6.在△中,若,则△为()A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形【答案】A【解析】【分析】利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【点睛】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.7.若直线过圆的圆心,则的值为()A. B. C. D.【答案】A【解析】【分析】求得圆的圆心,代入直线方程,由此求得的值.【详解】依题意可知,圆的圆心为,代入直线方程得,解得,故选A.【点睛】本小题主要考查由圆的一般方程求圆心坐标,考查方程的思想,属于基础题.8.如图,向量,,,则向量可以表示为()A.B.C.D.【答案】C【解析】【分析】利用平面向量加法和减法的运算,求得的线性表示.【详解】依题意,即,故选C.【点睛】本小题主要考查平面向量加法和减法的运算,属于基础题.9.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D 选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【点睛】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.10.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.在△中,,,,则_________.【答案】【解析】【分析】利用余弦定理求得的值,进而求得的大小.【详解】由余弦定理得,由于,故.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.12.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:则该小区已安装宽带的居民估计有______户.【答案】【解析】【分析】计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.13.已知点,,则向量______,与向量同向的单位向量为_______.【答案】 (1). (2).【解析】【分析】先求得,通过求得同方向的单位向量.【详解】依题意,故同方向的单位向量为.【点睛】本小题主要考查向量减法的坐标运算,考查向量同方向的单位向量的求法.14.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则_______.【答案】【解析】【分析】联立直线的方程和圆的方程,求得两点的坐标,根据点斜式求得直线的方程,进而求得两点的坐标,由此求得的长.【详解】由解得,直线的斜率为,所以直线的斜率为,所以,令,得,所以.故答案为4【点睛】本小题主要考查直线和圆的位置关系,考查相互垂直的两条直线斜率的关系,考查直线的点斜式方程,属于中档题.15.下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)______【答案】①④⑤【解析】为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l位置固定,截面MNP变动,l与面MNP是否垂直,可从正、反两方面进行判断.在MN、NP、MP三条线中,若有一条不垂直l,则可断定l与面MNP不垂直;若有两条与l都垂直,则可断定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.解法1 作正方体ABCD-A1B1C1D1如附图,与题设图形对比讨论.在附图中,三个截面BA1D、EFGHKR和CB1D1都是对角线l (即 AC1)的垂面.对比图①,由MN∥BA l,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.对比图②,由MN与面CB1D1相交,而过交点且与l垂直的直线都应在面CBlDl内,所以MN不垂直于l,从而l不垂直于面MNP.对比图③,由MP与面BA l D相交,知l不垂直于MN,故l 不垂直于面MNP.对比图④,由MN∥BD,MP∥BA.知面MNP∥面BA1 D,故l⊥面MNP.对比图⑤,面MNP与面EFGHKR重合,故l⊥面MNP.综合得本题的答案为①④⑤.解法2 如果记正方体对角线l所在的对角截面为.各图可讨论如下:在图①中,MN,NP在平面上的射影为同一直线,且与l垂直,故l⊥面MNP.事实上,还可这样考虑:l在上底面的射影是MP的垂线,故l⊥MP;l在左侧面的射影是MN的垂线,故l⊥MN,从而l⊥面 MNP.在图②中,由MP⊥面,可证明MN在平面上的射影不是l的垂线,故l不垂直于MN.从而l不垂直于面MNP.在图③中,点M在上的射影是l的中点,点P在上的射影是上底面的内点,知MP在上的射影不是l的垂线,得l不垂直于面 MNP.在图④中,平面垂直平分线段MN,故l⊥MN.又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥面 MNP.在图⑤中,点N在平面上的射影是对角线l的中点,点M、P 在平面上的射影分别是上、下底面对角线的4分点,三个射影同在一条直线上,且l与这一直线垂直.从而l⊥面MNP.至此,得①④⑤为本题答案.三、解答题共5小题,共40分.解答应写出文字说明,演算步骤或证明过程.16.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【详解】解:(Ⅰ)因为,所以.所以.因为,所以.(Ⅱ)因为,由已知,,所以.所以.【点睛】本小题主要考查向量数量积运算,考查向量夹角计算,考查向量模的求法,属于基础题.17.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面积.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(I)利用正弦定理化简已知条件,由此求得的大小.(II)利用余弦定理求得的值,再根据三角形面积公式求得三角形面积.【详解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所以△的面积.【点睛】本小题主要考查正弦定理和余弦定理解三角形,考查三角形的面积公式,属于基础题.18.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】【分析】(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.【详解】解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,所以该区中随机抽取一人,估计其年龄不小于60的概率为.(Ⅱ)年龄在的累计频率为,,所以估计中位数.(Ⅲ)平均年龄为【点睛】本小题主要考查频率分布直方图的识别与应用,考查频率分布直方图估计中位数和平均数,考查运算求解能力,属于中档题.19.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;(Ⅲ)求证:平面.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】【分析】(I)通过证明平面来证得平面平面.(II)取中点,连接,通过证明四边形为平行四边形,证得,由此证得∥平面.(III)通过证明平面证得,通过计算证明证得,由此证得平面.【详解】证明:(Ⅰ)因为平面,所以.因为,,所以平面因为平面,所以平面平面.(Ⅱ)取中点,连结,因为为的中点所以,且.因为为的中点,底面为正方形,所以,且.所以,且.所以四边形为平行四边形.所以.因为平面且平面,所以平面.(Ⅲ)在正方形中,,因为平面,所以.因为,所以平面.所以在△中,设交于.因为,且分别为的中点,所以.所以.设,由已知,所以.所以.所以.所以,且为公共角,所以△∽△.所以.所以.因为,所以平面.【点睛】本小题主要考查线面垂直、面面垂直的证明,考查线面平行的证明,考查空间想象能力和逻辑推理能力,属于中档题.20.已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切,且被轴截得的弦长为,圆的面积小于13.(1)求圆的标准方程:(2)设过点的直线与圆交于不同的两点,,以,为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程:如果不存在,请说明理由.【答案】(1) .(2) 不存在这样的直线.【解析】试题分析:(I)用待定系数法即可求得圆C的标准方程;(Ⅱ)首先考虑斜率不存在的情况.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2).l与圆C相交于不同的两点,那么Δ>0.由题设及韦达定理可得k与x1、x2之间关系式,进而求出k的值.若k的值满足Δ>0,则存在;若k的值不满足Δ>0,则不存在.试题解析:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知解得a=1或a=, 3分又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+y2=4. 6分(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立消去y得:(1+k2)x2+(6k-2)x+6=0, 9分∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,解得或.x1+x2=,y1+ y2=k(x1+x2)+6=,,,假设∥,则,∴,解得,假设不成立.∴不存在这样的直线l. 13分考点:1、圆的方程;2、直线与圆的位置关系.2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线的倾斜角为()A. B. C. D.【答案】B【解析】【分析】根据直线方程求得直线的斜率,由此求得直线倾斜角.【详解】依题意可知直线的斜率为,故倾斜角为,故选B.【点睛】本小题主要考查直线斜率与倾斜角,属于基础题.2.某校有高一学生人,高二学生人,高三学生人,现教育局督导组欲用分层抽样的方法抽取名学生进行问卷调查,则下列判断正确的是()A. 高一学生被抽到的可能性最大B. 高二学生被抽到的可能性最大C. 高三学生被抽到的可能性最大D. 每位学生被抽到的可能性相等【答案】D【解析】【分析】根据分层抽样是等可能的选出正确答案.【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D.【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.3.如图,正方体的棱长为,那么四棱锥的体积是()A.B.C.D.【答案】B【解析】【分析】根据锥体体积公式,求得四棱锥的体积.【详解】根据正方体的几何性质可知平面,所以,故选B.【点睛】本小题主要考查四棱锥体积的计算,属于基础题.4.已知向量,,若与平行,则实数的值为()A. B. C. D.【答案】D【解析】分析】先求得与,然后根据两个向量平行的条件列方程,解方程求得的值.【详解】依题意与,由于与平行,所以,,解得,故选D.【点睛】本小题主要考查平面向量坐标的线性运算,考查两个向量平行的条件,属于基础题.5.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.【答案】D【解析】【分析】先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【点睛】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.6.在△中,若,则△为()A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形【答案】A【解析】【分析】利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【点睛】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.7.若直线过圆的圆心,则的值为()A. B. C. D.【答案】A【解析】【分析】求得圆的圆心,代入直线方程,由此求得的值.【详解】依题意可知,圆的圆心为,代入直线方程得,解得,故选A.【点睛】本小题主要考查由圆的一般方程求圆心坐标,考查方程的思想,属于基础题.8.如图,向量,,,则向量可以表示为()A.B.C.D.【答案】C【解析】【分析】利用平面向量加法和减法的运算,求得的线性表示.【详解】依题意,即,故选C.【点睛】本小题主要考查平面向量加法和减法的运算,属于基础题.9.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【点睛】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.10.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.在△中,,,,则_________.【答案】【解析】【分析】利用余弦定理求得的值,进而求得的大小.【详解】由余弦定理得,由于,故.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.12.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:则该小区已安装宽带的居民估计有______户.【答案】【解析】【分析】计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.13.已知点,,则向量______,与向量同向的单位向量为_______.【答案】 (1). (2).【解析】【分析】先求得,通过求得同方向的单位向量.【详解】依题意,故同方向的单位向量为.【点睛】本小题主要考查向量减法的坐标运算,考查向量同方向的单位向量的求法.14.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则_______.【答案】【解析】【分析】联立直线的方程和圆的方程,求得两点的坐标,根据点斜式求得直线的方程,进而求得两点的坐标,由此求得的长.【详解】由解得,直线的斜率为,所以直线的斜率为,所以,令,得,所以.故答案为4【点睛】本小题主要考查直线和圆的位置关系,考查相互垂直的两条直线斜率的关系,考查直线的点斜式方程,属于中档题.15.下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)______【答案】①④⑤【解析】为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l位置固定,截面MNP变动,l与面MNP是否垂直,可从正、反两方面进行判断.在MN、NP、MP三条线中,若有一条不垂直l,则可断定l与面MNP不垂直;若有两条与l都垂直,则可断定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.解法1 作正方体ABCD-A1B1C1D1如附图,与题设图形对比讨论.在附图中,三个截面BA1D、EFGHKR和CB1D1都是对角线l (即 AC1)的垂面.对比图①,由MN∥BA l,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.对比图②,由MN与面CB1D1相交,而过交点且与l垂直的直线都应在面CBlDl内,所以MN不垂直于l,从而l不垂直于面MNP.对比图③,由MP与面BA l D相交,知l不垂直于MN,故l不垂直于面MNP.对比图④,由MN∥BD,MP∥BA.知面MNP∥面BA1 D,故l⊥面MNP.对比图⑤,面MNP与面EFGHKR重合,故l⊥面MNP.综合得本题的答案为①④⑤.解法2 如果记正方体对角线l所在的对角截面为.各图可讨论如下:在图①中,MN,NP在平面上的射影为同一直线,且与l垂直,故l⊥面MNP.事实上,还可这样考虑:l在上底面的射影是MP的垂线,故l⊥MP;l在左侧面的射影是MN的垂线,故l⊥MN,从而l⊥面 MNP.在图②中,由MP⊥面,可证明MN在平面上的射影不是l的垂线,故l不垂直于MN.从而l不垂直于面MNP.在图③中,点M在上的射影是l的中点,点P在上的射影是上底面的内点,知MP在上的射影不是l的垂线,得l不垂直于面 MNP.在图④中,平面垂直平分线段MN,故l⊥MN.又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥面 MNP.在图⑤中,点N在平面上的射影是对角线l的中点,点M、P在平面上的射影分别是上、下底面对角线的4分点,三个射影同在一条直线上,且l与这一直线垂直.从而l⊥面MNP.至此,得①④⑤为本题答案.三、解答题共5小题,共40分.解答应写出文字说明,演算步骤或证明过程.16.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【详解】解:(Ⅰ)因为,所以.所以.因为,所以.(Ⅱ)因为,由已知,,所以.所以.【点睛】本小题主要考查向量数量积运算,考查向量夹角计算,考查向量模的求法,属于基础题.17.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面积.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(I)利用正弦定理化简已知条件,由此求得的大小.(II)利用余弦定理求得的值,再根据三角形面积公式求得三角形面积.【详解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所以△的面积.【点睛】本小题主要考查正弦定理和余弦定理解三角形,考查三角形的面积公式,属于基础题.18.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】【分析】(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.【详解】解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,所以该区中随机抽取一人,估计其年龄不小于60的概率为.(Ⅱ)年龄在的累计频率为,,所以估计中位数.(Ⅲ)平均年龄为【点睛】本小题主要考查频率分布直方图的识别与应用,考查频率分布直方图估计中位数和平均数,考查运算求解能力,属于中档题.19.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;。

