电流接地系统谐振过电压的抑制措施研究
220kV系统发生串联谐振过电压分析及对策
220kV系统发生串联谐振过电压分析及对策摘要:依据串联谐振过电压产生的条件,结合某220kV变电所发生的串联谐振过电压现象。
分析确定其谐振过电压的性质,并提出解决串联谐振过电压的预防措施。
关键词:接地系统;串联谐振;过电压;分析;措施电气系统中的诸多元件可以构成一系列不同自振频率的振荡回路,在一定条件下,可能出现持续时间按较长的谐振过电压现象,从而导致设备绝缘击穿、电压互感器高压侧熔丝熔断、避雷器爆炸以及电压互感器烧毁,如果不采取有效的预防措施,将会威胁系统内电气设备安全运行,甚至更为严重的电力系统事故。
在铁磁谐振现象中,串联铁磁谐振发生的几率相对不高,且易与并联铁磁谐振现象混淆。
因此结合运行工作现场,分析串联铁磁谐振产生的原因和对系统的影响,提出预防措施十分必要。
1 电力系统发生铁磁谐振过电压原因电气系统中有许多电感、电容元件,例如电力变压器、互感器、发电机、电抗器等的电感;线路导线的对地电容、补偿用的串联和关联电容器组、各种高压设备的等值电容。
电力系统发生的铁磁谐振分为并联铁磁谐振和串联铁磁谐振二大类。
所谓并联铁磁谐振是指中性点不接地系统或小电流接地系统中,母线系统的对地电容3CE与母线电磁式电压互感器TV的非线性电感L相等或接近时,便发生并联铁磁谐振,也叫电流谐振。
所谓串联铁磁谐振是指中性点接地系统中,母线电磁式电压互感器TV非线性电感L与断路器的断口均压电容组成谐振回路,当系统中电气参数发生扰动,使回路的容抗与感抗接近时,便发生串联谐振,产生谐振过电压,又称电压谐振。
一般电力系统中并联铁磁谐振发生较多,现场工人比较重视,对其产生原理比较清楚,具有有效的应对措施;而串联铁磁谐振发生的几率相对不高,弄不清其产生机理,易与并联铁磁谐振现象混淆。
所以需要对大电流接地系统发生串联铁磁谐振现象、原因及预防措施进行分析。
图 1 串联谐振回路示意图2 串联铁磁谐振过电压事故案例某发电厂220kV系统为双母线并联运行方式,2003年,进行220kV北母线停电操作,将220kV北母线所有线路、变压器等电气元件倒至220kV南母线运行,当拉开母联断路器对母线进行停电时,220kV北母线出现过电压:UAB=175kV,UBC>280kV,UCA=250kV,同时北母线TV有电晕放电且声音较大,一分钟后,合上母联断路器,北母线电压显示230kV,异常现象消失。
电力系统中谐振过电压的产生与解决对策
电力系统中谐振过电压的产生与解决对策摘要:除了家电之外,在日常生活中会因为电磁感应产生的振动导致一些细部用电仪器出现损坏以及运作时令的问题,与此同时在一些大型的电力供给、传输运作以及发电上都会有这种问题的出现,所有出现的这种问题都被称作谐振过电压。
本文对电力系统中谐振过电压的产生进行了分析和探讨,并且有针对性的将有效的解决问题的措施提了出来,希望能够对大家有所帮助。
关键词:谐振过电压问题策略引言电路当中如果有电流通过就会产生磁场,在生产电力上电与磁的互相转化使人类的生活得到了极大地帮助。
然而在我国的电力工作当中因为这类问题的出现从而造成了很多的损失,其不仅严重的危害到了国家的财产安全,甚至会经常性的造成人员伤亡状况的出现。
我国的电力专家为了促进过电压危害这一问题的有效解决,对其中的很多方法进行了总结,本文具体的介绍了谐振过电压的现象,并且将有效的解决措施提了出来,供大家参考。
一、谐振过电压概述造成电网过电压现象在电力系统中出现的原因有很多,如果过于频繁的出现谐振过电压等现象,就会产生很大的危害性。
一旦出现过电压现象,就会烧毁以及损坏电气设备,在严重的情况下还会导致停电事故的发生。
由于时间较长的谐振过电压作用。
但是却不可以采用避雷器的方式进行限制,所以在实施保护的这一方面具有相当大的困难。
由铁心电感元件,包括消弧线圈、电抗器、电压互感器、变压器以及发电器等,还有一些系统的电容元件,包括电容补偿器以及输电线路等共同促成了共谐条件的形成,导致谐振过电压在系统当中产生[1]。
二、产生谐振的原因以及将其激发出来的条件作为一个复杂的电力网络,电力系统具有十分重要的作用,有很多的电容元件以及电感元件,特别是铁磁谐振现象经常会出现在不接地系统当中,严重的威胁到了设备的安全运行。
有以下条件会将电压谐振激发出来:①突然投入的电压互感器;②发生单相接地的线路;③突然改变的系统运行方式以及投切的电气设备;④发生较大波动的系统负荷;⑤出现波动的电网频率;⑥不平衡变化的负荷[2]。
浅谈电力系统串联谐振过电压的危害及抑制措施
中图 分类 号 : M T 1
文 献标 识 码 : A
文 章编 号 :6 2 3 9 (0 oo () 0 6 一 1 1 7- 7 12 1 )9a一 0 l 0
( ) 消 断 路 器 的断 口电 容 。 种 方 法 3取 这 在 电力 系 统 中 或 者 说 在 电力 供 电 电网 剧 增 大和 铁 芯 的 磁 饱 和 。 () 3 由于 另 一组 绕 组 瞬 间 传递 过 来 的过 也 消 除 了 谐 振 产 生 的 条 件 。 前 变 电 站 以 上 , 电压 现象 十 分 普 遍 。 果没 有 防 范 措 过 如 lk 施 , 时 都 可 能 发 生 , 随 时 都 可 以 发现 。 电压 所 引 起 。 如 另 绕组 发 生 瞬 间 的单 相 l O V以 上 电压 等 级 的 断 路 器 多 数 用 平 顶 随 也 例 山生 产 的 带 断 口 电容 的 断 路 器 。 在 经过 现 引 起 电 网 过 电压 的原 因很 多 。 要 可 分 为 接 地 或 不 同期 切 合 。 主 () 某些补 偿电网 中, 4在 当消 弧 线 圈退 技 术 改 造 , 这种 断 路 器 已 经 基 本 上 改 造 完 谐振 过 电压 、 作 过 电压 和 雷 电过 电压 ; 操 其 中谐 振 过 电压 在正 常运 行 操 作 中 出 现 的频 出运 行 时 , 会 激 发 互 感 器 的 铁 磁 谐 振 过 毕 。 常 电压 。 () T 4 在 V二 次 侧 接 入 电 阻 、 流 装 置或 整 率较 大 , 危 害 性 也 较 大 。 其 消 谐 装置 。 些 方 法 需 要更 多的 运 行 经验 。 这 当 系 统 发 生 谐 振 时 , 采 取 以 下 措 施 应 1 铁磁谐振的危害 3 串联铁磁谐振 过电压产 生的机理 串联 铁 磁 谐 振 电 路 特 性 曲线 如 图 1 所 消 除 谐 振 。 