Simulink下单机—无穷大仿真系统的搭建及系统故障仿真测试分析电气工程及其自动化毕业论文

合集下载

基于MATLABSimulink电力系统短路故障分析与仿真

基于MATLABSimulink电力系统短路故障分析与仿真

基于MATLAB/Simulink电力系统短路故障分析与仿真摘要:MATLAB有强大的运算绘图能力,给用户提供了各种领域的工具箱,而且编程语法简单易学。

论文对电力系统的短路故障做了简要介绍并对短路故障的过程进行了理论分析和MATLAB软件在电力系统中的应用,介绍了Matlab/Simulink的基本特点及利用MATLAB进行电力系统仿真分析的基本方法和步骤。

在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。

关键词:MATLAB、短路故障、仿真、电力系统Abstract:MATLAB has powerful operation ability to draw, toolkit provides users with a variety of fields, and easy to learn programming grammar. Paper to give a brief introduction of fault of the power system and the process of fault are analyzed in theory and the application of MATLAB software in power system, this paper introduces the basic characteristics of MATLAB/Simulink and MATLAB power system simulation analysis of the basic methods and steps. On the simulation platform, with single - infinity system for modeling object, by selecting module, parameter Settings, as well as the attachment, a variety of fault simulation analysis of power system.Keyword:MATLAB;Fault analysis;Simulation;Power System;引言 (3)第一章:课程设计任务书 (3)1.1设计目的: (3)1.2原始资料: (4)1.3设计内容及要求: (4)第二章:电力系统短路故障仿真分析 (5)2.1元件参数标幺值计算: (5)2.2等值电路: (10)第三章:电力系统仿真模型的构建 (10)3.1MATLAB简介: (11)3.2电力元件设计: (11)3.2.1 三相电源: (11)3.2.2 变压器元件: (13)3.2.3输电线路: (14)3.3电力系统模型的搭建: (15)第四章:模型仿真运行 (21)4.1建立仿真模型: (21)4.2仿真结果与分析: (22)第五章: 总结 (25)参考文献 (25)附录:Simulink仿真模型 (26)引言随着电力工业的发展,电力系统规划、运行和控制的复杂性亦日益增加,电力系统的生产和研究中仿真软件的应用也越来越广泛。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。

单机无穷大系统实验实验报告

单机无穷大系统实验实验报告

单机-无穷大系统实验实验报告实验报告:单机-无穷大系统实验1.实验目的本实验主要探究单机无穷大系统的运行性能和稳定性。

通过实验数据的采集、处理和分析,理解单机无穷大系统的基本特性,为实际生产过程中的优化和控制提供理论支持。

2.实验原理单机无穷大系统是指只有一台发电机组,且其负荷可以无限增加直至达到系统最大承载能力的电力系统。

在实验过程中,通过控制发电机组的出力,使系统负荷逐渐增加,观察系统的运行状态和性能指标变化。

3.实验步骤(1)按照实验要求准备设备,包括发电机组、变压器、输电线路、测量仪器等。

(2)启动发电机组,逐渐增加出力,同时记录系统的电压、电流、功率等数据。

(3)继续增加发电机组的出力,直至系统达到最大承载能力,此时观察系统的运行状态和性能指标变化。

(4)逐渐减少发电机组的出力,观察系统恢复到正常运行状态的时间和性能指标变化。

(5)重复步骤2-4,对不同工况下的系统性能进行对比分析。

4.实验结果(1)当发电机组出力小于100MW时,系统运行稳定,各项性能指标正常。

(2)当发电机组出力在100MW至200MW之间时,系统仍然稳定,但会出现轻微的波动和震荡。

(3)当发电机组出力超过200MW时,系统稳定性逐渐变差,振荡幅度增大,甚至可能失稳。

(4)在系统达到最大承载能力后,继续增加发电机组的出力,会导致系统过载保护动作,从而中断系统供电。

5.实验总结通过本实验,我们得出以下结论:单机无穷大系统在一定范围内的发电机组出力下可以保持稳定运行,但当出力超过一定限制时,系统的稳定性会受到影响,甚至可能导致系统崩溃。

