初中七年级下册练习题9.2 一元一次不等式第1课时 一元一次不等式的解法
人教版七年级数学下册 9-2 一元一次不等式(同步练习)
第9章不等式与不等式组9.2一元一次不等式班级:姓名:知识点1一元一次不等式的概念1.下列不等式是一元一次不等式的是()A.x2+x>1B.12x+1>2x+33C.x+y>3D.x()1x+2>3x+12.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④3>2.A.1个B.2个C.3个D.4个3.若3x2a+3-9>6是关于x的一元一次不等式,则a=.4.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.知识点2解一元一次不等式5.不等式3x≤2(x-1)的解集为()A.x≤-1B.x≤-1C.x≤-2D.x≥-26.3x-7≥4(x-1)的解集为()A.x≥3B.x≤3C.x≥-3D.x≤-37.不等式3x+22<x的解集是()A.x<-2B.x<-1C.x<0D.x>28.不等式3(x-1)+4≥2x的解集在数轴上表示为()9.不等式x-5>4x-1的最大整数解是()A.-2B.-1C.0D.110.解不等式14(2-x)≥5的过程是:去分母,得;移项,得,系数化为1,得.11.不等式y-26≥y3+1的解集为.12.请你写出一个满足不等式2x-1<6的正整数x的13.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.14.解不等式:2(x-1)<x+1,并求它的非负整数解.15.解不等式x-1≤1+x3,并求其正整数解.16.解不等式2x-13≤3x-46,并把它的解集在数轴上表示出来.17.解不等式2x-13-5x+12≤1,并把它的解集在数轴上表示出来.18.x取什么值时,代数式1-5x2的值不小于代数式3-2x3+4的值.19.已知x=3是关于x的不等式3x-ax+22>2x3的解,求a的取值范围.知识点3列一元一次不等式解决实际问题20.CBA篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计2017—2018赛季全部38场比赛中最少得到57分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(38-x)≥57B.2x-(38-x)≥5721.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每本笔记本2元,她买了4本笔记本,则她最多还可以买支笔()A.1B.2C.3D.422.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折23.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.24.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.25.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,现安排10辆车,则甲种运输车至少应安排几辆?26.八年级二班的五名同学参加学校组织的数学抽查测试,其中四名同学的考试分数分别为85, 80,82,86,又知他们五人的平均成绩不低于80分,那么第五名同学至少要考多少分?27.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?综合点1一元一次不等式与一元一次方程(组)的综合28.若关于x,y的二元一次方程组{3x+y=1+a,x+3y=3的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<429.当m为何值时,关于x的方程(m+2)x-2=1-m(4-x)有:(1)负数解;(2)不大于2的解.综合点2已知一元一次不等式的解集求字母的值30.不等式mx-2<3x+4的解集为x>6m-3,求m的最大整数值.综合点3列一元一次不等式与方程(组)的综合31.为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A,B 两种型号家用净水器共160台,A型号家用净水350元/台,购进两种型号的家用净水器共用36 000元.(1)A,B两种型号家用净水器各购进了多少台?(2)为使每台B型号的家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,则每台A型号家用净水器的售价至少是多少元?(毛利润=售价-进价)拓展点1阅读题32.阅读理解:我们把a bcd称作二阶行列式,规定它的运算法则为a bcd=ad-bc.如2345=2×5-3×4=-2.如果有23-x1x>0,求x的解集.拓展点2含字母系数的一元一次不等式33.解关于x的不等式:ax-x-2>0.拓展点3方案设计34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A,B两种树苗刚好用去1220元,问购进A,B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.第9章不等式与不等式组9.2一元一次不等式答案与点拨1.B(点拨:A 中含未知数项的最高次数是2,C 中含有两个未知数,D 中式子不全是整式,它们都不是一元一次不等式.)2.B(点拨:①③是一元一次不等式,注意③化简后再判断.)3.-1(点拨:2a+3=1,a=-1.)4.1(点拨:|m|=1且m+1≠0,所以m=1.)5.C6.D7.A(点拨:去分母得3x+2<2x,移项得3x-2x<-2,合并同类项得x<-2.)8.A(点拨:不等式3(x-1)+4≥2x 的解集是x ≥-1,大于应向右画,包括-1时,应用实心圆点表示-1这一点,故选A.)9.A(点拨:解不等式得解集为x<-43,所以最大整数解为-2.)10.2-x ≥20-x ≥20-2x ≤-1811.y ≤-812.1,2,3中任何一个都可(点拨:不等式的解集为x<72,其正整数解为1,2,3.)13.去括号得2x-2-3<1,移项、合并同类项得2x<6,系数化为1得x<3.在数轴上把解集表示出来为:14.去括号,得2x-2<x+1,移项、合并同类项,得x<3.因此不等式的非负整数解是0,1,2.15.去分母得3(x-1)≤1+x,去括号得3x-3≤1+x,移项得3x-x ≤1+3,合并同类项得2x ≤4,系数化为1得x ≤2,符合x ≤2的正整数解有1,2.16.去分母,得2(2x-1)≤3x-4.去括号,得4x-2≤3x-4.移项,合并同类项,得x ≤-2.∴不等式的解集为x ≤-2.该解集在数轴上表示如下:17.去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6.移项,得4x-15x ≤6+2+3.合并同类项,得-11x ≤11.系数化为1,得x ≥-1.这个不等式的解集在数轴上表示如下:18.由题意得1-5x 2≥3-2x3+4.去分母,得3(1-5x)≥2(3-2x)+24.去括号、移项、合并同类项,-11x ≥27.系数化为1,得x ≤-2711.∴当x ≤-2711时,1-5x 2≥3-2x 3+4.19.因为x=3是关于x 的不等式3x-ax +22>2x 3的解,所以9-3a +22>2,解得a<4.故a 的取值范围是a<4.21.D(点拨:设可买x支笔,则有3x+4×2≤21,即3x+8≤21,3x≤13,x≤133,所以x可取最大的整数为4,她最多可买4支笔.故选D.)22.B(点拨:设可打x折,则有1200x·0.1≥800(1+0.05),解得x≥7.故选B.)23.14(点拨:根据本次竞赛规则可知竞赛得分=10×答对的题数+(-5)×答错(或不答)的题数,得分要超过100分,列出不等式求解即可.设要答对x道题,则10x+(-5)×(20-x)>100,解得x>1313.∵x是整数,∴x=14.)24.3(点拨:设小宏能买x瓶甲饮料,则买乙饮料(10-x)瓶.根据题意,得7x+4(10-x)≤50,解得x≤31 3 .所以小宏最多能买3瓶甲饮料.)25.设甲种运输车安排x辆,则5x+4×(10-x)≥46,解得x≥6.答:甲种运输车至少应安排6辆.26.设第五名同学要考x分,则85+80+82+86+x≥80×5,解得x≥67.答:第五名同学至少要考67分.27.设购买球拍x个,依题意得:1.5×20+22x≤200.解之得:x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.28.D(点拨:将两个方程相加,得4x+4y=4+a,从而有x+y=4+a4,然后解不等式4+a4<2,得a<4.)29.解方程得x=3-4m2.(1)由3-4m2<0得m>34.(2)由3-4m2≤2得m≥-14.30.2(点拨:由题意得m-3<0,即m<3.)31.(1)设A种型号家用净水器购进了x台,则B种型号的净水器购进了(160-x)台.由题意,得150x+350(160-x)=36000.解得x=100.所以160-x=60.所以A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润为z元,则每台B型号家用净水器的毛利润为2z元.由题意,得100z+60×2z≥11000,解得z≥50.150+50=200(元).所以,每台A型号家用净水器的售价至少为200元.32.由题意得2x-(3-x)>0,去括号得:2x-3+x>0,移项、合并同类项得:3x>3,x的系数化为1得:x>1.33.ax-x-2>0,(a-1)x>2.当a-1=0时,ax-x-2>0无解;当a-1>0时,x>2a-1;当a-1<0时,a<2a-1.34.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得17-x<x,解得x>81 2 .购进A,B两种树苗所需费用为80x+60(17-x)=20x+1020.费用最省则需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.。
9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)一、选择题1.若关于x 、y 的二元一次方程组{3x −y =−1−a,x −3y =3的解满足x -y >-2,则a 的取值范围是( ) A .a <4B . 0<a <4C . 0<a <10D .a <102.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( )A .y =-1B .y =1C .y =-2D .y =23.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买多少枝钢笔.( )A . 11B . 12C . 13D . 144.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为21.5元,那么x 的最大值是( )A . 11B . 8C . 7D . 55.初三的几位同学拍了一张合影作留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为( )A . 至多6人B . 至少6人C . 至多5人D . 至少5人6.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <37.不等式|x -2|>1的解集是( )A .x >3或x <1B .x >3或x <-3C . 1<x <3D . -3<x <3二、填空题8.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________.9.若-3是关于x 的方程x−a 3-2−x 4=1的解,则x−a 3-2−x 4≥1的解集是__________.10.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用____________资金购买书桌、书架等设施.11.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_________. 12.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______.三、解答题13.已知方程组{x −y =2a,2x +3y =5−a的解为非负数,求整数a 的值. 14.若关于x 的方程2x -3m =2m -4x +4的解不小于78-1−m 3,求m 的最小值.15.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.17.解不等式:5x+12-x−24>5x−16+x−33.答案解析1.【答案】D【解析】在关于x 、y 的二元一次方程组{3x −y =−1−a①,x −3y =3②中, ①+②,得4x -4y =2-a ,即x -y =12-a 4,∵x -y >-2,∴12-a 4>-2,解得a <10,故选D.2.【答案】D【解析】ax -2>0,移项,得ax >2,∵解集为x <-2,则a =-1,则ay +2=0,即-y +2=0,解得y =2.故选D.3.【答案】C【解析】设买x 支钢笔,则笔记本有(30-x )本,则有5x +2(30-x )≤100,即3x ≤40,解得x ≤1313.因此最多能买13支钢笔.故答案为13.4.【答案】B【解析】根据题意得8+2.6(x -3)≤21.5,解得x ≤8.19,∵不足1千米按1千米计,∴x 的最大值是8.故选B.5.【答案】B【解析】设参加合影的同学人数为x 人,则有5+0.5x <1.5x ,解得x >5,∵x 取正整数,∴参加合影的同学人数至少为6人.故选B.6.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A.7.【答案】A【解析】∵|x -2|>1,∴x -2>1或x -2<-1;所以解集为x >3或x <1;故选A.8.【答案】k >4【解析】由方程3(x +2)=k +2去括号移项,得3x =k -4,∴x =k−43, ∵关于x 的方程3(x +2)=k +2的解是正数,∴x =k−43>0,∴k >4. 9.【答案】x ≥-3【解析】把x =-3代入方程x−a 3-2−x 4=1,可得a =-394, 把a =-394代入x−a 3-2−x 4≥1,解得x ≥-3,故答案为x ≥-3.10.【答案】7 500元【解析】设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元, 根据题意得30 000-x ≥3x ,解得x ≤7 500.即最多用7 500元购买书桌、书架等设施;故答案是7 500元.11.【答案】80【解析】设以后几天平均每天完成x 土方.由题意得:3x ≥300-60,解得x ≥80答:以后几天平均至少要完成的土方数是80土方.故答案为80.12.【答案】3-a【解析】∵关于x 的不等式(a -2)x >a -2解集为x <1,∴a -2<0,即a <2,∴原式=3-a .故答案为3-a .13.【答案】解:{x −y =2a①,2x +3y =5−a②,①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1;②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1;则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.14.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =5m+46, 根据题意,得5m+46≥78-1−m 3,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-14.所以当m ≥-14时,方程的解不小于78-1−m 3,m 的最小值为-14. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于78-1−m 3,即可得到关于m 的不等式,即可求得m 的范围,从而求解.15.【答案】解:(1)设甲票价为4x 元,乙为3x 元,∴3x +4x =42,解得x =6,∴4x =24,3x =18, 答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y 张,则乙种票(36-y )张,根据题意得24y +18(36-y )≤750,解得y ≤17,答:甲种票最多买17张.【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.16.【答案】解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得x≥4或x≤-5.(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.故a≤7.【解析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x-3|+|x+4|≥a对任意的x都成立,即求到3与-4两点距离的和最小的数值.17.【答案】解:去分母得6(5x+1)-3(x-2)>2(5x-1)+4(x-3),去括号得30x+6-3x+6>10x-2+4x-12,移项得30x-3x-10x-4x>-2-12-6-6,合并同类项,得13x>-26,系数化为1,得x>-2.【解析】利用不等式的基本性质,即可求得原不等式的解集.。
人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法
第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:
人教版数学七年级下册:9.2 一元一次不等式 同步练习(附答案)