铁磁 谐 振 的 危害 主 要 有 7 方 面 :1 个 () 铁 正 电 “— ” 1 改 变 系 统 的 运 行 方 式 。 变 运 行 方 ) 改 磁谐 振 过 电 压 , 使 那 些 有 铁 芯 的 电 气 设 示 。 常情 况 下 , 源相 电压为 Up,L C 会 曲线 的 a ,a 点 I 很 式 , 坏 产 生 谐振 的参 数 条件 , 振 现 象也 破 谐 备 中 的铁 芯 迅 速 饱 和 , 致 绕 组 的 励 磁 电 导 串联 电路 的 工 作 点 在 图 l I 在L, C上 的压降很 小 , =U『 Up +Uc 电路 就消 失 了 。 运 行 条件 许 可 的 情 况 下 , 在 可将 流 迅 猛增 涨 。 重 时 , 达 额 定 励 磁 电流 的 小 ,a 严 可 分 列 运 行 转 为 并 列 运 行 , 者 将并 列 运 行 或 百 倍 以 上 。 而 引 起 电压 互 感 器 的 熔 断 器 呈 感 性 。 从 熔 断 、 油 、 组 烧 毁 甚 至 爆 炸 。 2 在 某 些 喷 绕 () 在 外部 条 件 激发 下 , 合 闸时 , 铁 芯 转 为 分 列 运 行 。 拉 TV L 串联 电路 的 工作 点 由a A 2 切 除母 线 电压互 感 器 。 ) 电压 互 感 器退 特 定 情 况 下 , 磁谐 振 过 电压 可能 会 很 高 饱和 。 下 降变 小 , 铁 振 切 ( 大 为 相 电 压 的 3 左 右 ) 引起 绝 缘 闪络 变至 b 最 倍 , 点并 跳 跃 至 C , 时 电路 呈容 性 。 c 出运 行 时 , 荡没 有 回路 , 除 电压 互 感 器 点 此 I 或避 雷 器 爆炸 。3铁 磁 谐振 过 电压 , 引起 >I ,c () 会 a I 将使 T V过 电流 数 十 倍 , 同时 在 L, 有 两 种 方 式 : C ①瞬 间 拉 合 谐 振 系统 的 电 压 c 其 需要 注 意 的是 , 切 除 的 电压 互 感 被 电压 互 感 器 、 流 互 感 器 、 雷 器 、 电 避 绝缘 子 上 的 压 降 U 和 u 远 高 于 电源 电 压 , 有 效 互 感 器 。 的瓷 裙 表 面 闪络 而 爆 炸 , 至 会形 成 短 路 。 值 一 般 可 达 1. 甚 6~3 Up的过 电压 。 器重 新投 运 时 , 产 生 的 涌 流 效 应 可 能 再 所 ( ) 磁 谐 振 过 电 压 , 使 电 气 设备 的绝 缘 4铁 会 通 过 以 上 分 析 可 以 看 出 , 外 界 条 件 度 激 发 起 谐 振 。 在 ②母 线 分 段 运 行 的 中性 点 可以 先 转 并 列 运行 , 谐 振 不 若 击穿 而 导 致 这 些 设 备 损 毁 。5 铁 磁 谐振 过 激 发 下 , () 当TV的非 线 性 电感 L 化 足 够 大 , 不 接 地 系 统 , 变 消 失 , 入 两 台 TV二 次 电 压 切 换 开 关 , 投 而 电压 , 会使 有 污 秽 的 电 气设 备 表 面 闪 络 , 而 串联 铁 磁 谐 振 就 可 能 发 生 。 后 将 其 中 一 台TV退 出运 行 。 引起 短路 。6铁 磁 谐振 过 电压 出 现时 , 网 () 电 3 投 入 具 备 送 电 条 件 的 线 路 。 入 这 ) 投 中 可 能 并 无 接 地 点 , 会 出 现 虚 幻 接 地 现 4 谐振 过 电压的限制措施 但 象, 使运 行值 班 人 员造 成 错 觉 。7 铁 磁谐 振 () 鉴于l0 l kV及 以 上 有效 接 地 系 统 的TV 些 线 路时 , 回路 的 电容 值 变 大 , 达 到 消 谐 可 其 过 电压 出现 时 , 果 工 作 、 护 等 接 地 网 的 饱 和 铁 磁 谐振 过 经 常 发 生 , 谐 振 过 电 压 的 目 的 。 如 保 4) 除 空 载 运 行 的 线 路 。 少 线 路 的 切 减 接 地 电 阻 不 合 格 , 过 电压 还 可 以 通 过 设 的 激 发 是 具 有 随 机 性 的 , 重 时 , 线TV 此 严 母 备 的 接地 引下 线 , 入 接地 网 , 接 地 电压 损 坏 , 至 导 致 TV爆 炸 , 窜 使 甚 危及 二 次 保 护 设 回路 数 , 改变 系统 的 参 数 , 达 到 消 谐 的 目 可 备 及 一次 TV附 近 设备 。 须 加 以 预 防 和 限 的 。 必 升 高 , 而 危 及 现 场 人 员的 人 身 安 全 。 从 制。 5 投 入 消 弧 线 圈 。 中性 点 经 消 弧 线 ) 在 ( ) 运 行 方式 上 和 倒 闸 操 作 过 程 中 , 圈接 地 的 情 况 下 , 电感 值 L 比互 感 器 的 1在 其 远 2 产生铁磁谐振过 电压 的激发条件 回路 的 零 序 自振 频 率 决 定 构成谐振激 发条件有以下几方面 。 防止 断 路 器断 口电容 器 与 空 载 母 线 及母 线 励 磁 电感 为 小 , 和 o互 ( ) 括 电压 互 感 器在 内的 空 载母 线 或 TV构 成 串联 谐振 回路 , 防止 因谐 振 过 电 1包 以 于L C , 感 器所 引起 的谐 振现 象 也 就成 为不 可 能 。 5 V系统 发 生谐 振 时 , 采取 此 3k 可 送 电 线 路 的突 然 合 闸 , 使 互 感 器 的 某 一 压 损 坏 设 备 。 这 相 或两 相 绕 组 内产 生 巨大 的 涌流 和 磁 饱 和 () 用 电 容式 TV, 种 方 法从 根本 上 法 。 2改 这 现象 。 消 除 了 铁 磁 谐 振 的 条 件 。 远 供 电 局 现 在 清 () 于雷击或其他 原因 , 2由 线路 中 发 生 新 投 运 的 电压 互 感 器 都是 电 容式 电压 互 感 5 结语 本 文 对 电 网谐 振 过 电 压 的 危 害 、 发 激 瞬 间 单 相 弧 光 接 地 , 其 他 两 相 瞬 间升 至 器 , 前 电 磁 式 电 压 互 感 器 已 经 大 部 分 改 使 以 原 预 目 线 电 压 。 故 障 相 在 接 地 消 失 后 有 瞬 间恢 造 完 毕 。 已基 本 上 消 除 了 系统 发 生 串 联 条 件 、 理 、 防 和 限 制 措施 作 了 分 析 。 而 这 的是 使 我 们 变 电运 行 值 班人 员今 后 在 工 作 复至 相 电 压 , 至 造 成 暂 态 励 磁 涌 流 的 急 谐 振 的 条 件 。 以 中预 防 电 网 串联 谐 振 过 电压 的产 生 , 提 并 高 我 们 在 今 后 遇 到 电 网 串联 谐 振 过 电压 时 的应 急 处 理 能 力 。 须 指 出 , 除谐 振 过 电 必 消 压的 方法各种各样 , 可根 据 当 时 的 具 体 运 行 方 式 灵 活 运 用 , 期 杜 绝 因 谐 振 过 电 压 以 造 成 的设 备 损 坏 , 高 供 电 设 备 运 行 TNGFA 皿圆■ CE EOYOT■置笛 I &CL RI U置 幽 E HOIMO N N N —