因此,在实际生产过程中,需要对发电机组的出力进行合理控制,避免系统过载,保证系统的稳定运行和安全生产。

此外,本实验也验证了理论知识在实际情况下的应用和局限性。

在实际工程中,还需要结合实际情况和多种因素来制定优化方案,并对可能存在的风险进行预测和防范。

MATLAB-SIMULINK在电力系统工程仿真中的应用

MATLAB-SIMULINK在电力系统工程仿真中的应用

MATLAB-SIMULINK在电力系统工程仿真中的应用MATLAB/SIMULINK在电力系统工程仿真中的应用随着电力系统的规模日益庞大和复杂性的增加,为确保电力系统的安全可靠运行,电力系统工程仿真成为了工程设计和运维过程中的重要环节。

MATLAB/SIMULINK作为一种强大的仿真工具,可以有效地模拟电力系统的各种电路、设备与系统,为电力系统工程提供精确的仿真分析与设计。

电力系统工程仿真是一种通过计算机模拟的方法,用以预测和分析电力系统的运行状况和特性。

在传统的电力系统工程中,工程师们常常使用基于经验公式和简化模型的手工计算方法进行设计和评估。

然而,由于电力系统的复杂性和不确定性,采用手工计算方法不仅效率低下,而且容易出现误差。

相比之下,MATLAB/SIMULINK具有更高的仿真精度和灵活性,能够更准确地模拟电力系统的各个方面。

首先,MATLAB/SIMULINK可以用来模拟电力系统的电路和设备。

在电力系统中,包括变压器、发电机、电动机等各种电器设备都是电路连接的要素。

MATLAB/SIMULINK提供了丰富的电路模型和元件库,可以很方便地构建各种电路模型。

例如,我们可以根据电路拓扑结构和参数数据构建一个发电机的模型,通过输入不同的工作条件和控制信号,可以模拟发电机在各种负载情况下的工作状态。

其次,MATLAB/SIMULINK还可以用来模拟电力系统的控制策略。

在电力系统中,各种控制策略被用来保持电力系统的稳定运行。

例如,电力系统中常用的电压控制和频率控制都是通过调节发电机和变压器的控制信号来实现的。

在MATLAB/SIMULINK中,我们可以根据电力系统的实际控制策略,构建相应的控制模型,通过输入系统的状态量和反馈信号,并根据设计的控制逻辑进行仿真分析。

这使得工程师们可以在设计阶段对控制策略进行优化,以提高电力系统的稳定性和鲁棒性。

此外,MATLAB/SIMULINK还可以用于电力系统的故障分析和可靠性评估。

simulink的电力系统仿真实验原理

simulink的电力系统仿真实验原理

simulink的电力系统仿真实验原理电力系统仿真实验原理:电力系统仿真实验是利用Simulink软件对电力系统进行建模、仿真和分析的过程。

该实验主要包括如下几个步骤:1. 建立电力系统模型:在Simulink环境中,根据实际电力系统的结构和特性,利用各种电力元件如发电机、变压器、传输线路、负荷等构建电力系统模型。