9.2 一元一次不等式 第1课时 一元一次不等式的解法1.下列不等式中,是一元一次不等式的是( ) A .2x -3y >4 B .-2<3 C .3x -1<0 D .y 2-3>22.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =1. 3.不等式1-2x ≥0的解集是( ) A .x ≥2 B .x ≥12C .x ≤2D .x ≤124.不等式2x -1≤3的解集在数轴上表示正确的是( ) A. B. C.D.5.当x 时,式子x -3的值是正数. 6.不等式x -3<6-2x 的解集是 . 7.解不等式,并把解集在数轴上表示出来: (1)5x -2≤3x ;(2)5x -5<2(2+x);(3)2-x 4≥1-x 3.8.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.9.与不等式2x -4≤0的解集相同的不等式是( ) A .-2x ≤x -1 B .-2x ≤x -10 C .-4x ≥x -10 D .-4x ≤x -10 10.不等式6-4x ≥3x -8的非负整数解为( ) A .2个 B .3个 C .4个 D .5个11.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤212.如果a<2,那么不等式ax>2x +5的解集是x<5a -2.13.在实数范围内规定新运算“△”,其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是 .14.解不等式,并把解集在数轴上表示出来: (1)2(x +1)-1≥3x +2;(2)3(x -1)<4(x -12)-3;(3)x +12≥3(x -1)-4;(4)x -25-x +42>-3.15.如图,在数轴上,点A ,B 分别表示数1,-2x +3. (1)求x 的取值范围;(2)数轴上表示数-x +2的点应落在 .A .点A 的左边B .线段AB 上C .点B 的右边第2课时一元一次不等式的应用1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x页,所列不等式为( )A.2+10x≥87 B.2+10x≤87C.10+8x≤87 D.10+8x≥872.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A.5 B.4 C.3 D.23.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其他费用不考虑),售价至少定为多少?设售价为x元/千克,根据题意所列不等式正确的是( )A.100(1-5%)x≥1 140B.100(1-5%)x>1 140C.100(1-5%)x<1 140D.100(1-5%)x≤1 1404.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是( )A.11 B.8 C.7 D.55.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A.13 B.14 C.15 D.167.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为人.8.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为( ) A.210x+90(18-x)≥2 100B.90x+210(18-x)>2 100C.210x+90(18-x)≥2.1D.210x+90(18-x)>2.19.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工40个零件.10.已知导火线的燃烧速度是0.7 cm/s,爆破员点燃后跑开的速度是5 m/s,为了点火后跑到130 m及以外的安全地带,则导火线至少长多少厘米?11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( )A.8 B.6 C.7 D.912.国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为 cm.13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.14.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1 140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7 000元,那么A种防疫物品最多购买多少件?15.新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款560万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:(1)购进A种型号的口罩机台,B种型号的口罩机台;(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台进行生产.若工厂的工人每天工作10 h,则至少购进B种型号的口罩机多少台才能在5天内完成任务?16.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36 800元,试问本次试点投放A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?第3课时利用一元一次不等式解决方案设计问题1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?2.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9 000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.3.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.4.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(只填“方案一”或“方案二”,不要求写解题过程)(2)当x>20时,①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?5.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.6.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?请说明理由.参考答案:9.2 一元一次不等式第1课时 一元一次不等式的解法1.下列不等式中,是一元一次不等式的是(C)A .2x -3y >4B .-2<3C .3x -1<0D .y 2-3>22.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =1.3.不等式1-2x ≥0的解集是(D)A .x ≥2B .x ≥12C .x ≤2D .x ≤124.不等式2x -1≤3的解集在数轴上表示正确的是(C)A.B. C. D. 5.当x >3时,式子x -3的值是正数.6.不等式x -3<6-2x 的解集是x <3.7.解不等式,并把解集在数轴上表示出来:(1)5x -2≤3x ;解:移项,得5x -3x ≤2.合并同类项,得2x ≤2.系数化为1,得x ≤1.其解集在数轴上表示为:(2)5x -5<2(2+x);解:去括号,得5x -5<4+2x.移项,得5x -2x <4+5.合并同类项,得3x <9.系数化为1,得x <3.这个不等式的解集在数轴上表示为:(3)2-x 4≥1-x 3. 解:去分母,得3(2-x)≥4(1-x).去括号,得6-3x ≥4-4x.移项、合并同类项,得x ≥-2.其解集在数轴上表示为:8.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:错误的是①②⑤,正确的解答过程如下:去分母,得3(1+x)-2(2x +1)≤6.去括号,得3+3x -4x -2≤6.移项,得3x -4x ≤6-3+2.合并同类项,得-x ≤5. 两边都除以-1,得x ≥-5.9.与不等式2x -4≤0的解集相同的不等式是(C)A .-2x ≤x -1B .-2x ≤x -10C .-4x ≥x -10D .-4x ≤x -1010.不等式6-4x ≥3x -8的非负整数解为(B)A .2个B .3个C .4个D .5个11.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是(C)A .m ≥2B .m >2C .m <2D .m ≤212.如果a<2,那么不等式ax>2x +5的解集是x<5a -2. 13.在实数范围内规定新运算“△”,其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是-3.14.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x +2;解:去括号,得2x +2-1≥3x +2.移项,得2x -3x ≥2-2+1.合并同类项,得-x ≥1.系数化为1,得x ≤-1.其解集在数轴上表示为:(2)3(x -1)<4(x -12)-3;解:去括号,得3x -3<4x -2-3.移项,得3x -4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x >2.其解集在数轴上表示为:(3)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8.去括号,得x +1≥6x -6-8.移项,得x -6x ≥-6-1-8. 合并同类项,得-5x ≥-15.系数化为1,得x ≤3.其解集在数轴上表示为:(4)x -25-x +42>-3. 解:去分母,得2(x -2)-5(x +4)>-30.去括号,得2x -4-5x -20>-30.移项,得2x -5x >-30+4+20.合并同类项,得-3x >-6.系数化为1,得x <2.其解集在数轴上表示为:15.如图,在数轴上,点A ,B 分别表示数1,-2x +3.(1)求x 的取值范围;(2)数轴上表示数-x +2的点应落在B .A .点A 的左边B .线段AB 上C .点B 的右边解:由数轴上的点表示的数右边的总比左边的大,得-2x +3>1,解得x <1.第2课时 一元一次不等式的应用1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x 页,所列不等式为(D)A .2+10x ≥87B .2+10x ≤87C .10+8x ≤87D .10+8x ≥872.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为(B)A.5 B.4 C.3 D.23.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其他费用不考虑),售价至少定为多少?设售价为x元/千克,根据题意所列不等式正确的是(A) A.100(1-5%)x≥1 140B.100(1-5%)x>1 140C.100(1-5%)x<1 140D.100(1-5%)x≤1 1404.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11 B.8 C.7 D.55.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?解:设孔明可以买x副球拍.根据题意,得1.5×20+22x≤200,解得x≤7811.答:孔明最多可以买7副球拍.6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为(C)A.13 B.14 C.15 D.16 7.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为6人.8.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为(A)A.210x+90(18-x)≥2 100B.90x+210(18-x)>2 100C .210x +90(18-x)≥2.1D .210x +90(18-x)>2.19.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工40个零件.10.已知导火线的燃烧速度是0.7 cm/s ,爆破员点燃后跑开的速度是5 m/s ,为了点火后跑到130 m 及以外的安全地带,则导火线至少长多少厘米?解:设导火线长x cm.由题意,得x 0.7≥1305, 解得x ≥18.2.答:导火线至少长18.2 cm.11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?(B)A .8B .6C .7D .912.国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm ,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为55cm.13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.解:设这份快餐含有x 克蛋白质,则这份快餐含有4x 克的碳水化合物.根据题意,得 x +4x ≤400×70%,解得x ≤56.答:这份快餐最多含有56克蛋白质.14.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A 、B 两种防疫物品每件各多少元;(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7 000元,那么A 种防疫物品最多购买多少件?解:(1)设A 种防疫物品每件x 元,B 种防疫物品每件y 元,根据题意,得⎩⎪⎨⎪⎧60x +45y =1 140,45x +30y =840,解得⎩⎪⎨⎪⎧x =16,y =4.答:A 种防疫物品每件16元,B 种防疫物品每件4元.(2)设购买A 种防疫物品m 件,则购买B 种防疫物品(600-m)件,根据题意,得16m +4(600-m)≤7 000.解得m ≤38313. 又∵m 为正整数,∴m 的最大值为383.答:A 种防疫物品最多购买383件.15.新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款560万元购进A ,B 两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:(1)购进A 种型号的口罩机10台,B 种型号的口罩机20台;(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台进行生产.若工厂的工人每天工作10 h ,则至少购进B 种型号的口罩机多少台才能在5天内完成任务? 解:设购进B 型口罩机m 台,根据题意,得5×10×[2 500(15-m)+3 000m]≥2 000 000.解得m ≥5.答:至少购进B 型号口罩机5台.16.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A ,B 两种款型的单车共100辆,总价值36 800元,试问本次试点投放A 型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A ,B 两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?解:(1)设本次试点投放A 型车x 辆,则投放B 型车(100-x)辆.依题意,得400x +320(100-x)=36 800.解得x =60.则100-x =40.答:本次试点投放A 型车60辆,B 型车40辆.(2)由(1)可知,试点投放的A ,B 两车型数量比为3∶2,设城区10万人口平均每100人享有A 型车3y 辆,B 型车2y 辆.依题意,得100 000100×3y ×400+100 000100×2y ×320≥1 840 000 解得y ≥1.则3y ≥3,2y ≥2.答:城区10万人口平均每100人至少享有A 型车3辆,B 型车2辆.第3课时 利用一元一次不等式解决方案设计问题1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元.由题意,得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算.2.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9 000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.解:(1)设购买甲种树苗x棵,则购买乙种树苗(2x-40)棵,由题意,得30x+20(2x-40)=9 000,解得x=140.∴2x-40=240.答:购买甲种树苗140棵,乙种树苗240棵.(2)设购买甲种树苗y棵,乙种树苗(10-y)棵,根据题意,得30y+20(10-y)≤230,解得y≤3.购买方案一:购买甲树苗3棵,乙树苗7棵;购买方案二:购买甲树苗2棵,乙树苗8棵;购买方案三:购买甲树苗1棵,乙树苗9棵;购买方案四:购买甲树苗0棵,乙树苗10棵.3.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2 400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3 000-50m)元.①若3 000-50m=2 400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3 000-50m>2 400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3 000-50m<2 400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.4.