高考数学总复习 第十一章 计数原理 课时规范练56 排列与组合 理 新人教A版
2025版高考数学一轮复习课时规范练56排列与组合理北师大版
课时规范练56 排列与组合基础巩固组1.(2024湖南、河南联考)郑州绿博园花展期间,支配6位志愿者到4个展区供应服务,要求甲、乙两个展区各支配一个人,剩下两个展区各支配两个人,其中小李和小王不在一起,不同的支配方案共有()A.168种B.156种C.172种D.180种2.(2024东北三省三校二模)将7个座位连成一排,支配4个人就座,恰有两个空位相邻的不同坐法有()A.240B.480C.720D.9603.(2024四川广安诊断,4)某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能状况的种数为()A.15B.30C.35D.424.将5名实习老师安排到高一年级的3个班实习,每班至少1名,最多2名,则不同的安排方案共有()A.30种B.90种C.180种D.270种5.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是()A.258B.306C.336D.2966.(2024湖南师大附中模拟)把7个字符a,a,a,b,b,α,β排成一排,要求三个“a”两两不相邻,且两个“b”也不相邻,则这样的排法共有()A.144种B.96种C.30种D.12种7.(2024广东珠海3月质检)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种8.(2024宁夏育才中学模拟)某城市关系要好的A, B, C, D四个家庭各有两个小孩共8人,分别乘甲、乙两辆汽车出去游玩,每车限坐4名 (乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有() A.18种 B.24种C.36种D.48种9.从2名语文老师、2名数学老师、4名英语老师中选派5人组成一个支教小组,则语文老师、数学老师、英语老师都至少有1名的选派方法种数为.(用数字作答)综合提升组10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种11.A,B,C,D,E,F六人围坐在一张圆桌四周开会,A是会议的中心发言人,必需坐最北面的椅子,B,C 二人必需坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种B.48种C.30种D.24种12.从甲、乙等8名志愿者中选5人参与周一到周五的社区服务,每天支配一人,每人只参与一天.若要求甲、乙两人至少选一人参与,且当甲、乙两人都参与时,他们参与社区服务的日期不相邻,那么不同的支配种数为.(用数字作答)13.用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有种不同的涂色方法.创新应用组14.将除颜色外完全相同的一个白球、一个黄球、两个红球分给三名小挚友,且每名小挚友至少分得一个球的分法种数为()A.15B.21C.18D.2415.(2024上海松江、闵行区二模)设x1,x2,x3,x4∈{-1,0,2},那么满意2≤|x1|+|x2|+|x3|+|x4|≤4的全部有序数组(x1,x2,x3,x4)的组数为.参考答案课时规范练56 排列与组合1.B分类:(1)小李和小王分别去甲、乙2个展区,共有=12种状况,(2)小王,小李一人去甲或乙,共=96种状况,(3)小王,小李均没有去甲或乙,共=48种状况,总共N=12+96+48=156种状况,故选B.2.B(1,2)或(6,7)为空时,第三个空位有4种选择;(2,3)或(3,4)或(4,5)或(5,6)为空时,第三个空位有3种选择;因此空位共有2×4+4×3=20种状况相邻,所以不同坐法有20=480种,故选B.3.B由间接法得可能状况数为-·=35-5=30.4.B由每班至少1名,最多2名,知安排名额为1,2,2,所以安排方案有··=90(种).5.C若7级台阶上每一级至多站1人,有种不同的站法;若1级台阶站2人,另一级站1人,共有种不同的站法.所以共有不同的站法种数是+=336.故选C.6.B先排列b,b,α,β,若α,β不相邻,有种排法,若α,β相邻,有种,共有6+6=12种排法,从所形成的5个空档中选3个插入a,a,a,共有12×=120种排法,若b,b相邻时,从所形成的4个空档中选3个插入a,a,a,共有6×=24种排法,所以三个“a”两两不相邻,且两个“b”也不相邻,这样的排法共有120-24=96种,故选B.7.C第一步:先从4个盒子中选一个盒子打算装两个球,有4种选法;其次步:从5个球里选出两个球放在刚才的盒子里,有种选法;第三步:把剩下的3个球全排列,有种排法,由分步乘法计数原理得不同方法共有4=240种,故选C.8.B若A户家庭的孪生姐妹乘坐甲车,即剩下的两个小孩来自其他的2个家庭,有·22=12种不同的方法,若A户家庭的孪生姐妹乘坐乙车,那来自同一家庭的2名小孩来自剩下的3个家庭中的一个,有·22=12种不同的方法.所以共有12+12=24种方法.故选B.9.44由题意可知分四类,第一类,2名语文老师,2名数学老师,1名英语老师,有=4种选派方法;其次类,1名语文老师,2名数学老师,2名英语老师,有=12种选派方法;第三类,2名语文老师,1名数学老师,2名英语老师,有=12种选派方法;第四类,1名语文老师,1名数学老师,3名英语老师,有=16种选派方法;则一共有4+12+12+16=44种选派方法.10.B先放标号1,2的卡片,有种放法,再将标号3,4,5,6的卡片平均分成两组再放置,有·种放法,故共有·=18种不同的放法.11.B由题意知,不同的座次有=48(种),故选B.12.5 040分两类,一类是甲、乙都参与,另一类是从甲、乙中选一人,方法数为N=+=1 440+3 600=5 040.填5 040.13.732如图,记六个区域的涂色数为a6,若A,F涂色相同,则相当于5个区域涂色,记5个区域涂色数为a5,同理只有4个区域时涂色数记为a4,易知a4=++=84, a6=4×35-a5=4×35-=4×35-4×34+84=732.14.B分四类,第一类:两个红球分给其中一个人,有种分法;其次类:白球和黄球分给一个人,有种分法;第三类:白球和一个红球分给一个人,有种分法;第四类:黄球和一个红球分给一个人,有种方法,总共有++2=21种分法,故选B.15.45分类探讨:①|x1|+|x2|+|x3|+|x4|=2,则这四个数为2,0,0,0或-1,-1,0,0,有+=4+6=10(组);②|x1|+|x2|+|x3|+|x4|=3,则这四个数为2,-1,0,0或-1,-1,-1,0,有+=12+4=16(组);③|x1|+|x2|+|x3|+|x4|=4,则这四个数为2,2,0,0或-1,-1,2,0或-1,-1,-1,-1,有++=6+6×2+1=19(组);综上可得,全部有序数组(x1,x2,x3,x4)的组数为10+16+19=45.。
高三数学一轮复习 第11章第1课时课件
两个计数原理的综合应用
对于某些复杂的问题,有时既要用分类计数原理, 又要用分步计数原理,重视两个原理的灵活运用, 并注意以下几点: (1)认真审题,分析题目的条件、结论,特别要理 解题目中所讲的“事情”是什么,完成这件事情 的含义和标准是什么. (2)明 确 完 成 这 件 事 情 需 要 “ 分 类 ” 还 是 “ 分
2.混合问题一般是先分类再分步. 3.分类时标准要明确,做到不重复不遗漏. 4.要恰当画出示意图或树状图,使问题的分
析更直观、清楚,便于探索规律.
从近两年的高考试题来看,分类加法计数 原理和分步乘法计数原理是考查的热 点.题型为选择题、填空题,分值在5分左 右,属中档题.两个计数原理较少单独考 查,一般与排列、组合的知识相结合命 题.
(2010·广东卷)为了迎接 2010 年广州亚运会,某大
楼安装了 5 个彩灯,它们闪亮的顺序不固定,每
个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜
色,且这 5 个彩灯所闪亮的颜色各不相同,记这 5
个彩灯有序地各闪亮一次为一个闪烁,在每个闪
烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两
个闪烁的时间间隔均为 5 秒,如果要实现所有不
(2)确定第二象限的点,可分两步完成:第一 步确定 a,由于 a<0,所以有 3 种确定方法; 第二步确定 b,由于 b>0,所以有 2 种确定方 法.由分步乘法计数原理,得到第二象限点 的个数是 3×2=6.
(3)点 P(a,b)在直线 y=x 上的充要条件是 a =b.因此 a 和 b 必须在集合 M 中取同一元素, 共有 6 种取法,即在直线 y=x 上的点有 6 个.由(1)得不在直线 y=x 上的点共有 36- 6=30(个).
【精选】福建专用高考数学总复习第十一章计数原理11.2排列与组合课件理新人教A版
法有C64C41C31种方法,则满足题意的选法有C84C41C31 −
关闭
C(164)CC41C31(=26)1640(种(3)).660
(1)0!= 1 ;
������nn =n×(n-1)×(n-2)×…×2×1=n!
(2)������nm = ������nn-m ;������nm+1 = ������nm + ������nm-1
考情概览备考定向
-4-
知识梳理 考点自测
1.������mn =(n-m+1)������mn -1. 2.������mn =n������mn--11.