电网谐振过电压的限制方法
电网谐振过电压的限制方法电网谐振过电压是指电网中由于谐振电路产生的过电压现象。
谐振过电压的存在会对电网设备和用户设备造成损坏和影响电网的稳定运行。
为了限制电网谐振过电压的发生,以下是一些常用的方法:1. 控制谐振回路的阻抗:对于谐振回路来说,其阻抗会影响谐振过电压的大小。
因此,通过控制谐振回路中的电抗元件(如电感和电容)的数值,来改变谐振回路的阻抗,从而限制谐振过电压的大小。
2. 使用限流电感器:在电网系统中配置适当的限流电感器,可以限制谐振过电压的大小。
限流电感器是一种具有一定阻抗的电感元件,可降低系统的谐振频率,减小谐振过电压的幅值。
3. 安装降压变压器:通过安装适量的降压变压器,将电网供电电压降低,从而减小谐振过电压的幅值。
这样可以有效地限制谐振过电压对电网设备和用户设备的影响。
4. 使用TVS(气体抑制二极管):TVS是一种具有快速响应的抑制过电压的元件,可以在过电压出现时迅速导通,将过电压限制在安全范围内。
在电网系统中配置适当的TVS,可以有效地限制谐振过电压的幅值。
5. 加装补偿电容器:在电网系统中加装补偿电容器,可以提供谐振过电压的吸收和分布功能,从而限制谐振过电压的幅值。
补偿电容器可以有效地抑制谐振回路的振荡。
6. 控制电网变流器的运行方式:电网变流器是电网中常见的谐振回路。
通过控制电网变流器的运行方式,如变流器的开关控制策略、调整变流器的输出功率等,可以减小谐振过电压的幅值。
7. 增加电网的阻尼:在电网中增加适当的阻尼,可以有效地抑制谐振回路的振荡,减小谐振过电压的幅值。
可以采用增加电阻等方法来实现电网的阻尼。
总之,限制电网谐振过电压的方法可以从改变谐振回路的阻抗、配置限流电感器、降低电网供电电压、使用TVS、加装补偿电容器、控制电网变流器的运行方式、增加电网的阻尼等方面进行。
需要根据具体情况综合应用这些方法,以达到有效抑制谐振过电压的目的,保证电网的稳定运行。
电网谐振过电压的限制方法
电网谐振过电压的限制方法电网谐振过电压是指电网中的谐振回路导致电网电压升高的现象。
这种现象可能导致电网设备损坏、引发过电压事故甚至导致电网崩溃。
为了保障电网的稳定运行和电力设备的安全运行,需要采取一系列措施限制电网谐振过电压。
1. 电网规划设计:在电网规划和设计阶段,需要充分考虑电网谐振过电压问题。
对电网谐振频率、谐振回路的参数等进行详细分析,采用合适的线路布置、变电站配置和无功补偿等方式来减小谐振影响。
通过电网的优化设计,能够有效降低电网谐振过电压的风险。
2. 无功补偿控制:电网谐振通常是由于无功补偿不足引起的,因此,加强无功补偿是限制电网谐振过电压的重要手段。
通过调节无功补偿设备的容量和运行方式,使电网保持合适的无功功率平衡,可以减小谐振回路的共振电流,避免出现过电压。
3. 谐振回路的分析与处理:谐振回路是电网谐振过电压的直接原因,因此,对谐振回路进行分析并采取处理措施是有效限制电网谐振过电压的重要方法。
可以通过增加电阻、变压器的绕组接地、中和电抗器的串联等方式改善谐振回路的特性,减小谐振幅值以及消除谐振回路,从而有效地减小电网谐振过电压的风险。
4. 过电压保护装置的设置:在电网中设置过电压保护装置是限制电网谐振过电压的一种有效手段。
过电压保护装置可以监测电网的电压波形,一旦发现电压异常上升,及时采取措施,包括切断或限制电网供电,以保护电力设备的安全运行。
5. 特殊设备的应用:在一些需要高度稳定电压的场合,可以采用特殊设备来限制电网谐振过电压。
例如,在电网的关键节点使用电压调节器、谐振抑制器等设备,能够控制电压的波动和提供稳定的电源,从而有效限制谐振过电压。
6. 故障监测与维护:及时发现和处理电网中的故障对于限制电网谐振过电压至关重要。
建立完善的电网监测系统,定期对电网进行故障检测和维护,可以及时发现电网中存在的问题并采取相应的补救措施,避免电网谐振过电压的发生。
总之,电网谐振过电压可能对电网和电力设备带来严重影响,为了限制谐振过电压的发生和发展,需要从电网规划设计、无功补偿控制、谐振回路处理、过电压保护装置设置、特殊设备应用以及故障监测与维护等方面综合考虑,采取一系列措施加以限制和防范。
电力系统中的谐振现象分析与抑制
电力系统中的谐振现象分析与抑制一、引言电力系统是现代社会中不可或缺的基础设施,它为各种用电设备提供稳定可靠的电能。
然而,在电力系统中常常会出现谐振现象,给系统运行带来了很多不利影响。
因此,对电力系统中的谐振现象进行分析与抑制具有重要的理论和实际意义。
二、谐振现象的产生机理谐振是指在外界作用力作用下,系统或器件在某一特定频率下出现的共振现象。
在电力系统中,谐振现象主要产生于电力设备与电力网络之间的相互作用过程中。
当电力设备的特定谐振频率与电力网络的特征频率相匹配时,谐振现象就会发生。
三、谐振现象的危害1. 降低系统的稳定性:谐振现象会导致电力系统的电压、电流的不稳定性,进而影响电力设备的正常工作。
2. 增大系统的损耗:谐振现象会引起电流的过大、频率的变化等问题,从而导致系统中的设备过载、电能损耗增加。
3. 破坏设备的安全性:谐振现象会引起设备内部的过电压现象,可能导致设备的烧毁、损坏。
四、谐振现象的分析方法1. 频率扫描方法:利用频率扫描仪和示波器等仪器,对电力系统的频率响应进行测试和分析,以确定谐振频率。
2. 波形分析方法:通过捕捉系统电压、电流的波形信息,进行波形分析,从中找出谐振的特征。
3. 参数计算方法:根据系统中的电感、电容等参数,利用计算公式计算出谐振频率和谐振峰值等。
五、谐振现象的抑制措施1. 调整电力设备参数:通过改变电力设备的电感、电容等参数,使其与电力网络的频率特性不再匹配,从而抑制谐振现象。
2. 增加阻尼:通过增加电力系统中的阻尼元件,如电阻、补偿电容等,来消耗能量,减小谐振幅值,达到抑制谐振现象的效果。
3. 采用滤波器:在电力系统中加入适当的滤波器,可以滤除谐振频率的分量,减小谐振现象的影响。