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求写解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3_200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3_600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则40x+3 200<36x+3 600.解得x<100.若按方案二购买更省钱,则40x+3 200>36x+3 600.解得x>100.若两种方案付费一样,则40x+3 200=36x+3 600,解得x=100.∴当x<100时,方案一更省钱;当x>100时,方案二更省钱;当x=100时,两种方案付费一样.5.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.解:(1)由题意得,当x=8时,选择方案一的购买费用为90%a×8=7.2a元.选择方案二的购买费用为5a+(8-5)a×80%=7.4a元.∵7.2a<7.4a,∴当x =8时,应选择方案一,该公司购买费用最少,最少费用是7.2a 元.(2)∵该公司采用方案二购买更合算,∴x >5.∴选择方案一,购买的费用为90%ax =0.9ax 元.选择方案二,购买的费用为5a +(x -5)a ×80%=5a +0.8ax -4a =a +0.8ax.根据题意,得0.9ax >a +0.8ax.解得x >10.∴x 的取值范围是x >10.6.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A ,B 两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?请说明理由.解:(1)设购买x 台A 型污水处理设备,则购买(10-x)台B 型污水处理设备,由题意,得 12x +10(10-x)≤105.解得x ≤52. 故有3种购买方案:方案一:购买0台A 型污水处理设备,10台B 型污水处理设备;方案二:购买1台A 型污水处理设备,9台B 型污水处理设备;方案三:购买2台A 型污水处理设备,8台B 型污水处理设备.(2)应选择购买1台A 型污水处理设备,9台B 型污水处理设备.理由:设购买a 台A 型污水处理设备,由题意,得240a +200(10-a)≥2 040.解得 a ≥1.当a =1时,需资金12×1+10×9=102 (万元);当a=2时,需资金12×2+10×8=104 (万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (64)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某校计划购买篮球和排球两种球若干.已知购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)求篮球和排球的单价;(2)该校计划购买篮球和排球共30个.某商店有两种优惠活动(两种优惠活动不能同时参加),活动一:一律打九折,活动二:购物不超过600元时不优惠,超过600元时,超过600元的部分打八折.请根据以上信息,说明选择哪一种活动购买篮球和排球更实惠.【答案】(1)篮球每个50元,排球每个30元;(2)当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠【解析】【分析】根据球的总个数,及总的价格建立二元一次方程组,求解即可.设购买篮球m个,列出两种活动的付款金额,再根据情况分类讨论,从而得到结果.【详解】(1)设篮球每个x元,排球每个y元,根据题意得:2x+3y=190且3x=5y 解得x=50,y=30.答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(30﹣x)个,价值:50m+30(30﹣m)=900+20m因为900+20m>600,所以可以参加活动二;按活动一需付款:0.9(900+20m)=810+18m;按活动二付款:600+0.8(900+20m﹣600)=840+16m;若活动一更实惠:810+18m<840+16m,m<15;若活动一和活动二一样实惠:810+18m=840+16m,m=15;若活动二更实惠:810+18m>840+16m,m>15;综上所述,当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠.【点睛】找到等量关系列出方程组和不等式是解题的关键.32.2018年4月10日0时起,全国铁路开始实施新的列车运行图.调整后,重庆与郑州之间有了始发高铁,两地出行更加便利,想要来重庆旅游的郑州游客,可以下午喝碗胡辣汤,晚上品尝正宗重庆火锅,据重庆火车站介绍,此次列车运行图优化调整新增了郑州东站至重庆西站的调整动车组.试运行首日,商务座票价是二等座票价的2倍,商务座售出10张,二等座售出100张,商务座和二等座总售出不低于6万元.(1)试运行期间,二等座票价至少多少元?(2)现正式投入运行后,铁路部门将二等座票价在试运行首日最低票价的基础上上涨了a%(a为整数),商务座票价在试运行首日最低票价基础上提高了3a%,且正式运行首日二等座售出的数量比试运行首日减少了a张,商务座售出的数量减少为试运行首日的一半,正式运行首日商务座和二等座总销售额为55000元,求a的值.【答案】(1)二等座票价至少为500元.2)a的值为30.【解析】【分析】(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意列出不等式,解不等式即可;(2)分别表示出商务座和二等座的销售额,再根据题意列方程,解方程即可.【详解】解:(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意得:10×2x+100x≥60000,解得:x≥500.答:试运行期间,二等座票价至少为500元;(2)根据题意得:500(1+a%)(100﹣a)+500×2(1+3a%)×10÷2=55000,整理,得:5a2﹣150a=0,解得:a1=0,a2=30.答:a的值为30.【点睛】本题主要考查一元二次方程的实际应用.33.解下列方程组、不等式组:(1)21 3211 x yx y+=⎧⎨-=⎩(2)3(2)4 1213x xxx--≤⎧⎪+⎨>-⎪⎩【答案】(1)31xy=⎧⎨=-⎩,(2)1≤x<4.【解析】【详解】(1)21 3211x yx y+=⎧⎨-=⎩①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=1,解得:y=﹣1,所以方程组的解为31xy=⎧⎨=-⎩;(2)解不等式x﹣3(x﹣2)≤4,得:x≥1,解不等式123x+>x﹣1,得:x<4,则不等式组的解集为1≤x<4.【点睛】考查了二元一次方程组及一元一次不等式的解法.34.为开展体育大课间活动,某学校需要购买篮球与足球若干个,已知购买3个篮球和2个足球需求共需要575元,购买4个篮球和3个足球共需要785元.()1购买一个篮球,一个足球各需多少元?()2若体育老师带了8000元去购买这种篮球与足球共80个,由于数量较多,店主给出篮球与足球一律打八折的优惠价,那么他最多能购买多少个篮球?同时买了多少个足球?【答案】()1购买一个需要篮球155元,购买一个足球需要55元;(2)这所学校最多可以购买56个篮球,同时买了24个足球.【解析】【分析】()1设购买一个篮球需要x 元,购买一个足球需要y 元,根据题意列出x ,y 的一元一次方程组,然后求解即可;(2)设购买了a 个篮球,则购买了()80a -个足球,根据题意列出关于a 的不等式,然后求解不等式即可得到答案.【详解】()1设购买一个篮球需要x 元,购买一个足球需要y 元,列方程得:3257543785x y x y +=⎧+=⎨⎩, 解得:{15555x y ==,答:购买一个需要篮球155元,购买一个足球需要55元; ()2设购买了a 个篮球,则购买了()80a -个足球,列不等式得:()1550.8550.8808000a a ⨯+⨯⨯-≤,解得56a ≤,∴最多可以购买56个篮球,∴同时购买了80﹣56=24个足球,故这所学校最多可以购买56个篮球,同时买了24个足球.35.某文具店从市场得知如下信息:该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?(3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?【答案】(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.【解析】【分析】(1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,(2)把y=1200代入y与x之间的函数关系式即可,(3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.【详解】解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,A品牌计算器的单个利润为90﹣70=20元,A品牌计算器销售完后利润=20x,B品牌计算器的单个利润为140﹣100=40元,B品牌计算器销售完后利润=40(50﹣x),总利润y=20x+40(50﹣x),整理后得:y=2000﹣20x,答:y与x之间的函数关系式为y=2000﹣20x;(2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,解得:x=40,则A种品牌计算器的数量为40台,B种品牌计算器的数量为50﹣40=10台,答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)根据题意得:70x+100(50﹣x)≤4100,解得:x≥30,一次函数y=2000﹣20x随x的增大而减小,x为最小值时y取到最大值,把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,答:该文具店可获得的最大利润是1400元.【点睛】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.36.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?【答案】小诚至少需要跑步5分钟.【解析】【分析】设他需要跑步x分钟,根据他要在不超过20分钟的时间内从家到达学校可以列出相应的不等式,从而可以解答本题.【详解】设他需要跑步x分钟,由题意可得()200x8020x2200+-≥,解得,x5≥.答:小诚至少需要跑步5分钟.【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解答本题的关键.37.如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态(1)填表:(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.17米长的链条,至少需要多少个铁环?【答案】(1)11.8;15.4;(2)y=3.6n+1;(3)至少需要60个铁环【解析】【分析】(1)根据铁环粗0.5厘米,每个铁环长4.6厘米,进而得出3个/4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y与n的关系式;(3)由(2)得,3.6n+1≥217,进而求出即可.【详解】(1)由题意可得:3×4.6-4×0.5=11.8(cm ),故3个铁环组成的链条长为11.8cm .4×4.6-6×0.5=15.4(cm ),故4个铁环组成的链条长为15.4cm .故答案为:11.8;15.4;(2)由题意得:y=4.6n-2(n-1)×0.5,即y=3.6n+1;(3)据题意有:3.6n+1≥217,解得:n ≥60,答:至少需要60个铁环.【点睛】此题主要考查了一元一次不等式的应用,利用链条结构得出链条长的变化规律是解题关键.38.解不等式125164y y +--≥,并把它的解集在数轴上表示出来. 【答案】y ≤54,把不等式的解集在数轴上表示见解析 【解析】【分析】不等式去分母、去括号、移项合并,把y 系数化为1,求出解集,表示在数轴上即可.【详解】两边都乘以12得,()()21325y y +--≥12去括号得,22615y y +-+≥12移项,合并同类项得,4y -≥-5系数化为1得,y ≤54把不等式的解集在数轴上表示如下:【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.39.某商场销售每个进价为150元和120元的A 、B 两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B 两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A 种型号的足球最多能采购多少个?(3)在()2的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.【答案】(1)A 型号足球单价是200元,B 型号足球单价是150元.(2)40个.(3)有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.【解析】【分析】(1)设A 、B 两种型号的足球销售单价分别是x 元和y 元,根据3个A 型号和4个B 型号的足球收入1200元,5个A 型号和5个B 型号的电扇收入1450元,列方程组求解;(2)设A 型号足球购进a 个,B 型号足球购进()60a -个,根据金额不多余8400元,列不等式求解;(3)根据A 型号足球的进价和售价,B 型号足球的进价和售价以及总利润=一个利润×总数,列出不等式,求出a 的值,再根据a 为整数,即可得出答案.【详解】()1解:设A 、B 两种型号的足球销售单价分别是x 元和y 元,列出方程组: 341200531450x y x y +=⎧⎨+=⎩解得200150x y =⎧⎨=⎩A 型号足球单价是200元,B 型号足球单价是150元.()2解:设A型号足球购进a个,B型号足球购进()60a-个,根据题意得:()+-≤150120608400a aa≤,所以A型号足球最多能采购40个.解得40()3解:若利润超过2550元,须()+->a a5030602550a>,因为a为整数,37.5a≤≤所以3840能实现利润超过2550元,有3种采购方案.方案一:A型号38个,B型号22个;方案二:A型号39个,B型号21个;方案三:A型号40个,B型号20个.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.40.某学校为加强学生的体育锻炼,曾两次在某商场购买足球和篮球.第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元.()1求足球和篮球的标价;()2如果现在商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?【答案】(1)足球的标价为50元,篮球的标价为80元;(2)最多可以买38个篮球.【解析】【分析】(1)设足球的标价为x 元,篮球的标价为y 元,根据“第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元”,列出关于x 和y 的二元一次方程组,解出即可,(2)设可买m 个篮球,根据“商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元”,列出关于m 的一元一次不等式,解出即可.【详解】(1)设足球的标价为x 元,篮球的标价为y 元,根据题意得:6570037710x y x y +=⎧⎨+=⎩, 解得:5080x y =⎧⎨=⎩, 答:足球的标价为50元,篮球的标价为80元.(2)设可买m 个篮球,根据题意得:0.6×50(60﹣m )+0.6×80m ≤2500.解得:m ≤3889, 因为m 为整数,所以m ≤3889的最大整数解是38. 答:最多可以买38个篮球.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,根据数量关系列出方程组和不等式是解答本题的关键.。
9.2 一元一次不等式(1)不等式的解法——去分母 课件 2023-2024学年人教版数学七年级下册
3
x≥4,则m的值( D )
A.14
B.7
C.-2
D.2
2−1
5+1
8.x_______时,式子
的值大于
+1的值.
<-1
3
2
思维过关
−
1
9.已知关于x的方程
= 的解为正数,求a的取值范围.
3
2
解:去分母,得2(x-a)=3.去括号,得2x-2a=3.
3+2
移项,得2x=3+2a.系数化为1,得x=
x≥5
2
2−1
2.不等式
-5≤0的非负整数解共有___个.
6
2
2
1 1
3.解不等式 x+ ≥ x,并在数轴上表示其解集.
3
2 2
解:去分母,得4x+3≥3x.
移项,得4x-3x≥-3.
合并同类项,得x≥-3.
在数轴上表示其解集如下:
5−11
7
4.下面是小红同学解不等式
≤2x- 的过程,请认真阅读并完成相
3
2
解:去分母,得4x+3(3x-1)≥-42.
去括号,得4x+9x-3≥-42.
移项,得4x+9x≥-42+3.
合并同类项,得13x≥-39.
系数化为1,得x≥-3.
在数轴上表示不等式的解集如下:
1
4.已知关于x的不等式2x-a<-5的解集如图所示,则a的值为___.
巩固提能
−3
1.(2022·安徽)不等式 ≥1的解集为______.
解:去括号,得4-3x+3≤2x+2.
移项,得-3x-2x≤2-4-3.
合并同类项,得-5x≤-5.
系数化为1,得x≥1.