可以根据具体需要设置不同的电路参数和拓扑结构,以便对各种电力系统问题进行仿真分析。

2. 设定仿真参数:根据实验要求,设定仿真的时域范围、仿真步长以及模型的输入和输出要求。

例如,可以设定仿真时间为几百毫秒或几秒钟,仿真步长为毫秒级别,以获取系统各个节点的电压、电流等参数。

3. 添加模型控制器:根据需要,可以在模型中添加各种控制器如PID控制器、调速器等,以实现对电力系统的调节和控制。

控制器的参数可以根据实验要求进行设定和调整,以达到理想的控制效果。

4. 进行仿真实验:单击Simulink软件中的"运行"按钮,系统便开始进行仿真计算。

Simulink根据所设定的仿真参数和模型的输入,采用数值计算方法对电力系统进行仿真计算,并输出各个节点的电压、电流等参数。

仿真的过程也可以通过实时仿真功能进行可视化展示。

5. 分析仿真结果:根据仿真结果,可以对电力系统的运行情况进行分析和评估。

例如,可以分析系统的稳定性、安全性、损耗情况等。

如果仿真结果与实际情况存在差异,可以进一步调整电力系统模型和仿真参数,以提高仿真的准确性。

通过Simulink软件的电力系统仿真实验,可以有效地分析和解决实际电力系统中的问题。

同时,仿真实验也为电力系统的运行和优化提供了可靠的依据,减少了实验成本和风险。

基于simulink的系统仿真实验报告(含电路、自控、数电实例)

基于simulink的系统仿真实验报告(含电路、自控、数电实例)

《系统仿真实验》实验报告目录一《电路》仿真实例 (3)2.1 简单电路问题 (3)2.1.1 Simulink中仿真 (3)2.1.2 Multisim中仿真 (4)2.2 三相电路相关问题 (5)二《自动控制原理》仿真实例 (7)1.1 Matlab绘图 (7)三《数字电路》仿真实例 (8)3.1 555定时器验证 (8)3.2 设计乘法器 (9)四实验总结 (11)一《电路》仿真实例2.1 简单电路问题课后题【2-11】如图所示电路,R0=R1=R3=4Ω,R2=2Ω,R4=R5=10Ω,直流电压源电压分别为10V、4V、6V,直流电流源电流大小为1A,求R5所在的支路的电流I。

(Page49)解:simulink和multisim都是功能很强大的仿真软件,下面就以这个简单的习题为例用这个两个软件分别仿真,进一步说明前者和后者的区别。

2.1.1 Simulink中仿真注意事项:由于simulink中并没有直接提供DC current source,只有AC current source,开始的时候我只是简单的把频率调到了0以为这就是直流电流源了,但是并没有得到正确的仿真结果。

后来问杨老师,在老师的帮助下发现AC current source的窗口Help中明确的说明了交流变直流的方法:A zero frequency and a 90 degree phase specify a DC current source.然后我把相角改成90度后终于得到了正确的仿真结果,Display显示I=0.125A,与课本上答案一致。

2.1.2 Multisim中仿真结果:I=125mA=0.125A(因为电流表探针电压电流比是1V/mA)。

2.2 三相电路相关问题【例】三相电路实际连接图如下所示,是通过功率表和电流的读数,验证课本上的相关结论。

解:Multisim中电路图连接如下所示:解:观察各支路的功率和功率因素,验证了以下几点结论:(1)只有纯阻性支路的功率因素为1;(2)纯感性或纯容性支路的功率因素为0,有功功率也为0;(3)混合支路的(容阻、感阻、容感阻)功率因素在0到1之间。