2018-2019学年高一数学下学期期末考试试题(含解析)_40

2018-2019学年高一数学下学期期末考试试题(含解析)_40

2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.某学校A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A. 2B. 4C. 5D. 6【答案】B【解析】分析】分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。

【详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。

故选:B【点睛】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。

2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得。

【详解】,可知,即,故选:B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目。

3.在△中,已知,,,则△的面积等于( )A. 6B. 12C.D.【答案】C【解析】【分析】通过A角的面积公式,代入数据易得面积。

【详解】故选:C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目。

4.以点为圆心,且经过点的圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆的标准方程,代入点即可。

【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:。

故选:B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目。

5.在区间随机取一个实数,则的概率为( )A. B. C. D.【答案】C【解析】【分析】利用几何概型的定义区间长度之比可得答案,在区间的占比为,所以概率为。

【详解】因为的长度为3,在区间的长度为9,所以概率为。

故选:C【点睛】此题考查几何概型,概率即是在部分占总体的占比,属于简单题目。

四川省达州市2018-2019学年高一下学期期末检测数学(理)试题 Word版含解析

四川省达州市2018-2019学年高一下学期期末检测数学(理)试题 Word版含解析

达州市2018年普通高中一年级春季期末检测试题数学(理科)一、选择题(本大题共12小题,每小题5分,共计60分,在每小题给出的四个选项中,只有一项符合题目要求).1.已知:,:,若,则()A. -2B. -1C. 1D. 2【答案】B【解析】【分析】利用,得出斜率相等,进而求解即可【详解】,化简,,则有,得出答案选B【点睛】本题考查直线之间的平行问题,属于基础题2.已知实数,,,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】用特值法验证求解即可【详解】A:取,不成立B:取,,,不符题意C:令,则结论不符题意D:明显地,,两边同时除以,明显成立答案选D【点睛】本题采用特值法求解即可,属于基础题3.等比数列中,若,,则()A. 32B. 64C. 128D. 256【答案】B【解析】【分析】利用等比数列的性质求解即可【详解】,设公比为,则,所以,所以,,所以,答案选B【点睛】本题考查等比数列的性质,属于基础题4.直线:中,若,关于轴对称,则的倾斜角()A. B. C. D.【答案】C【解析】【分析】利用,关于轴对称,得到斜率之和为0,进而求解即可【详解】,关于轴对称,设,的斜率为和,则有,又由,得,则的倾斜角为答案选C【点睛】本题考查直线的位置关系,解题的关键在于利用直线关于轴对称,属于基础题5.在中,角,,所对的边分别是,,,,则是()A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形【答案】D【解析】【分析】,利用正弦定理作角化边,变为,然后利用余弦定理即可求解【详解】,答案选D【点睛】本题考查正余弦定理的综合使用,属于基础题6.已知向量,,则()A. B. C. D.【答案】A【解析】【分析】利用设,,由,转化位,进而化简求解即可【详解】设,,由,答案选A【点睛】本题考查向量的模运算,属于基础题7.设实数,满足,则的最大值是()A. -2B. -1C. 2D. 3【答案】C【解析】【分析】作出可行域,直接求解即可【详解】如图,该线性规划的可行域为阴影部分,令,得,作出直线EF:,把转化为,则把直线EF平移至CD时,即有的最大值,此时,CD交AB于点H,点H的坐标为,代入CD中可得,答案选C【点睛】本题考查简单线性规划问题,属于基础题8.为做好达州市渠江航道升级的前期工作,四川省交通运输厅交通勘察设计院组织专家到渠江现场踏勘,现要测量渠江某处,两岸的距离,如图,在的正东方向选取一点测得,位于西偏北,位于北偏东,则的距离=()A. B. C. D.【答案】C【解析】【分析】直接利用正弦定理求解即可【详解】由已知得,所以,设,则有,得,答案选C【点睛】本题考查解三角形问题,属于基础题9.已知数列的通项公式,为数列的前项和,满足,则的最小值为()A. 98B. 99C. 100D. 101【答案】C【解析】【分析】化简,利用累加法直接求得值即可【详解】化简,得到通项公式为:,根据递推式,列出如下式子:,则有,由于,则的最小值为100答案选C【点睛】本题考查累加法求和,属于基础题10.已知直线,若此直线在轴,轴的截距的和取得最小时,则直线的方程为()A. B.C. D.【答案】D【解析】分析】求出截距,得到,然后利用均值不等式的性质求解即可【详解】令,令,又由,当且仅当时,等号成立,此时,,则直线的方程为答案选D【点睛】本题考查基本不等式问题,属于基础题11.已知函数,存在,使得成立,则实数的取值范围()A. B. C. D.【答案】A【解析】【分析】存在,使得,然后求出最值,求出最大值即可【详解】存在,使得,求导得,在时,,,实数的取值范围,答案选A【点睛】本题考查不等式的有解问题,解题关键点在于得出即可,属于基础题12.在中,,,成等差数列,,且,则()A. 6B. 8C.D. 【答案】B【解析】【分析】由,求出,又由,,成等差数列,求出,然后,解三角形即可求解【详解】由,得,化简得,,得到,又由,,成等差数列,得到,化简得,则有,化简得,在中,,所以为等边三角形,所以,设,得,得到,则答案选B【点睛】本题考查解三角形与向量的运算,属于中档题二、填空题(本大题共4小题,每小题5分,共计20分).13.已知,直线:恒过定点,则的坐标为______.【答案】【解析】【分析】利用直线的定义,直接求解即可【详解】代入,可得,直线:恒过定点答案:【点睛】本题考查直线方程,属于基础题14.九连环是我国古老的一种智力游戏,它环环相扣,趣味无穷,九连环由九个大小相同的圆环依次排开镶在铁丝框架上.玩九连环就是将九连环按照一定规则从框架上解下或套上.用表示解下个圆环所需移动的最少次数,已知,,通过规则可知,则______.【答案】21【解析】【分析】利用递推式,直接代入求解即可【详解】答案:21【点睛】本题考查递推式的应用,属于基础题15.在中,角,,的对边分别为,,,面积为,满足,则______.【答案】2【解析】【分析】利用题意得出,然后,化简求解即可【详解】由得,,,化简得,最后得,答案:【点睛】本题考查面积公式,难点在于利用等量代换化简求解,属于基础题16.如图,等腰梯形中,,与交于点,,若,则以下所有结论中正确的序号是______.①若,则②三角形的面积为4③④若,是直线上的动点,【答案】③④【解析】【分析】利用解三角形和向量的线性运算求解即可【详解】如图,由已知得,,又由,得到,则有,所以,①错,过作,由得,,过作,明显地,,且,所以,,,所以,②错,又因为在中,所以,,且在等腰梯形中,所以,又由,得,而由根据正弦定理,得,所以,成立,③对,对于④若,是直线上的动点,又由等腰梯形可得,,可得,,④对答案:③④【点睛】本题考查向量与解三角形综合运用,属于难题三、解答题(本大题共6小题,17题10分,18,19,20,21,22题每题12分).17.已知等比数列中,公比,是,的等差中项.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1);(2)【解析】【分析】(1)利用公式法,设基本量解方程,求通项即可(2)利用求和公式求解即可【详解】(1)∵,,所以,.(2)【点睛】本题考查等比数列的通项与求和,属于基础题18.,,是平面内的三点,已知,,的中点在轴上,的中点在轴上. (1)求点的坐标;(2)求过点且垂直的直线的方程(一般式方程).【答案】(1);(2)【解析】【分析】(1)利用条件,得点的横坐标为0,点的纵坐标为0,若设,可得,解方程即可(2)利用点斜式方程得,,然后化简即可【详解】(1)由题意得:点的横坐标为0,点的纵坐标为0,若设,则由,∴,∴点的坐标为.(2)∵,,由点斜式得:.【点睛】本题考查直线方程的用法,属于基础题19.已知函数.(1)若关于的不等式的解集为,求解集;(2)若,解不等式的解集.【答案】(1);(2)见解析【解析】【分析】(1)由题意得,,然后求解即可(2)由题意得,)时,不等式,然后,分类讨论即可【详解】(1).∵不等式的解集为,∴,,,∴的解集为.(2)时,不等式,当时,不等式的解集为;当时,不等式的解集为;当时时,不等式的解集为.【点睛】本题考查不等式的求解应用,属于基础题20.已知点是函数图像上一点,点到直线:的距离为1.(1)求函数的解析式;(2)令,求的值.【答案】(1);(2)【解析】【分析】(1)先利用,求出,最后,利用到直线:的距高为1.,求得答案(2)利用令①②;进行求解即可【详解】(1)∵是上点,∴,,,∴.又到直线:的距高为1.得,∴.(2)∵,令①②①+②得,得.【点睛】本题考查三角函数的应用,属于基础题21.在中,角,,的对边分别为,,,已知向量,向量,.(1)求的值;(2)若,,求向量在方向上的投影.【答案】(1);(2)【解析】分析】(1)利用,化简求解即可(2)利用余弦定理,先求出,然后,直接求解即可【详解】(1)∵,,即,∴,即,∴.(2)∵,,∴,即,解得,∴向量在方向上的投影为.【点睛】本题考查三角恒等变换和向量的投影,属于基础题22.已知是数列前项和,点在直线上,令,.(1)求的值;(2)求证:数列是等差数列;(3)对任意的,若恒成立,求实数的取值范围.【答案】(1);(2)见解析;(3)【解析】【分析】(1)根据题意,列出相关方程求解即可(2)利用①和②,化简求解即可(3)根据题意,列出,,,然后分类讨论即可【详解】(1)∵是数列的前项和,在直线上,∴.令得,.(2)证明:∵①②,②-①得.两边同时除以得,又,∴即,所以证得是以2为首项,1为公差的等差数列.(3)由(1)(2)知,,,,,,当为奇数时,为单减数列,∴,当偶数时,为单增数列,∴,,,要使恒成立,,∴.【点睛】本题属于数列与不等式的综合运用,属于难题。

2018年四川省达州市高级中学校高一数学理期末试卷含解析

2018年四川省达州市高级中学校高一数学理期末试卷含解析

2018年四川省达州市高级中学校高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( )A.a2B.2a2 C.a2 D.a2参考答案:B2. 定义在R上的函数f(x)对任意两个不等的实数a,b,总有成立,则f(x)必定是()A. 先增后减的函数B. 先减后增的函数C. 在R上的增函数D. 在R上的减函数参考答案:C【分析】由函数定义,分类讨论分子分母的符号,即可判断函数的单调性。

【详解】定义在R上的函数f(x)对任意两个不等的实数a,b,总有成立则当时,,此时f(x)是在R上的增函数当时,,此时f(x)是在R上的增函数所以f(x)是在R上的增函数所以选C【点睛】本题考查了函数单调性的性质及判定,要熟悉用或这两种形式表达函数的单调性,属于基础题。