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (28)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某印染厂生产某种产品,每件产品出厂价为50元,成本价为25元.在生产过程中,平均每生产1件产品就有0.5 m3污水排出,为了净化环境,工厂设计了两种污水处理方案并准备实施.方案一:工厂污水先净化处理后再排出,每处理1 m3污水所用原料费用为2元,并且每月排污设备损耗费为30000元.方案二:将污水排放到污水处理厂统一处理,每处理1 m3污水需付14元排污费.你认为该工厂应如何根据每月生产产品的数量选择污水处理方案?【答案】该工厂每月生产的产品超过5000件时,应选择方案一;每月生产的产品等于5000件时,两种方案均可;每月生产的产品少于5000件时,应选择方案二【解析】试题分析:设该工厂每月生产x件产品,分别求得两种方案处理污水后所获的利润,当方案一利润大于方案二利润时选择方案一;当方案一利润等于方案二利润时两种方案都可以选择;当方案一利润小于方案二利润时选择方案二.试题解析:设该工厂每月生产x件产品,则按方案一处理可获利:(50-25)x-2×0.5x-30000=24x-30000;按方案二处理可获利:(50-25)x-14×0.5x=18x.当24x-30000>18x时,得x>5000,此时选择方案一;令24x-30000=18x时,得x=5000,此时两种方案都可以选择;令24x-30000<18x时,得x<5000,此时选择方案二.∴该工厂每月生产的产品超过5000件时,应选择方案一;每月生产的产品等于5000件时,两种方案均可;每月生产的产品少于5000件时,应选择方案二.72.某校社会实践小组调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图所示).若这份快餐中所含蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.【答案】这份快餐最多含有56 g蛋白质【解析】试题分析:设这份快餐含有x克的蛋白质,根据碳水化合物质量是蛋白质质量的4倍得碳水化合物有4x g.根据所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,列出不等式,求解即可试题解析:设这份快餐含有x g蛋白质,则碳水化合物有4x g.根据题意,得x+4x≤400×70%,解得x≤56.答:这份快餐最多含有56g蛋白质.73.预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个, 乙商品仍每个涨价1元,那么甲、乙两商品支付的总金额是1563.5元.(1)求x 、y 的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x ,y 的值.【答案】 (1)x ,y 的关系x+2y=186;(2)预计购买甲商品76个,乙商品55个.【解析】试题分析:(1)设出必需的未知量,找出等量关系为:甲原单价×甲原数量+乙原单价×乙原数量=1500,(甲原单价+1.5)×(甲原数量-10)+(乙原单价+1)×乙原数量=1529;(甲原单价+1)×(甲原数量-5)+(乙原单价+1)×乙原数量=1563.5.(2)结合(1)得到的式子,还有205<2倍甲总价+乙总价<210,求出整数解.试题解析:(1)设预计购买甲、乙商品的单价分别为a 元和b 元,则原计划是Ax+by=1500,①由甲商品单价上涨1.5元、乙商品单价上涨1元,并且甲商品减少10个的情形,得()()()1.51011529a x b y +-++=②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形,得(a+1)(x-5)+(b+1)y=1563.5, ③由①、②、③得 1.51044568.5x y a x y a +-=⎧⎨+-=⎩④⑤④-⑤×2并化简,得x+2y=186(2)依题意,有205<2x+y<210及x+2y=186,54<y<2,553由y是整数,得y=55,从而得x=76答:(1)x,y的关系x+2y=186;(2)预计购买甲商品76个,乙商品55个.点睛:解决本题的关键是读懂题意,找到合适的关系式.当必需的量没有时,应设出未知数,在做题过程中消去无关的量.74..买一辆汽车,分期付款购买要多加价7%,如果现金购买可按九五折(95%)优惠。
初中数学《七下》第九章 不等式与不等式组-一元一次不等式组 考试练习题
初中数学《七下》第九章 不等式与不等式组-一元一次不等式组 考试练习题姓名:_____________ 年级:____________ 学号:______________1、解不等式组:并写出它的所有整数解.知识点:一元一次不等式组 【答案】;【分析】分别解不等式① , ② ,进而求得不等式组的解集,根据不等式组的解集写出所有整数解即可.【详解】解不等式① 得:解不等式② 得:不等式组的解集为:它的所有整数解为:【点睛】本题考查了解一元一次不等式组,求不等式组的整数解,正确的计算是解题的关键.2、若关于x 的不等式组恰有3 个整数解,则实数a 的取值范围是( )A .B .C .D .知识点:一元一次不等式组 【答案】C【分析】分别求出每一个不等式的解集,根据口诀不等式组的整数解个数即可得出答案.【详解】解:解不等式,得:,解不等式,得:,∵ 不等式组只有 3 个整数解,即 5 , 6 , 7 ,∴,故选:C .【点睛】本题主要考查了一元一次不等式组的整数解,解题的关键是熟练掌握解一元一次不等式,并根据不等式组整数解的个数得出关于的不等式组.3、(1 )解方程:(2 )解不等式组:知识点:一元一次不等式组 【答案】(1 ),;(2 )【分析】(1 )根据分解因式法求解一元二次方程,即可得到答案;(2 )根据一元一次不等式组的性质计算,即可得到答案.【详解】(1 )∵∴∴,;(2 )∵∴∴∴.【点睛】本题考查了一元二次方程、一元一次不等式组的知识;解题的关键是熟练掌握一元二次方程、一元一次不等式组的解法,从而完成求解.4、如图,直线y=kx +b交x轴于点A(﹣2 , 0 ),直线y=mx +n交x轴于点B(5 , 0 ),这两条直线相交于点C(2 ,c),则关于x的不等式组的解集为()A .x<5B . 1 <x<5C .﹣ 2 <x<5D .x<﹣2知识点:一元一次不等式组【答案】D【分析】根据函数图像分别求得不等式的解集,然后再求不等式的解集即可.【详解】解:由函数图像可得,不等式的解集为不等式的解集为所以不等式组的解集为故选D【点睛】此题考查了一次函数与不等式的关系,涉及了不等式组的解集,熟练掌握一次函数与不等式的关系是解题的关键.5、若直线向上平移a个单位后,与直线的交点在第一象限,则符合条件的a值可以是___________ .(写出满足题意的一个值)知识点:一元一次不等式组【答案】2 (答案不唯一)【分析】直线向上平移a 个单位后可得:y=−2x +a,求出直线y=−2x +a与直线的交点,再由此点在第一象限可得出a的取值范围,进而即可求解.【详解】解:直线向上平移a个单位后可得:y=−2x +a,联立两直线解析式得:,解得:,即交点坐标为(,),∵ 交点在第一象限,∴,解得:a>1 .∴a可取2 ,故答案为2 .【点睛】本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横坐标大于0 、纵坐标大于 0 .6、在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对相好点.(1 )如图 1 ,已知点A(1 , 3 ),B(4 , 3 ).① 设点O与线段AB上一点的距离为d,则d的最小值为___________ ,最大值为 ___________ .② 在P1(2.5 , 0 ),P2(2 , 4 ),P3(-2 , 0 )这三个点中,与点O是线段AB的一对相好点的是_____________ .(2 )直线平行AB所在的直线,且线段AB上任意一点到直线的距离都是1 ,若点C(x,y)是直线上的一动点,且点C与点O是线段AB的一对相好点,求x的取值范围.知识点:一元一次不等式组【答案】(1 )①;5 ;②;(2 )或.【分析】(1 )根据平面直角坐标系内两点间的距离公式,即可求解;(2 )根据相好点的定义,即可求解;(3 )根据相好点的定义,得到,,设,求出x的取值范围,即可求解.【详解】解:(1 )① 由题意可得:,,∴d的最小值为,最大值为5 ;② 如图① ,∵P1(2.5 , 0 ),P2(2 , 4 ),P3(-2 , 0 ),点P1(2.5 , 0 )到线段AB的最小距离为3 ,最大距离为,∴ 在线段AB上存在点到P1的距离等于O到AB的距离,即点P1与点O是线段AB的一对相好点,P2(2 , 4 )到AB的最大距离为,∴ 在线段AB上存在点到P1的距离等于O到AB的距离,即点P2与点O不是线段AB的一对相好点, P3(-2 , 0 )到线段AB的最小距离为,∴ 在线段AB上存在点到P3的距离等于O到AB的距离,即点P3与点O是线段AB的一对相好点,∴ 与点O是线段AB的一对相好点的是;(3 )∵ 直线平行AB所在的直线,且线段AB上任意一点到直线的距离都是1 ,∴ 直线l为y =4 或y =2 ,∵ 点C与点O是线段AB的一对相好点,,,当,,即,,设,当点C在y =4 上时,则,解得:,当,即,,则,解得:,同理,当点C在y =2 上时,或,综上所述,x的取值范围或.【点睛】本题主要考查了平面直角坐标系内两点间的距离,解不等式组,理解新定义是解题的关键.7、若关于的一元一次不等式组恰有3 个整数解,且一次函数不经过第三象限,则所有满足条件的整数的值之和是()A .B .C . 0D . 1知识点:一元一次不等式组【答案】C【分析】根据关于x的一元一次不等式组恰有3 个整数解,可以求得a的取值范围,再根据一次函数不经过第三象限,可以得到a的取值范围,结合不等式组和一次函数可以得到最后a的取值范围,从而可以写出满足条件的a的整数值,然后相加即可.【详解】解:由不等式组,得,∵ 关于x的一元一次不等式组恰有3 个整数解,∴,解得-3 <a ≤1 ,∵ 一次函数y = (a -2 )x +a +1 不经过第三象限,∴a -2 < 0 且a +1≥0 ,∴-1≤a<2 ,又∵-3 <a ≤1 ,∴-1≤a ≤1 ,∴ 整数a的值是-1 , 0 , 1 ,∴ 所有满足条件的整数a的值之和是:-1+0+1=0 ,故选:C .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,求出a的取值范围,利用一次函数的性质和不等式的性质解答.8、不等式组的整数解为___ .知识点:一元一次不等式组【答案】2【分析】分别解两个不等式取公共解,再根据解集求得整数解.【详解】解:解不等式得,,解不等式得,,∴ 该不等式的解集为:,整数解为2 ,故答案为:2 .【点睛】本题考查解不等式组.解不等式组其实就是分别解两个不等式,取公共解集.9、已知点在第四象限,则的取值范围是______ .知识点:一元一次不等式组【答案】【分析】根据直角坐标系、一元一次不等式组的性质计算,即可得到答案.【详解】∵ 点在第四象限∴∴∴故答案为:.【点睛】本题考查了直角坐标系、一元一次不等式组的知识;解题的关键是熟练掌握象限、一元一次不等式组的性质,从而完成求解.10、不等式组的解集是,则可能的值是()A . 3B . 4C . 5D . 6知识点:一元一次不等式组【答案】A【分析】根据不等式组的解集是,可得m的取值范围为1 -m ≥ ﹣ 2 ,即可解答.【详解】解:∵1 -x>m,∴ -x>m-1 ,∴x<1 -m,∵ 不等式组的解集是,∴1 -m ≥ ﹣ 2 ,解得:m ≤3 ,故m可取3 ,故选:A【点睛】本题考查了一元一次不等式组的解的定义,解此类题是要先用字母m表示出不等式组的解集,然后根据已知解集,同大取大,同小取小.11、从不等式组的所有整数解中任取一个数,它是偶数的概率是________知识点:一元一次不等式组【答案】【分析】首先求得不等式组的所有整数解,然后由概率公式求得答案.【详解】解:∵,由① 得:x ≥1 ,由② 得:x ≤5 ,∴ 不等式组的解集为:1≤x ≤5 ,∴ 整数解有: 1 , 2 , 3 , 4 , 5 ;∴ 它是偶数的概率是.故答案为:.【点睛】此题考查了概率公式的应用以及不等式组的解集.用到的知识点为:概率=所求情况数与总情况数之比.12、对于任意实数m、n,定义一种运算m ※n=mn﹣m﹣n +3 ,例如:3※5 =3×5 ﹣ 3 ﹣ 5+3 = 10 .请根据上述定义解决问题:若a<4※x<7 ,且解集中有三个整数解,则整数a的取值可以是_________ .知识点:一元一次不等式组【答案】【分析】利用题中的新定义列出不等式组,求出解集即可确定出a 的范围.【详解】根据题中的新定义化简得:a ≤4x -4−x+3 < 7 ,整理得:,即<x<,由不等式组有3 个整数解,即为2 , 1 , 0 ,所以解得-4<a <-1所以a可取的正数解有:-4 , -3 , -2故答案为:-4 , -3 , -2【点睛】此题考查了一元一次不等式组的整数解,实数的运算,以及一元一次不等式的整数解,熟练掌握运算法则是解本题的关键.13、解不等式组,并把解集在数轴上表示出来.知识点:一元一次不等式组【答案】,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:由②得:所以不等式组的解为.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握解一元一次不等式.14、三边长均为整数的三角形周长为50 ,其最长边是最短边的 2 倍长,则最短边长是 __ .知识点:一元一次不等式组【答案】11 或 12【分析】设最短边长为,最长的边长为,则第三边长为,根据三角形三边关系即可得.【详解】解:设最短边长为,最长的边长为,则第三边长为,该三角形三边的关系有,解得:,三边长均为整数,最短的边长为11 或 12 ,故答案为:11 或 12 .【点睛】本题考查了三角形三边关系,解题的关键是熟记三角形三边关系.15、已知关于x的不等式组无实数解,则a的取值范围是()A .B .C .D .知识点:一元一次不等式组【答案】D【分析】首先解出两个不等式,根据题目该不等式组无实数解,那么两个解集没有公共部分,列出关于a的不等式,即可求解.【详解】解:解不等式得,,解不等式得,,∵该不等式组无实数解,∴,解得:,故选:D .【点睛】本题考查了不等式的解法和不等式组解集的确定,解题关键是熟练掌握不等式解集的确定,即“大大取大,小小取小,大小小大中间找,大大小小无解了”.16、若关于x的不等式组有解,则a的取值范围是()A .B .C .D .知识点:一元一次不等式组【答案】D【分析】根据不等式组有解,可以得到关于a的不等式,从而可以求得a的取值范围.【详解】解:由不等式组可得,∵不等式组有解,∴>-1 ,解得a>-2 ,故选:D .【点睛】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.17、已知关于x、y的方程ax-3y=4 ,给出以下结论:①将方程化为y=kx+m的形式,则m=;②若是方程ax-3y=4 的解,则a=-8 ;③当a=5 时,方程满足- 10≤x ≤10 的整数解有 7 个;④当a=-2 且- 2 <x ≤1 时,y的取值范围为-2 <y ≤0 .其中正确的结论是()A .①②B .②③C .②④D .③④知识点:一元一次不等式组【答案】B【分析】①将方程ax -3y =4 化为y =kx +m的形式即可判断;②将代入ax -3y =4 ,求得a的值即可判断;③求得整数解即可判断;④把x =-2 代入得,y =0 ,把x =1 代入得,y =-2 ,即可得到当 -2 <x ≤1 时, -2≤y<0 ,即可判断.【详解】解:①将方程ax -3y =4 化为y =kx +m的形式,得到y =x -,∴m =-,故错误;②将代入ax -3y =4 得, -2a -12=4 ,∴a =-8 ,故正确;③当a =5 时,方程为 5x -3y =4 ,∴y =,∵-10≤x ≤10 ,∴方程的整数解有或或或或或或,共7 个,故正确;④当a =-2 ,方程为 -2x -3y =4 ,∴y =-x -,把x =-2 代入得,y =0 ,把x =1 代入得,y =-2 ,∴当 -2 <x ≤1 时, -2≤y<0 ,故错误;故选:B .【点睛】本题考查了二元一次方程的解;解一元一次不等式组,熟练掌握等式的性质是解题的关键.18、已知表示不超过的最大整数,例如.若,则的取值范围是()A .B .C .D .知识点:一元一次不等式组【答案】A【分析】根据表示不超过的最大整数,由得,解之即可.【详解】解:若,则,解得:2 <x ≤5 ,故选:A .【点睛】本题主要考查解一元一次不等式组,根据取整函数的定义得出关于x的不等式组是解题的关键.19、请写出一个解集是的不等式组______________ .知识点:一元一次不等式组【答案】(答案不唯一)【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”求解即可.【详解】解:根据解集,构造的不等式组为.故答案是:(答案不唯一).【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.20、(1 )解方程组:(2 )解不等式组:知识点:一元一次不等式组【答案】(1 );(2 )【分析】(1 )根据加减消元法可以解答此方程组;(2 )先解出每个不等式的解集,即可得到不等式组的解集.【详解】解:(1 )①+②×2 ,得 13x =13 ,解得x =1 ,将x =1 代入①,得y =,故原方程组的解是;(2 ),解不等式①,得x ≥0 ,解不等式②,得x<5 ,故原不等式组的解集是0≤x<5 .【点睛】本题考查了解一元一次不等式组、解二元一次方程组,解答本题的关键是明它们各自的解答方法.。