-12-
考点1 考点2 考点3
(方法二:元素分析法)从中间 6 个位置选 3 个安排女生,有A36种排法, 其余位置无限制,有A55种排法,因此共有A36 ·A55=14 400 种不同排法. (4)8 名学生的所有排列共A88种,其中甲在乙左边与乙在甲左边的各 占12,因此符合要求的排法种数为12 A88=20 160. (5)甲、乙为特殊元素,左、右两边为特殊位置. (方法一:特殊元素法)甲在最右边时,其他的可全排,有A77种不同排法; 甲不在最右边时,可从余下 6 个位置中任选一个,有A16种.而乙可排在 除去最右边位置后剩余的 6 个中的任一个上,有A16种,其余人全排列, 共有A16 ·A16 ·A66种不同排法. 由分类加法计数原理知,共有A77 + A16 ·A16 ·A66=30 960 种不同排法.
再将不相邻的元素插在前面元素形成的空当中 除法 对于定序问题,可先不考虑顺序限制,排列后,再除以定
人教版高考数学一轮复习第十一章 课时规范练60 排列与组合(含答案)
课时规范练60排列与组合基础巩固组1.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种2.从4名男生和2名女生中选出2名男生和1名女生担任元旦联欢晚会的主持人,则不同的选法共有()A.6种B.12种C.24种D.18种3.小明跟父母、爷爷和奶奶一同参加节目,5人坐一排.若小明的父母都与他相邻,则不同坐法的种数为()A.6B.12C.24D.484.(2022广东茂名二模)某大学计算机学院的丁教授在2021年人工智能方向招收了6名研究生.丁教授拟从人工智能领域的语音识别、人脸识别、数据分析、机器学习、服务器开发共5个方向展开研究.每个方向均有研究生学习,每位研究生只参与一个方向的学习.其中小明同学因录取分数最高主动选择学习人脸识别,其余5名研究生均表示服从丁教授统一安排,则这6名研究生不同的分配方向共有()A.480种B.360种C.240种D.120种5.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85B.86C.91D.906.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个7.(多选)下列等式中,成立的有()A.A n m=n!m!mB.C n m-1+C n m=C n+1C.C n m=C n n-mm-1D.A n m=n A n-18.(多选)在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则下列结论中正确的有()A.抽出的3件产品中恰好有1件是不合格品的方法有C21C982种B.抽出的3件产品中恰好有1件是不合格品的方法有C 21C 992种 C.抽出的3件中至少有1件是不合格品的方法有(C 21C 982+C 22C 981)种 D.抽出的3件中至少有1件是不合格品的方法有(C 1003−C 983)种9.某校举办优质课比赛,决赛阶段共有6名教师参加.如果甲、乙、丙三人中有一人第一个出场,且最后一个出场的只能是甲或乙,则不同的出场方案共有 种.10.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)综合提升组11.某市践行“干部村村行”活动,现有3名干部下乡到5个村蹲点指导工作,每个村必须有1名干部,每名干部至多去3个村,则不同的选派方案共有( ) A.243种 B.210种 C.150种D.125种12.(2022广东韶关一模)在一次学校组织的研究性学习成果报告会上,有A ,B ,C ,D ,E ,F 共6项成果要汇报,如果B 成果不能最先汇报,而A ,C ,D 按先后顺序汇报(不一定相邻),那么不同的汇报安排种数为( ) A.100B.120C.300D.60013.(多选)有13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往疫区.若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N ,则下列等式能成为N 的算式的是( )A.C 135−C 71C 64B.C 72C 63+C 73C 62+C 74C 61+C 75C.C 135−C 71C 64−C 65D.C 72C 11314.(2022山东烟台一模)“碳中和”是指企业、团体或个人等测算在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,以抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”.某“碳中和”研究中心计划派5名专家分别到A ,B ,C 三地指导“碳中和”工作,每位专家只去一个地方,且每地至少派驻1名专家,则不同的分派方法的种数为( ) A.90B.150C.180D.30015.某市疾控中心决定将含A ,B 在内的6名专家平均分配到3所县疾控中心去指导防疫工作,若A ,B 2名专家不能分配在一起,则不同的分配方法有 种.16.某省新高考改革方案中要求,学生可从物理、历史,化学、生物学、政治、地理、技术7科中任选3科参加高考,则学生有 种不同的选法.现有甲、乙两名学生先从物理、历史两科中任选一科,再从化学、生物学、政治、地理四门学科中任选两科,则甲、乙二人恰有一门学科相同的选法有 种.创新应用组17.从装有n+1个不同小球的口袋中取出m 个小球(0<m ≤n ,m ,n ∈N ),共有C n+1m 种取法.在这C n+1m 种取法中,可以视作分为两类:第一类是某指定的小球未被取到,共有C 10·C n m 种取法;第二类是某指定的小球被取到,共有C 11·C n m -1种取法.显然C 10·C n m +C 11·C n m -1=C n+1m ,即等式C n m +C n m -1=C n+1m 成立.试根据上述想法,下面式子C n m +C k 1·C n m -1+C k 2·C n m -2+…+C k k ·C n m -k (其中1≤k<m ≤n ,k ,m ,n ∈N )应等于( ) A.C n+k m B.C n+k+1mC.C n+k m+1D.C n+m k18.已知某超市为顾客提供A,B,C,D 四种结账方式.若顾客甲不能用D 方式结账,顾客乙只能用A 方式结账,顾客丙、丁用哪种方式结账都可以.这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有 种.课时规范练60 排列与组合1.B 解析:因为同学甲只能在周一值日,所以除同学甲外的4名同学将在周二至周五值日,所以5名同学值日顺序的编排方案共有A 44=24(种).故选B .2.B 解析:由题意,从4名男生和2名女生中选出2名男生和1名女生担任元旦联欢晚会的主持人,可分两步:第一步,先从4名男生中选出2人,有C 42=6种选法;第二步,从2名女生中选出1人,有C 21=2种选法.由分步乘法计数原理可得,共有C 42×C 21=12种不同的选法.故选B .3.B 解析:将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,则有A 22种坐法,再与爷爷和奶奶进行排序,则不同坐法有A 22A 33=12(种).故选B .4.B 解析:分两类:(1)人脸识别方向不安排其他研究生,则有C 52A 44=240种不同的分配方向.(2)人脸识别方向安排1名其他研究生,则有A 55=120种不同的分配方向. 综上,共有240+120=360种不同的分配方向. 5.B 解析:由题意,可分三类:第1类,男生甲入选,女生乙不入选,则不同的方法种数为C 31C 42+C 32C 41+C 33=31; 第2类,男生甲不入选,女生乙入选,则不同的方法种数为C 41C 32+C 42C 31+C 43=34; 第3类,男生甲入选,女生乙入选,则不同的方法种数为C 32+C 41C 31+C 42=21.由分类加法计数原理,知男生甲与女生乙至少有1人入选的不同的方法种数为31+34+21=86. 故选B .6.B 解析:由题意可知,4开头的满足题意的偶数的个数为C 21A 43,5开头的满足题意的偶数的个数为C 31A 43,根据分类加法计数原理可得,比40000大的偶数共有C 21A 43+C 31A 43=120个.故选B .7.BCD 解析:A n m =n (n-1)·…·(n-m+1)=n !(n -m )!,故A 错误;根据组合数性质知B,C 正确;A n m =n !(n -m )!=n ·(n -1)![(n -1)-(m -1)]!=n A n -1m -1,故D 正确.故选BCD .8.ACD 解析:根据题意,若抽出的3件产品中恰好有1件是不合格品,即抽出的3件产品中有2件合格品,1件不合格品,则合格品的取法有C 982种,不合格品的取法有C 21种,恰好有1件是不合格品的取法有C 21C 982种,故A 正确,B 错误;若抽出的3件中至少有1件是不合格品,有2种情况,①抽出的3件产品中有2件合格品,1件不合格品,有C 21C 982种取法;②抽出的3件产品中有1件合格品,2件不合格品,有C 22C 981种取法.