4. 加强系统的模型分析:通过建立合理的系统模型,利用计算机仿真软件进行仿真分析,可以预测和优化系统中的谐振现象。
六、实例分析以一个变电站为例,对其电力系统中的谐振现象进行分析。
首先采用频率扫描方法,测试得到系统的频率响应曲线。
电压互感器谐振过电压分析及预防措施
电压互感器谐振过电压分析及预防措施电压互感器是电力系统中常用的测量和保护装置,它将高电压侧的电压降低到低电压侧进行测量或传递。
然而,当电压互感器遭受到电力系统中的谐振过电压时,会引起互感器的谐振现象,从而影响电力系统的稳定性和互感器的工作性能。
本文将从谐振过电压的原因和机理、谐振过电压的预防措施等方面进行详细分析。
首先,谐振过电压的原因和机理主要有以下几点:1.系统谐振:当系统中存在谐振的无功电容或电感元件时,谐振过电压现象容易发生。
例如,当系统中存在高频电容器、线路电容或电抗器等无功元件时,谐振过电压现象可能因其与互感器的谐振频率接近而发生。
2.外部故障:外部故障引起的短路或开路等异常情况,会导致电力系统中电流的突然变化,从而引起电压互感器的谐振过电压。
例如,当发生系统短路时,系统中的电流突然增大,产生过大的谐振电压。
3.负荷电压突变:系统中负荷突然增加或减少,使得负荷电流突变,导致电力系统中的电压突变。
当这种电压突变与互感器的谐振频率接近时,会引起互感器的谐振。
为了预防电压互感器谐振过电压的发生,可以采取以下预防措施:1.减小互感器与系统的谐振频率接近:通过调整互感器的参数或改变系统中的无功元件,使得互感器的谐振频率与系统频率之间存在较大差异,从而减小谐振过电压的发生概率。
2.安装绕组电阻:在互感器的一次侧或二次侧绕组中,安装适当的绕组电阻,可以减小谐振过电压的幅值和持续时间。
绕组电阻可以提供额外的阻尼,抑制谐振现象的发生。
3.加大互感器的绝缘能力:选用具有较高绝缘强度的互感器,可以提高其抗击谐振过电压能力。
合理选择互感器的额定电压和绝缘等级,避免绝缘击穿。
4.加强对系统的监测和维护:定期对电力系统进行检测和维护,及时处理系统中的故障和隐患,防止电压互感器谐振过电压的发生。
综上所述,电压互感器谐振过电压是影响电力系统稳定性和互感器工作性能的一个重要问题。
了解谐振过电压的原因和机理,采取相应的预防措施,可以有效减小谐振过电压的发生概率,确保电力系统的正常运行和互感器的可靠工作。
浅析电网谐振过电压的限制措施
浅析电网谐振过电压的限制措施摘要:随着社会的进步与发展,人们对供电量及供电质量的要求越来越高,因此智能化配电网的应用越来越广泛。
本文着重讲解了智能配电网的各种相关技术,主要有自动计量管理、移动作业管理、资产远程监控、可视化地理信息平台、基于IP的监控与数据采集技术、先进的配电网络等。
关键词:智能化配电网移动作业管理资产远程监控虽然现有的电力输送基础设施尚可以基本满足电力工业的需要,但是随着工业化程度的迅速发展,供电质量要求越来越高、不间断供电要求越来越强烈,现有的陈旧的供电设备就很难满足供电的需要。
另外,由于受到国家电价政策的限制,供电企业面临的基础设施资金压力相当大。
为解决上述问题,智能化配电网便应运而生,事实上现在的配电网已经开始向智能化迈进。
比如现在采用的自动计量管理、移动作业管理、资产远程监控、可视化地理信息平台、基于IP的监控与数据采集技术、先进的配电网络等技术,已经在配电网中发挥了巨大的优势。
1 传统的配电网面临的压力1.1 经济压力配电事业属于资本密集型行业,其采用“成本加”的方式来回收投资,因此,供电基础设施的更新改善往往会引起电价的上升。
上世纪末我国进行了大规模的城乡电网改造,也就是通过电量加价来实现还本付息的。
对于一般的输变电工程,若采取提高电价,势必将会引起公众的不满,其可操作性也不强。
现在,人们普遍希望电力价格逐步降低,或者稳定不变,因此,电量提价的空间相当有限。
但是随着电量需求的不断增加以及大量电源的不断建设,配电网逐步向高电压、大电网的方向发展,在目前电力改革中,用户对电力销售价格的预期水平是不变或逐步降低的,电力价格的上涨空间将越来越小。
而随着电力需求的增加和大量电源的建设,电网逐步向高电压、大电网发展,因此,电网的运行控制将更为复杂,其建设、运行成本将更高,从而缩小了供电企业的利益空间。
而对于那些尚未进行改造的设备来将,根据盐盆曲线理论,这些资产将时刻威胁着电网的安全。
谐振接地系统弧光接地过电压自动抑制方法
安全、稳定运行提供更加有效的保障 [16]。但是该方
法的抑制有效性依然存在着较大的上升空间,为此
需要对提出方法进行进一步的优化研究。
参考文献:
[1] 侯雅波. 煤矿电机过电压抑制策略研究[J]. 煤炭
í
J+1
ïp = E / E
j ∑ j
ï j
j=1
î
其 中 ,H 为 小 波 能 谱 熵 ;J 为 小 波 分 解 层 数 ;
弧光接地过电压波形图
如图 1 显示,B 相产生了弧光接地过电压,总共
产生次数为 4,第四次产生过电压时,幅值达到最大,
pj 为 第 j 尺 度 下 各 频 带 区 间 能 量 在 所 有 尺 度 信 号
弧光接地过电压波形如图 1 所示。
图 2 弧光接地过电压能谱图
由 图 2 可 知 ,孤 光 接 地 过 电 压 能 量 主 要 分 布 在
D 6、D 7 与 D8 频段内,因此,频域特征量即为(0,156)。
小波能谱熵特征量计算公式如式(2):
图1
J
ì
ïH = -∑p j ln p j
ï
j=1
(2)
第 29 卷
Vol.29
第2期
No.2
电子设计工程
Electronic Design Engineering
2021 年 1 月
Jan. 2021
谐振接地系统弧光接地过电压自动抑制方法
施正钗
(国网温州供电公司,浙江 温州 325028)
摘要:现有的谐振接地系统弧光接地过电压抑制方法,存在着抑制有效性差的问题,为此,对谐振
故障相投接地电阻
弧光接地电压实质就是发生单相接地短路后,能
PT谐振过电压的试验分析与抑制措施研究
、
引 言
器,甚至还会使小容量 的异步 电动机发生反转现 4P . T高压侧中性点 串联单相 P , T 使电压互感 象 。电力 系统实 际运行 经验 表 明 ,0 V配 电网 中 , 器的等值感抗显著增大 ,避免 了由于饱和而引起 1k 各种形式的铁磁谐振过 电压频繁发生 ,严重地影 的铁 磁谐 振 。
零。 一旦当发生铁磁谐振 ,T P C电阻迅速增加 , 很快 c相电压减小并畸变。 吸收谐振能量 , 使流过 中性点 的电流很小 ,T的饱 P 和度下降 , 破坏了谐振产生的条件从而消除了 P T 谐振 , 使系统恢复正常运行。
