《集合的概念》参考教案1
集合的含义与表示教案
集合的含义与表示教案集合的含义与表示教案(精选6篇)作为一位杰出的老师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
教案应该怎么写才好呢?以下是店铺为大家收集的集合的含义与表示教案,欢迎大家借鉴与参考,希望对大家有所帮助。
集合的含义与表示教案篇1教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2003的13年内所发射的所有人造卫星;⑶ 金星汽车厂2003年生产的所有汽车;⑷ 2004年1月1日之前与我国建立外交关系的所有国家;⑸ 所有的正方形;⑹ 黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4⑵(2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,…⑸ 1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。
1-1-1 集合的概念教案单元设计教案单元设计
教案单元设计:集合的概念教学目标:1. 了解集合的概念,理解集合中元素的特点。
2. 学会用集合符号表示集合,掌握集合的基本运算。
3. 能够应用集合的概念解决实际问题。
教学内容:1. 集合的概念:集合的定义,集合的表示方法,集合中元素的特点。
2. 集合的基本运算:并集,交集,补集。
3. 集合的实际应用:数集,几何集,集合的分类。
教学步骤:一、导入(5分钟)1. 引入集合的概念,引导学生思考日常生活中遇到的集合例子。
2. 引导学生观察集合的元素特点,引导学生发现集合的性质。
二、集合的表示方法(10分钟)1. 介绍集合的表示方法,如大括号,圆括号等。
2. 让学生练习用集合符号表示给定的集合。
三、集合的基本运算(10分钟)1. 介绍集合的基本运算:并集,交集,补集。
2. 通过示例让学生理解并集,交集,补集的概念。
3. 让学生练习计算给定集合的基本运算。
四、集合的实际应用(10分钟)1. 引入数集和几何集的概念,让学生了解集合在数学中的应用。
2. 引导学生思考集合在其他学科中的应用,如生物学中的种群,社会学中的群体等。
2. 布置作业,让学生巩固所学内容,应用集合的概念解决实际问题。
教学评价:1. 课后收集学生的作业,评估学生对集合概念和基本运算的理解程度。
2. 在下一节课开始时,进行小测验,了解学生对集合概念和基本运算的掌握情况。
3. 观察学生在课堂上的参与程度和提问反馈,了解学生的学习效果。
教学资源:1. 集合的概念和基本运算的PPT课件。
2. 集合的练习题和作业题。
3. 集合的实际应用案例。
教学建议:1. 在课堂上,鼓励学生积极参与,提问解答,提高学生的思维能力。
2. 针对学生的不同学习水平,给予适当的辅导和指导,帮助学生掌握集合的概念和基本运算。
3. 结合学生的兴趣和生活实际,引入有趣的集合例子,激发学生的学习兴趣。
教案单元设计:集合的概念(续)六、集合的性质(10分钟)1. 介绍集合的性质:确定性,互异性,无序性。
高中数学第一章集合教案1
高中数学第一章集合教案1
教学目标:使学生掌握集合的基本概念和表示方法,了解集合的运算及其性质。
一、集合的定义和表示方法
1. 集合的基本概念
- 了解集合的概念和元素的概念
- 掌握集合的表示方法:列举法、描述法
2. 集合的符号表示
- 学习如何用符号表示集合:A={1,2,3,4,5}
二、集合的运算及其性质
1. 集合的运算
- 了解集合的交集、并集、差集等运算
- 学习集合的运算规则和性质:交换律、结合律、分配律
2. 集合的运算应用
- 能够解决实际问题中的集合运算
三、集合的性质和定理
1. 集合的性质
- 了解集合的基本性质:互斥、重复、子集等
- 学习如何判断两个集合是否相等
2. 集合的定理
- 掌握集合的代数定理和逻辑定理
教学步骤:
1. 引入新知识,通过生动有趣的例子引出集合的概念和表示方法
2. 介绍集合的运算及其性质,让学生掌握集合的基本运算规则
3. 练习集合的运算和性质,加深学生的理解和掌握程度
4. 引导学生应用集合运算解决实际问题,培养学生的应用能力
5. 总结本节课的内容,强调重点,帮助学生做好知识的复习和巩固
教学反馈:通过课堂练习、作业布置等方式对学生的学习情况进行及时反馈,发现问题及时纠正,提高学生的学习效果。
教学资源:教科书、课件、练习题等
教学评价方法:通过课堂练习、小测验、作业等不同方式对学生的学习情况进行评价,及时发现问题,实施个性化教学。
集合的含义教案
集合的含义教案教案标题:集合的含义教案教学目标:1. 了解集合的基本概念和符号表示法。
2. 能够识别和描述集合的不同类型。
3. 能够使用适当的符号表示法表示集合。
4. 能够进行简单的集合运算。
教学重点:1. 集合的定义和符号表示法。
2. 集合的类型和特点。
3. 集合的运算。
教学准备:1. 教师准备:白板、彩色粉笔、教学PPT、集合的示例和练习题。
2. 学生准备:学生课本、笔记本和书写工具。