则抽出的3件中至少有1件是不合格品的抽法有(C 21C 982+C 22C 981)种,故C 正确;在100件产品中任选3件,有C 1003种取法,其中全部为合格品的取法有C 983种,则抽出的3件中至少有1件是不合格品的方法有(C 1003−C 983)种,故D 正确.故选ACD .9.96 解析:若第一场比赛甲或乙出场,则最后一个出场的是甲或乙,故不同的出场方案有A 22A 44=48种;若第一场比赛丙出场,最后一个出场的是甲或乙,故不同的出场方案有A 21A 44=48种.根据分类加法计数原理,不同的出场方案共有48+48=96(种).10.660 解析:第一类,从8名学生中选1女3男,有C 63C 21=40种不同的选法,从4人中选2人作为队长和副队长有A 42=12种不同的选法,故共有40×12=480种不同的选法;第二类,从8名学生中选2女2男,有C 62C 22=15种不同的选法,从4人中选2人作为队长和副队长有A 42=12种不同的选法,故共有15×12=180种不同的选法.根据分类加法计数原理,共有480+180=660种不同的选法. 11.C 解析:3名干部可供选派,下乡到5个村蹲点指导工作,每个村都需要1名干部,每名干部至多去3个村,于是可以把5个村分为(1,1,3)和(1,2,2)两组.当为(1,1,3)时,有C 53A 33=60种不同的选派方案;当为(1,2,2)时,有C 52C 32A 22·A 33=90种不同的选派方案.根据分类加法计数原理,可得不同的选派方案共60+90=150(种).故选C .12.A 解析:不考虑限制条件共有A 66种,B 最先汇报共有A 55种,如果B 不能最先汇报,而A ,C ,D 按先后顺序汇报(不一定相邻)有A 66-A 55A 33=100种不同的安排.13.BC 解析:13名医生,其中女医生6人,则男医生7人.(方法1 直接法)若选派2男3女,则不同的选派方法有C 72C 63;若选派3男2女,则不同的选派方法有C 73C 62;若选派4男1女,则不同的选派方法有C 74C 61;若选派5男,则不同的选派方法有C 75.由分类加法计数原理,知不同的选派方法种数为N=C 72C 63+C 73C 62+C 74C 61+C 75.(方法2 间接法)13名医生,任取5人,减去抽调4名女医生和5名女医生的情况,即N=C 135−C 71C 64−C 65.故选BC .14.B 解析:根据题意有两种方式.第一种方式,有一个地方去3名专家,剩下的2名专家各去一个地方, 共有C 51C 41C 33A 22·A 33=5×4×12×1×3×2×1=60(种)方法. 第二种方式,有一个地方去1名专家,另两个地方各去2名专家, 共有C 51C 42C 22A 22·A 33=5×4×32×12×1×3×2×1=90.所以不同的分派方法的种数为60+90=150.15.72 解析:将6名专家平均分配到3所县疾控中心的方法种数为C 62C 42C 22A 33·A 33=C 62C 42C 22=90,其中A ,B 2名专家分配在一起的方法种数为C 42C 22A 22·A 33=3C 42C 22=18,故A ,B 2名专家不能分配在一起的不同的分配方法有90-18=72(种).16.35 60 解析:由题意,7科中任选3科,则学生有C 73=7×6×53×2×1=35种不同的选法. 分为两类,第一类:物理、历史两科中有相同学科,则不同的选法有C 21C 42C 22=12(种); 第二类:物理、历史两科中没有相同学科,则不同的选法有A 22C 41A 32=48(种).由分类加法计数原理,甲、乙二人恰有一门学科相同的不同的选法有12+48=60(种).17.A 解析:在C n m +C k 1·C n m -1+C k 2·C n m -2+…+C k k ·C n m -k 中,从第一项到最后一项表示从装有n 个白球,k 个黑球的袋子里,取出m 个球的所有情况取法总数的和,故式子表示的意思为从装有n+k个球中取出m 个球的不同取法数C n+k m .故选A .18.26解析:①当甲、丙、丁顾客都不选C方式时,则甲有2种选择,当甲选择A方式时,其余2人有A22=2(种)选择;当甲选择B方式时,丙、丁可以都选D方式,或者其中一人选择D方式,另一人只能选A或B方式,有1+C21C21=5(种)选择.故有2+5=7(种)选择.②当甲、丙、丁顾客都不选B方式时,则甲有2种选择,当甲选择A方式时,其余2人有A22=2(种)选择;当甲选择C方式时,丙、丁可以都选D方式,或者其中一人选择D方式,另一人只能选C或A方式,故有1+C21C21=5(种)选择.故有2+5=7(种)选择.③当甲、丙、丁顾客都不选D方式时,若有人使用A方式,则有C31A22=6(种)选择;若没有人使用A方式,则有C32A22=6(种)选择.故有6+6=12(种)选择.根据分类加法计数原理可得共有7+7+6+6=26(种)不同的结账方式.。
高考数学一轮总复习第十一章计数原理和概率2排列与组合课件理
A.60 种
B.63 种
C.65 种 答案 D
D.66 种
解析 共有 4 个不同的偶数和 5 个不同的奇数,要使和为偶数,
则 4 个数全为奇数,或全为偶数,或 2 个奇数 2 个偶数,故不同的
取法有 C54+C44+C52C42=66 种.
第十一页,共55页。
6.(2018·上海春季高考题)某校组队参加辩论赛,从 6 名学 生中选出 4 人分别担任一、二、三、四辩,若其中学生甲必须参 赛且不担任四辩,则不同的安排方法种数为________(结果用数值 表示).
第2课时(kèshí) 排列与组合
第一页,共55页。
…2018 考纲下载… 1.理解排列、组合的概念. 2.能利用计数原理推导排列数公式、组合数公式. 3.能解决简单的实际问题. 请注意 1.排列、组合问题每年必考. 2.以实际问题为背景,考查排列数、组合数,同时考查分 类讨论的思想及解决问题的能力. 3.以选择、填空的形式考查,或在解答题中和概率相结合 进行考查.
第二十四页,共55页。
(6)(捆绑法)把甲、乙及中间 3 人看作一个整体,第一步先排 甲乙两人,有 A22 种方法;第二步从余下 5 人中选 3 人排在甲乙 中间,有 A53 种;第三步把这个整体与余下 2 人进行全排列,有 A33 种方法.故共有 A22·A53·A33=720 种.
(7)(消序法)A277=2 520. (8)(间接法)A77-2A66+A55=3 720. 位置分析法:分甲在排尾与不在排尾两类.
【解析】 甲、乙两同学必须相邻,而且丙不能站在排头和排 尾的排法有:
方法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时 一共有 6 个元素,因为丙不能站在排头和排尾,所以可以从其余的 5 个元素中选取 2 个元素放在排头和排尾,有 A52 种方法;将剩下的 4 个元素进行全排列有 A44 种方法;最后将甲、乙两个同学“松绑” 进行排列有 A22 种方法,所以这样的排法一共有 A52A44A22=960 种 方法.
高考数学总复习第十一章计数原理11.2排列与组合课件理新人教A版
1 080
关闭
解析 答案
考点1 考点2 考点3
考点 1
排列问题
例13名女生和5名男生排成一排. (1)若女生全排在一起,有多少种排法? (2)若女生都不相邻,有多少种排法? (3)若女生不站两端,有多少种排法? (4)其中甲必须排在乙左边(可不邻),有多少种排法? (5)其中甲不站最左边,乙不站最右边,有多少种排法?
关闭
D
解析 答案
知识梳理 考点自测
12345
3.(2017湖南长沙模拟)考生甲填报某高校专业意向,打算从5个专
业中挑选3个,分别作为第一、第二、第三志愿,则不同的填法有
()
A.10种
B.60种 C.125种D.243种
满足题意的不同的填法共有A35=60(种),故选 B. B
关闭
关闭
解析 答案
知识梳理 考点自测
12345
4.(2017河北武邑中学一模,理6)已知甲、乙和其他4名同学合影 留念,站成两排三列,若甲、乙不在同一排也不在同一列,则这6名同 学的站队方法共有( )
A.144种 B.180种 C.288种D.360种
站队方法共有C61C21A44=288(种),故选 C. c
பைடு நூலகம்关闭
关闭
解析 答案
知识梳理 考点自测
(1)× (2)× (3)√ (4)× (5)×
关闭
答案
知识梳理 考点自测
12345
2.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数 为( )
A.24 B.48 C.60 D.72
关闭
由题意知,要组成没有重复数字的五位奇数,则个位数应该为 1,3,5, 其他位置共有A44种排法,所以其中奇数的个数为 3A44=72,故选 D.