3. 在△ABC中,如果,B=30°,b=2,则△ABC的面积为()A.4 B.1 C.D.2参考答案:C【考点】HP:正弦定理.【分析】在△ABC中,由正弦定理得到a=c,结合余弦定理,我们易求出b与c的关系,进而得到B与C的关系,然后根据三角形内角和为180°,即可求出A角的大小,再由△ABC的面积为,运算求得结果.【解答】解:在△ABC中,由,可得a=c,又∵B=30°,由余弦定理,可得:cosB=cos30°===,解得c=2.故△ABC是等腰三角形,C=B=30°,A=120°.故△ABC的面积为=,故选C.4. 某扇形的半径为1cm,它的弧长为2cm,那么该扇形的圆心角为()A.2° B. 4rad C. 4° D. 2rad参考答案:D5. 已知直线过点,当直线与圆有两个交点时,其斜率k的取值范围是()A B C D参考答案:C6. 已知点(,3)在幂函数f(x)的图象上,则f(x)是()A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数参考答案:A略7. 高一年级某班共有学生64人,其中女生28人,现用分层抽样的方法,选取16人参加一项活动,则应选取男生人数是()A.9 B.8 C.7 D.6参考答案:A【考点】分层抽样方法.【分析】先求出抽样比,再乘以男生人数即可.【解答】解:由题意知,应选取男生人数为:=9.故选:A.【点评】本题考查分层抽样的应用,是基础题,解题时要认真审题.8. 已知定义域为的函数在上为减函数,且函数为偶函数,则()(A)(B)(C)(D)参考答案:D9. 已知函数,若,则a取值范围是(A)[-3,0] (B)(-∞,1](C)(-∞,0](D)[-3,1]参考答案:A10. 设,则下列关系式中一定成立的是()A B C D参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 函数的定义域为.参考答案:[2,+∞)12. 若f(x)=x2﹣,则满足f(x)<0的x取值范围是.参考答案:(0,1)【考点】其他不等式的解法.【分析】f(x)<0即为x2<,由于x=0不成立,则x>0,考虑平方法,再由幂函数的单调性,即可得到解集.【解答】解:f(x)<0即为x2<,由于x=0不成立,则x>0,再由两边平方得,x4<x,即为x3<1解得x<1,则0<x<1,故解集为:(0,1).故答案为:(0,1).【点评】本题考查不等式的解法,注意函数的定义域,运用函数的单调性解题,属于基础题.13. 设变量,满足约束条件,则的最大值是__________;的最小值是__________.参考答案:,画出可行域如图所示.在点处,取得最大值,,在点处,取最小值,.14. 设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.参考答案:略15. 若,且,则四边形的形状是________.参考答案:等腰梯形根据题意,,那么结合向量共线的概念可知,那么四边形的形状一组对边平行且不相等,,另一组对边相等的四边形,则四边形的形状是等腰梯形。

2018-2019学年高一数学下学期期末考试试题(含解析)_4

2018-2019学年高一数学下学期期末考试试题(含解析)_4

2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.平面向量与共线且方向相同,则的值为()A. B. C. D.【答案】C【解析】【分析】利用向量共线的坐标运算求解,验证得答案.【详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选:.【点睛】本题考查向量共线的坐标运算,是基础的计算题.2.直线的倾斜角是()A. B. C. D.【答案】D【解析】【分析】先求出直线的斜率,再求直线的倾斜角.【详解】由题得直线的斜率.故选:D【点睛】本题主要考查直线斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.3.已知关于的不等式的解集是,则的值是()A. B. C. D.【答案】A【解析】【分析】先利用韦达定理得到关于a,b方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.4.如果,且,那么下列不等式成立的是()A. B. C. D.【答案】D【解析】【分析】由,且,可得.再利用不等式的基本性质即可得出,.详解】,且,.,,因此.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.5.等比数列的各项均为正数,且,则()A. B. C. D.【答案】B【解析】【分析】根据题意,由对数的运算性质可得,又由对数的运算性质可得,计算可得答案.【详解】根据题意,等比数列的各项均为正数,且,则有,则;故选:.【点睛】本题考查等比数列的性质以及对数的运算,属于基础题.6.已知实数满足约束条件,则的最大值是()A. B. C. D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【详解】由实数,满足约束条件:,作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最大值为-2+1=-1.故选:.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.若,是夹角为两个单位向量,则与的夹角为()A. B. C. D.【答案】A【解析】【分析】根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选:.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.8.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.【答案】D【解析】分析】先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选:D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.【答案】B【解析】【分析】过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选:.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.10.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A. 或B. 或C. 或D. 或【答案】C【解析】【分析】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选:.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.11.已知正数、满足,则的最小值为()A. B. C. D.【答案】B【解析】【分析】由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.12.已知的内角、、的对边分别为、、,边上的高为,且,则的最大值是()A. B. C. D.【答案】C【解析】【分析】由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选:.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.第二部分(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.直线与直线垂直,则实数的值为_______.【答案】【解析】【分析】由题得(-1),解之即得a 的值.【详解】由题得(-1),所以a=2.故答案为;2【点睛】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.14.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.【答案】【解析】【分析】根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为:,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.15.已知数列的通项公式,则_______.【答案】【解析】【分析】本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为:101.【点睛】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.16.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.【答案】【解析】先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为:【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知公差不为零的等差数列中,,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解方程组即得,即得数列的通项公式;(Ⅱ)利用裂项相消法求数列的前项和.【详解】(Ⅰ)由题意:,化简得,因为数列的公差不为零,,故数列的通项公式为.(Ⅱ)由(Ⅰ)知,故数列的前项和.【点睛】本题主要考查等差数列通项的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知向量,,,.(Ⅰ)若四边形是平行四边形,求,的值;(Ⅱ)若为等腰直角三角形,且为直角,求,的值.【答案】(Ⅰ);(Ⅱ)或.【解析】【分析】(Ⅰ)由得到x,y的方程组,解方程组即得x,y的值; (Ⅱ)由题得和,解方程组即得,的值.【详解】(Ⅰ),,,,,由,,;(Ⅱ),,为直角,则,,又,,再由,解得:或.【点睛】本题主要考查平面向量的数量积运算和模的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.【答案】(Ⅰ);(Ⅱ)4.【解析】【分析】(Ⅰ)利用正弦定理和三角恒等变换的公式化简即得;(Ⅱ)设,则,,由余弦定理得关于x的方程,解方程即得解.【详解】(Ⅰ)由题意,∴,∴,则,∵,∴,∴;(Ⅱ)由(Ⅰ)知,又∵,∴,设,则,,在中,由余弦定理得:,即,解得,即.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角恒等变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)由题得和,解方程即得圆的方程;(Ⅱ)取的中点,则,化简得,即得m的值.【详解】(Ⅰ)由,得圆的圆心为,圆关于直线对称,①.圆的半径为,②又圆心在第一象限,,,由①②解得,,故圆的方程为.(Ⅱ)取的中点,则,,,即,又,解得.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系和向量的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设屋子的左右两面墙的长度均为米.(Ⅰ)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(Ⅱ)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求的取值范围.【答案】(Ⅰ)4米时, 28800元;(Ⅱ).【解析】【分析】(Ⅰ)设甲工程队的总造价为元,先求出函数的解析式,再利用基本不等式求函数的最值得解;(Ⅱ)由题意可得,对任意的恒成立.从而恒成立,求出左边函数的最小值即得解.【详解】(Ⅰ)设甲工程队的总造价为元,则.当且仅当,即时等号成立.即当左右两侧墙的长度为4米时,甲工程队的报价最低为28800元.(Ⅱ)由题意可得,对任意的恒成立.即,从而恒成立,令,又在为单调增函数,故.所以.【点睛】本题主要考查基本不等式的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.22.已知数列的各项均不为零.设数列的前项和为,数列的前项和为,且,.(Ⅰ)求,的值;(Ⅱ)证明数列是等比数列,并求的通项公式;(Ⅲ)证明:.【答案】(Ⅰ)2,4;(Ⅱ)证明见解析,;(Ⅲ)证明见解析.【解析】【分析】(Ⅰ)直接给n赋值求出,的值;(Ⅱ)利用项和公式化简,再利用定义法证明数列是等比数列,即得等比数列的通项公式;(Ⅲ)由(Ⅱ)知,再利用等比数列求和证明不等式.【详解】(Ⅰ),令,得,,;令,得,即,,.证明:(Ⅱ),①,②②①得:,,,从而当时,,④③④得:,即,,.又由(Ⅰ)知,,,.数列是以2为首项,以为公比的等比数列,则.(Ⅲ)由(Ⅱ)知,因为当时,,所以.于是.【点睛】本题主要考查等比数列性质的证明和通项的求法,考查等比数列求和和放缩法证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.平面向量与共线且方向相同,则的值为()A. B. C. D.【答案】C【解析】【分析】利用向量共线的坐标运算求解,验证得答案.【详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选:.【点睛】本题考查向量共线的坐标运算,是基础的计算题.2.直线的倾斜角是()A. B. C. D.【答案】D【解析】【分析】先求出直线的斜率,再求直线的倾斜角.【详解】由题得直线的斜率.故选:D【点睛】本题主要考查直线斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.3.已知关于的不等式的解集是,则的值是()A. B. C. D.【答案】A【解析】【分析】先利用韦达定理得到关于a,b方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.4.如果,且,那么下列不等式成立的是()A. B. C. D.【答案】D【解析】【分析】由,且,可得.再利用不等式的基本性质即可得出,.详解】,且,.,,因此.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.5.等比数列的各项均为正数,且,则()A. B. C. D.【答案】B【解析】【分析】根据题意,由对数的运算性质可得,又由对数的运算性质可得,计算可得答案.【详解】根据题意,等比数列的各项均为正数,且,则有,则;故选:.【点睛】本题考查等比数列的性质以及对数的运算,属于基础题.6.已知实数满足约束条件,则的最大值是()A. B. C. D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【详解】由实数,满足约束条件:,作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最大值为-2+1=-1.故选:.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.若,是夹角为两个单位向量,则与的夹角为()A. B. C. D.【答案】A【解析】【分析】根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选:.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.8.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.【答案】D【解析】分析】先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选:D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.【答案】B【解析】【分析】过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选:.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.10.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A. 或B. 或C. 或D. 或【答案】C【解析】【分析】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选:.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.11.已知正数、满足,则的最小值为()A. B. C. D.【答案】B【解析】【分析】由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.12.已知的内角、、的对边分别为、、,边上的高为,且,则的最大值是()A. B. C. D.【答案】C【解析】【分析】由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选:.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.第二部分(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.直线与直线垂直,则实数的值为_______.【答案】【解析】【分析】由题得(-1),解之即得a 的值.【详解】由题得(-1),所以a=2.故答案为;2【点睛】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.14.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.【答案】【解析】【分析】根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为:,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.15.已知数列的通项公式,则_______.【答案】【解析】【分析】本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为:101.【点睛】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.16.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.【答案】【解析】【分析】先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为:【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知公差不为零的等差数列中,,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)解方程组即得,即得数列的通项公式;(Ⅱ)利用裂项相消法求数列的前项和.【详解】(Ⅰ)由题意:,化简得,因为数列的公差不为零,,故数列的通项公式为.(Ⅱ)由(Ⅰ)知,故数列的前项和.【点睛】本题主要考查等差数列通项的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知向量,,,.(Ⅰ)若四边形是平行四边形,求,的值;(Ⅱ)若为等腰直角三角形,且为直角,求,的值.【答案】(Ⅰ);(Ⅱ)或.【解析】【分析】(Ⅰ)由得到x,y的方程组,解方程组即得x,y的值; (Ⅱ)由题得和,解方程组即得,的值.【详解】(Ⅰ),,,,,由,,;(Ⅱ),,为直角,则,,又,,再由,解得:或.【点睛】本题主要考查平面向量的数量积运算和模的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.【答案】(Ⅰ);(Ⅱ)4.【解析】【分析】(Ⅰ)利用正弦定理和三角恒等变换的公式化简即得;(Ⅱ)设,则,,由余弦定理得关于x的方程,解方程即得解.【详解】(Ⅰ)由题意,∴,∴,则,∵,∴,∴;(Ⅱ)由(Ⅰ)知,又∵,∴,设,则,,在中,由余弦定理得:,即,解得,即.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角恒等变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)由题得和,解方程即得圆的方程;(Ⅱ)取的中点,则,化简得,即得m的值.【详解】(Ⅰ)由,得圆的圆心为,圆关于直线对称,①.圆的半径为,②又圆心在第一象限,,,由①②解得,,故圆的方程为.(Ⅱ)取的中点,则,,,即,又,解得.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系和向量的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设屋子的左右两面墙的长度均为米.(Ⅰ)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(Ⅱ)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求的取值范围.【答案】(Ⅰ)4米时, 28800元;(Ⅱ).【解析】【分析】(Ⅰ)设甲工程队的总造价为元,先求出函数的解析式,再利用基本不等式求函数的最值得解;(Ⅱ)由题意可得,对任意的恒成立.从而恒成立,求出左边函数的最小值即得解.【详解】(Ⅰ)设甲工程队的总造价为元,则.当且仅当,即时等号成立.即当左右两侧墙的长度为4米时,甲工程队的报价最低为28800元.(Ⅱ)由题意可得,对任意的恒成立.即,从而恒成立,令,又在为单调增函数,故.所以.【点睛】本题主要考查基本不等式的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.22.已知数列的各项均不为零.设数列的前项和为,数列的前项和为,且,.(Ⅰ)求,的值;(Ⅱ)证明数列是等比数列,并求的通项公式;(Ⅲ)证明:.【答案】(Ⅰ)2,4;(Ⅱ)证明见解析,;(Ⅲ)证明见解析.【解析】【分析】(Ⅰ)直接给n赋值求出,的值;(Ⅱ)利用项和公式化简,再利用定义法证明数列是等比数列,即得等比数列的通项公式;(Ⅲ)由(Ⅱ)知,再利用等比数列求和证明不等式.【详解】(Ⅰ),令,得,,;令,得,即,,.证明:(Ⅱ),①,②②①得:,,,从而当时,,④③④得:,即,,.又由(Ⅰ)知,,,.数列是以2为首项,以为公比的等比数列,则.(Ⅲ)由(Ⅱ)知,因为当时,,所以.于是.【点睛】本题主要考查等比数列性质的证明和通项的求法,考查等比数列求和和放缩法证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