教学过程:步骤一:导入新知识1. 教师通过引入问题激发学生对集合的兴趣,例如:“你们知道什么是集合吗?在日常生活中,你们遇到过哪些集合?”2. 学生回答问题,教师记录学生的回答在白板上。
步骤二:概念解释1. 教师介绍集合的定义:“集合是由一些特定对象组成的整体。
”2. 教师解释集合的符号表示法:“通常用大写字母表示集合,用花括号{}表示集合的元素。
”3. 教师通过示例向学生展示集合的符号表示法,例如:“集合A = {1, 2, 3},表示A是由元素1、2和3组成的集合。
”4. 教师强调集合中的元素是无序的,没有重复的。
步骤三:集合的类型1. 教师介绍集合的不同类型,如空集、单元素集、有限集和无限集。
2. 教师通过示例向学生展示不同类型的集合,例如:“空集是不包含任何元素的集合,表示为∅;单元素集是只包含一个元素的集合,例如{1};有限集是包含有限个元素的集合,例如{1, 2, 3};无限集是包含无限个元素的集合,例如自然数集N = {1, 2, 3, ...}。
”3. 教师鼓励学生举例说明其他类型的集合。
步骤四:集合的运算1. 教师介绍集合的运算,如并集、交集和补集。
2. 教师通过示例向学生展示集合的运算,例如:“并集是指两个集合中所有元素的总和,用符号∪表示;交集是指两个集合中共有的元素,用符号∩表示;补集是指一个集合中不属于另一个集合的元素,用符号'表示。
”3. 教师通过练习题让学生进行集合的运算练习,例如:“求集合A = {1, 2, 3}和集合B = {2, 3, 4}的并集和交集。
《集合的概念》参考教案
《集合的概念》参考教案一、教学目标1. 让学生理解集合的概念,掌握集合的表示方法。
2. 培养学生运用集合语言描述现实生活中的数学问题。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 集合的定义2. 集合的表示方法3. 集合之间的关系4. 集合的运算5. 集合在生活中的应用三、教学重点与难点1. 重点:集合的概念、表示方法及集合之间的关系和运算。
2. 难点:理解集合的表示方法,熟练运用集合语言描述问题。
四、教学方法1. 采用讲授法,讲解集合的概念、表示方法及集合之间的关系和运算。
2. 运用案例分析法,让学生在实际问题中运用集合的知识。
3. 开展小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入:通过生活中的实例,引导学生思考集合的概念。
2. 讲解:详细讲解集合的定义、表示方法及集合之间的关系和运算。
3. 案例分析:分析实际问题,让学生运用集合的知识解决问题。
4. 小组讨论:让学生分组讨论,分享各自的想法和成果。
5. 总结:对本节课的内容进行总结,强调集合的概念及运用。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评价1. 评价内容:学生对集合概念的理解、表示方法的掌握以及集合运算的应用能力。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业等。
3. 评价标准:能正确理解并运用集合语言描述问题,掌握集合的基本运算,能解决实际生活中的集合问题。
七、教学资源1. 教材:高中数学教材相关章节。
2. 辅助材料:集合相关的图片、案例、练习题等。
3. 教学工具:黑板、多媒体设备等。
八、教学进度安排1. 第1周:讲解集合的概念和表示方法。
2. 第2周:讲解集合之间的关系和运算。
3. 第3周:案例分析,运用集合知识解决实际问题。
4. 第4周:小组讨论,分享成果,巩固所学知识。
5. 第5周:总结集合的概念和运用,布置课后作业。
九、教学反思1. 反思内容:教学方法的适用性、学生的学习效果、教学目标的达成情况等。
大班数学教案集合概念
大班数学教案集合概念概述在幼儿园大班的数学教学中,集合概念是一个重要的内容。
通过集合的学习,可以帮助幼儿建立数量、形状、空间等方面的基本概念,同时培养他们的观察、分类、推理和解决问题的能力。
本文档将介绍一些适用于大班幼儿的数学教案集合概念。
教案一:集合的引入目标通过教学活动,引导幼儿了解什么是集合,并能够辨认集合中的元素。
活动一:集合分类1.准备一组卡片,上面分别画有不同的物品或动物。
2.让幼儿观察这些卡片,按照自己的理解将它们分成不同的类别,如动物、食物、玩具等。
3.引导幼儿讨论他们是如何将卡片分类的,并与他们一起总结规则和共同特点。
活动二:集合的形成1.给幼儿展示一个集合的概念图,比如一个圆圈表示一个集合。
2.逐个添加不同的物品或图片到集合中,引导幼儿观察并发现集合中的共同特点。
3.鼓励幼儿思考,通过观察物品的共同特点来判断它们是否属于同一个集合。
活动三:集合的元素1.给幼儿分发一些不同的物品,如玩具、图画等,并让他们观察。
2.引导幼儿将这些物品按照各自的特点和共同点进行分类,并说出他们所属的集合。
3.让幼儿进行小组分享,讨论不同的分类方式,并总结各种集合的标准。
教案二:集合的运算目标通过教学活动,让幼儿了解集合的基本运算,并能够进行简单的集合操作。
活动一:集合的合并1.给幼儿准备两个集合A和B,分别用卡片或图片表示。