(新课标)2020年高考数学一轮总复习计数原理与排列组合课时规范练(理)(含解析)新人教A版
9-1 计数原理与排列组合课时规范练(授课提示:对应学生用书第319页)A 组 基础对点练1.(2018·高考全国卷Ⅲ)⎝⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( C )A .10B .20C .40D .802.(2018·河北保定质检)三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( B ) A .4种 B .6种 C .10种D .16种解析:分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式. 由分类加法计数原理可知,共有3+3=6(种)传递方法.3.(2016·高考四川卷)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( D ) A .24 B .48 C .60D .724.(2018·湖南郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( A )A .4 320种B .2 880种C .1 440种D .720种解析:分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4 320(种)不同的涂色方法,故选A. 5.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( B )A.243 B.252C.261 D.2796.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( B )A.192种B.216种C.240种D.288种7.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( D )A.144 B.120C.72 D.248.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( C ) A.24对B.30对C.48对D.60对9.设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( D )A.60 B.90C.120 D.13010.用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取,“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( A )A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)11.(2017·高考浙江卷)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有 660 种不同的选法.(用数字作答)解析:方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理知,共有C26A24=180(种)选法.所以依据分类加法计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).12.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种.(用数字作答)解析:分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C23C11A24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A34=24,则获奖情况总共有36+24=60(种).13.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.解析:将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44=48种摆法,而A,B,C 3件在一起,且A,B相邻,A,C相邻有CAB,BAC两种情况,将这3件与剩下2件全排列,有2×A33=12种摆法,故A,B相邻,A,C不相邻的摆法有48-12=36(种).14.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有 480 种.(用数字作答)解析:“小集团”处理,特殊元素优先,则不同的排法共有C36C12A22A33=480(种).15.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 96 .解析:按照要求要把序号分别为1,2,3,4,5的5张参观券分成4组,然后再分配给4人,连号的情况是1和2,2和3,3和4,4和5,故其方法数是4A44=96.B组能力提升练1.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( A )A.32个B.34个C.36个D.38个2.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( B )A.18个B.15个C.12个D.9个解析:由题意知,这个四位数的百位数,十位数,个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成3个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=15(个).3.8个人坐成一排,现要调换其中3个人中每一个人的位置,其余5个人的位置不变,则不同的调换方式有( C )A.C38B.C38A38C.C38A22D.3C384.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少1人,且甲、乙在同一路口的分配方案共有( C )A.18种B.24种C.36种D.72种5.某地为上海“世博会”招募了20名志愿者,他们的编号分别是1号,2号,…,19号,20号.若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组.那么确保5号与14号入选并被分配到同一组的选取种数是( B )A.16 B.21C.24 D.906.某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有( D )A.A26×A45种B.A26×54种C.C26×A45种D.C26×54种7.(2018·合肥质检)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为( C )A.120 B.240C.360 D.480解析:前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种方法,故共有C14C13(A25+C15A22)=360(种),故选C.8.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( C )A.232 B.252C.472 D.4849.将甲,乙等5位同学分别保送到北京大学,上海交通大学,浙江大学三所大学就读,则每所大学至少保送一人的不同保送的方法有( C )A.240种B.180种C.150种D.540种10.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有( B )A.24种B.28种C.32种D.36种11.某校开设5门不同的数学选修课,每位同学可以从中任选1门或2门课学习,甲、乙、丙三位同学选择的课没有一门是相同的,则不同的选法共有( A )A.330种B.420种C.510种D.600种12.设a1,a2,…,a n是1,2,…,n的一个排列,把排在a i的左边且比a i小的数的个数称为a i(i=1,2,…,n)的顺序数,如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在1至8这8个数的排列中,8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为( C )A.48 B.120C.144 D.192解析:由题意确定8和7的位置为第三位和第五位,再保证5的顺序数为3即可.13.若用1,2,3,4,5,6,7这七个数字中的六个数字组成没有重复数字,且任何相邻两个数字的奇偶性不同的六位数,则这样的六位数共有 288 个.(用数字作答)解析:分两步进行,第一步,先将1,3,5,7选3个进行排列,有A34=24(种)排法;第二步,再将2,4,6这3个数插空排列有2A33=12(种)排法,由分步计数原理得,共有24×12=288(个).14.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有 30 种.解析:(间接法)把四位同学分成3组,有C24=6(种)分法,然后进行全排列,即C24A33=36(种),去掉甲、乙在一个组的情况,当甲、乙在一个组时,参加的方式有A33=6(种),故符合题意的安排方法为36-6=30(种).15.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 328 .解析:首先应考虑“0”,当0排在个位时,有A29=9×8=72(个),当0不排在个位时,有A14A18=4×8=32(个).当不含0时,有A14·A28=4×7×8=224(个),由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).16.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为 60 .解析:不相邻问题插空法.2位男生不能连续出场的排法共有N1=A33×A24=72种,女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12种,所以出场顺序的排法种数为N=N1-N2=60.。
高考数学一轮总复习 专题11 计数原理 11.1 排列、组合
n!
A
m n
=③
(n m)!
.规定0!=1.
4.组合 (1)定义:从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同 元素中取出m个元素的一个组合. (2)组合数定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合
的个数,叫做从n个不同元素中取出m个元素的组合数,用④ Cmn 表示.
.
解析 解法一: ∵a<b<c,2≤c-b≤6,∴c≥4. 当c=4时,a=1,b=2,则集合A的个数为 C22 =1; 当c=5时,a,b∈{1,2,3},则集合A的个数为 C32 =3; 当c=6时,a,b∈{1,2,3,4},则集合A的个数为 C24 =6; 当c=7时,a,b∈{1,2,3,4,5},则集合A的个数为 C52 =10; 当c=8时,a,b∈{1,2,3,4,5,6},则集合A的个数为 C62 =15; 当c=9时,a,b∈{1,2,3,4,5,6,7},且a=1,b=2时,不符合,则集合A的个数为 C72 1=20. 故总共有1+3+6+10+15+20=55. 解法二:从集合{1,2,3,4,5,6,7,8,9}中任取三个不同的数组成集合A,共有 C39 =84个.
考向三 排列组合综合问题
例3 (2018浙江嵊州第一学期期末质检,16)某学校要安排2位数学老
师、2位英语老师和1位化学老师分别担任高三年级中5个不同班级的
班主任,每个班级安排1个班主任.由于某种原因,数学老师不担任A班的
班主任,英语老师不担任B班的班主任,化学老师不担任C班和D班的班
主任,则共有
高考数学(浙江专用)
11.1 排列、组合
考点清单
考点 排列、组合
新课改地区高考数学一轮复习第十一章计数原理概率随机变量及其分布112排列组合与二项式定理课件新人教
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
10
【常用结论】 1.(a+b)n的展开式的三个重要特征 (1)项数:项数为n+1. (2)各项次数:各项的次数都等于二项式的幂指数n,即a与b的指数和为n. (3)顺序:字母a按降幂排列,从第一项开始,次数由n逐项减1直到0;字母b按 升幂排列,从第一项开始,次数由0逐项增1直到n.
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