能有效抑制此类过电压的新措 施—— 在 P 中性点接 P C(o t e e p mueC efi t T T P si m e tr ofc n) iv T l e 热敏 电阻。通过试验研究, i 验证
了该 方 案 的可 行性 和 有 效 性 。
[ 关键词] 电压互感器 ; 铁磁谐振 ;T P C热敏电阻; 消谐措施
其 中, 有些条件是确定 的 , 不能或无法改变 , 如电源 中性点接地和外界条件的激发。因此 , 消谐 般通过改变电路参数和增加阻尼来实现。概括
一
国内外大量文献 和现场经验 ,消谐措施主要包括 以下两个 方面 :
( ) 一 改变参数
图2 P T一次绕组中性点经 电阻接地
17 0
1 选用励磁性能好的电压互感器 , . 使产生 构不成谐振的匹配参数。 铁磁谐振是谐振 中一种非线性谐振 ,它可以 谐振参数范围减小 , 2 增大对地 电容器组 ,使回路参数超出谐振 . 是基波谐振 、 高次或分次谐波谐振 。其表现形式可 能是单相 、 两相或三相对地电压升高 , 或产生高值 范 围。 3 中性点经消弧线圈接地 ,相当于在电压互 . 零序 电压分量 , 出现虚幻接地现象 , 或者在电压互 感器每一相励磁电感上并联一个 电感。 感器 中出现过 电流 引起熔断器 熔断或 烧坏互感
浅析系统谐振过电压及抑制措施
浅析系统谐振过电压及抑制措施字体大小:大 - 中 - 小 whwugao 发表于发表于 10-09-09 09:53 阅读(53) (53) 评论(0) 分类:分类:[摘 要] 高压系统谐振高压系统谐振过电压过电压是电力系统常见的是电力系统常见的过电压过电压之一,是由于之一,是由于变电站倒闸变电站倒闸操作引起的,其实质就是电磁式电压互感器励磁特性饱和,激发铁磁谐振。
发生。
发生铁磁谐振铁磁谐振事件,不但对大量电力设备和系统安全运行带来危害,还严重危及人身安全,必须予以足够重视和防范。
[关键词]铁磁铁磁 谐振谐振 过电压 抑制措施 1.引言高压系统高压系统铁磁谐振过电压铁磁谐振过电压是电力系统常见的是电力系统常见的过电压过电压之一,是中性点不接地系统中最常见,且造成事故最多的一种内部的一种内部过电压过电压。
而在中性点有效接地的高压系统中,由于中性点电位基本固定,该类过电压发生的几率要少得多,但在一些特殊情况下,仍有可能被激发,最常见的就是在变电站倒闸操作过程中,出现的断路器断口电容器与电磁式电压互感器及空载母线构成的串联谐振回路,由于变电站倒闸操作引起的操作操作引起的操作过过电压作用,电磁式电压互感器励磁特性饱和,激发铁磁谐振。
2.故障现象下面分析一下近期发生的由于PT 饱和产生的有效接地系统的谐振过电压如:2000年5月20日18时25分,某局某站220kV #2母线电压互感器,在进行对#2母线送电操作过程中,发生爆炸事故;2001年3月13日某220kV 某站,在运行方式由双母线并列运行转为Ⅱ母线单母线运行中,值班员进行停Ⅱ母线操作激发铁磁谐振; 2001年3月28日220kV 某站正常运行中,12时52分由于110kV 乙母线单相接地,110kV 母差保护动作切除乙母线的过程中,触发乙母线PT 铁磁谐振过电压; 2001年4月15日,某220kV 某站在进行变电站送电操作过程中,发生PT 铁磁谐振事件3.故障分析分析发生的历次投切空母线激发的PT 铁磁谐振过电压的过程,主要有以下两种情况: ①投空母线开关操作前,合被投母线侧刀闸引起的谐振过电压;②切空母线开关分断时激发的谐振过电压。
电力系统铁磁谐振过电压产生机理及抑制措施(1)
电力系统铁磁谐振过电压产生机理及抑制措施电力系统接地系统分为直接接地系统和不接地系统。
直接接地系统易发生并联谐振,不接地系统在单相接地时易发生串联谐振,有并联电容器的断路器易发生串联谐振。
中性点不接地系统在进行正常的倒闸操作中,如投入空载母线时,或者线路发生单相电弧接地故障过程中往往发现母线电压指示不正常,接地指示误动作,高压熔断器熔断等异常现象,严重时会导致烧毁,继而引发其它事故。
这些现象主要是由于各种激发而使电压互感器和系统产生铁磁谐振造成的。
长期以来,电力系统谐振过电压严重威胁着电网的安全。
特别是对中性点不接地系统,铁磁谐振所占的比例较大。
随着电网的日益发展,中性点不接地系统的铁磁谐振问题越来越严重,出现的概率也越来越大。
1.电力系统铁磁谐振产生的条件铁磁谐振存在三种情况:直接接地系统对地电容引发的铁磁谐振;不接地系统的单相接地引起的铁磁谐振;断路器端口并联的电容形成的铁磁谐振。
电力系统中许多元件是属于电感性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能量作用下特定参数配合的回路就会出现谐振现象。
由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱和,极易使电压互感器发生铁磁谐振。
在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感与线路的对地电容C,当C大到一定值且电压互感器不饱和时,感抗X L大于容抗X C;而当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗X L小于容抗X C,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振:(1)当投入电力系统的电力线路长度发生变化时,线路对地电容与线路电阻发生改变。
如空载线路投切操作,对空母线充电,尤其是短母线进行倒母线时,易产生对地电容引起的并联谐振。
(2)当系统运行状态突变,在暂态激发条件下,TV铁芯饱和,其电感量L处于非线性变化。
试论电网谐振过电压防治方法
试论电网谐振过电压防治方法摘要:在电力系统的运行过程中,过电压是一种很常见的现象,如果不能找到科学有效的防治方法,随时都可能发生事故。
诱发电网过电压的原因有很多,主要的有操作过电压,雷电过电压,以及谐振过电压。
一旦发生了过电压,往往造成的是电气设备损或和大面积停电等严重事故。
本文针对谐振过电压的原理、产生原因、特点、危害性等方面做了简单的介绍,并对如何防治谐振过电压做了一些简单的介绍。
关键词:电网,谐振过电压,原因,特点,危害,防治办法一、谐振过电压产生的原理所谓谐振,是指振荡系统中的一种周期性或准周期性的运行状态。
在交流电路中通常含有电感和电容元件,并且均含有一系列自振频率,而且电源中也往往含有一系列不同的谐波,在一定条件下,当电路中呈现电压和电流同相时,电路为电阻性,这就是谐振。