2.引导幼儿观察集合A和集合B,并问幼儿如果将A和B合并在一起,新的集合会是什么样子。
3.让幼儿按照自己的理解将A和B合并成一个新的集合,并进行讨论。
活动二:集合的交集1.给幼儿准备两个集合A和B,分别用卡片或图片表示。
2.引导幼儿观察集合A和集合B,并问幼儿两个集合中的共同元素是什么。
3.让幼儿找出A和B集合中的共同元素,并进行讨论。
活动三:集合的补集1.给幼儿准备一个集合A,用卡片或图片表示。
2.引导幼儿观察集合A,并问幼儿如果将A中的元素移除,剩下的部分是什么。
3.让幼儿找出A集合中的元素,并讨论剩下的部分是什么。
集合的概念教案5篇
集合的概念教案5篇教师需要了解学生的学习偏好,以确保教案包括多种教学方法,以满足不同学生的需求,教案包括教学评估的方法,用于测量学生的学习成果和教学效果,以下是作者精心为您推荐的集合的概念教案5篇,供大家参考。
集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1,3)} 6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。
集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。
把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。
从知识结构上来说是为了引入函数的定义。
因此在高中数学的模块中,集合就显得格外的举足轻重了。
集合的概念第一课时教案
集合的概念第一课时教案一、教学目标1.理解集合的基本概念和表示方法。
2.掌握集合的元素特性,了解集合的分类。
3.学会使用集合描述和解决实际问题。
二、教学重点和难点1.重点:集合的基本概念、元素特性、分类及表示方法。
2.难点:如何理解集合的概念,如何用集合描述实际问题。
三、教学过程1.导入新课:通过简单的日常生活中的例子,如“一群人、一堆书、一组数”等引入集合的概念。
2.讲解概念:详细解释集合、元素、子集、超集等概念,并通过实例帮助学生理解。
3.集合的表示方法:介绍列举法和描述法两种表示集合的方法,并举例说明如何使用。
4.集合的分类:介绍空集、有限集、无限集等集合的分类,并通过实例进行说明。
5.集合的应用:通过实例讲解如何用集合描述和解决实际问题,如数学中的数集、点集等。
6.课堂练习:通过问题解答等方式进行课堂互动,强化学生对集合概念的理解和应用能力。
7.总结回顾:对本节课内容进行回顾,强调重点和难点,并引导学生进行思考和讨论。
四、教学方法和手段1.讲解与示范相结合:通过讲解和示范相结合的方式,使学生更好地理解集合的概念和表示方法。
2.实例教学:通过实例教学的方式,帮助学生更好地理解集合的概念和实际应用。
3.问题解答:通过问题解答的方式,强化学生对集合概念的理解和应用能力。
4.多媒体辅助:使用多媒体辅助教学,提高教学效果和效率。
五、课堂练习、作业与评价方式1.课堂练习:通过问题解答等方式进行课堂互动,强化学生对集合概念的理解和应用能力。
2.作业:布置相关练习题,加深学生对集合概念的理解和应用能力。
3.评价方式:通过观察学生参与度、答题情况等方式进行评价,及时反馈学生的学习情况和问题,帮助学生更好地掌握集合的概念和应用。
六、辅助教学资源与工具1.教学PPT:提供清晰简洁的PPT,帮助学生学习和理解集合的概念和应用。
2.教学视频:提供相关的教学视频,帮助学生更好地掌握集合的概念和应用。
3.教学案例:提供相关的教学案例,帮助学生更好地理解集合的实际应用。
高中数学教案《集合的概念》
教学计划:《集合的概念》一、教学目标1.知识与技能:学生能够理解集合的基本概念,掌握集合的表示方法(列举法、描述法),以及集合元素的基本性质(确定性、互异性、无序性)。
2.过程与方法:通过具体实例分析,引导学生观察、比较、归纳集合的特点,培养学生的抽象思维能力和逻辑推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养严谨的科学态度和良好的学习习惯,感受数学在解决实际问题中的应用价值。
二、教学重点和难点●教学重点:集合的基本概念、表示方法以及集合元素的基本性质。
●教学难点:理解集合元素的互异性,并能在实际问题中准确应用集合的概念进行描述和推理。
三、教学过程1. 引入新课(约5分钟)●生活实例引入:通过学生熟悉的场景(如班级学生名单、水果分类等)引入集合的概念,让学生感受到集合在日常生活中的应用。
●提出问题:引导学生思考这些场景中的共同特点,即“整体”与“个体”的关系,从而引出集合的定义。
●明确目标:介绍本节课的学习目标,即理解集合的基本概念,掌握集合的表示方法和元素性质。
2. 讲授新知(约15分钟)●集合的定义:清晰阐述集合的定义,强调集合是由一些确定的、不同的元素所组成的整体。
●集合的表示方法:介绍列举法和描述法两种表示方法,通过实例展示如何具体使用这两种方法来表示集合。
●集合元素的基本性质:详细讲解集合元素的确定性、互异性和无序性,通过例题和练习加深学生对这些性质的理解。