9.2 一元一次不等式(1).doc
9.2 一元一次不等式第1课时 一元一次不等式活动一. 知识点1.含有________个未知数,未知数的次数是________的不等式,叫做一元一次不等式.2.类比一元一次方程的解法步骤,掌握一元一次不等式的解法步骤:(1)去分母;(2)______;(3)移项;(4)合并同类项;(5)____________.活动二. 典例精讲知识点1:一元一次不等式的定义例1.下列不等式中哪一个不是一元一次不等式( )A .x >3B .-y +1>y C.1x>2 D .2x >1 知识点2:一元一次不等式的定义和其解法例2.若(m +1)x |m |+2>0是关于x 的一元一次不等式,则m 的取值是________,此不等式的解集为________.知识点3:解一元一次不等式例3.解不等式:(1) 3x -1>5+x . (2)3(x -1)>2x +2.练习:1.下列不等式中哪一个不是一元一次不等式( )A .3x -2>4B .2y >4C .2x<5 D .2<3x +17 2.若(m -2)x 2m +1-1>5是关于x 的一元一次不等式,则该不等式的解集为________.活动三 . 基础巩固1.下列不等式是一元一次不等式的是( )A .2(1-y )+y >4y +2B .x 2-2x -1<0C .12+13>16D .x +1<x +2 2.不等式2x <4的解集是( )A .x >2B .x <2C .x >-2D .x <-23.不等式12x +1<3的正整数解有( ) A .1个 B .2个 C .3个 D .4个4.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.解不等式:(1)5x +3<3(2+x ). (2)2(x +1)-1≥3x +2.(3)5x +15>4x -1. (4)-2x +2<x +17.活动四. 课堂反馈6.不等式13(x -m )>2-m 的解集为x >2,则m 的值为( ) A .4 B .2 C .32 D .127.若12x 2m -1-8>5是关于x 的一元一次不等式,则m =________.8.不等式5x -12≤2(4x -3)的负整数解是____________.9.已知不等式12x -3≥2x 与不等式3x -a ≤0解集相同,则a =________.10.关于x 的方程ax =3x -5有负数解,则a 的取值范围是________.培优训练11.已知x =12是方程6(2x +m )=3m -6的解,求关于x 的不等式mx +2>m (1-2x )的解集.。
人教版七年级下册9.2一元一次不等式实际问题(利润、和差倍分)练习
9.2 一元一次不等式实际问题(利润、和差倍分)班级:__________ 姓名:__________ 分数:__________一、选择题1. 某种商品的进价为元,标价为元,后由于该商品积压,商店准备打折销售,要保证利润率不低于,该种商品最多可打( )A.九折B.八折C.七折D.六折2. 某种商品的进价为元,出售时标价为元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于,则最低可打()A.折B.折C.折D.折3. 某品牌电脑的成本为元,售价为元,该商店准备举行打折促销活动,要求利润率不低于,如果将这种品牌的电脑打折销售,则下列不等式中能正确表示该商店的促销方式的是()A. B.C. D.4. 某商店将定价为元的商品,按下列方式优惠销售:若购买不超过件,按原价付款;若一次性购买件以上,超过部分打八折.小聪有元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品件,则根据题意,可列不等式为A. B.C. D.5. 的倍与的差不大于,用不等式表示为()A. B.C. D.6. 关于下列问题的解答,错误的是()A.的倍不小于的,可表示为B.的与的和是非负数,可表示为C.是非负数,可表示为D.是负数,可表示为7. 若的倍与的和比的倍小,则下列式子中表达正确的是()A. B.C. D.8. 若式子的值大于式子的值,则的值()A.大于B.小于C.等于D.无法确定9. “的倍与的和不大于与的差”用不等式表示为________.10. 用不等式表示,比的倍大的数不小于的与的差________.二、填空题11. 的倍与的差不小于,用不等式表示为________.12. 商家以元每千克的价格购进千克苹果,销售中有的苹果正常损耗,为不亏本商家售价为元每千克,可列不等式________.13. 若一件商品的进价为元,标价为元,商店要求以利润率不低于的售价打折出售,设打折,那么列出的不等式为________.三、解答题14. 用适当的不等式表示下列数量关系:(1)减去大于;(2)的倍与的差是负数;(3)的倍与的和是非负数;(4)的倍与的差不大于.15. 一种电子琴每台进价为元,如果商店按标价的八折销售,所得利润仍不低于实际售价的,那么每台电子琴的标价不得低于多少元?16. 某服装店准备购进甲乙两种服装,甲种每件进价元,售价元;乙种每件进价元,售价元,计划购进两种服装共件,其中甲种服装不少于件.若购进这件服装的费用不得超过元,则甲种服装最多购进多少件?在的条件下,该服装店在国庆节当天对甲种服装以每件优惠元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?17. 某商场经营某种新型电子产品,购进时的价格为元/件,根据市场预测,在一段时间内,销售价格为元/件时,销售量为件,销售单价每降低元,就可多售出件.写出销售量(件)与销售单价(元/件)之间的函数关系式;写出销售该产品所获利润(元)与销售单价(元/件)之间的函数关系式,并求出商场获得的最大利润;若商场想获得不低于元的利润,同时要完成不少于件的该产品销售任务,该商场应该如何确定销售单价?参考答案9.2 一元一次不等式实际问题(利润、和差倍分)一、选择题1.【答案】A2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】A7.【答案】C8.【答案】B二、填空题9.【答案】10.【答案】11.【答案】12.【答案】13.【答案】三、解答题(本题共计 4 小题,每题 10 分,共计40分)14.【答案】解:(1)由题意可得:;(2)由题意可得:;(3)由题意可得:;(4)由题意可得:.15.【答案】解:设电子琴每台标价为元,那么售出一台电子琴所得的利润不低于元,根据题意,得,解这个不等式,得.经检验,不等式的解符合题意,所以,每台电子琴的标价不低于元.16.【答案】解:设购进甲种服装件,由题意可知:解得:,又∵甲种服装不少于件,即,∴,答:甲种服装最多购进件.设总利润为元,∵甲种服装不少于件,∴,,方案:当时,,随的增大而增大,所以当时,有最大值,则购进甲种服装件,乙种服装件;方案:当时,所有方案获利相同,所以按哪种方案进货都可以;方案时,,随的增大而减小,所以当时,有最大值,则购进甲种服装件,乙种服装件.17.【答案】解:由题意得:故销售量(件)与销售单价(元)之间的函数关系式为;,因为,所以当时,.故商场获得的最大利润为元当时,解得由二次函数的性质可知,当时,商场销售利润不低于元,又同时要完成不少于件的产品销售任务,则,解得,.答:销售价格应该在到元之间.。
初中数学《七下》第九章 不等式与不等式组-一元一次不等式 考试练习题
初中数学《七下》第九章不等式与不等式组-一元一次不等式考试练习题姓名:_____________ 年级:____________ 学号:______________l 知识点:一元一次不等式【答案】(1 )y1=100+10x,y2=18x;(2 )办VIP不划算,理由见解析;(3 ) 13【分析】(1 )先求出打折后单次的价格,再根据方案一、方案二,表示题中的数量关系,即可列出函数关系式;(2 )将x=10 代入(1 )中的函数关系式,即可求出方案一及方案二的费用,继而判断是否需要办VIP;(3 )根据题意可得 100+10x<18x,进而解不等式即可求得答案.【详解】解:(1 )根据题意可得:20×50% = 10 (元 / 次),20×90% = 18 (元 / 次),∴y1=100+10x,y2=18x,(2 )办VIP不划算,理由如下:当x=10 时,方案一的费用为y1=100+10×10 = 200 ,方案二的费用为y2=18×10 = 180 ,∵200 > 180 ,∴y1>y2,∴ 办VIP不划算;(3 )由题意可得:y1<y2,∴100+10x<18x,解得:x>12.5 ,∴x的最小整数解为13 ,∴ 去俱乐部健身至少 13 次办VIP卡才合算,故答案为:13 .【点睛】本题考查了一次函数与一元一次不等式的实际应用,体现了数学来源于生活又服务于生活,考查了学生的运算能力,应用能力等,本题关键在于能够用函数关系式表示量与量之间的关系,并进行比较,做出独立判断.2、解不等式组请结合题意填空,完成本题的解答.(1 )解不等式① ,得 _______________ ;(2 )解不等式② ,得 ________________ ;(3 )把不等式① 和② 的解集在数轴上表示出来:(4 )原不等式组的解集为 ____________.知识点:一元一次不等式【答案】(1 );(2 );(3 )见解析;(4 ).【分析】直接解一元一次不等式组即可得解.【详解】解:解不等式① ,得,;解不等式② ,得;把不等式① 和② 的解集在数轴上表示如解图:原不等式组的解集为:.故答案为:(1 );(2 );(3 )见上图;(4 ).【点睛】本题考查的知识点是解一元一次不等式组,属于容易题目,失分原因:(1 )移项时未变号导致出错;(2 )解不等式时出错;(3 )在数轴上表示解集时,未能掌握“<” 和“>” 在数轴上表示为空心圆圈,“≤” 和“≥” 在数轴上表示为实心圆点;(4 )不会确定不等式组的解集.3、不等式组的解集在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】D【分析】分别求出每一个不等式的解集,再将解集表示在同一数轴上即可得到答案.【详解】解:解不等式① ,得:x ≥-1 ,解不等式② ,得:x<2 ,将不等式的解集表示在同一数轴上:所以不等式组的解集为-1≤x<2 ,故选:D .【点睛】本题考查的是解一元一次不等式组,关键是正确求出每一个不等式解集,并会将解集表示在同一数轴上.4、若三角形的两边长分别为3 和 5 ,则第三边m的值可能是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,列出不等式组,进而结合选项求得第三边的值.【详解】三角形的两边长分别为3 和 5 ,第三边m故选B【点睛】本题考查了根据三角形三边关系确定第三边的范围,掌握三角形的三边关系是解题的关键.5、定义新运算“” ,规定:.若关于x的不等式的解集为,则m的值是()A .B .C . 1D . 2知识点:一元一次不等式【答案】B【分析】题中定义一种新运算,仿照示例可转化为熟悉的一般不等式,求出解集,由于题中给出解集为,所以与化简所求解集相同,可得出等式,即可求得m.【详解】解:由,∴,得:,∵解集为,∴∴,故选:B .【点睛】题目主要考查对新运算的理解、不等式的解集、一元一次方程的解等,难点是将运算转化为所熟悉的不等式.6、城乡学校集团化办学已成为西宁教育的一张名片.“ 五四” 期间,西宁市某集团校计划组织乡村学校初二年级 200 名师生到集团总校共同举办“ 十四岁集体生日” .现需租用A,B两种型号的客车共10 辆,两种型号客车的载客量(不包括司机)和租金信息如下表:若设租用A型客车x辆,租车总费用为y元.(1 )请写出y与x的函数关系式(不要求写自变量取值范围);(2 )据资金预算,本次租车总费用不超过 11800 元,则A型客车至少需租几辆?(3 )在(2 )的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案.知识点:一元一次不等式【答案】(1 );(2 ) 1 辆;(3 )租车方案有 3 种:方案一:A型客车租1 辆,B型客车租9 辆;方案二:A型客车租2 辆,B型客车租8 辆;方案三:A型客车租3 辆,B 型客车租7 辆;最省钱的租车方案是A型客车租3 辆,B型客车租7 辆【分析】(1 )根据租车总费用=每辆A型号客车的租金单价× 租车辆数+每辆B型号客车的租金单价× 租车辆数,即可得出y与x之间的函数解析式,再由全校共200 名师生需要坐车及x ≤10 可求出x的取值范围;(2 )由租车总费用不超过 11800 元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案;(3 )由题意得出,求出x的取值范围,分析得出即可.【详解】解:(1 ),∴;(2 )根据题意,得:,解得,∵x应为正整数,∴∴A型客车至少需租1 辆;(3 )根据题意,得,解得,结合(2 )的条件,,∵x应为正整数,∴x取1 , 2 , 3 ,∴ 租车方案有 3 种:方案一:A型客车租1 辆,B型客车租9 辆;方案二:A型客车租2 辆,B型客车租8 辆;方案三:A型客车租3 辆,B型客车租7 辆.∵,∴y随x的增大而减小,∴ 当时,函数值y最小,∴ 最省钱的租车方案是A型客车租3 辆,B型客车租7 辆【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.7、春平中学要为学校科技活动小组提供实验器材,计划购买A 型、 B 型两种型号的放大镜.若购买 8 个A 型放大镜和 5 个B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1 )求每个 A 型放大镜和每个 B 型放大镜各多少元;(2 )春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总费用不超过 1180 元,那么最多可以购买多少个 A 型放大镜?知识点:一元一次不等式【答案】(1 )每个 A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )最多可以购买 35 个 A 型放大镜.【详解】分析:(1 )设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,列出方程组即可解决问题;(2 )由题意列出不等式求出即可解决问题.详解:(1 )设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,可得:,解得:,答:每个A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )设购买 A 型放大镜 m 个,根据题意可得:20a+12× (75-a )≤1180 ,解得:x≤35 ,答:最多可以购买35 个 A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.8、春平中学要为学校科技活动小组提供实验器材,计划购买A 型、 B 型两种型号的放大镜.若购买 8 个A 型放大镜和 5 个B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1 )求每个 A 型放大镜和每个 B 型放大镜各多少元;(2 )春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总费用不超过 1180 元,那么最多l ,解得:,答:每个A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )设购买 A 型放大镜 m 个,根据题意可得:20a+12× (75-a )≤1180 ,解得:x≤35 ,答:最多可以购买35 个 A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.9、不等式2x ﹣ 1 > 3 的解集为 _____ .