2018-2019学年高一数学下学期期末考试试题(含解析)_7

2018-2019学年高一数学下学期期末考试试题(含解析)_7

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B.C. D.【答案】A【解析】【分析】根据集合交集定义,即可求解.【详解】集合,由交集运算可得故选:A【点睛】本题考查了集合交集的简单运算,属于基础题.2.若角的终边经过点,则()A. B. C. D.【答案】B【解析】【分析】根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.3.已知过点的直线的倾斜角为,则直线的方程为()A. B. C.D.【答案】B【解析】【分析】由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选B.【点睛】本题考查直线点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.4.某高级中学共有学生3000人,其中高二年级有学生800人,高三年级有学生1200人,为了调查学生课外阅读时长,现用分层抽样的方法从所有学生中抽取75人进行问卷调查,则高一年级被抽取的人数为()A. 20B. 25C. 30D. 35【答案】B【解析】【分析】通过计算三个年级的人数比例,于是可得答案.【详解】抽取比例为,高一年级有人,所以高一年级应被抽取的人数为.【点睛】本题主要考查分层抽样的相关计算,难度很小.5.已知向量,,,则与的夹角为()A. B. C. D.【答案】D【解析】【分析】直接利用向量的数量积转化求解向量的夹角即可.【详解】因为,所以与的夹角为.故选:D.【点睛】本题主要考查向量的夹角的运算,以及运用向量的数量积运算和向量的模.6.要得到函数的图象,只需将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】C【解析】【分析】由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【点睛】本题考查了三角函数图像的平移变换,属基础题.7.已知,,则()A. B. C. D.【答案】B【解析】【分析】由二倍角公式可得,结合,可求出的值.【详解】因为,所以,又因为,所以.【点睛】本题考查了二倍角公式的应用,考查了计算能力,属于基础题.8.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.【答案】B【解析】【分析】依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【详解】设阴影区域的面积为,由题意可得,则.故选:B.【点睛】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.9.已知,则的值域为()A. B. C. D.【答案】C【解析】【分析】由已知条件,先求出函数的周期,由于,即可求出值域.【详解】因为,所以,又因为,所以当时,;当时,;当时,,所以的值域为.故选:C.【点睛】本题考查三角函数的值域,利用了正弦函数的周期性.10.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.【答案】B【解析】【分析】分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是点睛】本题主要考查循环结构由输出结果计算判断条件,难度不大.11.已知的三个顶点都在一个球面上,,且该球的球心到平面的距离为2,则该球的表面积为()A. B. C. D.【答案】C【解析】【分析】先算出的外接圆的半径,然后根据勾股定理可得球的半径,由此即可得到本题答案.【详解】设点O为球心,因为,所以的外接圆的圆心为AC的中点M,且半径,又因为该球的球心到平面的距离为2,即,在中,,所以该球的半径为,则该球的表面积为.故选:C【点睛】本题主要考查球的表面积的相关问题.12.已知函数,若在区间内没有零点,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】由题得,再由题分析得到,解不等式分析即得解.【详解】因为,,所以.因为在区间内没有零点,所以,,解得,.因为,所以.因为,所以或.当时,;当时,.故选B【点睛】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.若函数,则__________.【答案】【解析】【分析】根据分段函数的解析式先求,再求即可.【详解】因为,所以.【点睛】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.14.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.【答案】6【解析】【分析】由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.15.__________.【答案】【解析】【分析】利用诱导公式以及正弦差角公式化简式子,之后利用特殊角的三角函数值直接计算即可.【详解】.故答案为【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有诱导公式,差角正弦公式,特殊角的三角函数值,属于简单题目.16.已知点是所在平面内的一点,若,则__________.【答案】【解析】【分析】设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.三、解答题:本题共6小题,共70分.解答本题应写出文字说明、证明过程或演算步骤.17.已知.(1)化简;(2)若,且,求的值.【答案】(1);(2).【解析】【分析】(1)利用诱导公式化简即得;(2)利用同角的平方关系求出的值,即得解.【详解】解:(1).(2)因为,且,所以,所以.【点睛】本题主要考查诱导公式和同角的三角函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.18.某校从高一年级的一次月考成绩中随机抽取了 50名学生的成绩(满分100分,且抽取的学生成绩都在内),按成绩分为,,,,五组,得到如图所示的频率分布直方图.(1)用分层抽样的方法从月考成绩在内的学生中抽取6人,求分别抽取月考成绩在和内的学生多少人;(2)在(1)的前提下,从这6名学生中随机抽取2名学生进行调查,求月考成绩在内至少有1名学生被抽到的概率.【答案】(1)有4人,有2人;(2)【解析】【分析】(1)由频率分布直方图,求出成绩在和内的频率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出从这6名学生中随机抽取2名学生的所有不同取法,再求出被抽到的学生至少有1名月考成绩在内的不同取法,再求解即可.【详解】解:(1)因为,所以,则月考成绩在内的学生有人;月考成绩在内的学生有人,则成绩在和内的频率的比值为,故用分层抽样的方法从月考成绩在内的学生中抽取4人,从月考成绩在内的学生中抽取2人.(2)由(1)可知,被抽取的6人中有4人的月考成绩在内,分别记为,,,;有2人的月考成绩在内,分别记为,.则从这6名学生中随机抽取2名学生的情况为,,,,,,,,,,,,,,,共15种;被抽到的学生至少有1名月考成绩在内的情况为,,,,,,,,,共9种.故月考成绩内至少有1名学生被抽到的概率为.【点睛】本题考查了分层抽样,重点考查了古典概型概率的求法,属中档题.19.已知函数.(1)求的单调递增区间;(2)求不等式的解集.【答案】(1),;(2),【解析】【分析】(1)由余弦函数单调区间的求法,解不等式即可得解;(2)解三角不等式即可得解.【详解】解:解:(1)令,,解得,,故的单调递增区间为,.(2)因为,所以,即,所以,,解得,.故不等式的解集为,.【点睛】本题考查了余弦函数单调区间的求法,重点考查了三角不等式的解法,属基础题.20.在直角坐标系中,已知以点为圆心的及其上一点.(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;(2)设平行于的直线与圆相交于两点,且,求直线的方程.【答案】(1);(2)或【解析】【分析】(1)由圆的方程求得圆心坐标和半径,依题意可设圆的方程为,由圆与圆外切可知圆心距等于两圆半径的和,由此列式可求得,即可得出圆的标准方程;(2)求出所在直线的斜率,设直线的方程为,求出圆心到直线的距离,利用垂径定理列式求得,则直线方程即可求出.【详解】(1)因圆为,所以圆心的坐标为,半径.根据题意,设圆的方程为.又因为圆与圆外切,所以,解得,所以圆的标准方程为.(2)由题意可知,所以可设直线的方程为.又,所以圆心到直线的距离,即,解得或,所以直线的方程为或.【点睛】本题主要考查圆与圆的位置关系以及直线与圆的位置关系,其中运用了两圆外切时,圆心距等于两圆的半径之和,还涉及到圆的方程、直线的方程和点到直线的距离公式.21.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.【答案】(1);(2)或【解析】【分析】(1)由辅助角公式可得,再求周期即可;(2)由求出,再解方程即可.【详解】解:(1),则的最小正周期为.(2)因为,所以,即,解得.因为,所以.因为,所以,即,则或,解得或.故当时,自变量的取值集合为或.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.22.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.【答案】(1);(2)【解析】【分析】(1)由三角函数图像,求出即可;(2)求出函数的值域,再列不等式组求解即可.【详解】解:(1)由的图象可知,则,因为,,所以,故.因为在函数的图象上,所以,所以,即,因为,所以.因为点在函数的图象上,所以,解得,故.(2)因为,所以,所以,则.因为,所以,所以,解得.故的取值范围为.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B.C. D.【答案】A【解析】【分析】根据集合交集定义,即可求解.【详解】集合,由交集运算可得故选:A【点睛】本题考查了集合交集的简单运算,属于基础题.2.若角的终边经过点,则()A. B. C. D.【解析】【分析】根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.3.已知过点的直线的倾斜角为,则直线的方程为()A. B. C. D.【答案】B【解析】【分析】由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选B.【点睛】本题考查直线点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.4.某高级中学共有学生3000人,其中高二年级有学生800人,高三年级有学生1200人,为了调查学生课外阅读时长,现用分层抽样的方法从所有学生中抽取75人进行问卷调查,则高一年级被抽取的人数为()A. 20B. 25C. 30D. 35【答案】B【解析】【分析】通过计算三个年级的人数比例,于是可得答案.被抽取的人数为.【点睛】本题主要考查分层抽样的相关计算,难度很小.5.已知向量,,,则与的夹角为()A. B. C. D.【答案】D【解析】【分析】直接利用向量的数量积转化求解向量的夹角即可.【详解】因为,所以与的夹角为.故选:D.【点睛】本题主要考查向量的夹角的运算,以及运用向量的数量积运算和向量的模.6.要得到函数的图象,只需将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】C【解析】【分析】由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.【点睛】本题考查了三角函数图像的平移变换,属基础题.7.已知,,则()A. B. C. D.【答案】B【解析】【分析】由二倍角公式可得,结合,可求出的值.【详解】因为,所以,又因为,所以.【点睛】本题考查了二倍角公式的应用,考查了计算能力,属于基础题.8.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.【答案】B【解析】【分析】依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【详解】设阴影区域的面积为,由题意可得,则.故选:B.【点睛】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.A. B. C. D.【答案】C【解析】【分析】由已知条件,先求出函数的周期,由于,即可求出值域.【详解】因为,所以,又因为,所以当时,;当时,;当时,,所以的值域为.故选:C.【点睛】本题考查三角函数的值域,利用了正弦函数的周期性.10.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.【答案】B【解析】分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是点睛】本题主要考查循环结构由输出结果计算判断条件,难度不大.11.已知的三个顶点都在一个球面上,,且该球的球心到平面的距离为2,则该球的表面积为()A. B. C. D.【答案】C【解析】【分析】先算出的外接圆的半径,然后根据勾股定理可得球的半径,由此即可得到本题答案.【详解】设点O为球心,因为,所以的外接圆的圆心为AC的中点M,且半径,又因为该球的球心到平面的距离为2,即,在中,,所以该球的半径为,则该球的表面积为.故选:C【点睛】本题主要考查球的表面积的相关问题.12.已知函数,若在区间内没有零点,则的取值范围是()A. B. C. D.【答案】B由题得,再由题分析得到,解不等式分析即得解.【详解】因为,,所以.因为在区间内没有零点,所以,,解得,.因为,所以.因为,所以或.当时,;当时,.故选B【点睛】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.若函数,则__________.【答案】根据分段函数的解析式先求,再求即可.【详解】因为,所以.【点睛】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.14.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.【答案】6【解析】【分析】由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.15.__________.【答案】【解析】【分析】利用诱导公式以及正弦差角公式化简式子,之后利用特殊角的三角函数值直接计算即可.【详解】.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有诱导公式,差角正弦公式,特殊角的三角函数值,属于简单题目.16.已知点是所在平面内的一点,若,则__________.【答案】【解析】【分析】设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.三、解答题:本题共6小题,共70分.解答本题应写出文字说明、证明过程或演算步骤.17.已知.(2)若,且,求的值.【答案】(1);(2).【解析】【分析】(1)利用诱导公式化简即得;(2)利用同角的平方关系求出的值,即得解.【详解】解:(1).(2)因为,且,所以,所以.【点睛】本题主要考查诱导公式和同角的三角函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.18.某校从高一年级的一次月考成绩中随机抽取了 50名学生的成绩(满分100分,且抽取的学生成绩都在内),按成绩分为,,,,五组,得到如图所示的频率分布直方图.(1)用分层抽样的方法从月考成绩在内的学生中抽取6人,求分别抽取月考成绩在和内的学生多少人;内至少有1名学生被抽到的概率.【答案】(1)有4人,有2人;(2)【解析】【分析】(1)由频率分布直方图,求出成绩在和内的频率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出从这6名学生中随机抽取2名学生的所有不同取法,再求出被抽到的学生至少有1名月考成绩在内的不同取法,再求解即可.【详解】解:(1)因为,所以,则月考成绩在内的学生有人;月考成绩在内的学生有人,则成绩在和内的频率的比值为,故用分层抽样的方法从月考成绩在内的学生中抽取4人,从月考成绩在内的学生中抽取2人.(2)由(1)可知,被抽取的6人中有4人的月考成绩在内,分别记为,,,;有2人的月考成绩在内,分别记为,.则从这6名学生中随机抽取2名学生的情况为,,,,,,,,,,,,,,,共15种;被抽到的学生至少有1名月考成绩在内的情况为,,,,,,,,,共9种.故月考成绩内至少有1名学生被抽到的概率为.【点睛】本题考查了分层抽样,重点考查了古典概型概率的求法,属中档题.19.已知函数.(1)求的单调递增区间;(2)求不等式的解集.【答案】(1),;(2),【解析】【分析】(1)由余弦函数单调区间的求法,解不等式即可得解;(2)解三角不等式即可得解.【详解】解:解:(1)令,,解得,,故的单调递增区间为,.(2)因为,所以,即,所以,,解得,.故不等式的解集为,.【点睛】本题考查了余弦函数单调区间的求法,重点考查了三角不等式的解法,属基础题. 20.在直角坐标系中,已知以点为圆心的及其上一点.(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;(2)设平行于的直线与圆相交于两点,且,求直线的方程.【答案】(1);(2)或【解析】【分析】(1)由圆的方程求得圆心坐标和半径,依题意可设圆的方程为,由圆与圆外切可知圆心距等于两圆半径的和,由此列式可求得,即可得出圆的标准方程;(2)求出所在直线的斜率,设直线的方程为,求出圆心到直线的距离,利用垂径定理列式求得,则直线方程即可求出.【详解】(1)因圆为,所以圆心的坐标为,半径.根据题意,设圆的方程为.又因为圆与圆外切,所以,解得,所以圆的标准方程为.(2)由题意可知,所以可设直线的方程为.又,所以圆心到直线的距离,即,解得或,所以直线的方程为或.【点睛】本题主要考查圆与圆的位置关系以及直线与圆的位置关系,其中运用了两圆外切时,圆心距等于两圆的半径之和,还涉及到圆的方程、直线的方程和点到直线的距离公式.21.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.【答案】(1);(2)或【解析】【分析】(1)由辅助角公式可得,再求周期即可;(2)由求出,再解方程即可.【详解】解:(1),则的最小正周期为.(2)因为,所以,即,解得.因为,所以.因为,所以,即,则或,解得或.故当时,自变量的取值集合为或.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.22.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.【答案】(1);(2)【解析】【分析】(1)由三角函数图像,求出即可;(2)求出函数的值域,再列不等式组求解即可.【详解】解:(1)由的图象可知,则,因为,,所以,故.因为在函数的图象上,所以,所以,即,因为,所以.因为点在函数的图象上,所以,解得,故.(2)因为,所以,所以,则.因为,所以,所以,解得.故的取值范围为.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.。