2
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养测评
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
3
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
23
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油。
(4) kCkn=nCkn- 11 . (
)
(5) C
r an-rbr是(a+b)n的展开式中的第r项.
n
(
)
(6)二项展开式中某项的系数与该项的二项式系数一定相同. ( )
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
13
提示:(1)√.
【解析】选C. (x 1 )12 的展开式的第4项
3x
T4=
C
(浙江专用)高考数学一轮复习 专题十 计数原理 10.1 计数原理与排列、组合试题(含解析)-人教版
专题十计数原理【考情探究】课标解读考情分析备考指导主题内容一、计数原理、排列、组合1.分类加法计数原理,分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用两个原理分析和解决一些简单的实际问题.2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.从近几年高考命题情况来看,这一部分主要考查分类加法、分步乘法计数原理以及排列、组合的简单应用.题型以选择题、填空题为主,在解答题中一般将排列、组合知识综合起来,有时也与求事件概率,分布列问题相结合考查.1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r);第二步是根据所求的指数求解所求的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.1.用排列、组合知识解决计数问题时,如果遇到的情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太容易计算时,往往利用表格法、树状图法将其所有的可能一一列举出来,这样会更容易得出结果.2.求解二项展开式的特定项时,即求展开式中的某一项,如第n项,常数项、有理项、字母指数为某些特殊值的项,先准确写出通项T r+1=r a n-r b r,再把系数与字母分离出来(注意符号),最后根据题目中所指定的字母的指数所具有的特征,列出关系式求解即可.二、二项式定理1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.【真题探秘】§10.1计数原理与排列、组合基础篇固本夯基【基础集训】考点计数原理、排列、组合1.甲、乙、丙、丁、戊、己6名同学站成一排照毕业相,要求甲不站在两侧,而且乙和丙相邻、丁和戊相邻,则不同的站法种数为( )A.60B.96C.48D.72答案 C2.在我国第一艘航空母舰“某某舰”的某次舰载机起降飞行训练中,有5架“歼-15”飞机甲、乙、丙、丁、戊准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( )A.24B.36C.48D.96答案 C3.中国国家队在2018俄罗斯世界杯亚洲区预选赛12强小组赛中以1比0力克韩国国家队,赛后有六名队员打算排成一排照相,其中队长主动要求排在排头或排尾,甲、乙两人必须相邻,则满足要求的排法有( )A.34种B.48种C.96种D.144种答案 C4.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有( )A.72种B.36种C.24种D.18种答案 B5.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A.480种B.360种C.240种D.120种答案 C6.高考结束后6名同学游览某市包括日月湖在内的6个景区,每名同学任选一个景区游览,则有且只有两名同学选择日月湖景区的方案有( )A.A62×A54种B.A62×54种C.C62×A54种D.C62×54种答案 D7.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.答案1808.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为.答案12综合篇知能转换【综合集训】考法一排列、组合问题的解题方法1.(2019某某万州二模,6)某中学某班主任要从7名同学(其中3男4女)中选出两名同学,其中一名担任班长,另一名担任学习委员,且这两名同学中既有男生又有女生,则不同的安排方法有( )A.42种B.14种C.12种D.24种答案 D2.(2018某某某某调研性检测,9)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有( )A.250个B.249个C.48个D.24个答案 C3.(2018豫北名校联考,9)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( )A.18种B.24种C.48种D.36种答案 B4.(2019某某嘉峪关一中模拟)在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场顺序的排法种数为.答案605.(2020届某某某某执信中学10月月考,14)有6X卡片分别写有数字1,1,1,2,2,2,从中任取4X,可排出的四位数有个.答案14考法二分组分配问题的解题方法6.(2018某某某某二模,8)某某西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )A.90种B.180种C.270种D.360种答案 B7.(2019某某某某第一次统测,11)将甲、乙、丙、丁、戊共5人分配到A、B、C、D共4所学校,每所学校至少一人,且甲不去A学校,则不同的分配方法有( )A.72种B.108种C.180种D.360种答案 C8.(2018某某某某一模,5)某学校为了更好地培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有( )A.60种B.90种C.150种D.120种答案 B9.(2020届某某某某一中10月月考,7)小明和小红都计划在国庆节的7天假期中,到某某“两日游”,若他们不同一天出现在某某,则他们出游的不同方案共有( )A.16种B.18种C.20种D.24种答案 C【五年高考】考点计数原理、排列、组合1.(2017课标Ⅱ,6,5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种答案 D2.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9答案 B3.(2015某某,6,5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个答案 B4.(2016课标Ⅲ,12,5分)定义“规X01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规X01数列”共有( )A.18个B.16个C.14个D.12个答案 C5.(2018课标Ⅰ,15,5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案166.(2017某某,14,5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)答案 1 0807.(2017某某,16,4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案6608.(2015某某,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案 1 560教师专用题组考点计数原理、排列、组合1.(2014大纲全国,5,5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有( )A.60种B.70种C.75种D.150种答案 C2.(2014某某,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168答案 B3.(2014某某,8,5分)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对答案 C4.(2014某某,8,5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )A.60B.90C.120D.130答案 D5.(2014某某,6,5分)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144B.120C.72D.24答案 D6.(2014某某,6,5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种答案 B7.(2014某某,14,4分)在8X奖券中有一、二、三等奖各1X,其余5X无奖.将这8X奖券分配给4个人,每人2X,不同的获奖情况有种(用数字作答).答案608.(2014,13,5分)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.答案369.(2018某某,23,10分)设n∈N*,对1,2,…,n的一个排列i1i2…i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2…i n的一个逆序,排列i1i2…i n的所有逆序的总个数称为其逆序数,例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2), f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).解析本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.(1)记τ(abc)为排列abc的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,所以f3(0)=1,f3(1)=f3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此f4(2)=f3(2)+f3(1)+f3(0)=5.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以f n(1)=n-1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此, f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)-f n-1(2)]+[f n-1(2)-f n-2(2)]+…+[f5(2)-f4(2)]+f4(2)=(n-1)+(n-2)+…+4+f4(2)=n2-n-22.因此,当n≥5时, f n(2)=n 2-n-22.疑难突破要做好本题,关键是理解“逆序”“逆序数”“f n(k)”的含义,不妨从比较小的1,2,3入手去理解这几个概念,这样就能得到f3(2). f4(2)是指1,2,3,4这4个数中逆序数为2的全部排列的个数,可以通过与f3(2), f3(1),f3(0)联系得到,4分别添加在f3(2)的排列中最后一个位置、f3(1)的排列中的倒数第2个位置、f3(0)的排列中的倒数第3个位置.有了上述的理解就能得到f n+1(2)与f n(2),f n(1), f n(0)的关系:f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n,从而得到f n(2)(n≥5)的表达式.【三年模拟】一、单项选择题(每题5分,共50分)1.(2020届九师联盟9月质量检测,8)从1,3,5,7,9中任取两个数,从0,2,4,6,8中任取2个数,则组成没有重复数字的四位数的个数为( )A.2 100B.2 200C.2 160D.2 400答案 C2.(2020届某某某某一中第一次月考,8)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,那么不同的选法有( )A.50种B.60种C.70种D.90种答案 C3.