而当电路自振频率与谐波道德频率接近时,这部分电路就会出现谐振现象。
二、电网谐振过电压产生的原因目前,我国大部分的中压配电网仍然采用中性点不接地的运行方式,其余则大多利用老式消弧线圈进行接地。
在中性点不接地系统中,一方面,电压互感器的铁芯饱和能够引发铁磁谐振过电压,虽然采取了一些措施,却无法从根本上解决问题;另一方面,对于中性点不接地的运行方式,其主要特点是在发生单相接地故障之后,系统仍然能够维持运行两个小时左右,而不是立即切断电源。
随着中低压电网的不断扩大,电网对地电容电流将随之大幅增加,单相接地时接地电弧不能自动熄灭而产生电弧过电压,一般会达到相电压的三至五倍,甚至更高,这将直接导致某些绝缘相对薄弱的点被击穿,极易发展成相间短路,进而造成设备损坏和停电事故。
而采用老式消弧线圈接地的电力系统则由于其自身结构限制,不允许在欠补偿或全补偿的状态下运行,所以,脱谐度通常整定的比较大,大约在百分之二十至三十之间,而对弧光过电压没有任何限制的效果。
由于需要手动对分接头进行调节,因而无法随着电网对地电容电流的变化,而及时、准确地找到最佳的工作位置。
浅析电网谐振过电压的限制措施
科技资讯 SC I EN C E &TE C HN O LO G Y I NF O R MA T IO N 动力与电气工程电网中过电压现象普遍存在,过电压的发生随时都可能导致区域性的停电、电力设施的损坏,进而影响社会安定,造成极大的经济损失。
过电压包括操作过电压、谐振过电压及雷电过电压三种形式。
其中,在电网的正常运行操作过程中,谐振过电压的发生概率最高,危害性也最大。
谐振过电压一旦发生,常常会导致电器设备受损及大面积的断电。
多年的统计资料显示,大多数的中低压电网事故都是由谐振过电压引起的。
谐振过电压具有形成原因多、作用时间长凳特点,在限制措施的选择和实施上有一定的难度。
1 电网谐振过电压危害性概述在电网中谐振过电压是一种稳态的现象,其存在与电力系统操作或事故的过渡过程,并且可能在过渡过程结束后的很长一段之间之内依然存在,只有当新的操作发生,谐振条件被破坏之后才能够存在。
此外,谐振过电压相比于操作过电压,时间更长,当谐振电压一旦发生,在电网的某一部分就会形成过电压,导致电器设备绝缘性遭到破坏,所产生的电流会将设备烧毁,从而使得电压互感器中的铁芯饱和,致使互感器烧毁或熔断器熔断。
一些情况下,谐振过电压也会对电压保护装置的运行条件产生影响,形成保护的误动。
一般而言,为了能够防止这种情况的发生,防止谐振过电压带来的不必要的损失,所以要在设计和操作电网设备时进行估算和安排,估算和安排可以带来很大的成本上和时间上的精简,防止一些不必要的损失,例如过电压所形成严重的串联谐振回路,或采取适当的防止谐振的措施。
中低压电网中,电力生产和电力运行中,很多解决方式都是不同的,故障的形式多种多样,其中可能发生的谐振性质也各有不同,所以应该在实际解决中对症下药,能够应对各种不同类型谐振的性质与特点,制订防振和消振的对策与措施。
从电网的运行实践证明,中性点不接地系统中,一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如消谐灯、消谐器、TV高压中性点增设电阻或单只TV等,但始终没有从根本上解决问题。
浅析电厂中谐振过电压的产生与抑制
1谐振过电压的产生原因及危害电厂中存在着大量储存静电能量的电容元件(电缆等导线的对地电容和相间电容,串、并联补偿电容器组,各种设备的杂散电容等)和储存磁能的电感元件(变压器、互感器、发电机、消弧线圈、电抗器以及各种杂散电感等)。
电网中的电感、电容元件,在一定电源的作用下,并受到操作或故障的激发,使得某一自身振荡频率与外加强迫频率相等,形成周期性或准周期性的剧烈振荡,电压振幅急剧上升,出现严重谐振过电压。
谐振过电压的持续时间较长,甚至可以稳定存在,直到破坏谐振条件为止。
谐振过电压可在各级电网中发生,危及绝缘,烧毁设备,破坏保护设备的保护性能,甚至引发不可预知的灾难性后果。
2谐振过电压的类型及相应抑制方法在中、低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,以便制定防振与消振的对策与措施。
各种谐振过电压可以归纳为三种类型:线性谐振过电压、铁磁谐振过电压和参数谐振过电压。
2.1线性谐振过电压线性谐振过电压的特点:1)参与谐振的各电气参量均为线性。
2)谐振发生在电网自振频率与电源频率相等或相近时。
3)多为空载线路不对称接地故障的谐振、消弧线圈补偿网络的谐振和某些传递过电压的谐振等。
当消弧线圈网络在全补偿运行状态,也即脱谐度v=0,此时如果发生单相接地,导致网络中出现零序电压,进而便可引发消弧线圈与导线对地电容的串联线性谐振。
从理论上来讲,限制这种过电压的方法是使回路脱离谐振状态。
在实际的工程设计中,消除这种谐振的方法是采用欠补偿或过补偿运行方式。
1)一般装在电网的变压器中性点的消弧线圈,以及具有直配线的发电机中性点的消弧线圈采用过补偿方式,也即脱谐度v<0。
这样可以保证在线路进行切除操作时或发生线路断线时,使容抗更大,不会发生谐振。
2)对于采用单元连接的发电机中性点的消弧线圈,一般采用欠补偿方式,也即脱谐度v>0。
抑制谐波过电压的具体措施分析
抑制谐波过电压的具体措施分析摘要:在电力传输过程中,谐波的产生是不可避免的。
考虑到谐波对电力传输造成的危害,要想提高电力传输质量,保障电网安全稳定运行,就要对谐波进行有效抑制。
关键词:抑制;谐波;过电压;措施电力系统发生局部故障或全停后的恢复控制一直是电力系统安全运行的一个重要问题。
由于停电发生后的系统网络结构与正常情况的有很大不同,为确保快速、可靠地恢复供电,需要事先对恢复过程中可能遇到的各种问题进行全面分析研究,以确保所规定的操作顺序正确无误,在保证系统设备安全的前提下顺利执行系统恢复的任务[1]。
目前大多数关于恢复控制的研究都是基于稳态分析或准稳态分析,而实际经验表明,系统在恢复过程中常伴随着各种暂态和动态行为[1-2]。
在恢复初期,当系统阻抗和线路电容参数构成并联谐振条件时,轻载或空载变压器投入所引起的谐波畸变将被放大,从而产生很高的谐波过电压,由于此时系统的阻尼较小,所产生的谐波过电压将会持续较长时间,为防止过电压对设备造成损坏和引起保护装置动作,需要对系统恢复过程中可能出现的谐波过电压现象进行研究。
1谐波的产生原因及危害电力系统的谐波是电力系统电压波形产生畸变的表征。
谐波的产生来自于电力电子设备、非线性阻抗设备和其它方面的干扰。