四川省达州市高级中学校高一数学理下学期期末试卷含解析

四川省达州市高级中学校高一数学理下学期期末试卷含解析

四川省达州市高级中学校高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若集合中的元素是△的三边长,则△一定不是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形参考答案:D2. 函数在上有两个零点,则实数的取值范围是()(A)(B)(C)(D)参考答案:D略3. 已知,,为的三个内角、、的对边,向量=(),=(,),若且,则角=()A. B. C. D.参考答案:A略4. 如图,三棱柱ABCA1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AE与B1C1是异面直线,且AE⊥B1C1C.AC⊥平面ABB1A1D.A1C1∥平面AB1E参考答案:B【考点】LP:空间中直线与平面之间的位置关系.【分析】在A中,CC1与B1E在同一个侧面中;在B中,AE,B1C1为在两个平行平面中且不平行的两条直线,底面三角形A1B1C1是正三角形,E是BC 中点,故AE与B1C1是异面直线,且AE⊥B1C1;在C中,上底面ABC是一个正三角形,不可能存在AC⊥平面ABB1A1;在D中,A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点.【解答】解:由三棱柱ABCA1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,知:在A中,因为CC1与B1E在同一个侧面中,故CC1与B1E不是异面直线,故A错误;在B中,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线,又底面三角形A1B1C1是正三角形,E是BC中点,故AE⊥B1C1,故B正确;在C中,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1,故C错误;在D中,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确,故D错误.故选:B.5. 若的值为()A.1 B.3 C.15 D.30参考答案:D6. 设函数在上是减函数,则().A.B.C.D.参考答案:D由于函数在上的减函数,,则,故成立,故选.点睛:本题考查函数单调性的应用.当一个函数是减函数时,大自变量对应小函数值,小自变量对应大函数值.而当一个函数是增函数时,大自变量对应大函数值,小自变量对应小函数值;先比较题中变量的大小关系,再利用减函数中大自变量对应小函数值,小自变量对应大函数值来找答案即可.7. 方程-k(x-3)+4=0有两个不同的解时,实数k的取值范围是( )A. B.(,+∞) C.() D.参考答案:D略8. 已知△ABC的三个顶点A、B、C及平面内一点P,若++=,则点P与△ABC的位置关系是()A.P在AC边上B.P在AB边上或其延长线上C.P在△ABC外部D.P在△ABC内部参考答案:A【考点】向量在几何中的应用.【分析】利用条件,结合向量的线性运算,可得,由此即可得到结论.【解答】解:∵∴=∴∴∴P在AC的三等分点上故选A.【点评】本题考查向量的线性运算,考查向量共线定理的运用,考查学生的计算能力,属于中档题.9. 已知a=30.2,b=0.2-3,c=3-0.2,则a,b,c三者的大小关系是( )A.a>b>c B.b>a>c C.c>a>b D.b>c>a 参考答案:B 10. 已知,那么等于A.B.C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 已知幂函数的图象过点_______________.参考答案:3略12. 观察下列等式:(1)(2)(3)………………………………由以上规律推测,第n个等式为:.参考答案:(或)13. 将函数y=f(x)的图象上各点的横坐标扩大两倍,纵坐标不变;然后将整个图象向右平移个单位,若所得图象恰好与函数的图象完全相同,则函数y=f(x)的表达式是.参考答案:略14. 在△ABC 中,内角A 、B 、C 所对应的边分别为a 、b 、c ,若bsinA ﹣acosB=0,则A+C= .参考答案:120°【考点】HP :正弦定理.【分析】直接利用正弦定理化简,结合sinA≠0,可得:tanB=,可求B ,进而利用三角形内角和定理即可计算得解.【解答】解:在△ABC 中,bsinA ﹣acosB=0,由正弦定理可得:sinBsinA=sinAcosB ,∵sinA≠0. ∴sinB=cosB ,可得:tanB=,∴B=60°,则A+C=180°﹣B=120°. 故答案为:120°.15. 已知圆M 的一般方程为x 2+y 2﹣8x+6y=0,则下列说法中不正确的是( ) A .圆M 的圆心为(4,﹣3) B .圆M 被x 轴截得的弦长为8 C .圆M 的半径为25 D .圆M 被y 轴截得的弦长为6参考答案:C【考点】J2:圆的一般方程.【分析】利用配方法求出圆的圆心与半径,判断选项即可. 【解答】解:圆M 的一般方程为x 2+y 2﹣8x+6y=0, 则(x ﹣4)2+(y+3)2=25.圆的圆心坐标(4,﹣3),半径为5. 显然选项C 不正确. 故选:C .【点评】本题考查圆的方程的应用,基本知识的考查.16. 设f (x )=,则f (﹣1)的值为 .参考答案:【考点】函数的值.【分析】直接利用分段函数求解函数的值即可.【解答】解:f (x )=,则f (﹣1)=2﹣1=.故答案为:.17. 已知直线与圆:交于A ,B 两点,C 为圆心,若,则a 的值为___.参考答案:-1 【分析】先由圆的方程得到圆心坐标与半径,根据圆心角,得到圆心到直线的距离,再由点到直线距离公式求出圆心到直线的距离,列出等式,即可求出结果. 【详解】由题意可得,圆的标准方程为,圆心,半径,因为,所以圆心到直线的距离为,又由点到直线的距离公式可得,圆心到直线的距离为,所以,解得.故答案为【点睛】本题主要考查直线与圆相交求参数的问题,熟记点到直线距离公式,以及几何法求弦长即可,属于常考题型.三、 解答题:本大题共5小题,共72分。