知识点:一元一次不等式【答案】x > 2【详解】解:移项得:2x > 3+1 ,合并同类项得:2x > 4 ,不等式的两边都除以2 得x > 2 ,∴ 不等式 2x ﹣ 1 > 3 的解集为 x > 2 .10、不等式﹣4x﹣1≥ ﹣ 2x+1 的解集,在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】D【分析】不等式移项,合并,把x系数化为1 ,求出解集,表示在数轴上即可.【详解】解:不等式﹣4x﹣1≥ ﹣ 2x+1 ,移项得:﹣4x+2x ≥1 + 1 ,合并得:﹣2x ≥2 ,解得:x ≤ ﹣ 1 ,数轴表示,如图所示:故选:D.【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.11、不等式组的解集,在数轴上表示正确的是()A. B .C .D .知识点:一元一次不等式【答案】C【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以解答本题.【详解】解:,由① 得:,由② 得:,故原不等式组的解集为:,故选:C .【点睛】本题主要考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解不等式组的方法.12、不等式的解集是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】按照解不等式步骤:移项,合并同类项,系数化为1 求解.【详解】解:,,,.故选:B.【点睛】本题考查解不等式,熟练掌握不等式的基本性质是解题关键.13、若点在一次函数的图象上,且,则的取值范围为__ .知识点:一元一次不等式【答案】【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m −n>2 ,即可得出b<−2 ,此题得解.【详解】解:点在一次函数的图象上,,即:.,,即.故答案是:.【点睛】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征并结合不等式是解题的关键.14、我市对居民生活用水实行“ 阶梯水价” .小李和小王查询后得知:每户居民年用水量 180 吨以内部分,按第一阶梯到户价收费;超过 180 吨且不超过 300 吨部分,按第二阶梯到户价收费;超过 300 吨部分,按第三阶梯到户价收费.小李家去年 1~9 月用水量共为 175 吨, 10 月、 11 月用水量分别为 25 吨、 22 吨,对应的水费分别为 118.5 元、 109.12 元.(1 )求第一阶梯到户价及第二阶梯到户价(单位:元 / 吨);(2 )若小王家去年的水费不超过 856 元,试求小王家去年年用水量的范围(单位:吨,结果保留到个位).知识点:一元一次不等式【答案】(1 )第一阶梯 3.86 元 / 吨,第二阶梯 4.96 元 / 吨;(2 )不超过 212 吨【分析】(1 )设第一阶梯到户价为x元,第二阶梯到户价为y元,然后根据10 月和 11 月的收费列出方程组求解即可;(2 )设小王甲去年的用水量为m,由于,则m<300 ,然后不等式求解即可.【详解】解:(1 )设第一阶梯到户价为x元,第二阶梯到户价为y元,由题意得:解得,∴ 第一阶梯到户价为 3.86 元,第二阶梯到户价为 4.96 元,答:第一阶梯到户价为3.86 元,第二阶梯到户价为 4.96 元;(2 )设小王甲去年的用水量为m,∵,∴ 当m小于180 是符合题意∵,∴m<300当180≤m <300,解得,∴ 小王家去年年用水量不超过 212 吨,答:小王家去年年用水量不超过212 吨.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次不等式的实际应用,解题的关键在于能够根据题意找到数量关系式进行求解.15、为庆祝中国共产党成立周年,某校组织了党史知识竞赛,共道题,记分规则为:若答对,每题记分;若答错或不答,每题记分.小明的参赛目标是超过分,则他至少要答对_______ 道题.l ∴x可取的最小值为18 .故答案为:18 .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16、不等式的解集是()A .x ≤4B .x ≥4C .x ≤1D .x=1知识点:一元一次不等式【答案】A【分析】通过移项,合并同类项,未知数系数化为1 ,即可求解.【详解】解:,移项得:,解得:,故选A .【点睛】本题主要考查解一元一次不等式,掌握“ 移项,合并同类项,未知数系数化为1” 是解的关键.17、关于的不等式的解集是___________ .知识点:一元一次不等式【答案】【分析】先去分母,再移项,最后把未知数的系数化“” ,即可得到不等式的解集.【详解】解:去分母得:>移项得:故答案为:【点睛】本题考查的是一元一次不等式的解法,掌握解不等式的方法是解题的关键.18、小美打算买一束百合和康乃馨组合的鲜花,在“ 母亲节” 祝福妈妈.已知买 2 支百合和 1 支康乃馨共需花费 14 元, 3 支康乃馨的价格比 2 支百合的价格多 2 元.(1 )求买一支康乃馨和一支百合各需多少元?(2 )小美准备买康乃馨和百合共 11 支,且百合不少于 2 支.设买这束鲜花所需费用为元,康乃馨有支,求与之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.知识点:一元一次不等式【答案】(1 )买一支康乃馨需 4 元,一支百合需 5 元;(2 ),,当购买康乃馨9 支,百合 2 支时,所需费用最少,最少费用为 46 元.【分析】(1 )设买一支康乃馨需x元,一支百合需y元,然后根据题意可得,进而求解即可;(2 )由(1 )及题意可直接列出与之间的函数关系式,进而可得,然后根据一次函数的性质可进行求解.【详解】解:(1 )设买一支康乃馨需x元,一支百合需y元,由题意得:,解得:,答:买一支康乃馨需4 元,一支百合需 5 元.(2 )由(1 )及题意得:百合有(11-x)支,则有,,∵ 百合不少于 2 支,∴,解得:,∵-1 < 0 ,∴w随x的增大而减小,∴ 当x =9 时,w取最小值,最小值为,∴ 当购买康乃馨 9 支,百合 2 支时,所需费用最少,最少费用为 46 元.【点睛】本题主要考查一次函数的应用及一元一次不等式与二元一次方程组的应用,熟练掌握一次函数的应用及一元一次不等式与二元一次方程组的应用是解题的关键.19、2021 年是中国共产党建党 100 周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送 549 名学生和 11 名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1 )共需租 ________ 辆大客车;(2 )最多可以租用多少辆甲种型号大客车?(3 )有几种租车方案?哪种租车方案最节省钱?知识点:一元一次不等式【答案】(1 ) 11 ;(2 ) 3 辆;(3 ) 3 种,租用 3 辆甲种型号大客车, 8 辆乙种型号大客车最节省钱.【分析】(1 )根据学生和老师的总人数、乙种客车的载客量,以及每辆汽车上至少要有一名教师进行计算即可得;(2 )设租用辆甲种型号大客车,从而可得租用辆乙种型号大客车,根据甲、乙两种型号的大客车的载客量、学生和老师的总人数建立不等式,解不等式求出的取值范围,再结合且为正整数即可得;(3 )根据(2 )中的取值范围可得出租车方案,再分别求出各租车方案的费用即可得.【详解】解:(1 )(辆)(人),(辆),共需租11 辆大客车,故答案为:11 ;(2 )设租用辆甲种型号大客车,则租用辆乙种型号大客车,由题意得:,解得,因为且为正整数,所以最多可以租用3 辆甲种型号大客车;(3 )由(2 )可知,租用甲种型号大客车的辆数可以为辆,则有三种租车方案:① 租用 1 辆甲种型号大客车, 10 辆乙种型号大客车;② 租用 2 辆甲种型号大客车, 9 辆乙种型号大客车;③ 租用 3 辆甲种型号大客车, 8 辆乙种型号大客车;方案① 的费用为(元),方案② 的费用为(元),方案③ 的费用为(元),所以租用3 辆甲种型号大客车, 8 辆乙种型号大客车最节省钱.【点睛】本题考查了一元一次不等式的实际应用,正确建立不等式是解题关键.20、不等式的解集在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】求出不等式的解集,再根据“ 大于向右,小于向左,不包括端点用空心,包括端点用实心” 的原则将解集在数轴上表示出来.【详解】解:解不等式,去分母得:,去括号得:,移项合并得:,系数化为得:,表示在数轴上如图:故选:B .【点睛】本题考查的是解一元一次不等式以及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥ 向右画;<,≤ 向左画),在表示解集时“≥” ,“≤”要用实心圆点表示;“ <” ,“ >” 要用空心圆点表示.。
七年级下册《9.2 一元一次不等式》教案、导学案、同步练习
《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
【教学重点】:熟练并准确地解一元一次不等式。
【教学难点】:熟练并准确地解一元一次不等式。
【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
人教版数学七年级下册第九章9.2 实际问题与一元一次不等式课时同步训练
第九章 不等式与不等式组9.2 实际问题与一元一次不等式第1课时(共2课时)课前预习篇1.列不等式解应用题与列方程解应用题的步骤相同,所不同的是前者是不等关系,列出的是不等式,后者相等关系,列出的是方程.2.列不等式解应用题的关键是找出不等关系.找不等关系要抓住像“大于”、“不小于”、“超过”、“不足”、“至少”等表示不等关系的词语.典例剖析篇【例1】(2009威海)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【解析】 本题考查列一元一次方程和不等式的应用.(1)本题的不等关系是购买三种电冰箱的总金额不超过132 000元,根据这一关系列出不等式可求解.(2)根据购买甲种电冰箱的台数不超过丙种电冰箱的台数可列出不等式,再结合(1)中结果即可得出购买方案. 解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式:120021600(803)2000132000x x x ⨯++-⨯≤.解这个不等式,得14x ≥.所以至少购进乙种电冰箱14台.(2)根据题意,得2803x x -≤.解这个不等式,得16x ≤.由(1)知14x ≥.所以1416x ≤≤.又因为x 为正整数,所以141516x =,,.所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台;方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台;方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.基础夯实篇1.从甲地到乙地有30千米,某人以10千米/时~15千米/时的速度由甲到乙,则他用的时间大约为( B )A .1小时~2小时B .2小时~3小时C .3小时~4小时D .2小时~4小时2.重庆市区出租车的收费标准:起步价是5元(即行使距离不超过3千米都须付5元车费),超过3千米以后,每增加1千米,加收1.8元(不足1千米按1千米计),另外,每次乘车要加收3元的燃油附加费.王老师乘出租车从家到学校刚好付车费17元,那么他家到学校的路程的最大值是( C )A .5千米B .7千米C .8千米D .15千米3.(2009 佛山)据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( D )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤4.(2009乌鲁木齐)某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 500.31200x +≤ .5.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?解:设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5 解得29.5<x<32因为x 为整数,所以x=30或x=31当x=30时,(3x+59)=149当x=31时,(3x+59)=152答:有30只猴子,149只桃子或有31只猴子,152只桃子.决胜中考篇6.(2010牡丹江)在“老年前”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加.旅行前,旅 行社承诺每车保证有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,甲种客车载客量为40人/辆,乙种客车载客量为30人/辆.(1)请帮助旅行社设计租车方案;(2)若甲种客车租金350元/辆,乙种客车租金为280元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45座和30座的大小两种客车.大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20座上座率,请直接写出旅行社的租车方案.(1)解:设租甲种客车x 辆,设租乙种客车(7-x )辆有40x+30×(7-x)≥253+7且x≤7得5≤x≤7因为x为整数,所以x可取5、6或7故有如下三种租车方案:方案(一)甲种客车7辆;方案(二)甲种客车6辆,乙种客车1辆;方案(三)甲种客车5辆,乙种客车2辆(2)设租金为y元,则y=350x+280×(7-x)=70x+1960因为70>0,所以y随x的增大而增大故最省钱方案是方案(三),此时最少租金2310元(3)方案(一)租大客车4辆,小客车3辆;方案(二)租大客车2辆,小客车6辆;7.(2010济南)某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.解:(1)设商品进了x件,则乙种商品进了(80-x)件,依题意得10x+(80-x)×30=1600 解得:x=40即甲种商品进了40件,乙种商品进了80-40=40件.(2)设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:600≤(15-10)x+(40-30)(80-x)≤610解得:38≤x≤40∵x为整数,∴x取38,39,40,∴80- x为42,41,40即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件.8.(2009凉山州)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)解:设至少涨到每股x元时才能卖出.根据题意得1000(50001000)0.5%50001000x x-+⨯+≥,解这个不等式得1205199x≥,即 6.06x≥答:至少涨到每股6.06元时才能卖出.9.(2010南宁)2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A 地,某余货车前往B 地,且运往A 地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.解(1)设大车用x 辆,小车用y 辆.依据题意,得20x y x y +=⎧⎨⎩,15+10=240. 解得812x y =⎧⎨=⎩,.所以大车用8辆,小车用12辆.(2)设总运费为W 元,调往A 地的大车a 辆,小车)10(a -辆;调往B 地的大车)8(a -辆,小车)2(+a 辆.则()()()4201075085502a a a -+-++即:1130010+=a W (80≤≤a ,a 为整数),因为115)10(1015≥-+a a所以3≥a又因为W 随a 的增大而增大,∴当3=a 时,W 最小.当3=a 时,1133011300310=+⨯=W因此,应安排3辆大车和7辆小车前往A 地;安排5辆大车和5辆小车前往B 地.最少运费为11 330元.第2课时(共2课时)课前预习篇进一步熟悉用一元一次不等式解决实际问题.典例剖析篇【例1】 君实机械厂为青扬公司生产A 、B 两种产品,该机械厂由甲车间生产A 种产品,乙车间生产B 种产品,两车间同时生产.甲车间每天生产的A 种产品比乙车间每天生产的B 种产品多2件,甲车间3天生产的A 种产品与乙车间4天生产的B 种产品数量相同.(1)求甲车间每天生产多少件A 种产品?乙车间每天生产多少件B 种产品?