3. 案例分析(约10分钟)●实例分析:选取几个具有代表性的实例(如班级学生集合、自然数集合等),分析这些实例中集合的构成和元素性质。
●师生互动:鼓励学生提出问题或疑惑,教师及时解答,促进学生对集合概念的理解。
●总结归纳:引导学生总结归纳集合的基本特点和表示方法,为后续学习打下基础。
4. 练习巩固(约15分钟)●课堂练习:设计多样化的练习题,包括选择题、填空题和解答题,让学生在练习中巩固集合的概念和表示方法。
●小组合作:鼓励学生分组讨论,共同解决难题,培养学生的团队合作精神和问题解决能力。
集合的概念教案
精选集合的概念教案一、教学目标1. 理解集合的概念,掌握集合的表示方法。
2. 能够运用集合语言描述生活中的事物,培养学生的抽象思维能力。
3. 通过对集合概念的学习,提高学生的逻辑思维和数学素养。
二、教学重点与难点1. 教学重点:集合的概念、集合的表示方法。
2. 教学难点:理解集合的确定性、互异性、无序性。
三、教学准备1. 教学材料:教材、教案、PPT、黑板。
2. 教学工具:多媒体设备、粉笔。
四、教学过程1. 导入新课:通过生活中的实例,如“班级里的学生”、“水果店的水果”等,引导学生思考什么是集合,激发学生的兴趣。
2. 讲解概念:讲解集合的概念,强调集合的确定性、互异性、无序性。
3. 实例分析:分析生活中的一些实例,让学生理解集合的概念。
4. 集合的表示方法:讲解集合的表示方法,如列举法、描述法等。
5. 练习与讨论:布置一些练习题,让学生运用集合语言描述实例,并进行讨论。
五、课后作业1. 复习本节课的内容,掌握集合的概念和表示方法。
2. 完成课后练习题,加深对集合概念的理解。
3. 思考生活中的其他实例,尝试用集合语言描述。
教学评价:通过课堂讲解、练习和课后作业,评价学生对集合概念的理解程度,以及运用集合语言描述事物的能力。
在评价过程中,关注学生的逻辑思维和数学素养的提高。
六、教学拓展1. 集合的分类:讲解集合的分类,如数集、几何集等。
2. 集合的关系:讲解集合之间的关系,如子集、真子集、并集、交集等。
3. 集合的运算:讲解集合的运算规则,如并集、交集、补集等。
七、教学活动1. 小组讨论:让学生分组讨论集合的分类和关系,分享各自的理解和看法。
2. 案例分析:分析一些具体的集合案例,让学生运用集合的运算规则解决问题。
2. 强调集合语言在数学和生活中的重要性,激发学生继续学习的兴趣。
九、课后作业1. 复习本节课的内容,掌握集合的分类、关系和运算。
2. 完成课后练习题,加深对集合概念的理解。
3. 思考生活中的其他实例,尝试用集合语言描述。
集合的概念 教案
1.1集合的概念教学设计教材分析由于空间时间维度的不同, 同一个事物会有不同的解释, 如: 在平面内, 所有到定点的距离等于定长的点组成一个圆;而在空间中, 所有到定点的距离等于定长的点组成一个球面。
因此明确研究对象、确定研究范围是研究数学问题的基础。
为了简洁、准确地表达数学对象及研究范围, 我们需要使用集合的语言和工具。
作为高中数学的第一节, 本节主要通过实例研究研究集合的含义, 表示方法及表示方法, 比较简单。
教学目标与核心素养课程目标1.了解集合的含义;理解元素与集合的“属于”与“不属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.会用集合的两种表示方法表示一些简单集合。
感受集合语言的意义和作用。
数学学科素养1.数学抽象: 集合概念的理解, 描述法表示集合的方法;2.逻辑推理: 集合的互异性的辨析与应用;3.数学运算:集合相等时的参数计算, 集合的描述法转化为列举法时的运算;4.数据分析: 元素在集合中对应的参数满足的条件;5.数学建模: 用集合思想对实际生活中的对象进行判断与归类。
教学重难点重点: 集合的基本概念, 集合中元素的三个特性, 元素与集合的关系, 集合的表示方法.难点:元素与集合的关系, 选择适当的方法表示具体问题中的集合.课前准备教学方法: 以学生为主体, 采用诱思探究式教学, 精讲多练。
教学工具: 多媒体。
教学过程预习课本, 引入新课阅读课本2-5页, 思考并完成以下问题1.集合和元素的含义是什么?各用什么字母表示?2.集合有什么特性?3.元素和集合之间有哪两种关系?有什么符号表示?4.常见的数集有哪些?用什么字母表示?5.集合有哪两种表示方法?它们如何定义?6.它们各自有什么特点?7.它们使用什么符号表示?要求:学生独立完成, 以小组为单位, 组内可商量, 最终选出代表回答问题。