四川省达州市丝罗乡中学2018-2019学年高一数学理期末试题含解析

四川省达州市丝罗乡中学2018-2019学年高一数学理期末试题含解析

四川省达州市丝罗乡中学2018-2019学年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数f(x)=e x+x﹣2的零点所在的一个区间是( )A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)参考答案:C【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】将选项中各区间两端点值代入f(x),满足f(a)?f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.2. 下列函数中,既不是奇函数也不是偶函数的是()A. B. C. D.参考答案:D【分析】利用奇函数偶函数的判定方法逐一判断得解.【详解】A.函数的定义域为R,关于原点对称,,所以函数是偶函数;B.函数的定义域为,关于原点对称. ,所以函数是奇函数;C.函数的定义域为R,关于原点对称,,所以函数是偶函数;D. 函数的定义域为R,关于原点对称,,,所以函数既不是奇函数,也不是偶函数.故选:D【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对该知识的理解掌握水平,属于基础题.3. 由函数的图象得到的图象,需要将的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位参考答案:B试题分析:,即函数的图象得到,需要将的图象向左平移个单位,故选择B.考点:三角函数图象变换.4. 角的终边过点P(-4,3),则的值为()A.-4 B.3 C.D.参考答案:C5. 集合,,则()A B CD参考答案:C略6. (5分)若函数是R上的单调减函数,则实数a的取值范围是()A.(﹣∞,2)B.C.(0,2)D.参考答案:B考点:函数单调性的性质;指数函数的单调性与特殊点.专题:计算题.分析:由函数是单调减函数,则有a﹣2<0,且注意2(a﹣2)≤.解答:∵函数是R上的单调减函数,∴∴故选B点评:本题主要考查分段函数的单调性问题,要注意不连续的情况.7. 下列命题正确的是A.若是第一象限角,且,则;B.函数的单调减区间是C.函数的最小正周期是;D.函数是偶函数;参考答案:D对于A,取,它们都是第一象限角且,但,故A错.对于B,取,且,但,,,不是减函数,故B错.对于C,取,则,故C错.对于D,因为,它是偶函数,故D正确.综上,选D.8. 在△ABC中,若,则△ABC的形状是()A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形参考答案:D略9. (5分)已知函数f(x)=,若函数g(x)=f(x)﹣m有三个零点,则实数m的取值范围是()A.(0,)B.(,1)C.(0,1)D.(0,1]参考答案:C考点:函数零点的判定定理;分段函数的应用.专题:函数的性质及应用.分析:转化为y=f(x)与y=m图象有3个交点,画出f(x)的图象,y=m运动观察即可.解答:∵函数f(x)=,若函数g(x)=f(x)﹣m有三个零点,∴y=f(x)与y=m图象有3个交点,f(﹣1)=1,f(0)=0,据图回答:0<m<1,故选:C.点评:本题考查了函数图象的运用,运用图象判断函数零点的问题,难度不大,属于中档题,关键画出图象,确定关键的点.10. 如图所示,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点.则异面直线EF与GH所成的角等于()A.120°B.90°C.60°D.45°参考答案:C【考点】异面直线及其所成的角.【分析】如图所示,连接A1B,BC1,A1C1,则EF∥A1B,GH∥BC1,∠A1BC1是异面直线EF与GH所成的角,利用△A1BC1是等边三角形,即可得出结论.【解答】解:如图所示,连接A1B,BC1,A1C1,则EF∥A1B,GH∥BC1,∴∠A1BC1是异面直线EF与GH所成的角,∵△A1BC1是等边三角形,∴∠A1BC1=60°,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 已知直角三角形两条直角边长分别为a、b,且=1,则三角形面积的最小值为.参考答案:4【考点】基本不等式.【分析】根据=1,求出ab的最小值,从而求出三角形面积的最小值即可.【解答】解:∵a>0,b>0, =1,∴1≥2,∴≤,ab≥8,当且仅当b=2a时“=”成立,故S△=ab≥4,12. 已知+= 20,则| 3 x– 4 y– 100 |的最大值为,最小值为。

2018-2019学年高一数学下学期期末考试试题理(含解析)_1

2018-2019学年高一数学下学期期末考试试题理(含解析)_1

2018-2019学年高一数学下学期期末考试试题理(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值等于( )A. B. C. D.【答案】A【解析】= ,选A.2.已知在中,,且,则的值为()A. B. C. D.【答案】C【解析】【分析】先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.3.计算:的结果为()A. 1B. 2C. -1D. -2【答案】B【解析】【分析】利用恒等变换公式化简得的答案.【详解】故答案选B【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.4.若某程序框图如图所示,则该程序运行后输出的值是()A. 3B. 4C. 5D. 6【答案】C【解析】【分析】根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.5.某单位共有老年人180人,中年人540人,青年人人,为调查身体健康状况,需要从中抽取一个容量为的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则和的值不可以是下列四个选项中的哪组()A. B.C. D.【答案】B【解析】【分析】根据分层抽样的规律,计算和的关系为:,将选项代入判断不符合的得到答案.【详解】某单位共有老年人180人,中年人540人,青年人人,样本中的中年人为6人,则老年人为:青年人为:代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.6.已知平面向量满足:,,,若,则的值为()A. B. C. 1 D. -1【答案】C【解析】【分析】将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.7.若直线与函数的图象相邻的两个交点之间的距离为1,则函数图象的对称中心为()A. B. C. D.【答案】A【解析】【分析】先计算周期得到,得到函数表达式,再根据中心对称公式得到答案.【详解】直线与函数的图象相邻的两个交点之间的距离为1则的对称中心横坐标为:对称中心为故答案选A【点睛】本题考查了函数的周期,对称中心,意在考查学生综合应用能力.8.一组数平均数是,方差是,则另一组数,平均数和方差分别是()A. B.C. D.【答案】B【解析】【分析】直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.9.已知角满足,,且,,则的值为()A. B. C. D.【答案】D【解析】【分析】根据角度范围先计算和,再通过展开得到答案.【详解】,,故答案选D【点睛】本题考查了三角函数恒等变换,将是解题的关键.10.已知函数的值域为,且图象在同一周期内过两点,则的值分别为()A. B.C. D.【答案】C【解析】【分析】根据值域先求,再代入数据得到最大值和最小值对应相差得到答案.【详解】函数的值域为即,图象在同一周期内过两点故答案选C【点睛】本题考查了三角函数的最大值最小值,周期,意在考查学生对于三角函数公式和性质的灵活运用和计算能力.11.在中,已知角的对边分别为,若,,,,且,则的最小角的正切值为()A. B. C. D.【答案】D【解析】【分析】根据大角对大边判断最小角为,利用正弦定理得到,代入余弦定理计算得到,最后得到.【详解】根据大角对大边判断最小角为根据正弦定理知:根据余弦定理:化简得:故答案选D【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力.12.若关于的方程有两个不同解,则实数的取值范围为()A. B. C. D.【答案】D【解析】【分析】换元设,将原函数变为,根据函数图像得到答案.【详解】设,则,单调递增,则如图:数的取值范围为故答案选D【点睛】本题考查了换元法,参数分离,函数图像,参数分离和换元法可以简化运算,是解题的关键.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知扇形的面积为,圆心角为,则该扇形半径为__________.【答案】2【解析】【分析】将圆心角化为弧度制,再利用扇形面积得到答案.【详解】圆心角为扇形的面积为故答案为2【点睛】本题考查了扇形的面积公式,属于简单题.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.【答案】【解析】【分析】将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型应用,意在考查学生解决问题的能力.15.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.【答案】【解析】【分析】利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.16.已知当时,函数(且)取得最小值,则时,的值为__________.【答案】3【解析】【分析】先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数,作如下变换:.(1)分别求出函数对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.【答案】(1),;(2),,.【解析】【分析】(1)由,直接利用对称中心和增区间公式得到答案.(2)根据变换得到函数的解析式为,再求值域和最小正周期.【详解】由题意知:(1)由得对称中心,由,得:单调增区间为,(2)所求解析式为:0值域:最小正周期:.【点睛】本题考查了三角函数的对称中心,单调区间,函数变换,周期,值域,综合性强,意在考查学生对于三角函数公式和性质的灵活运用.18.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,是的中点,且,求的面积.【答案】(1);(2).【解析】【分析】(1)利用正弦定理和和差公式计算得到答案.(2)利用代入余弦定理公式得到,计算面积得到答案.【详解】(1)∵是的内角,∴且又由正弦定理:和已知条件得:化简得:,又∵∴;(2)∵,是的中点,且,,,∴由余弦定理得:,代入化简得:又,即,可得:故所求的面积为.【点睛】本题考查了余弦定理,正弦定理,面积公式,意在考查学生的计算能力.19.为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:,,,,.(1)求家庭的月储蓄对月收入的线性回归方程;(2)指出(1)中所求出方程的系数,并判断变量与之间是正相关还是负相关;(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.【答案】(1);(2)正相关;(3)2.2千元.【解析】【分析】(1)直接利用公式计算回归方程为:.(2)由(1),故正相关.(3)把代入得:.【详解】(1)∵,,样本中心点为:∴由公式得:把代入得:所求回归方程为:;(2)由(1)知,所求出方程的系数为:,,∵,∴与之间是正相关.(3)把代入得:(千元)即该居民区某家庭月收入为9千元时,预测该家庭的月储蓄为2.2千元.【点睛】本题考查了回归方程的计算和预测,意在考查学生的计算能力.20.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.【答案】(1);(2).【解析】【分析】(1)根据得到计算得到答案.(2)先求出函数表达式为,再求函数的最大值得到答案.【详解】(1)∵,且,,,∴,即,又∵,∴(2)易知,∵,∴,,当时,,取得最大值:,又恒成立,即故.【点睛】本题考查了向量平行,函数的最大值,将恒成立问题转化为最值问题是解题的关键.21.驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.(1)分别求出的值;(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.【答案】(1),,,;(2)2人,3人,1人,1人;(3).【解析】【分析】(1)先计算出总人数为1000人,再根据公式依次计算的值.(2)根据分层抽样规律得到从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人(3)排出所有可能和满足条件的情况,得到概率.【详解】(1)依题和图表:由得:,由得:,由得:,由得:,由得:,故所求,,,.(2)由以上知:第二、三、四、五组回答正确人数分别为:180人,270人,90人,90人用分层抽样抽取7人,则:从第二组回答正确的人中应该抽取: 人,从第三组回答正确的人中应该抽取:人,从第四组回答正确的人中应该抽取: 人,从第五组回答正确的人中应该抽取: 人,故从第二、三、四、五组每组回答正确人中应分别抽取:2人,3人,1人,1人;(3)设从第二组回答正确的人抽取的2人为: ,从第三组回答正确的人抽取的3人为:从第四组回答正确的人抽取的1人为:从第五组回答正确的人抽取的1人为:随机抽取2人,所有可能的结果有: ,,,,,,,,,,,,,,,,,,,,,共21个基本事件,其中第二组至少有1人被抽中的有:,,,,,,,,,,共这11个基本事件.故抽取的人中第二组至少有1人获得幸运奖的概率为:.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生的应用能力和计算能力.22.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.【答案】(1),;(2).【解析】【分析】(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【点睛】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.2018-2019学年高一数学下学期期末考试试题理(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值等于( )A. B. C. D.【答案】A【解析】= ,选A.2.已知在中,,且,则的值为()A. B. C. D.【答案】C【解析】【分析】先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.3.计算:的结果为()A. 1B. 2C. -1D. -2【答案】B【解析】【分析】利用恒等变换公式化简得的答案.【详解】故答案选B【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.4.若某程序框图如图所示,则该程序运行后输出的值是()A. 3B. 4C. 5D. 6【答案】C【解析】【分析】根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.5.某单位共有老年人180人,中年人540人,青年人人,为调查身体健康状况,需要从中抽取一个容量为的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则和的值不可以是下列四个选项中的哪组()A. B.C. D.【答案】B【解析】【分析】根据分层抽样的规律,计算和的关系为:,将选项代入判断不符合的得到答案.【详解】某单位共有老年人180人,中年人540人,青年人人,样本中的中年人为6人,则老年人为:青年人为:代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.6.已知平面向量满足:,,,若,则的值为()A. B. C. 1 D. -1【答案】C【解析】【分析】将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.7.若直线与函数的图象相邻的两个交点之间的距离为1,则函数图象的对称中心为()A. B. C. D.【答案】A【解析】【分析】先计算周期得到,得到函数表达式,再根据中心对称公式得到答案.【详解】直线与函数的图象相邻的两个交点之间的距离为1则的对称中心横坐标为:对称中心为故答案选A【点睛】本题考查了函数的周期,对称中心,意在考查学生综合应用能力.8.一组数平均数是,方差是,则另一组数,平均数和方差分别是()A. B.C. D.【答案】B【解析】【分析】直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.9.已知角满足,,且,,则的值为()A. B. C. D.【答案】D【解析】【分析】根据角度范围先计算和,再通过展开得到答案.【详解】,,故答案选D【点睛】本题考查了三角函数恒等变换,将是解题的关键.10.已知函数的值域为,且图象在同一周期内过两点,则的值分别为()A. B.C. D.【答案】C【解析】【分析】根据值域先求,再代入数据得到最大值和最小值对应相差得到答案.【详解】函数的值域为即,图象在同一周期内过两点故答案选C【点睛】本题考查了三角函数的最大值最小值,周期,意在考查学生对于三角函数公式和性质的灵活运用和计算能力.11.在中,已知角的对边分别为,若,,,,且,则的最小角的正切值为()A. B. C. D.【答案】D【解析】【分析】根据大角对大边判断最小角为,利用正弦定理得到,代入余弦定理计算得到,最后得到.【详解】根据大角对大边判断最小角为根据正弦定理知:根据余弦定理:化简得:故答案选D【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力.12.若关于的方程有两个不同解,则实数的取值范围为()A. B. C. D.【答案】D【解析】【分析】换元设,将原函数变为,根据函数图像得到答案.【详解】设,则,单调递增,则如图:数的取值范围为故答案选D【点睛】本题考查了换元法,参数分离,函数图像,参数分离和换元法可以简化运算,是解题的关键.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知扇形的面积为,圆心角为,则该扇形半径为__________.【答案】2【解析】【分析】将圆心角化为弧度制,再利用扇形面积得到答案.【详解】圆心角为扇形的面积为故答案为2【点睛】本题考查了扇形的面积公式,属于简单题.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.【答案】【解析】【分析】将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型应用,意在考查学生解决问题的能力.15.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.【答案】【解析】【分析】利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.16.已知当时,函数(且)取得最小值,则时,的值为__________.【答案】3【解析】【分析】先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数,作如下变换:.(1)分别求出函数对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.【答案】(1),;(2),,.【解析】【分析】(1)由,直接利用对称中心和增区间公式得到答案.(2)根据变换得到函数的解析式为,再求值域和最小正周期.【详解】由题意知:(1)由得对称中心,由,得:单调增区间为,(2)所求解析式为:0值域:最小正周期:.【点睛】本题考查了三角函数的对称中心,单调区间,函数变换,周期,值域,综合性强,意在考查学生对于三角函数公式和性质的灵活运用.18.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,是的中点,且,求的面积.【答案】(1);(2).【解析】【分析】(1)利用正弦定理和和差公式计算得到答案.(2)利用代入余弦定理公式得到,计算面积得到答案.【详解】(1)∵是的内角,∴且又由正弦定理:和已知条件得:化简得:,又∵∴;(2)∵,是的中点,且,,,∴由余弦定理得:,代入化简得:又,即,可得:故所求的面积为.【点睛】本题考查了余弦定理,正弦定理,面积公式,意在考查学生的计算能力.19.为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:,,,,.(1)求家庭的月储蓄对月收入的线性回归方程;(2)指出(1)中所求出方程的系数,并判断变量与之间是正相关还是负相关;(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.【答案】(1);(2)正相关;(3)2.2千元.【解析】【分析】(1)直接利用公式计算回归方程为:.(2)由(1),故正相关.(3)把代入得:.【详解】(1)∵,,样本中心点为:∴由公式得:把代入得:所求回归方程为:;(2)由(1)知,所求出方程的系数为:,,∵,∴与之间是正相关.(3)把代入得:(千元)即该居民区某家庭月收入为9千元时,预测该家庭的月储蓄为2.2千元.【点睛】本题考查了回归方程的计算和预测,意在考查学生的计算能力.20.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.【答案】(1);(2).【解析】【分析】(1)根据得到计算得到答案.(2)先求出函数表达式为,再求函数的最大值得到答案.【详解】(1)∵,且,,,∴,即,又∵,∴(2)易知,∵,∴,,当时,,取得最大值:,又恒成立,即故.【点睛】本题考查了向量平行,函数的最大值,将恒成立问题转化为最值问题是解题的关键.21.驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.(1)分别求出的值;(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.【答案】(1),,,;(2)2人,3人,1人,1人;(3).【解析】【分析】(1)先计算出总人数为1000人,再根据公式依次计算的值.(2)根据分层抽样规律得到从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人(3)排出所有可能和满足条件的情况,得到概率.【详解】(1)依题和图表:由得:,由得:,由得:,由得:,由得:,故所求,,,.(2)由以上知:第二、三、四、五组回答正确人数分别为:180人,270人,90人,90人用分层抽样抽取7人,则:从第二组回答正确的人中应该抽取: 人,从第三组回答正确的人中应该抽取:人,从第四组回答正确的人中应该抽取: 人,从第五组回答正确的人中应该抽取: 人,故从第二、三、四、五组每组回答正确人中应分别抽取:2人,3人,1人,1人;(3)设从第二组回答正确的人抽取的2人为: ,从第三组回答正确的人抽取的3人为:从第四组回答正确的人抽取的1人为:从第五组回答正确的人抽取的1人为:随机抽取2人,所有可能的结果有: ,,,,,,,,,,,,,,,,,,,,,共21个基本事件,其中第二组至少有1人被抽中的有:,,,,,,,,,,共这11个基本事件.故抽取的人中第二组至少有1人获得幸运奖的概率为:.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生的应用能力和计算能力.22.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.【答案】(1),;(2).【解析】【分析】(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【点睛】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.。