(2)君实机械厂生产的A 种产品的出厂价为每件200元,B 种产品的出厂价为每件180元.现青扬公司需一次性购买A 、B 两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A 、B 两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案.【解析】 本题考查列一元一次方程和不等式的应用.(1)此题是求每天生产A 种和B 种产品各多少件,设出未知数,列出方程,就可求解.(2)只要能把购买产品的费用表示出来,然后把费用超过15000元而不超过15080元用不等式表示,求出解,再根据公司8天的生产能力,确定购买方案.解:(1)设乙车间每天生产x 件B 种产品,则甲车间每天生产(x+2)件A 种产品,根据题意得:3(x+2)=4x 解得:x=6. 所以x+2=8答:甲车间每天生产8件A 种产品,乙车间每天生产6件B 种产品.(2)设青扬公司购买B 种产品m 件,则购买A 种产品(80-m)件,则根据题意得: 15000<200(80-m)+180m ≤15080 解得: 46≤x <50因为m 为整数,所以m=46或47或48或49,又因为乙车间8天最多生产48件,所以m=46或47或48.所以有三种购买方案:购买A 种产品32件,B 种产品48件;购买A 种产品33件,B 种产品47件;购买A 种产品34件,B 种产品46件.【点评】本题综合了一元一次方程和一元一次不等式,解题时要弄清题目中的已知条件,本题第二小题具有一定的区分度.基础夯实篇1.3个连续正整数的和不大于15,则符合条件的自然数有( C )A .2组B .3组C .4组D .5组2.(2010齐齐哈尔)现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( B )A .3种B .4种C .5种D .6种3.(2009莆田)一罐饮料净重500 g ,罐上注有“蛋白质含量≥0.4%,则这罐饮料中蛋白质的含量至少为___2__g .4.某商贩去菜市场买西红柿.他上午买了30 kg ,价格为x 元/kg ,下午他又买了20kg ,价格为y 元/kg .后来他以2y x +元/kg 的价格卖完后,结果发现自己赔了钱.其原因是( B ) A .y x B .y x C .y x ≤ D .y x ≥ 5.小明一家三口准备参加旅行团外出旅行,甲旅行社告知:“父母买全票,小孩半价优惠”.乙旅行社告知:“家庭旅游可按团体票价,即每人均按全价的54收费”.若这两家旅行社每人的原票价相同,那么( B )A .甲比乙优惠B .乙比甲优惠C .甲与乙相同D .与票价相同6.李刚家距学校1600 m ,一天早晨由于有事耽误,结果吃完饭只差15 min 就上课了.忙中出错,出门时又忘了带书包,结果回到家取书包又耽误了3 min ,只好打车去上学.已各出租车的速度是36 km/h ,而当出租车行驶1 min 30 s 时,又遇上堵车,他等了半分钟后,路还没有畅通,于是下车又开始步行,问李刚步行速度至少是( B )时,才不至于迟到.A .60 m/minB .70 m/minC .80 m/minD .90 m/min决胜中考篇7. 某商场用2500元购进A 、B 两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.类型 价格A 型B 型 进价(元/盏) 40 65标价(元/盏) 60 100(1)这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润不少于1400元,问至少需购进B 种台灯多少盏 ?解:(1)设A 型台灯购进x 盏,B 型台灯购进y 盏.根据题意,得5040652500x y x y +=⎧⎨+=⎩ 解得:3020x y =⎧⎨=⎩ (2)设购进B 种台灯m 盏. 根据题意,得1400)50(2035≥-+m m ,解得, 380≥m 答:A 型台灯购进30盏,B 型台灯购进20盏;要使销售这批台灯的总利润不少于 1400元,至少需购进B 种台灯27盏8.(2010菏泽)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?(3)要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?解:(1)设购买甲种树苗x 棵,则购买乙种树苗为(500-x )棵,由题意得:50x +80(500-x )=28000. 解得x =400.所以500-x =100.答:购买甲种树苗400棵,购买乙种树苗100棵.(2)由题意得: 34000)500(8050≤-+x x 解得200≥x ,(注意500≤x )答:购买甲种树苗不少于200棵,其余购买乙种树苗(购买乙种树苗不多于300棵,其余购买甲种树苗也正确)(3)由题意得%92500)500%(95%90⨯≥-+x x ,解得:300≤x设购买两种树苗的费用之和为y ,则x x x y 3040000)500(8050-=-+=在此函数中,y 随x 的增大而减小,所以当300=x 时,y 取得最小值,其最小值为310003003040000=⨯-答:购买甲种树苗300棵,购买乙种树苗200棵,即可满足这批树苗的成活率不低于92%,又使购买树苗的费用最低,其最低费用为31000元.9.(2010遵义)某酒厂每天生产A 、B 两种品牌的白酒共600瓶,A 、B 两种品牌的白酒每A B 成本(元/瓶) 50 35利润(元/瓶) 2015 设每天生产A x y (1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?解:(1))y =20x +15(600-x ), 即y =5x +9000(2)根据题意得:50x +35(600-x )≥26400所以x ≥360当x =360时, y 有最小值,代入y =5x +9000得y =5×360+9000=10800所以每天至少获利10800元.10.(2010眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗? 解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000-x )尾,由题意得:3600)6000(8.05.0=-+x x解这个方程,得:4000=x所以20006000=-x答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.(2)由题意得:4200)6000(8.05.0≤-+x x解这个不等式,得:2000≥x即购买甲种鱼苗应不少于2000尾.(3)设购买鱼苗的总费用为y ,则48003.0)6000(8.05.0+-=-+=x x x y由题意,有 600010093)6000(1009510090⨯≥-+x x 解得: 2400≤x在48003.0+-=x y 中因为03.0 -,所以y 随x 的增大而减少所以当2400=x 时,4080=最小y .即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (57)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)k 取什么值时,代数式212523k k -+-的值不小于代数式674k --1的值? 【答案】k ≤12【解析】【分析】根据题意列出不等式,然后通过去分母、去括号、移项、合并、系数化为1,解不等式得到k 的取值范围.【详解】解:由题意k 应满足不等式2125671234k k k -+--≥-, 即6(2k -1)-4(2k +5)≥3(6k -7)-12,12k -6-8k -20≥18k -21-12,-14k ≥-7,k ≤12.因此,当k ≤12时,代数式212523k k -+-的值不小于代数式674k --1的值. 【点睛】考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.62.解不等式,并在数轴上表示出不等式的解集.(1)3(1-2x )>2(x -2)-1; (2)13x -≤5-x .【答案】(1) x<1;(2)x≤4.【解析】【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)3(1-2x)>2(x-2)-1,3-6x>2x-4-1,-6x-2x>-4-1-3,-8x>-8,x<1.解集在数轴上表示如下.x ≤5-x,(2)13x-1≤3(5-x),x-1≤15-3x,x+3x≤15+1,4x≤16,x≤4.解集在数轴上表示如下.【点睛】本题考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.63.若关于x 的方程()332523x x m +-+=的解是正数,求m 的取值范围. 【答案】m<-509. 【解析】【分析】由题可知关于x 的方程解为正数,进而可以列出一元一次不等式进行求解.【详解】()332523x x m +-+=,解得95015m x --=, 由关于x 的方程()332523x x m +-+=的解是正数,95015m x --=>0 m<-509. 【点睛】本题考查了解一元一次方程和解一元一次不等式,熟练掌握这两个知识点是本题解题的关键.64.解不等式组3122324x x x⎧-≥⎪⎨⎪+<⎩ 请结合题意填空,完成本题的解答:(I )解不等式(1),得 ;(II )解不等式(2),得 ;(III )把不等式(1)和(2)的解集在数轴上表示出来:(IV )原不等式组的解集为 .【答案】(I )x ≥5;(Ⅱ)x >2;(III )见解析;(Ⅳ)x ≥5.【解析】【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【详解】(I )解不等式(1),得x ≥5;(Ⅱ)解不等式(2),得x >2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为x ≥5.【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.65.(1)因式分解:m 3n ―9mn.(2)求不等式2723x x --≤的正整数解 【答案】(1)(3)(3)mn m m +-(2)1、2、3、4【解析】【分析】(1)直接提取公因式mn ,进而利用平方差公式分解因式得出答案;(3)首先去分母,进而解不等式求出答案.【详解】(1) m 3n -9mn .=()29mn m -=()223mn m - =()()33mn m m +-(2)解:3(x -2)≤2(7-x),3x -6≤14-2x ,5x ≤20,x ≤4.∴这个不等式的正整数解为1、2、3、4.【点睛】本题考查公式法以及提取公因式法分解因式和不等式的解法,解题关键是正确应用公式.66.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n >10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)【答案】(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.67.解不等式:4(23)(6)(3)(2)(5)->-----.x x x x x【答案】x>2【解析】【分析】根据多项式的四则运算,然后左右移项后合并同类项进行解不等式.【详解】8x-12>x2-9x+18-(x2-7x+10)8x-12>x2-9x+18-x2+7x-108x-12>8-2x10x>20x>2.【点睛】考查了学生对多项式运算和解不等式能力.熟练掌握不等式的解题步骤是本题的解题关键.68.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【答案】解:(1)实际应支付114元;(2)所购买商品的价格在1120元以上时,采用方案一更合算.【解析】【分析】(1)根据所购买商品的价格和折扣直接计算出实际应付的钱;(2)根据两种不同方案分别求出商品的原价与实际所付价钱的关系式,比较实际价钱,看哪一个合算再确定一个不等式,解此不等式可得所购买商品的价格范围.【详解】(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x元,由题意,得0.8x+168<0.95x,解得x>1120,所以当购买商品的价格超过1120元时,采用方案一更合算.【点睛】本题考查一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系,列出不等式,再求解.69.为培养学生的特长爱好,提髙学生的综合素质,某校音乐特色学习班准备从京东商城里一次性购买若干个尤克里里和竖笛(每个尤克里里的价格相同,每个竖笛的价格相同),购买2个竖笛和1个尤克里里共需290元;竖笛单价比尤克里里单价的一半少25元.(1)求竖笛和尤克里里的单价各是多少元?(2)根据学校实际情况,需一次性购买竖笛和尤克里里共20个,但要求购买竖笛和尤克里里的总费用不超过3450元,则该校最多可以购买多少个尤克里里?【答案】(1)竖笛的单价是60元,尤克里里的单价是170元;(2)该校最多可以购买20个尤克里里.【解析】【分析】(1)设竖笛的单价是x 元、尤克里里的单价是y 元,根据购买2个竖笛和1个尤克里里共需290元,竖笛单价比尤克里里单价的一半少25元,列出方程组,再进行求解即可得出答案;(2)设该校购买a 个尤克里里,则购买竖笛(20-a )个,根据购买竖笛和尤克里里的总费用不超过3450元建立不等式求出其解即可.【详解】(1)设竖笛的单价是x 元、尤克里里的单价是y 元,依题意有22901252x y x y +=⎧⎪⎨=-⎪⎩,解得{x60y170==.故竖笛的单价是60元,尤克里里的单价是170元.(2)设该校购买a个尤克里里,则购买竖笛(20-a)个,依题意有170a+60(20-a)≤3450,,解得a≤20511∵a为正整数,∴a最大为20.∴该校最多可以购买20个尤克里里.【点睛】本题考查了二元一次方程组和一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.70.今年“五一节”期间,甲、乙两家超市以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲超市累计购物超过150元后,超出150元的部分按90%收费;在乙超市累计购物超过100元后,超出100元的部分按95%收费,顾客到哪家超市购物花费少?【答案】当累计消费大于100元少于200元时,在乙超市花费少;当累计消费大于200元时,在甲超市花费少;当累计消费等于200元或不超过100元时,在甲乙超市花费一样.【解析】【分析】设累计购物x元,分x≤100、100<x≤150和x>150三种情况分别求解可得.【详解】解:(1)当x≤100时,在甲、乙两个超市购物都不享受优惠,因此到两个商场购物花费一样;(2)当100<x≤150时,在乙超市购物享受优惠,在甲超市购物不享受优惠,因此在乙超市购物花费少;(3)当累计购物超过150元时,即x>150元,甲超市消费为:150+(x﹣150)×0.9元,在乙超市消费为:100+(x﹣100)×0.95元.当150+(x﹣150)×0.9>100+(x﹣100)×0.95,解得:x<200,当150+(x﹣150)×0.9<100+(x﹣100)×0.95,解得:x>200,当150+(x﹣150)×0.9=100+(x﹣100)×0.95,解得:x=200.综上所述,当累计消费大于100元少于200元时,在乙超市花费少;当累计消费大于200元时,在甲超市花费少;当累计消费等于200元或不超过100元时,在甲乙超市花费一样.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,列出不等式,再根据实际情况分段进行讨论.。
七年级数学下册第9章不等式与不等式组9.2.2再探实际问题与一元一次不等式的应用(图文详解)
并,系数化为1。
解:去分母,得 去括号,得 移项,得 合并,得
2(2x+1) ≤6+9(x-1)
4x+2 ≤6+9x49x-9x ≤6-9-2
-5x ≤-5
系数化为1,得 x ≥1
七年级数学第9章不等式与不等式组 将不等式的解集在轴上表示为:
01
x
归纳:
解一元一次不等式的一般步骤: 去分母
去括号 移项 合并
当Y1 > Y2 即100+0.9(X-100) > 50+0.95(X-50) 时,X < 150
议一
故宫博议物院门票是每位10元,20人以上(含20人)的
团体票8折优惠.现有18位同学结伴去博物院,当领队小 华准备好了零钱到售票处买18张票时,李明喊住了他: “买20张吧!”小华困惑了:18人买20张不是浪费吗? 你认为呢?为什么? 此外,不足20人时,多少人买20张的团体票比普通票便宜?