二、知识归纳、梳理1. 元素与集合的概念(1)元素: 一般地, 把研究对象统称为元素. 元素常用小写的拉丁字母a, b, c, …表示.(2)集合:把一些元素组成的总体叫做集合(简称为集). 集合通常用大写的拉丁字母A, B, C, …表示.(3)集合相等: 只要构成两个集合的元素是一样的, 就称这两个集合是相等的.4.把集合的元素一一列举出来出来, 并用花括号“{ }”括起来表示集合的方法叫做列举法.5. 描述法(1)定义: 用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(变化)范围, 再画一条竖线, 在竖线后写出这个集合中元素所具有的共同特征.三、典例分析、举一反三题型一集合的含义例1考查下列每组对象, 能构成一个集合的是()①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A. ③④B. ②③④C. ②③D. ②④【答案】B解题技巧: (判断一组对象能否组成集合的标准)判断一组对象能否组成集合, 关键看该组对象是否满足确定性, 如果此组对象满足确定性, 就可以组成集合;否则, 不能组成集合.同时还要注意集合中元素的互异性、无序性.跟踪训练一1. 给出下列说法:①中国的所有直辖市可以构成一个集合;②高一(1)班较胖的同学可以构成一个集合;③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合.其中正确的有________. (填序号)【答案】①③题型二元素与集合的关系例2(1)下列关系中, 正确的有()①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A. 1个B. 2个C. 3个D. 4个(2)集合A中的元素x满足∈N, x∈N, 则集合A中的元素为________.【答案】(1) C (2) 0,1,2解题技巧: 判断元素与集合关系的两种方法(1)直接法:如果集合中的元素是直接给出, 只要判断该元素在已知集合中是否出现即可。
《集合的概念》参考教案
《集合的概念》参考教案一、教学目标1. 让学生理解集合的概念,掌握集合的表示方法。
2. 培养学生运用集合语言描述现实生活中的数学问题。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 集合的概念及表示方法。
2. 集合的基本运算(并集、交集、补集)。
3. 集合在实际问题中的应用。
三、教学重点与难点1. 重点:集合的概念,集合的表示方法,集合的基本运算。
2. 难点:理解集合的无限性,掌握集合的描述方法。
四、教学方法1. 采用讲授法,讲解集合的概念、表示方法和基本运算。
2. 利用案例分析法,引导学生运用集合语言解决实际问题。
3. 组织小组讨论,培养学生的合作意识。
五、教学准备1. 课件:集合的概念、表示方法、基本运算的图片和例子。
2. 练习题:涵盖集合的概念、表示方法和应用。
3. 小组讨论素材:现实生活中的集合问题。
教案部分:一、导入(5分钟)1. 引入集合的概念,通过展示图片(如苹果、橘子)让学生感受集合的特点。
2. 引导学生用集合的语言描述所展示的图片。
二、新课内容(20分钟)1. 讲解集合的表示方法,如列举法、描述法。
2. 讲解集合的基本运算:并集、交集、补集。
3. 通过示例,让学生理解集合的无限性。
三、案例分析(15分钟)1. 给出案例,让学生运用集合语言描述问题。
2. 引导学生分析问题,找出解决问题的关键。
3. 分组讨论,探讨解决问题的方法。
四、课堂练习(10分钟)1. 出示练习题,让学生独立完成。
2. 讲解练习题,巩固所学知识。
五、总结与布置作业(5分钟)1. 总结本节课所学内容,强调集合的概念、表示方法和基本运算。
2. 布置作业:巩固集合的概念和表示方法。
六、课后反思(教师)1. 学生对集合的概念和表示方法的理解程度。
2. 学生在实际问题中运用集合语言的能力。
3. 针对学生的掌握情况,调整教学策略。
六、教学拓展(15分钟)1. 介绍集合的其他表示方法,如维恩图。
2. 讲解集合的限制条件,如互异性、无序性。
《集合的概念》参考教案
《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。
2. 培养学生运用集合知识解决实际问题的能力。
3. 培养学生合作交流、思考创新的能力。
二、教学内容:1. 集合的概念及表示方法。
2. 集合的元素特征。
3. 集合的分类。
三、教学重点与难点:1. 教学重点:集合的概念,集合的表示方法。
2. 教学难点:理解集合的元素特征,掌握集合的分类。
四、教学方法:1. 采用问题驱动法,引导学生主动探究集合的概念。
2. 采用案例分析法,让学生通过实际例子理解集合的表示方法。
3. 采用合作交流法,培养学生团队协作能力。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考集合的概念。
2. 讲解集合的概念:讲解集合的定义,让学生理解集合的基本特征。
3. 学习集合的表示方法:讲解集合的表示方法,如列举法、描述法等。
4. 练习与讨论:让学生通过实例练习表示集合,并讨论集合的元素特征。
《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。
2. 培养学生运用集合知识解决实际问题的能力。
3. 培养学生合作交流、思考创新的能力。
二、教学内容:1. 集合的概念及表示方法。
2. 集合的元素特征。
3. 集合的分类。
三、教学重点与难点:1. 教学重点:集合的概念,集合的表示方法。
2. 教学难点:理解集合的元素特征,掌握集合的分类。
四、教学方法:1. 采用问题驱动法,引导学生主动探究集合的概念。
2. 采用案例分析法,让学生通过实际例子理解集合的表示方法。