从谐波的产生来看,谐波的产生是电力传输过程中的必然现象,要想一次性消除谐波是不可能做到的,所能采取的措施仅仅是将谐波过电压控制在允许的范围之内[3]。
结合当前谐波的产生,其对电网的危害主要表现在以下几个方面:首先,增加输、供和用电设备的额外附加损耗谐波的产生,使电压偏离原值,造成了电压出现一定幅度的增加,使输电和供电设备的额外附加损耗也大幅增加。
其次,影响继电保护和自动装置的工作可靠性由于谐波使电压出现不同程度的波动,对继电保护器和自动装置的电压承载能力是一个不小的考验,如果瞬间电压过大,容易烧毁继电保护器。
再次,对用电设备的危害谐波过电压的出现,使用电设备的电压发生了异常波动,如果超出了用电设备的电压允许范围,将会直接造成用电设备瘫痪。
浅析电力系统中谐振过电压的原因及防范措施
浅析电力系统中谐振过电压的原因及防范措施发表时间:2018-03-23T14:29:03.593Z 来源:《防护工程》2017年第32期作者:宋子健[导读] 但往往不一定能准确及时判断出接地线路,以致延误消振时间,所以,工作中为及时消除谐振一般先考虑选择上述四种途径。
大唐长春第二热电有限责任公司吉林长春 130031摘要:对电力系统中谐振过电压的产生原因进行了分析和探讨,介绍了目前常用的消谐方法及优缺点,提出了防止谐振过电压的措施和谐振事故的处理方法,提高系统运行稳定性。
关键词:电力系统;谐振;过电压;稳定性电力系统中引起过电压的原因很多,其中谐振过电压出现相对频繁,危害性较大。
过电压一旦发生,往往会造成电气设备的损坏、烧毁,甚至发生停电事故。
由于谐振过电压作用时间较长,且不能用避雷器限制,在选择保护措施方面有较大的困难。
谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续铁磁谐振,使系统产生谐振过电压。
1 谐振产生的原因简单的R、C和铁芯电感L电路中,假设在正常运行条件下,其初始状态是感抗大于容抗,即ωL>(1/ωC),此时不具备线性谐振条件,回路保持稳定状态。
但当电源电压有所升高时,或电感线圈中出现涌流时,有可能使铁芯饱和,其感抗值减小,当ωL=(1/ωC)时,即满足了串联谐振条件,在电感和电容两端便形成过电压,回路电流的相位和幅值会突变,发生磁谐振现象,谐振一旦形成,谐振状态可能“自保持”,维持很长时间而不衰减,直到遇到新的干扰改变了其谐振条件谐振才可能消除。
下列激发条件造成电压谐振:电压互感器的突然投入;线路发生单相接地;系统运行方式的突然改变或电气设备的投切;系统负荷发生较大的波动;负荷的不平衡变化等。
2 常用的消谐方法及优缺点2.1中性点不接地系统常见的消谐措施(1)采用励磁特性较好的电压互感器电压互感器选型时尽量采用采用励磁特性较好的电压互感器。
谈电网谐振过电压的限制方法(1)论文
谈电网谐振过电压的限制方法(1)论文论文摘要:电力供电系统或者说在电力供电电网上,过电压现象十分普遍。
如果没有防范措施,随时都可能发生,也随时都可以发现。
引起电网过电压的原因很多。
主要可分为谐振过电压、操作过电压和雷电过电压。
论文关键词:电网谐振谐振过电压操作过电压雷电过电压限制方法电力供电系统或者说在电力供电电网上,过电压现象十分普遍。
如果没有防范措施,随时都可能发生,也随时都可以发现。
引起电网过电压的原因很多。
主要可分为谐振过电压、操作过电压和雷电过电压;其中谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。
多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。
由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。
为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以避免形成严重的串联谐振回路;或采取适当的防止谐振的措施。
在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。
目前,我国66kV及以下配电网,仍大部分采用中性点不接地方式运行,一部分采用老式的消弧(消谐)线圈接地。
从电网的运行实践证明,中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、TV高压中性点增设电阻或单只TV等,但始终没有从根本上得到解决,TV 烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2h不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3-5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流接地系统谐振过电压的抑制措施研究
作者:江占才
来源:《中国科技博览》2013年第32期
摘要:谐振过电压是电力系统最常见的异常现象之一,其实质是由于线路故障、倒闸操作、三相负荷严重不对称等,严重影响到电网、供用电设备及人身的安全,必须予以足够的重视和防范。
关键词:谐振过电压抑制措施
中图分类号:TD327.3 文献标识码:A 文章编号:1009-914X(2013)32-031-01
1.引言
系统过电压往往会造成电气设备的损坏和大面积停电事故发生。
根据多年的运行实践和案例分析得出,过电压事故大多数是由于谐振引起的,特别是在打雷、刮风、阴雨等特殊天气时,变电站35kV及以下电网发生间歇性接地的频率较高,当接地使得系统参数满足谐振条件时便会产生谐振过电压,谐振给电力系统造成破坏性的后果:使电网中的设备产生大量附加的谐波损耗,降低发电、输电、变电及用电设备的效率,影响各种电气设备的正常工作,严重时导致继电保护和自动装置误动作,以及对邻近的通信系统产生干扰,降低通信质量,甚至使其无法正常工作等。
2.谐振产生的原因分析
2.1谐振的类型。
谐振过电压可分为线性谐振过电压、铁磁谐振过电压和参数谐振过电压三种,铁磁谐振又分为基波谐振、分次谐波谐振、高次谐波谐振。
其中铁磁谐振过电压是小电流接地系统中最常见,且造成事故最多的一种内部过电压。
2.2谐振的物理和电气特点。
谐振是一种稳态电气现象,它不仅会在操作或事故时的过渡过程中产生,而且还可能在过渡过程结束后长时间内稳定存在,直到发生新的操作,使谐振条件受到破坏为止,所以谐振过电压的持续时间比较长。