(2020届某某某某七中第二次月考,4)7个人排成一排准备照一X合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )A.480种B.720种C.960种D.1 200种答案 C4.(2020届某某洪湖二中月考,9)“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门APP.该款软件主要设有“阅读文章”“视听学习”两个学习版块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题版块.某人在学习过程中,“阅读文章”与“视听学习”两个学习版块之间最多间隔一个答题版块的学习方法有( )A.192种B.240种C.432种D.528种答案 C5.(2018全国百所名校冲刺卷(四),8)航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有( )A.34种B.48种C.96种D.144种答案 C6.(2019某某金卷先享题二,8)在高三下学期初,某校开展教师对学生的家庭学习问卷调查活动,已知现有3名教师对4名学生家庭进行问卷调查,若这3名教师每位至少到一名学生家中问卷调查,又这4名学生的家庭都能且只能得到一名教师的问卷调查,那么不同的问卷调查方案的种数为( )A.36B.72C.24D.48答案 A7.(2019某某某某一模)如图所示的几何体由三棱锥P-ABC与三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有( )A.6种B.9种C.12种D.36种答案 C8.(2018某某哈六中二模,9)从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A.48B.72C.90D.96答案 D9.(2019某某某某模拟,8)已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的.现用编号为1,2,3的三个仓库存放这6种化工产品,每个仓库放2种,那么安全存放的不同方法种数为( )A.12B.24C.36D.48答案 D二、多项选择题(共5分)10.(改编题)下列说法正确的是( )A.5个不同的球,放入8个不同的盒子中,每个盒子里至多放一个球,不同的放法有A85种B.5个不同的球,放入8个不同的盒子中,每个盒子放球数量不限,不同的放法有85种C.5个相同的球,放入8个不同的盒子中,每个盒子里至多放一个球,则不同的放法有C85种D.8个相同的小球,放入5个不同的盒子中,每盒不空的放法有C84种答案ABC三、填空题(每题5分,共15分)11.(2020届某某夏季高考模拟,13)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.答案3612.(2020届某某寿光现代中学10月月考,14)某工厂将甲、乙等五名新招聘员工分配到三个不同的车间.每个车间至少分配一名员工,甲、乙两名员工必须分到同一个车间,则不同分法的种数为.答案3613.(2019某某某某中学第一次摸底考试,15)由数字0,1组成的一串数字代码,其中恰好有7个1,3个0,则这样的不同数字代码共有个.答案12014.(2020届某某东阳中学10月月考,14)安排甲、乙、丙、丁、戊5名大学生去某某、某某、某某三个城市进行暑期社会实践,每个城市至少安排一人,则不同的安排方式共有种;其中学生甲被单独安排去某某的概率是.答案150;775。
新高考一轮复习人教版 计数原理、排列与组合 作业
专题十计数原理10.1计数原理、排列与组合基础篇固本夯基考点计数原理、排列、组合1.(2022届山东平邑一中收心考)某旅馆有三人间、两人间、单人间各一间可入住,现有三个成人带两个小孩前来住宿,若小孩不单独入住一个房间(必须有成人陪同),且三间房都要安排给他们入住,则不同的安排方法有()A.18种B.12种C.27种D.15种答案A2.(2022届广东开学联考)四色定理又称四色猜想,是世界近代三大数学难题之一.其内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色.”四色问题的证明进程缓慢,直到1976年,美国数学家运用电子计算机证明了四色定理.现某校数学兴趣小组给一个底面边长互不相等的直四棱柱容器的侧面和下底面染色,提出如下的“四色问题”:要求相邻两个面不得使用同一种颜色,现有4种颜色可供选择,则不同的染色方案有()A.18种B.36种C.48种D.72种答案D3.(2020新高考Ⅰ,3,5分)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种答案C4.(2021上海杨浦一模,15)从正方体的8个顶点中选取4个作为顶点,可得到四面体的个数为()A.C84-12B.C84-8C.C84-6D.C84-4答案A5.(2020山东潍坊临朐模拟,8)现有4种不同颜色,要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案D6.(2021沈阳市郊联体一模,8)中国古典乐器一般按“八音”分类,这是我国最早按乐器的制造材料来对乐器进行分类的方法,最早见于《周礼·春官·大师》.八音分为“金、石、土、革、丝、木、匏、竹”,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.某同学安排了包括“土、匏、竹”在内的六种乐器的学习,每种乐器安排一节,连排六节,并要求“土”与“匏”相邻排课,但均不与“竹”相邻排课,且“丝”不能排在第一节,则不同的排课方式的种数为()A.960B.1024C.1296D.2021答案C7.(多选)(2021山东师大附中模拟)“二进制”与我国古代的《易经》有着一定的联系,该书中有两类最基本的符号:“——”和“——”,其中“——”在二进制中记作“1”,“——”在二进制中记作“0”,其变化原理与“逢二进一”的法则相通.若从两类符号中任取2个符号排列,则可以组成的不同的十进制数为()A.0B.1C.2D.3答案ABCD8.(2018浙江,16,4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)答案12609.(2021江苏盐城二模,13)某班4名同学去参加3个社团,每人只参加1个社团,每个社团都有人参加,则满足上述要求的不同方案共有种.(用数字填写答案)答案36综合篇知能转换考法一排列问题的解决方法1.(2022届河北邯郸开学摸底,5)由1,2,3,4,5,6六个数字按如下要求组成无重复数字的六位数,1必须排在前两位,且2,3,4必须排在一起,则这样的六位数共有()A.48个B.60个C.72个D.84个答案B2.(2022届广东深圳七中月考,5)某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有()A.120种B.80种C.20种D.48种答案C3.(2022届河北玉田一中开学考)高三(2)班某天安排6节课,其中语文、数学、英语、物理、生物、地理各一节.若要求物理课比生物课先上,语文课与数学课相邻,则编排方案共有()A.42种B.96种C.120种D.144种答案C4.(2022届广东珠海二中10月月考,3)五名同学国庆假期相约去珠海日月贝采风观景,结束后五名同学排成一排照相留念,若甲乙二人不相邻,则不同的排法共有()A.36种B.48种C.72种D.120种答案C5.(2022届河北廊坊十二中一模,7)由0,1,2,3,4这5个数组成无重复数字的五位数且为偶数,共有种不同的排法()A.24B.48C.60D.62答案C6.(2021湖北九师联盟2月质量检测,3)若5个人排成一列纵队,则其中甲、乙、丙三人两两不相邻的排法有()A.4种B.14种C.5种D.12种答案D7.(2020广东深圳七中第二次月考,4)7个人排成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有()A.480种B.720种C.960种D.1200种答案C8.(2022届广东深圳六校联考,13)一部纪录片在4个不同的场地轮映,每个场地放映一次,则有种轮映次序.答案249.(2021福建三明一中月考一)来自甲、乙、丙3个班级的5名同学站在一排照相,其中甲班有2名同学,乙班有2名同学,丙班有1名同学,则仅有甲班的同学相邻的站法种数为.答案 2410.(2017天津理,14,5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答)答案 108011.(2020山东济宁一中质量检测,15)“中国梦”的英文翻译为“ChinaDream ”,其中China 又可以简写为CN,从“CNDream ”中取6个不同的字母排成一排,含有“ea ”字母组合(顺序不变)的不同排列共有 种.答案 600考法二 组合问题的常见解法1.(2022届湖北部分重点中学9+N 新高考联盟新起点联考)定义空间直角坐标系中的任意点P(x,y,z)的“N 数”为在P 点的坐标中不同数字的个数,如:N(1,1,1)=1,N(1,3,1)=2,N(1,2,3)=3,若x,y,z ∈{0,1,2,3},则所有这些点P 的“N 数”的平均值为( )A.3716B.64C.2516D.40 答案 A2.(2022届湖南天壹名校联盟摸底)已知文印室内有5份待打印的文件自上而下摞在一起,秘书小王要在这5份文件中再插入甲、乙两份文件,甲文件要在乙文件前打印,且不改变原来次序,则不同的打印方式有( )A.15种B.21种C.28种D.36种答案 B3.(2020长沙一中月考(一),8)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学对选取的礼物都满意,那么不同的选法有 ( )A.50种B.60种C.70种D.90种答案 C4. (2021广州一模,6)如图,洛书(古称龟书)是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取3个数,则选取的3个数之和为奇数的方法数为 ( )A.30B.40C.44D.70答案 B5.(多选)(2021江苏启东中学检测,9)在100件产品中,有98件合格品,2件不合格品.从这100件产品中任意抽出3件,则下列结论正确的有( )A.抽出的3件产品中恰好有1件是不合格品的抽法有C 21C 982种B.抽出的3件产品中恰好有1件是不合格品的抽法有C 21C 992种C.抽出的3件中至少有1件是不合格品的抽法有(C 21C 982+C 22C 981)种D.抽出的3件中至少有1件是不合格品的抽法有(C 1003-C 983)种答案 ACD6.(2018课标Ⅰ理,15,5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种.(用数字填写答案)答案 16考法三 分组与分配问题的解题方法1.(2022届南京学情调研,5)将4名志愿者全部安排到某社区参加3项工作,每人参加1项,每项工作至少有1人参加,则不同的安排方式共有( )A.24种B.36种C.60种D.72种答案 B2.(2021全国乙理,6,5分)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60种B.120种C.240种D.480种答案 C3.(2022届重庆西南大学附中开学考,6)A,B,C,D,E,F六名同学进行劳动技术比赛,决出第1名到第6名的名次.A,B,C去询问成绩,回答者对A说:“很遗憾,你们三个都没有得到冠军.”对B说:“你的名次在C之前.”对C说:“你不是最后一名.”从以上的回答分析,6人的名次排列情况种数为()A.108B.120C.144D.156答案A4.(2022届河北沧州十五校摸底)将甲乙等5名志愿者分配到冬奥会三个不同的运动场馆做服务工作,每个岗位至少1人,且甲乙二人必须在一起,则共有种不同的分配方法.答案365.(2020课标Ⅱ理,14,5分)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.答案36。
2024年高考总复习优化设计一轮用书数学配人教A版(适用于新教材)课时规范练11