3. 采用合作交流法,培养学生团队协作能力。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考集合的概念。
2. 讲解集合的概念:讲解集合的定义,让学生理解集合的基本特征。
3. 学习集合的表示方法:讲解集合的表示方法,如列举法、描述法等。
4. 练习与讨论:让学生通过实例练习表示集合,并讨论集合的元素特征。
《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。
教学设计1:1.1.1 集合的概念
§1.1.1集合的概念一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题: ( 让学生充分发表自己的见解).例1下列所给的对象能构成集合的是__________.(1)所有正三角形;(2)新课标人教A 版数学必修1课本上的所有难题;(3)比较接近1的正整数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点的距离等于1的点的集合;(6)参加伦敦奥运会的年轻运动员;(7)a ,b ,a ,c .解析:点技巧一组对象能否构成集合的判断技巧判断一组对象能否构成集合的关键在于看是否有明确的...判断标准,使给定的对象是“确定无疑”的还是“模棱两可”的.如果是“确定无疑”的,就可以构成集合;如果是“模棱两可”的,就不能构成集合.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么,a b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.∈.如果a是集合A的元素,就说a属于集合A,记作a A∉.如果a不是集合A的元素,就说a不属于集合A,记作a A谈重点对符号“∈”与“∉”的理解(1)由集合中元素的确定性可知,对任意的元素a与集合A,在“a∈A”与“a∉A”这两种情况中必有一种且只有一种成立.(2)符号“∈”和“∉”只表示元素与集合之间的关系,而不能用于表示其他关系.(3)“∈”和“∉”具有方向性...,左边是元素,右边是集合.例2设不等式3-2x<0的解集为M,下列关系中正确的是()A.0∈M,2∈M B.0∉M,2∈MC.0∈M,2∉M D.0∉M,2∉M解析:本题是判断0和2与集合M间的关系,因此只需判断0和2是否是不等式3-2x<0的解即可,当x=0时,3-2x=3>0,所以0∉M;当x=2时,3-2x=-1<0,所以2∈M.答案:B5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.常用数集谈重点+0.(2)通常情况下,大写英文字母N,N*,Z,Q,R不再表示其他的集合,否则会引起“混乱”;虽然正整数集有两种字母表示:N*或N+,但是本书中主要用N*表示正整数集.例3用符号∈或∉填空:(1)3____N;3____Z;3____N*;3____Q;3____R.(2)3.1____N;3.1____Z;3.1____N*;3.1____Q;3.1____R.解析:观察空白处横线的两边,可看出本题是判断数与常用数集之间的关系,依据这些字母所表示集合的意义来判断.(1)因为3是自然数,也是整数,也是正整数,也是有理数,也是实数,所以有:3∈N;3∈Z;3∈N*;3∈Q;3∈R.(2)因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数,所以有:3.1∉N;3.1∉Z;3.1∉N*;3.1∈Q;3.1∈R.答案:(1)∈∈∈∈∈(2)∉∉∉∈∈(四)巩固深化,反馈矫正下列说法正确的是()A.数学成绩较好的同学可以组成一个集合B.所有绝对值接近于零的数组成一个集合C.集合{1,2,3}与集合{3,2,1}表示同一个集合D.1,0.5,12,23,46组成一个含有5个元素的集合解析:对于A项,“成绩较好”没有标准,不符合元素的确定性,故不正确;对于B项,“绝对值接近于零的数”标准不明确,不构成集合,故不正确;对于C项,集合{1,2,3}与{3,2,1}元素相同,是相等集合,因此正确;对于D项,1,0.5,12,23,46组成一个含有3个元素的集合121,,23⎧⎫⎨⎬⎩⎭,故不正确.答案:C(五)归纳整理,整体认识在师生互动中,让学生了解或体会下例问题:1.本节课我们学习过哪些知识内容?2.你认为学习集合有什么意义?3.选择集合的表示法时应注意些什么?(六)承上启下,留下悬念1.课后书面作业:第13页习题1.1A组第4题.。
《集合的概念》教案
《的概念》教案《集合的概念》教案在教学工作者开展教学活动前,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。
写教案需要注意哪些格式呢?以下是小编整理的《集合的概念》教案,仅供参考,欢迎大家阅读。
《的概念》教案1一、教材1、教材的地位和作用《集合的概念》是人教版第一章的内容(中职数学)。
本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。