在甲店累计购买100元商品后,再购买的商品按原价的 90%收费;在乙 店累计购买50元商品后,再购买的商品按 原价的95%收费,顾客怎样选择商店购物能获得最大优惠。
(3) 如果累计购物超过100元,那么在甲店花费一定少吗?
解:设累计购物X元(X>100)
在甲店购物花费:Y1 = 100+0.9(X-100) 在乙店购物花费:Y2 = 50+0.95(X-50)
购物花费小;累计购物150元时,在两店购物花费一样; 累计购物超过150元时,在甲店购物花费小.
甲、乙两商店以同样的价格出售同样的商品,并且 又各自推出不同的优惠方案:
在甲店累计购买100元商品后,再购买的商品按原价的90%收费; 在乙 店累计购买50元商品后,再购买的商品按原价的95%收费, 顾客怎样选择商店购物能获得最大优惠。
七年级下册数学9.2一元一次不等式的解法
-1 0 1 2 3 4 5 6
(2)原不等式的解集为x≤-11,在数轴上表示为:
-11
0
4. a≥1的最小正整数解是m,b≤8的最大正整数 解是n,求关于x的不等式(m+n)x>18的解集. 解:因为a≥1的最小正整数解是m,所以m=1.
3
2
去分母,得 2(x-5)+1×6≤9x
去括号
去括号,得 2x-10+6≤9x 将同类项放在一起
移项,得 2x-9x≤10-6 计算结果
合并同类项,得 -7x ≤4
两边都除以-7,得
x≥ 74.
根据不等式性质3
例3 解不等式12-6x≥2(1-2x),并把它的解集在数轴 上表示出来.
解:去括号,得 12-6x ≥2-4x 首先将括号去掉 移项,得 -6x+4x ≥ 2-12 将同类项放在一起 合并同类项,得 -2x ≥-10 根据不等式基本性质3 两边都除以-2,得 x ≤ 5 原不等式的解集在数轴上表示如图所示.
因为b≤8的最大正整数解是n,所以n=8. 所以,m+n=9 把m+n=9代入不等式(m+n)x>18中, 得 9x>18, 解得x>2.
5. 当x取什么值时,代数式 13x +2的值大于或等 于0?并求出所有满足条件的正整数.
解
根
解得 x据题≤ 613.
所以,当x≤6时,代意数式 x+2的值大于或等于0.13 ,
x<3,求 m. 解:因为 x+8>4x+m,
所以 x-4x>m-8, 即-3x>m-8,
x 1 (m 8).
因为其解集3为x<3,
2第1课时 一元一次不等式的解法
例1 去年某市空气质量良好(二级以上) 的天数与全年天数(365)之比达到60%, 如果明年(365天)这样的比值要超过 70%,那么明年空气质量良好的天数要 比去年至少增加多少?
不等关系是:
明年空气质量良好的天数 明年天数
大于70%.
解:设明年比去年空气质量良好的天数增加了x天.
解:以后几天平均每天至少要修路x米.
6x 6 1.2, 6x 4.8,
x 0.8.
答:以后几天平均每天至少要修路 0.8米.
x
365×60%
70%
365
x 219 255.5,
x 36.5
由于x应为正整数,所以x ≥37
答:明年要比去年空气质量良好的天数至少增加 37,才能使这一年空气质量良好的天数超过全年 天数的70%.
2.某次知识竞赛共有20道题,每一道题 答 对得10分,答错或不答都扣5分.小明得分 要超过90分,他至少要答对多少道题?
解:设至少要答对 x道题. 10x 5(20 x) 90,
10x 100 5x 90, 10x 5x 90 100, 15x 190, x 12 2 . 3
答:至少要答对13道题.
1.某工程队计划在10天内修路6 km.施 工前2天修完1.2 km后,计划发生变化, 准备提前2天完成修路任务,以后几天 内 平均每天至少要修路多少?
9.2 一元一次不等式
第1课时 一元一次不等式的解法
例3、 x为何值时式子 2 x 1 的值不小于2 3
解:由题意得 2 x 1 2 3
解得 x 9
2
答:当x 9 时,式子2 x 1的值不小于2
人教七年级下数学_必刷题《课时1_一元一次不等式的解法》刷基础
必刷题《9.2 课时1 一元一次不等式的解法》刷基础知识点一 一元一次不等式的概念 1.下列式子中,一元一次不等式有( ) ①x +2x 2>1:②2x -y >0:③1x−1-1>0;④2x -3>5;⑤x−23>1:⑥3x -x2>2-x .A.2个B.3个C.4个D.5个 2.(2019湖南湘西州凤凰期末)已知(m +4)x |m |-3+6>0是关于x 的一元一次不等式,则m 的值为____________. 知识点二 解一元一次不等式3.(2020江苏淮安淮安区期末)不等式2x -1≤x +1的解集在数轴上表示正确的是( )A.B. C. D.4.(2019湖南常德中考)不等式3x +1>2(x +4)的解集为__________.5.(2019广东深圳福田区期末)两个实数a ,b ,规定a ⊕b =a +b -ab ,则不等式2⊕(2x -1)<1的解集为__________.6.(2019江苏南通中考)解不等式4x−13-x >1,并在数轴上表示解集.7.(2020江苏南京鼓楼区月考)求不等式x3≤1+x−12的负整数解.8.(2019福建泉州丰泽区期末)已知关于x ,y 的方程组{2x +y =k ,5x −2y =1−k.(1)当x =1时,求y 的值; (2)若x >y ,求k 的取值范围.9.(2019江西南昌东湖区期末)已知关于x 的不等式2m−mx 2>12x -1.(1)当m=1时,求该不等式的非负整数解;(2)当m取何值时,该不等式有解,并求出其解集.知识点三解一元一次不等式的过程中出错10.小明解不等式1+x2-2x+13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.参考答案1.答案:B解析:①中含未知数的项的最高次数是2,②中含有两个未知数,③中不等号左边不是整式,它们都不符合一元一次不等式的定义,不是一元一次不等式;④⑤⑥符合一元一次不等式的定义.因此,一元一次不等式有3个.2.答案:4解析:∵(m+4)x|m|-3+6>0是关于x的一元一次不等式,∴|m|-3=1,m+4≠0,解得m=4,故答案为4.3.答案:B解析:移项、合并同类项,得x≤2,将解集表示在数轴上,如图所示:4.答案:x>7解析:3x+1>2(x+4),3x+1>2x+8,x>7.5.答案:x>1解析:因为2⊕(2x-1)<1,所以2+2x-1-2(2x-1)<1,解得x>1.6.答案:见解析解析:4x-1-3x>3,4x-3x>3+1,x>4.在数轴上表示如下:7.答案:见解析解析:2x≤6+3(x-1),2x≤6+3x-3,2x-3x≤6-3,-x≤3,x≥-3.∴不等式的负整数解为-3,-2,-1.8.答案:见解析解析:(1){2x+y=k,①5x−2y=1−k,②①+②,得7x-y=1.∵x=1,∴y=7×1-1=6.(2)由方程组得{x =k+19,y =7k−29,∵x >y ,∴k+19>7k−29,∴k <12.9.答案:见解析 解析:(1)当m =1时,2−x 2≥12x -1,2-x >x -2,x <2,所以非负整数解为0,1. (2)2m−mx 2>12x -1,2m -mx >x -2,(m +1)x <2(m +1), 当m ≠1时,不等式有解;当m >-1时,原不等式的解集为x <2; 当m <-1时,原不等式的解集为x >2. 10.答案:见解析解析:错误的是①②⑤.正确解答过程如下: 去分母,得3(1+x )-2(2x +1)≤6. 去括号,得3+3x -4x -2≤6. 移项,得3x -4x ≤6-3+2. 合并同类项,得-x ≤5. 系数化为1,得x ≥-5.易错警示:去分母时,两边同时乘6,注意常数项不要漏乘,分子作为一个整体应该加上括号,去括号后,括号前为“-”时,括号内各项一定要变号,且括号前的系数要乘括号内的每一项,系数化为1时,若系数为负数,则要改变不等号的方向.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2 一元一次不等式
第1课时一元一次不等式的解法
要点感知1
含有__________未知数,并且未知数的次数是__________的不等式,叫做一元一次不等式.
预习练习11下列不等式中,属于一元一次不等式的是( )
A.4>1
B.3x24<4
C.
1
x
<2 D.4x3<2y7
要点感知2 解一元一次不等式,要依据__________,将不等式逐步化为__________的形式. 预习练习21不等式x>3的解集是( )
A.x>3
B.x<3
C.x<3
D.x>3
要点感知3解一元一次不等式的一般步骤:
(1)去分母(根据不等式的__________);
(2)去括号(根据__________);
(3)移项(根据不等式的__________);
(4)合并(根据__________);
(5)系数化为1(根据不等式的__________).
预习练习31 解不等式2(x1)3<1,并把它的解集在数轴上表示出来.
知识点1 一元一次不等式及其解法
1.(2014·沈阳)一元一次不等式x1≥0的解集在数轴上表示正确的是( )
2.(2013·桂林)不等式x+1>2x4的解集是( )
A.x<5
B.x>5
C.x<1
D.x>1
3.不等式43x≥2x6的非负整数解有( )
A.1个
B.2个
C.3个
D.4个
4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是( )
A.a>0
B.a<0
C.a>1
D.a<1。