然而无论是哪种谐振,其共同特征是引起系统电压升高,绝缘闪络或避雷器爆炸;或产生高值零序电压分量,出现瞬时接地现象;或在电压互感器中出现过电流,引起熔断器熔断或互感器烧坏。
线性谐振是电力系统中最简单的一种谐振形式,其特点是电感和电容都为恒定的常数,当电源中某次的谐振频率正好与电路的自振频率相等时,如果电阻为零,则谐振时电流为无限大,电压也为无限大。
实际上电阻不可能是零,则可能出现额定电压K倍数的过电压。
铁磁谐振的特点是过电压有某一固定的数值,这个数值由电路的参数和电源电压大小来决定。
各次谐波谐振不同特点主要在于:基波谐振时,一相电压降低,但不为零,另外两相电压
升高,超过线电压,表针打到头,或两相电压降低,但不为零,一相电压升高,表针打到头;分次谐振时,三相电压依次升高,超过线电压,表针打到头,三相电压表针在同范围内低频摆动;高次谐振时,三相电压同时升高,超过线电压,表针打到头,也可能一相电压上升高于线电压,另两相电压下降。
参数谐振是由电感参数作周期性变化的电感元件和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,形成参数谐振过电压。
2.3谐振产生的原因
目前,我国66kV及以下电网大部分采用中性点不接地方式运行,特别是使用中性点接地的电压互感器时铁心饱和引起的铁磁谐振过电压比较多,另外由于单相接地后允许运行两小时,随着电网的扩大,出线回路数增多、线路增长,对地电容电流亦大幅度增加,接地时电弧不能自动熄灭必然产生弧光过电压,当参数匹配时即产生谐振。
由运行经验得出:在正常运行中,若突然发生谐振过电压,一般是由于中性点不接地系统发生单相接地、单相断线或跳闸、三相负荷严重不对称等,达到了谐振条件;若在倒闸操作过程中发生谐振,可能是由于断路器非同期合闸或是断路器断口电容与母线上电压互感器耦合、切合空母线时恰好构成了谐振条件,从而引起铁磁谐振。
谐振即物理的简谐振动,物体的加速度在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动。
其动力学方程式是F=-kx。
谐振的现象是电流增大和电压减小,越接近谐振中心,电流表电压表功率表转动变化快,但是和短路的区别是不会出现零序量。
在物理学中,当策动力的频率和系统的固有频率相等时,系统受迫振动的振幅最大,这种现象叫共振。
电路里的谐振其实也是这个意思:当电路中激励的频率等于电路的固有频率时,电路的电磁振荡的振幅也将达到峰值。
实际上,共振和谐振表达的是同样一种现象。
这种具有相同实质的现象在不同的领域里有不同的叫法而已。
谐振电路:由电感L和电容C组成的,可以在一个或若干个频率上发生谐振现象的电路,统称为谐振电路。
在电子和无线电工程中,经常要从许多电信号中选取出我们所需要的电信号,而同时把我们不需要的电信号加以抑制或滤出,为此就需要有一个选择电路,即谐振电路。
另一方面,在电力工程中,有可能由于电路中出现谐振而产生某些危害,例如过电压或过电流。
所以,对谐振电路的研究,无论是从利用方面,或是从限制其危害方面来看,都有重要意义。
谐振与谐振条件:由电感L和电容C串联而组成的谐振电路称为串联谐振电路,如图所示。
其中R为电路的总电阻,即R=RL+RC,RL和RC分别为电感元件与电容元件的电阻;Us 为电压源电压,ω为电源角频率。
该电路的输入阻抗为
其中X=ωL-1/ωC。
故得Z的模和幅角分别为
由式(9-1-2)可见,当X=ωL-1/ωC=0时,即有φ=0,即Xl与Xc相同。
此时我们就说电路发生了谐振。
而电路达到谐振的条件即为X=ωL-1/ωC=0
谐振频率:由式X=ωL-1/ωC=0 可得
ω0称为电路的固有谐振角频率,简称谐振角频率,因为它只由电路本身的参数L,C所决定。
电路的谐振频率则为X=1/2π√LC
谐振阻抗,特征阻抗与品质因数
电路在谐振时的输入阻抗称为谐振阻抗,用Z0表示。
由于谐振时的电抗X=0,故得谐振阻抗为 Z0=R
可见Z0为纯电阻,其值为最小。
谐振时的感抗XL0和容抗XC0称为电路的特征阻抗,用ρ表示。
即
可见ρ只与电路参数L,C有关,而与ω无关,且有XL0=XC0。
品因数用Q表示,定义为特征阻抗ρ与电路的总电阻R之比,即
Q=ρ/R=XL0/R=XC0/R
在电子工程中,Q值一般在10-500之间。
由上式可得
ρ=XL0=XC0=QR
故可得谐振阻抗的又一表示式:Z0=R=ρ/Q
在电路分析中一般多采用电路元件的品质因数。
电感元件与电容元件的品质因数分别定义为
即电路的品质因数Q,实际上可认为就是电感元件的品质因数QL。
以后若提到品质因数Q,今指QL。
3.谐振的抑制措施
3.1严格执行操作规程
在运行方式安排上和倒闸操作过程中,防止断路器断口电容、空载母线与母线PT构成串联谐振回路,它包括两个方面:一是避免用带断口电容的断路器切带电磁式电压互感器的空载母线,二是避免用带断口电容的回路刀闸对带电磁式电压互感器的空载母线进行合闸操作。
具体可采用下述方式来实现:在切空母线时,应先拉开电压互感器,对母线断电;在投空母线时,先断开被送母线电压互感器,对母线送电,再合母线电压互感器。
3.2 消除固有谐振条件
增加母线对地电容或减少系统中电压互感器中性点接地的台数,从而减少自振固有频率,避免系统发生母线铁磁谐振过电压,如采用电容式电压互感器等;提高断路器动作的同期性,由于许多谐振过电压是在非全相运行条件下引起的,因此提高断路器动作的同期性,防止非全相运行,可以有效抑制谐振过电压的发生;35kV系统中性点经消弧线圈(加装消谐电阻)接地,并在过补偿方式下运行;尽量减少系统并联运行的电压互感器台数;凡是6—35kV母线分段的变电所,若母线经常不分段运行,应将一组电压互感器退出作为备用,电力客户的6—10kV电压互感器一次侧中性点一律为不接地运行,6—35kV一次侧中性点串联阻尼电阻或二次侧开口三角形绕组并联阻尼电阻或消谐器;在并联高压电抗器中性点加装小电抗;增投线路;若变电站有一台以上数目的主变,可视具体运行情况将原本并列(分列)运行的变压器分列(并列);母线并解列。
3.3人员培训
加强对相关专业知识的培训,掌握了解一些系统过电压产生的条件及特征,在系统发生异常时,能够及时采取正确的消谐措施,避免系统异常发展成为事故。
4.结束语
谐振过电压是危害电网安全运行的隐形杀手,如果我们能够充分认识到它的危险性,并且在运行中多观察、操作前勤思量、谐振初期积极采取正确的措施,破坏谐振条件,就可有效避免谐振过电压发展造成事故。
因此,强化岗位责任、加强业务学习,掌握谐振过电压的特征及抑制措施势在必行。