四川省达州市第六中学2018-2019学年高一数学理联考试题含解析

四川省达州市第六中学2018-2019学年高一数学理联考试题含解析

四川省达州市第六中学2018-2019学年高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B. C. D.参考答案:D略2. 设函数,若关于的方程恰有6个不同的实数解,则实数a的取值范围为()A. B. C. D.参考答案:B【分析】首先令,转化成在有两个解的问题根据函数解析式画出的图像根据一元二次方程根的分别问题即可得的取值范围。

【详解】由题意得的图像如图:令,因为恰有六个解,所以。

即有两个不同的解,因此,选B.【点睛】本题主要考查了函数与方程的综合运用;函数的零点与方程根的关系;根的存在性及根的个数判断.另外本题考了数学中比较主要的一种思想:换元法,即把等式或方程中的每一部分看成一个整体,这样简化计算。

3. 甲、乙两名同学在5次体育测试中的成绩统计如上面的茎叶图所示,则下列结论正确的是()A.甲<乙;乙比甲稳定B.甲>乙;甲比乙稳定C.甲>乙;乙比甲稳定D.甲<乙;甲比乙稳定第7题参考答案:A4. (1)已知函数是定义在上的增函数,则函数的图象可能是()参考答案:B略5. 执行如图所示的程序框图,若输入的值为,则输出的的值为()A. B. C. D.参考答案:B6. 下列各组函数中,表示同一函数的是()A.f(x)=,g(x)=()2 B.f(x)=(x﹣1)0,g(x)=1C.f(x),g(x)=x+1 D.f(x)=,g(t)=|t|参考答案:D【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】判断函数的定义域与对应法则是否相同,即可得到结果.【解答】解:f(x)=,g(x)=()2,函数的定义域不相同,不是相同函数;f(x)=(x﹣1)0,g(x)=1,函数的定义域不相同,不是相同函数;f(x),g(x)=x+1,函数的定义域不相同,不是相同函数;f(x)=,g(t)=|t|,函数的定义域相同,对应法则相同,是相同函数.故选:D.【点评】本题考查函数是否是相同函数的判断,注意函数的定义域以及对应法则是解题的关键.7. 投掷一颗骰子,掷出的点数构成的基本事件空间是={1,2,3,4,5,6}。

【全国百强校】四川省-2018-2019学年高一下学期期末考试数学试题+答案

【全国百强校】四川省-2018-2019学年高一下学期期末考试数学试题+答案

2019级第二学期教学水平监测数学试题一、选择题(本大题共12小题,每题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求)1. 计算的结果等于A. B. C. D.2. 下列各组平面向量中,可以作为基底的是A. B.C. D.3. 为等差数列的前n项和,,则=A. B. C. D.4. 设,,则下列不等式成立的是A. B. C. D.5. 在中,已知D是AB边上一点,若,,则=A. B. C. D.6. 在中,则B等于A. B. C. D.7. 某几何体的三视图如图所示,则该几何体的表面积为A. 180B. 200C. 220D. 2408. 若是夹角为60°的两个单位向量,,则,夹角为A. B. C. D.9. 如图,设A,B两点在涪江的两岸,一测量者在A的同侧所在的江岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°. 则A,B两点间的距离为A. mB. mC. mD. m10. 已知等差数列{a n}的前n项和为,,,则使得取最大值时n的值为A. 11或12B. 12C. 13D. 12或1311. 若,,,则的最小值是A. B. C. D.12. 中,角的对边分别为,且满足,,,则的取值范围是A. B. C. D.二、填空题(本题共4小题,每小题5分,共20分)13. _____14. 一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了2个伙伴;第2天,3只蜜蜂飞出去,各自找回了2个伙伴……如果这个找伙伴的过程继续下去,第5天所有的蜜蜂都归巢后,蜂巢中一共有_____只蜜蜂.15. 若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为_____.16. 有下列命题:①等比数列中,前n项和为,公比为,则,,仍然是等比数列,其公比为;②一个正方体的顶点都在球面上,它的棱长为2cm,则球的体积是cm3;③若数列是正项数列,且,则;④在中,D是边BC上的一点(包括端点),则的取值范围是.其中正确命题的序号是_____(填番号)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 已知,.(1)求;(2)当k为何实数时,与平行,平行时它们是同向还是反向?18. 已知不等式的解集为(1)求a、b的值;(2)若不等式恒成立,则求出c的取值范围.19. 已知锐角中,角所对的边分别为,向量,,且.(1)求角的大小;(2)若,求的面积的最大值.20. 已知函数的最小值为(1)求常数的值;(2)若,,求的值.21. 已知数列中,,(1)求证:数列是等差数列;(2)求数列的通项公式;(3)设数列满足:,求的前项和.22. 已知二次函数同时满足:①在定义域内存在,使得成立;②不等式的解集有且只有一个元素;数列的前项和为,,,。

四川省达州市渠县贵福中学2018-2019学年高一数学理下学期期末试题含解析

四川省达州市渠县贵福中学2018-2019学年高一数学理下学期期末试题含解析

四川省达州市渠县贵福中学2018-2019学年高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列不等式正确的是( )A.log34>log43 B.0.30.8>0.30.7C.π﹣1>e﹣1 D.a3>a2(a>0,且a≠1)参考答案:A【考点】指数函数单调性的应用;对数函数的单调性与特殊点;幂函数的性质.【专题】证明题.【分析】本题中四个选项有一个是比较对数式的大小,其余三个都是指数型的,故可依据相关函数的性质对四个选项逐一验证,以找出正确选项.【解答】解:对于选项A,由于log34>log33=1=log44>log43,故A正确;对于选项B,考察y=0.3x,它是一个减函数,故0.30.8<0.30.7,B不正确;对于选项C,考察幂函数y=x﹣1,是一个减函数,故π﹣1<e﹣1,C不正确;对于D,由于底数a的大小不确定,故相关幂函数的单调性不确定,故D不正确.故选A【点评】本题考点是指数、对数及幂函数的单调性,考查利用基本初等函数的单调性比较大小,利用单调性比较大小,是函数单调性的一个重要运用,做题时要注意做题的步骤,第一步:研究相关函数的单调;第二步:给出自变量的大小;第三步:给出结论.2. 在如图所示的坐标平面的可行域(阴影部分且包括边界)内,若是目标函数z=ax+y(a>0)取得最大值的最优解有无数个,则a的值等于A. B.1 C.6 D.3参考答案:B将z=ax+y化为斜截式y=-ax+z(a>0),则当直线在y轴上截距最大时,z最大.∵最优解有无数个,∴当直线与AC重合时符合题意.又kAC=-1,∴-a=-1,a=1.3. 设(i为虚数单位),其中x,y是实数,则等于()A.5 B.C.D.2参考答案:A,,4. 若函数的反函数在定义域内单调递增,则函数的图象大致是()(A)(B)(C)(D)参考答案:D由函数的反函数在定义域内单调递增,可得a>1,所以函数的图象在上单调递增,故选D5. 在等差数列{a n}中,,,则数列{a n}的前5项和为()A. 13B. 16C. 32D. 35参考答案:D【分析】直接利用等差数列的前n项和公式求解.【详解】数列的前5项和为.故选:D【点睛】本题主要考查等差数列的前n项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题.6. 函数f(x)=log2x+2x-1的零点所在的区间是( )A. (,)B. (,)C. (,1)D. (1,2)参考答案:C7. 设、是方程的两根,且,则的值为()A. B. C.D.参考答案:C略8. 下列函数是偶函数的是()A. B.C. D.参考答案:B9. sin20°cos10°+cos20°sin10°=()A.B.C.D.参考答案:A【考点】两角和与差的正弦函数.【分析】由条件利用本题主要考查两角和差的正弦公式,求得所给式子的值.【解答】解:sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=,故选:A.10. 向量=(5,2),=(﹣4,﹣3),=(x,y),若3﹣2+=,则=()A.(23,12)B.(7,0)C.(﹣7,0)D.(﹣23,﹣12)参考答案:D【考点】9H:平面向量的基本定理及其意义.【分析】根据向量的四则运算法则,即可求得向量.【解答】解:3﹣2+=0,则(15,6)﹣(﹣8,﹣6)+(x+y)=,∴,解得:,则=(x,y)=(﹣23,﹣12),故选D.【点评】本题考查向量的四则运算法则,考查计算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 数列的前项和为,,,则= .参考答案:略12. 如图,设、是平面内相交成角的两条数轴,、分别是与轴、轴正方向同向的单位向量。