课时规范练11《素养分级练》P300基础巩固组1.设9-log 3√a =3,则8a =( ) A.4 B.3 C.2 D.1答案:C 解析:因为9-log 3√a=3-2log 3√a=3log 3(√a )-2=(√a )-2=(a 12)-2=a -1=1a =3,所以a=13,故8a =813=(23)13=2.2.已知a=log 32,那么log 38-2log 36用a 表示是 ( )A.5a-2B.a-2C.3a-(1+a )2D.3a-a 2-1答案:B解析:log 38-2log 36=log 323-2(log 32+log 33)=log 32-2=a-2.3.函数y=log a (x-1)+4的图象恒过定点P ,点P 在幂函数y=f (x )的图象上,则f (4)=( ) A.16 B.8 C.4 D.2答案:A解析:当x=2时,y=log a 1+4=4,所以函数y=log a (x-1)+4的图象恒过定点(2,4).记f (x )=x m ,则有2m =4,解得m=2,所以f (4)=42=16.4.(2023·广东中山模拟)已知3x =5,log 39√55=y ,则x+2y=( )A.3B.4C.5D.6答案:B解析:∵3x =5⇔x=log 35,y=log 39√55, ∴x+2y=log 35+2log 39√55=log 35×815=log 381=4.5.(2023·江西宜春上高模拟)已知1a=ln 3,b=log 35-log 32,c=2ln √3,则a ,b ,c 的大小关系为 ( )A.a>c>bB.b>c>aC.c>a>bD.c>b>a答案:C解析:c=2ln √3=ln 3,1=ln e <ln 3<ln e 2=2,即1<c<2,又1a =ln 3,所以a=1ln3=ln e ln3=log 3e,12=log 3√3<log 3e <log 33=1,即12<a<1,b=log 35-log 32=log 352,12=log 3√3<log 352<log 33=1,即12<b<1.又e >52,所以log 3e >log 352,即a>b.综上,c>a>b.6.已知函数f (x )=log a (x-b )(a>0,且a ≠1)的图象如图所示,则以下结论一定正确的是( )A.a+b<0B.ab<-1C.0<a b <1D.log a |b|>0 答案:C解析:由图象可知f (x )在定义域内单调递增,所以a>1.令f (x )=log a (x-b )=0,即x=b+1,所以函数f (x )的零点为b+1,结合函数图象可知0<b+1<1,所以-1<b<0,因此a+b>0,故A 错误;-a<ab<0,又因为a>1,所以-a<-1,因此ab<-1不一定成立,故B 错误;因为a -1<a b <a 0,即1a<a b <1,且0<1a<1,所以0<a b <1,故C 正确;因为0<|b|<1,所以log a |b|<log a 1,即log a |b|<0,故D 错误. 7.(2023·北京朝阳高三检测)若m ln 2=1,则2-m = . 答案:1e解析:因为m ln 2=1,所以m=1ln2=log 2e,所以2-m=2-log 2e=2log 21e=1e.8.(2023·河北邢台高三检测)已知函数f (x )=9+x 2x ,g (x )=log 2x+a ,若存在x 1∈[3,4],任意x 2∈[4,8],使得f (x 1)≥g (x 2),则实数a 的取值范围是 . 答案:-∞,134解析:设f (x )在[3,4]上的最大值为f (x )max ,g (x )在[4,8]上的最大值为g (x )max ,由题意知,只需f (x )max ≥g (x )max 即可.在[3,4]上,f (x )=9x +x ≥2√9x ·x =6,当且仅当x=3时,等号成立,由对勾函数的性质知f (x )在[3,4]上单调递增,故f (x )max =254.在[4,8]上,g (x )单调递增,则g (x )max =3+a ,所以254≥3+a ,解得a ≤134.9.若x1满足2x=5-x,x2满足x+log2x=5,则x1+x2等于.答案:5解析:由题意5-x1=2x1,5-x2=log2x2,故x1和x2是直线y=5-x和曲线y=2x、曲线y=log2x交点的横坐标.根据函数y=2x和函数y=log2x互为反函数,它们的图象关于直线y=x对称,故曲线y=2x、曲线y=log2x与y=5-x的图象的交点关于直线y=x对称.即点(x1,5-x1)和点(x2,5-x2)构成的线段的中点在直线y=x上,即x1+x22=5-x1+5-x22,解得x1+x2=5.10.(2022·陕西安康高三期末)已知函数f(x)=(log a x)2+2log a x+3(a>0,a≠1).(1)若f(3)=2,求a的值;(2)若对任意的x∈[8,12],f(x)>6恒成立,求a的取值范围.解:(1)因为f(3)=2,所以(log a3)2+2log a3+3=2,所以(log a3+1)2=0,所以log a3=-1,解得a=13.(2)由f(x)>6,得(log a x)2+2log a x-3>0,即(log a x+3)(log a x-1)>0,即log a x<-3或log a x>1.当0<a<1时,log a12≤log a x≤log a8,则log a8<-3或log a12>1,因为log a12<log a1=0,则log a12>1不成立,由log a8<-3可得1a 3<8,得12<a<1;当a>1时,log a8≤log a x≤log a12,则log a12<-3或log a8>1,因为log a12>log a1=0,则log a12<-3不成立,所以log a8>1,解得1<a<8.综上,a的取值范围是12,1∪(1,8).综合提升组11.已知函数y=f(x)(x∈R)是奇函数,当x<0时,f(x)=8x3-log2(-x),则满足f(log4x)≥0的x的取值范围是()A.12,+∞ B.12,2C.12,1∪[2,+∞) D.1,12∪[1,2]答案:C解析:令t=log4x,先考虑f(t)≥0的解.若t=0,因为f(t)为R上的奇函数,所以f(0)=0≥0,故t=0为f(t)≥0的解.若t<0,此时f(t)=8t3-log2(-t),因为y=8t3,y=-log2(-t)在(-∞,0)上均单调递增,故f(t)=8t3-log2(-t)在(-∞,0)上单调递增,而f-12=-1+1=0.故f(t)≥0在(-∞,0)上的解为-12≤t<0.因为f(t)为R上的奇函数,故f(t)≥0在(0,+∞)上的解为t≥12,故f(t)≥0的解为-12≤t≤0或t≥12,故-12≤log4x≤0或log4x≥12,所以12≤x≤1或x≥2.12.若关于x的不等式log14(3x+λ·2x)≤1对任意的x∈[0,+∞)恒成立,则实数λ的取值范围是.答案:-34,+∞解析:关于x的不等式lo g14(3x+λ·2x)≤1对任意的x∈[0,+∞)恒成立,则3x+λ·2x≥14对任意的x∈[0,+∞)恒成立,即λ≥14·2x -32x对任意的x∈[0,+∞)恒成立.令g(x)=14·2x-32x,x∈[0,+∞),由于y=14·2x在[0,+∞)上单调递减,y=-32x在[0,+∞)上单调递减,故g(x)=14·2x-32x在[0,+∞)上单调递减,故g(x)≤g(0)=-34,故λ≥-34.创新应用组13.(多选)(2023·湖北黄冈中学模拟)已知正数x,y,z满足3x=4y=12z,则()A.1x +1y=1zB.6z<3x<4yC.xy<4z2D.x+y>4z 答案:ABD解析:设3x=4y=12z=t,t>1,则x=log3t,y=log4t,z=log12t,所以1x +1y=1log3t+1 log4t =log t3+log t4=log t12=1z,A正确;因为6z3x=2log12tlog3t=2log t3log t12=log129<1,则6z<3x,因为3x4y=3log3t4log4t=3log t4 4log t3=log t64log t81=log8164<1,则3x<4y,所以6z<3x<4y,B正确;因为x+y-4z=log3t+log4t-4log12t=1log t3+1log t4−4log t12=log t3+log t4log t3log t4−4log t3+log t4=(log t3-log t4)2log t3log t4(log t3+log t4)>0,则x+y>4z,D正确;因为1z =1x+1y=x+yxy,则xyz=x+y>4z,所以xy>4z2,C错误.故选ABD.。
2020高考数学一轮复习第十一章计数原理概率随机变量及其分布第二节排列与组合课后作业理
【2019最新】精选高考数学一轮复习第十一章计数原理概率随机变量及其分布第二节排列与组合课后作业理一、选择题1.将甲、乙等 5 名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A.18 种 B.24 种 C.36 种 D.72种2.某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.85 B.56 C.49 D.283.某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为( )A.8 B.16 C.24 D.604.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数为( )A.48 B.54 C.72 D.845.将甲、乙等 5 位同学分别保送到北京大学,上海交通大学,浙江大学这三所大学就读,则每所大学至少保送一人的不同保送方法为( )A.240种 B.180种 C.150种 D.540种二、填空题6.数列{an}共有六项,其中四项为1,其余两项各不相同,则满足上述条件的数列{an}共有________个.7.如图所示,使电路接通,开关不同的开闭方式有________种.8.(2016·江苏淮海中学期中)若A,B,C,D,E,F六个不同元素排成一列,要求A不排在两端,且B,C相邻,则不同的排法有________种(用数字作答).三、解答题9.有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?10.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.1.某班组织文艺晚会,准备从A,B等 8 个节目中选出 4 个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为( )A.1 860 B.1 320 C.1 140 D.1 0202.(2016·深圳模拟)某班准备从含甲、乙的7名男生中选取4人参加4×100米接力赛,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们在赛道上顺序不能相邻,那么不同的排法种数为( )A.720 B.520 C.600 D.3603.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24 B.18 C.12 D.64.将5名学生分到A,B,C三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A宿舍的不同分法有( )A.18种 B.36种 C.48种 D.60种5.数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N1,其中N2,N3分别表示第二、三行中的最大数,则满足N1<N2<N3的所有排列的个数是________.答案一、选择题1. 解析:选C 若甲、乙在同一路口,则有CA=18种;若甲、乙与其余一名交警在同一路口,则有CA=18种,所以一共有 36 种分配方案.2. 解析:选C 由于丙不入选,相当于从9人中选派3人.法一:(直接法)甲、乙两人均入选,有CC种选法,甲、乙两人只有1人入选,有CC种选法.∴由分类加法计数原理,共有CC+CC=49种不同选法.法二:(间接法)从9人中选3人有C种选法,其中甲、乙均不入选有C种选法.∴满足条件的选派方法有C-C=84-35=49种不同选法.3. 解析:选C 根据题意,9个座位中满足要求的座位只有4个,现有4人就座,把4人进行全排列,即有A=24种不同的坐法.4. 解析:选C 先把3名乘客进行全排列,有A=6种排法,排好后,有4个空,再将1个空位和余下的2个连续的空位插入4个空中,有A=12种排法,则共有6×12=72种候车方式.5. 解析:选C 5名学生分成 2,2,1或3,1,1两种形式,当 5 名学生分成 2,2,1时,共有CCA=90 种方法,当 5 名学生分成 3,1,1时,共有CA=60 种方法,根据分类加法计数原理知共有 90+60=150种.二、填空题6. 解析:在数列的六项中,只要考虑两个非1的项的位置,即得不同数列,共有A=30个不同的数列.答案:307. 解析:当第一组开关有一个接通时,电路接通有C·(C+C+C)=14种方式;当第一组有两个接通时,电路接通有C(C+C+C)=7种方式,所以共有14+7=21种方式.