初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。
通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、教学目标(1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
二、学情分析(说学情)对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、教法针对学生的实际情况,采用探究式教学法进行教学。
首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。
在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。
最新集合的概念教案 3篇精选
【教学目标】1.了解集合、元素的概念,体会集合中元素的三个特征;2.理解集合的作用,会根据已知条件构造集合;3. 理解元素与集合的“属于”和“不属于”关系,并会正确表达;4. 掌握常用数集及其记法;5.了解数合的含义,记忆基本数集的符号;6.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.【导入新课】一、实例引入:军训前学校通知:8月21日上午8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.二、问题情境引入:我们高一(3)班一共45人,其中班长易雪芳,现有以下问题:⑴ 45人组成的班集体能否组成一个整体?⑵ 班长易雪芳和45人所组成的班集体是什么关系?⑶ 假设张三是相邻班的学生,问他与高一(3)班是什么关系?三、课前学习1.学法指导:(1)阅读教材的内容感受集合的含义,理解集合与元素的关系,理解数集、空集的概念;(2)本学时的重点是集合的含义、元素与集合之间的关系以及常用数集的符号表示、空集的意义及符号;(3)对于一个整体是否是集合的判断的关键是对“确定”两字的理解,学习时结合实例及教材上的例题进行理解。
记忆常用数集、空集的符号表示。
2.尝试练习:见《数学学案》P1四、课堂探究:见《数学学案》P11.探究问题:探究1探究22.知识链接:3.拓展提升:例1、下列各组对象能否组成集合?(1) 所有小于10的自然数;(2) 某班个子高的同学;(3) 方程的所有解;(4) 不等式的所有解;(5) 中国的直辖市;(6) 不等式的所有解;(7) 大于4的自然数;(8) 我国的小河流。
例2、下列集合哪些是数集?再试着举两个数集,并使它们分别是有限集与无限集。
集合的概念教案人教版
集合的概念教案人教版这是集合的概念教案人教版,是优秀的数学教案文章,供老师家长们参考学习。
集合的概念教案人教版第1篇集合的概念及相关运算教学设计一、教材分析1.知识来源:集合的概念选自湖南教育出版社必修一中第一章集合与函数概念的第一小节;2. 知识背景:作为现代数学基础的的集合论,集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学中一些冗长的文字语言.高中数学课程只将集合作为一种语言来学习,作为一种数学简单符号来探究。
通过本节课的学习,是阶段性的要求,学生将领悟集合的抽象性及其具体性,学会使用最基本的集合语言去表示有关的数学对象,逐渐发展运用数学语言进行交流的能力。
3.知识外延:集合相关知识的学习对于接下来函数的学习至关重要,高中函数的概念将建立在集合间关系的基础上的。
二、学情分析1.学生心理特征分析:集合为高一上学期开学后的第一次授课知识,是学生从初中到高中的过渡知识,存在部分同学还沉浸在暑假的懒散中,从而增加了授课的难度。
再者,与初中直观、具体、易懂的数学知识相比,集合尤其是无限集合就显得抽象、不易理解,这会给学生产生一定的心理负担,对高中数学知识的学习产生排斥心理。
因此本节授课方法就显得十分重要。
2.学生知识结构分析:对于高一的新生来说,能够顺利进入高中知识的学习,基本功还是较扎实的,有良好的学习态度,也有一定的自主学习能力和探究能力。
对集合概念的知识接纳和理解打下了良好的基础,在教学过程中,充分调动学生已掌握的知识,增强学生的学习兴趣。
三、教学目标(一)知识与技能目标1.了解集合的含义与表示,理解集合间的基本关系,掌握集合的基本运算。
能从集合间的运算分析出集合的基本关系,同时对于分类讨论问题,能区分取交还是取并.2.学会在具体的问题中选择恰当的集合表示方法,理解集合有限和无限的特征,理清“元素和集合关系”和“集合与集合关系”符号的区别,不混淆。
3.学会正确使用集合补集思想,即为“正难则反”的思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)有理数集:全体有理数的集合。记作Q
(5)实数集:全体实数的集合。记作R
四、典例解析
例1.你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。
你能否确定,你所在班级中,最高的3位同学构成的集合?