四川省达州市通川区第八中学2018-2019学年高三数学理下学期期末试题含解析

四川省达州市通川区第八中学2018-2019学年高三数学理下学期期末试题含解析

四川省达州市通川区第八中学2018-2019学年高三数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 把函数的图像上所有的点向左平移个单位长度,再把图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到的图像所表示的函数为()A. B.C. D.参考答案:B略2. 函数的定义域为,,对任意,,则的解集为A.(,1)B.(,+)C.(,) D.(,+)参考答案:B3. 已知等比数列{a n}的前n项和为S n,则“a1>0”是“S2017>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:C【分析】根据充分条件和必要条件的定义,结合等比数列的前n项和公式进行判断即可.【解答】解:若公比q=1,则当a1>0时,则S2017>0成立,若q≠1,则S2017=,∵1﹣q与1﹣q2017符号相同,∴a1与S2017的符号相同,则“a1>0”?“S2017>0”,即“a1>0”是“S2017>0”充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据等比数列前n项和公式是解决本题的关键.4. 若函数的图象与曲线C:存在公共切线,则实数a的取值范围为A.B.C.D.参考答案:A5. 在中,若,则的形状是()A.锐角三角形B.直角三角形C.钝角三角形 D.不能确定参考答案:C略6. 已知锐角的内角的对边分别为,,,,则()(A)(B)(C)(D)参考答案:略7. 执行如图所示的程序框图,输出的值为(A)2 (B)(C)(D)参考答案:C8. 设,,,则( )A. B. C. D.参考答案:9. 已知集合,集合,则()A. {-1,0,1}B. {-1,1}C. [-1,1]D. (-1,1)参考答案:A【分析】首先求出集合U,然后利用补集的运算求出即可。

【详解】∵集合,集合,∴.故选:A.10. 如图所示,曲线,围成的阴影部分的面积为A. B.C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知直线l过点,且与曲线相切,则直线的方程为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

达州市2018年普通高中一年级春季期末检测试题数学(理科)一、选择题(本大题共12小题,每小题5分,共计60分,在每小题给出的四个选项中,只有一项符合题目要求).1.已知:,:,若,则()A. -2B. -1C. 1D. 2【答案】B【解析】【分析】利用,得出斜率相等,进而求解即可【详解】,化简,,则有,得出答案选B【点睛】本题考查直线之间的平行问题,属于基础题2.已知实数,,,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】用特值法验证求解即可【详解】A:取,不成立B:取,,,不符题意C:令,则结论不符题意D:明显地,,两边同时除以,明显成立答案选D【点睛】本题采用特值法求解即可,属于基础题3.等比数列中,若,,则()A. 32B. 64C. 128D. 256【答案】B【解析】【分析】利用等比数列的性质求解即可【详解】,设公比为,则,所以,所以,,所以,答案选B【点睛】本题考查等比数列的性质,属于基础题4.直线:中,若,关于轴对称,则的倾斜角()A. B. C. D.【答案】C【解析】【分析】利用,关于轴对称,得到斜率之和为0,进而求解即可【详解】,关于轴对称,设,的斜率为和,则有,又由,得,则的倾斜角为答案选C【点睛】本题考查直线的位置关系,解题的关键在于利用直线关于轴对称,属于基础题5.在中,角,,所对的边分别是,,,,则是()A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形【答案】D【解析】,利用正弦定理作角化边,变为,然后利用余弦定理即可求解【详解】,答案选D【点睛】本题考查正余弦定理的综合使用,属于基础题6.已知向量,,则()A. B. C. D.【答案】A【解析】【分析】利用设,,由,转化位,进而化简求解即可【详解】设,,由,答案选A【点睛】本题考查向量的模运算,属于基础题7.设实数,满足,则的最大值是()A. -2B. -1C. 2D. 3【答案】C【解析】作出可行域,直接求解即可【详解】如图,该线性规划的可行域为阴影部分,令,得,作出直线EF:,把转化为,则把直线EF平移至CD时,即有的最大值,此时,CD交AB于点H,点H的坐标为,代入CD中可得,答案选C【点睛】本题考查简单线性规划问题,属于基础题8.为做好达州市渠江航道升级的前期工作,四川省交通运输厅交通勘察设计院组织专家到渠江现场踏勘,现要测量渠江某处,两岸的距离,如图,在的正东方向选取一点测得,位于西偏北,位于北偏东,则的距离=()A. B. C. D.【答案】C【解析】【分析】直接利用正弦定理求解即可【详解】由已知得,所以,设,则有,得,答案选C【点睛】本题考查解三角形问题,属于基础题9.已知数列的通项公式,为数列的前项和,满足,则的最小值为()A. 98B. 99C. 100D. 101【答案】C【解析】【分析】化简,利用累加法直接求得值即可【详解】化简,得到通项公式为:,根据递推式,列出如下式子:,则有,由于,则的最小值为100答案选C【点睛】本题考查累加法求和,属于基础题10.已知直线,若此直线在轴,轴的截距的和取得最小时,则直线的方程为()A. B.C. D.【答案】D【解析】分析】求出截距,得到,然后利用均值不等式的性质求解即可详解】令,令,又由,当且仅当时,等号成立,此时,,则直线的方程为答案选D【点睛】本题考查基本不等式问题,属于基础题11.已知函数,存在,使得成立,则实数的取值范围()A. B. C. D.【答案】A【解析】【分析】存在,使得,然后求出最值,求出最大值即可【详解】存在,使得,求导得,在时,,,实数的取值范围,答案选A【点睛】本题考查不等式的有解问题,解题关键点在于得出即可,属于基础题12.在中,,,成等差数列,,且,则()A. 6B. 8C.D.【答案】B【解析】【分析】由,求出,又由,,成等差数列,求出,然后,解三角形即可求解【详解】由,得,化简得,,得到,又由,,成等差数列,得到,化简得,则有,化简得,在中,,所以为等边三角形,所以,设,得,得到,则答案选B【点睛】本题考查解三角形与向量的运算,属于中档题二、填空题(本大题共4小题,每小题5分,共计20分).13.已知,直线:恒过定点,则的坐标为______.【答案】【解析】【分析】利用直线的定义,直接求解即可【详解】代入,可得,直线:恒过定点答案:【点睛】本题考查直线方程,属于基础题14.九连环是我国古老的一种智力游戏,它环环相扣,趣味无穷,九连环由九个大小相同的圆环依次排开镶在铁丝框架上.玩九连环就是将九连环按照一定规则从框架上解下或套上.用表示解下个圆环所需移动的最少次数,已知,,通过规则可知,则______. 【答案】21【解析】【分析】利用递推式,直接代入求解即可【详解】答案:21【点睛】本题考查递推式的应用,属于基础题15.在中,角,,的对边分别为,,,面积为,满足,则______. 【答案】2【解析】【分析】利用题意得出,然后,化简求解即可【详解】由得,,,化简得,最后得,答案:【点睛】本题考查面积公式,难点在于利用等量代换化简求解,属于基础题16.如图,等腰梯形中,,与交于点,,若,则以下所有结论中正确的序号是______.①若,则②三角形的面积为4③④若,是直线上的动点,【答案】③④【解析】【分析】利用解三角形和向量的线性运算求解即可【详解】如图,由已知得,,又由,得到,则有,所以,①错,过作,由得,,过作,明显地,,且,所以,,,所以,②错,又因为在中,所以,,且在等腰梯形中,所以,又由,得,而由根据正弦定理,得,所以,成立,③对,对于④若,是直线上的动点,又由等腰梯形可得,,可得,,④对答案:③④【点睛】本题考查向量与解三角形的综合运用,属于难题三、解答题(本大题共6小题,17题10分,18,19,20,21,22题每题12分). 17.已知等比数列中,公比,是,的等差中项.(1)求数列的通项公式; (2)求数列的前项和.【答案】(1);(2)【解析】 【分析】(1)利用公式法,设基本量解方程,求通项即可 (2)利用求和公式求解即可 【详解】(1)∵,,所以,.(2)【点睛】本题考查等比数列的通项与求和,属于基础题18.,,是平面内的三点,已知,,的中点在轴上,的中点在轴上.(1)求点的坐标; (2)求过点且垂直的直线的方程(一般式方程).【答案】(1);(2)【解析】【分析】(1)利用条件,得点的横坐标为0,点的纵坐标为0,若设,可得,解方程即可(2)利用点斜式方程得,,然后化简即可【详解】(1)由题意得:点的横坐标为0,点的纵坐标为0,若设,则由,∴,∴点的坐标为.(2)∵,,由点斜式得:.【点睛】本题考查直线方程的用法,属于基础题19.已知函数.(1)若关于的不等式的解集为,求解集;(2)若,解不等式的解集.【答案】(1);(2)见解析【解析】【分析】(1)由题意得,,然后求解即可(2)由题意得,)时,不等式,然后,分类讨论即可【详解】(1).∵不等式的解集为,∴,,,∴的解集为.(2)时,不等式,当时,不等式的解集为;当时,不等式的解集为;当时时,不等式的解集为.【点睛】本题考查不等式的求解应用,属于基础题20.已知点是函数图像上一点,点到直线:的距离为1.(1)求函数的解析式;(2)令,求的值.【答案】(1);(2)【解析】【分析】(1)先利用,求出,最后,利用到直线:的距高为1.,求得答案(2)利用令①②;进行求解即可【详解】(1)∵是上点,∴,,,∴.又到直线:的距高为1.得,∴.(2)∵,令①②①+②得,得.【点睛】本题考查三角函数的应用,属于基础题21.在中,角,,的对边分别为,,,已知向量,向量,.(1)求的值;(2)若,,求向量在方向上的投影.【答案】(1);(2)【解析】【分析】(1)利用,化简求解即可(2)利用余弦定理,先求出,然后,直接求解即可【详解】(1)∵,,即,∴,即,∴.(2)∵,,∴,即,解得,∴向量在方向上的投影为.【点睛】本题考查三角恒等变换和向量的投影,属于基础题22.已知是数列前项和,点在直线上,令,.(1)求的值;(2)求证:数列是等差数列;(3)对任意的,若恒成立,求实数的取值范围.【答案】(1);(2)见解析;(3)【解析】【分析】(1)根据题意,列出相关方程求解即可(2)利用①和②,化简求解即可(3)根据题意,列出,,,然后分类讨论即可【详解】(1)∵是数列的前项和,在直线上,∴.令得,.(2)证明:∵①②,②-①得.两边同时除以得,又,∴即,所以证得是以2为首项,1为公差的等差数列.(3)由(1)(2)知,,,,,,当为奇数时,为单减数列,∴,当偶数时,为单增数列,∴,,,要使恒成立,,∴.【点睛】本题属于数列与不等式的综合运用,属于难题。

相关文档
最新文档