答案:218. 解析:由于B,C相邻,把B,C看做一个整体,有 2 种排法.这样,6个元素变成了 5 个.先排A,由于A不排在两端,则A在中间的 3 个位子中,有A=3 种方法,其余的 4 个元素任意排,有A种不同方法,故不同的排法有 2×3×A=144 种.答案:144三、解答题9. 解:设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C·C=6种;第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C·C=12种;第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,方法数为C·C=8种;第四类:C中选2人分别参加两项比赛,方法数为A=12种;由分类加法计数原理,选派方法数共有6+12+8+12=38(种).10. 解:(1)先选后排,先选可以是2女3男,也可以是1女4男,先取有CC+CC种,后排有A种,共有(CC+CC)·A=5 400种.(2)除去该女生后,先取后排,有C·A=840种.(3)先选后排,但先安排该男生,有C·C·A=3 360种.(4)先从除去该男生该女生的6人中选3人有C种,再安排该男生有C种,选出的3人全排有A种,共C·C·A=360种.1. 解析:选C 当A,B节目中只选其中一个时,共有CCA=960 种演出顺序;当A,B节目都被选中时,由插空法得共有CAA=180 种演出顺序,所以一共有1 140种演出顺序.2. 解析:选C 根据题意,分2种情况讨论.①甲乙只有其中一人参加,有CCA=480种情况;②甲乙两人都参加,有CCA=240种情况,其中甲乙相邻的有CCAA=120种情况.不同的排法种数为480+240-120=600种,故选C.3. 解析:选B 根据所选偶数为0和2分类讨论求解.①当选数字0时,再从1,3,5中取2个数字排在个位与百位.∴排成的三位奇数有CA=6个.②当选数字2时,再从1,3,5中取2个数字有C种方法.然后将选中的两个奇数数字选一个排在个位,其余2个数字全排列.∴排成的三位奇数有CCA=12个.∴由分类加法计数原理,共有18个符合条件的三位奇数.4. 解析:选D 由题意知A,B,C三个宿舍中有两个宿舍分到2人,另一个宿舍分到1人.若甲被分到B宿舍:(1)A中2人,B中1人,C中2人,有C=6种分法;(2)A中1人,B中2人,C中2人,有CC=12种分法;(3)A中2人,B中2人,C中1人,有CC=12种分法,即甲被分到B宿舍的分法有30种,同样甲被分到C宿舍的分法也有30种,所以甲不到A宿舍一共有60种不同的分法,故选D.5. 解析:(元素优先法)由题意知6必在第三行,安排6有C种方法,第三行中剩下的两个空位安排数字有A种方法,在留下的三个数字中,必有一个最大数,把这个最大数安排在第二行,有C种方法,剩下的两个数字有A种排法,根据分步乘法计数原理,所有排列的个数是CACA=240.答案:240。
高考数学总复习第十一章计数原理课时规范练57二项式定理理新人教A版(2021学年)
(福建专用)2018年高考数学总复习第十一章计数原理课时规范练57 二项式定理理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((福建专用)2018年高考数学总复习第十一章计数原理课时规范练57 二项式定理理新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(福建专用)2018年高考数学总复习第十一章计数原理课时规范练57 二项式定理理新人教A版的全部内容。
课时规范练57 二项式定理一、基础巩固组1。
(2017湖南邵阳模拟)在(1+3x)n的展开式中,若x5与x6的系数相等,则x4的二项式系数为()A。
21 B.35 C。
45ﻩD。
282.若+3+32+…+3n—2+3n—1=85,则n=()A.6B。
5ﻩC.4D。
33.设n为正整数,展开式中存在常数项,则n的一个可能取值为()A.16B.10C.4D.24.(2017河南郑州一中质检一,理7)若a=sin xdx,则二项式展开式的常数项是()A.160B.20ﻩC。
-20ﻩD。
—1605。
(x2-3)的展开式中的常数项是()A。
-2ﻩ B.2 C。
-3 D。
36。
若(1+)4=a+b(a,b为有理数),则a+b等于()A.36ﻩB.46ﻩC。
34D。
447.(x2+3y-y2)7展开式中x12y2的系数为()A。
7ﻩB。
-7ﻩC。
42ﻩD。
—428.(2017甘肃会宁月考)1-90+902—903+…+(—1)k90k+…+9010除以88的余数是()A。
—1ﻩB。
1ﻩC。
-87D。
87 〚导学号21500588〛9.(2017浙江,13)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a 4= ,a5= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范练56 排列与组合
一、基础巩固组
1.(2017贵州贵阳模拟)有6个座位连成一排,现有3人就座,则恰有两个空座位相邻的不同坐法有()
A.36种
B.48种
C.72种
D.96种
2.把标号为1,2,3,4,5的同色球全部放入编号为1~5号的箱子中,每个箱子放一个球且要求偶数号的球必须放在偶数号的箱子中,则所有的放法种数为()
A.11
B.10
C.12
D.8
3.在由数字0,1,2,3,4,5组成的没有重复数字的四位数中,不能被5整除的数共有()
A.372
B.180
C.192
D.300
4.(2017湖北汉口模拟,理5)某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个空车位连在一起,那么不同的停放方法有()
A.16种
B.18种
C.24种
D.32种〚导学号21500773〛
5.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案共有()
A.30种
B.90种
C.180种
D.270种
6.(2017河北武邑中学二模,理10)甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是()
A.258
B.306
C.336
D.296
7.(2017山西太原五中检测)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在
前两位、节目乙不能排在第一位、节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案有()
A.36种
B.42种
C.48种
D.54种
8.某学校安排甲、乙、丙、丁4名同学参加数学、物理、化学竞赛,要求每名同学仅报一科,每科
至少有1名同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()
A.36种
B.30种
C.24种
D.6种
9.某航空母舰将进行一次编队配置科学试验,要求2艘攻击型核潜艇一前一后,3艘驱逐舰和3艘护卫舰分列左右,每侧3艘,同侧不能都是同种舰艇,则舰艇分配方案的方法种数为()
A.72
B.324
C.648
D.1 296
10.从2名语文老师、2名数学老师、4名英语老师中选派5人组成一个支教小组,则语文老师、数学老师、英语老师都至少有1名的选派方法种数为.(用数字作答) 〚导学号21500774〛
二、综合提升组
11.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()
A.12种
B.18种
C.36种
D.54种
12.(2017湖北武汉调研)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()
A.60种
B.48种
C.30种
D.24种
13.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()
A.16种
B.36种
C.42种
D.60种〚导学号21500775〛
14.(2017山东潍坊模拟,理14)用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数
是.(用数字作答)
15.将并排的有不同编号的5个房间安排给5名工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有2个房间无人选择,且这2个房间不相邻的安排方式的种数为.(用数字作答)
三、创新应用组
16.(2017陕西西安检测)将除颜色外完全相同的一个白球、一个黄球、两个红球分给三名小朋友,且每名小朋友至少分得一个球的分法种数为()
A.15
B.21
C.18
D.24
17.(2017吉林长春质检)将20个不加区别的小球放入1号、2号、3号的三个盒子中,要求每个盒子内的球数不小于它的编号数,则不同的放法种数为.(用数字作答)
课时规范练56排列与组合
1.C恰有两个空座位相邻,相当于两个空座位与第三个空座位不相邻,先排3个人,再插空,从而共
有=72种不同的坐法.
2.C依题意,满足题意的放法种数为=12.
3.C所有四位数有=300(个),末位数为0时,有=60(个),末位数为5时,有
=4×12=48(个),则不能被5整除的数共有300-60-48=192(个),故选C.
4.C将4个连在一起的空车位“捆绑”,作为一个整体,则所求即为4个不同元素的全排列,有
=24种不同的停放方法,故选C.
5.B由每班至少1名,最多2名,知分配名额为1,2,2,所以分配方案有=90(种).
6.C若7级台阶上每一级至多站1人,有种不同的站法;
若1级台阶站2人,另一级站1人,共有种不同的站法.
所以共有不同的站法种数是=336.故选C.
7.B分两类,第一类:甲排在第一位,共有=24种排法;第二类:甲排在第二位,共有=18种排法,所以共有编排方案24+18=42(种),故选B.
8.B先从4名同学中选出2名同学参加同一学科竞赛,有种方法,再同其他两个学科排列有种方法,故要求4名同学每人只报一科,且每科至少有1名同学参加共有=36种方法,
其中有不符合条件的,即学生甲、乙同时参加同一学科竞赛,有种方法,
故不同的参赛方案共有36-6=30种方法,故选B.
9.D核潜艇排列数为,6艘舰艇任意排列的排列数为,同侧均是同种舰艇的排列数为2,则舰艇分配方案的方法种数为2)=1 296.
10.44由题意可知分四类,
第一类,2名语文老师,2名数学老师,1名英语老师,有=4种选派方法;
第二类,1名语文老师,2名数学老师,2名英语老师,有=12种选派方法;
第三类,2名语文老师,1名数学老师,2名英语老师,有=12种选派方法;
第四类,1名语文老师,1名数学老师,3名英语老师,有=16种选派方法;
则一共有4+12+12+16=44种选派方法.
11.B先放标号1,2的卡片,有种放法,再将标号3,4,5,6的卡片平均分成两组再放置,有种放法,故共有=18种不同的放法.
12.B由题意知,不同的座次有=48(种),故选B.
13.D(方法一:直接法)若3个不同的项目被投资到4个城市中的3个,每个城市1个,共种投资方案;若3个不同的项目被投资到4个城市中的2个,一个城市1个、一个城市2个,共种投资方案.由分类加法计数原理知共=60种投资方案.
(方法二:间接法)先任意安排3个项目,每个项目各有4种安排方法,共43=64种投资方案,其中3个项目落入同一个城市的投资方案不符合要求,共4种,所以总投资方案共43-4=64-4=60(种). 14.48当数字4出现在第2位时,数字1,3,5中相邻的数字出现在第3,4位或者第4,5位,共有
=12(个);当数字4出现在第4位时,同理也有12个;当数字4出现在第3位时,数字1,3,5中相邻的数字出现在第1,2位或第4,5位,共有=24(个),故满足条件的不同五位数的个数是48.
15.900先将5人分成三组(1,1,3或2,2,1两种形式),再将这三组人安排到3个房间,然后将2个房间插入前面住了人的3个房间形成的空当中即可,故安排方式共有
=900(种).
16.B分四类,第一类:两个红球分给其中一个人,有种分法;第二类:白球和黄球分给一个人,有
种分法;第三类:白球和一个红球分给一个人,有种分法;第四类:黄球和一个红球分给一个人,有种方法,总共有+2=21种分法,故选B.
17.120先在2号、3号的盒子内分别放入1个球、2个球,还剩17个小球,三个盒子内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆,再放入三个盒子中即可,所以共有=120种放法.。