变式训练:教材第4页练习A第1题
例2.
(1)-3N;(2)3.14Q;(3) Q;(4)0Φ;
教学流程:
一、创设情境:
一位教授有一个上幼儿园的女儿,一天教授问放学回家的女儿:“今天在学校学什么了?”女儿说:“集合”。教授问:“怎么讲得集合啊?”女儿回答:“老师班里所有的男生站起来,所有站起来的男生就构成了一个集合,老师又让班里所有地女生站起来,所有站起来的女生构成一个集合。”于是,教授问:“那所有的土豆能构成一个集合么?”女儿想了想说:“如果土豆能够站起来的话,就可以构成集合。”那么本节课我们就来研究所有的土豆是否构成一个集合。
设计意图:通过实例,引导学生经历并体会集合(描述性)概念形成的过程。
师:请同学们自己举一些集合的例子,并说出这些集合的元素。
如果学生举例有困难,教师举一些例子做师范,如:中国古代四大发明,一年七班全体女同学。
设计意图:引导学生进一步明确集合及集合元素的概念,会用自然语言描述集合。
3、元素与集合的关系:
(4)我校高一所有学生.
学生讨论交流,可能得出集合的要点:确定的,不同的对象。也可能得不出,此时教师总结。
师:根据集合的要点,我们来归纳一下集合的定义。
1、集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)。
2、集合的元素:
构成集合的每个对象叫做集合的元素(或成员)。集合通常用大写的英文字母A、B、C、……来表示,它们的元素通常用小写的英文字母a、b、c、……表示。
重点
集合的概念、元素与集合的关系
难点
理解集合的元素的确定性和互异性.
教具
教学要点:1、集合的概念2、元素与集合的关系3、集合元素的特性4、集合的分类5、常用数集符号
特别关注:元素与集合的关系集合元素的确定性和互异性
知识链接:初中代数几何对“集合”的提法以及自然数、整数、有理数的定义
精华作业:教材第5页B组第1题
(5) Q;(6) R;(7)1N+;(8) R。
变式训练ቤተ መጻሕፍቲ ባይዱ教材第5页练习A第3题
五、课后作业
教材第5页练习B第2题、第9页习题1-1B第3题
六、归纳小结
设计意图:设疑激趣,导入课题。
二、复习引入
师:在初中代数、几何中曾涉及“集合”的提法,有谁知道么?都是哪些?
生:不等式的解集以及几何中“圆”的描述。
三、概念形成
师:请大家看几个例子(构成集合)有什么特点?
(1)“小于10”的正整数1,2,…,9;
(2)所有平行四边形;
(3)满足3x>x+2的全体实数;
如果 是集合 的元素,就说 属于 ,记作 ,读作” 属于 ”.
如果 不是集合 的元素,就说 不属于 ,记作 ,读作” 不属于 ”.
师:符号开口指向哪个方向?(指向范围大的集合的方向)
设计意图:引入集合语言描述集合。
4、常用数集及其记号:
(1)自然数集:全体非负整数的集合。记作N
(2)正整数集:非负整数集内排出0的集。记作 或N
1.1.1集合的概念
教
学
目
标
(1)知识与技能:知道集合的含义、常用数集及其记法.会判断元素与集合的关系,明确集合元素的基本特性
(2)过程与方法:通过实例,初步体会元素与集合的”属于”关系,从观察分析集合的元素入手,正确地理解集合;学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).
(3)情感、态度与价值观:在学习运用集合语言的过程中,增强学生认识事物的能力,初步培养学生实事求是、扎实严谨的科学态度.