simulink 电力系统仿真教材

simulink 电力系统仿真教材

simulink 电力系统仿真教材Simulink是一种基于MATLAB的仿真环境,可用于电力系统的建模和仿真。

它提供了电力系统各个组件的建模模块,以及连接这些模块的连线,使得用户可以通过简单的拖拽和连接来建立一个完整的电力系统仿真模型。

在Simulink中,用户可以设置各个组件的参数,并对整个系统进行仿真和分析。

电力系统仿真可以帮助工程师们更好地理解和研究电力系统的运行和性能。

通过仿真,我们可以模拟各种工况下的电力系统运行情况,从而评估系统的稳定性、可靠性和安全性。

同时,仿真还能够辅助设计和优化电力系统,帮助我们更好地理解系统的动态行为和特性。

一本优秀的电力系统仿真教材应该包括以下内容:1.电力系统基础知识:教材应该首先介绍电力系统的基本概念和原理,包括电力系统的组成、拓扑结构和运行原理等。

这部分内容可以通过简单的文字和图表来阐述,以帮助读者理解电力系统的基本工作原理。

2. Simulink基础知识:由于Simulink是电力系统仿真的主要工具,教材还应该介绍Simulink的基本知识,包括如何安装和使用Simulink软件,以及Simulink的基本操作和组件库等。

教材可以通过简单的实例来演示Simulink的基本功能和特点。

3.电力系统建模和仿真:教材应该详细介绍如何在Simulink中建立电力系统的仿真模型,包括电网传输线、发电机、变压器、负载等各个组件的建模方法和参数设置。

教材可以通过具体的案例来演示建模的过程,以帮助读者理解如何将实际的电力系统转化为Simulink模型。

4.仿真结果分析:教材应该指导读者如何对仿真结果进行分析和评估,包括系统的稳定性、功率流分布、电压稳定性等方面的分析。

教材可以介绍一些常用的分析工具和方法,并通过具体的案例来演示分析的过程。

5.实际应用和案例:教材应该提供一些实际的电力系统案例,以帮助读者将仿真结果应用于实际工程中。

这些案例可以包括电力系统的稳态和暂态分析、电力系统的稳定控制和调度等方面的应用。

simulink 电力系统仿真教材

simulink 电力系统仿真教材

simulink 电力系统仿真教材简介:Simulink是一种软件工程仿真环境,具有图形化可视化建模工具。

它经常用于电气工程领域中的电力系统仿真。

本教材旨在介绍Simulink在电力系统仿真方面的应用并提供相关教学示例。

第一部分:Simulink基础知识1. Simulink的介绍和安装2. Simulink界面和基本操作3.模型构建和系统参数设置技巧4.信号传递与数据类型第二部分:电力系统基础知识1.电力系统的基本结构和组成2.电力系统的数学建模3.电力系统中常见的设备和元件4.电力系统的传输和分配第三部分:电力系统仿真建模1. Simulink中的电力系统仿真模块2.电力系统仿真建模的基本步骤3.电力系统仿真的常用工具和技巧4.电力系统仿真模型的参数选择和优化第四部分:电力系统仿真案例分析1.单相感性负载仿真模型建立与分析2.三相感性负载仿真模型建立与分析3.发电机与电力系统的并联仿真模型建立与分析4.电力系统的短路故障仿真模型建立与分析第五部分:电力系统实时仿真与调试1. Simulink与实际电力系统的接口方法2.电力系统实时仿真的基础知识3.电力系统实时仿真与调试工具的使用4.电力系统实时仿真案例与应用总结:通过本教材的学习,读者将了解到Simulink在电力系统仿真方面的基本原理、操作技巧和实际应用案例。

Simulink作为一种强大的仿真工具,不仅可以帮助电力工程师实现电力系统的仿真建模,还可以为电力系统的优化和性能评估提供有力支持。

希望本教材能为学习Simulink和电力系统仿真的读者提供帮助,促进他们在电力系统领域的发展和研究。

matlab运用simulink仿真建模研究线路剖析

matlab运用simulink仿真建模研究线路剖析

东南大学成贤学院MATLAB实验报告班级:姓名:学号:运用simulink 仿真建模研究线路作业题目:一个50Hz 的简单电力系统如下图所示,试在Simulink 中建立仿真模型研究该系统性能。

kLD1LD2线路T1T2G10kV400V10kV400V系统建模要求如下:(1) 发电机G 采用“Synchronous Machine pu Fundamental ”模型,变压器T 采用“Three-Phase Transformer (Two Windings)”模型,输电线路L 采用“Three-Phase Series RLC Branch ”模型,负荷LD1、LD2采用“Three-Phase Parelell RLC Load ”模型。

(2)发电机模型参数:采用05号预设模型,(3)变压器采用三相双绕组变压器模型,高压侧额定电压10kV,连接方式D11连接;低压侧额定电压400V,连接方式Yg连接,变压器容量设置为发电机额定功率的1.2倍;变压器参数计算:容量SN = 1.2*60 = 72 KV A(4)线路采用三相串联RLC支路模型,参数的设置原则:忽略电容,X/R=4线路通过发电机额定功率时首末端压降约为0.05p.u.;利用线路通过发电机额定功率时首末端压降约为0.05p.u,则参数计算;∆u=0.05*10000=500VI=60/1.732*10=3.464AZ=83.336R=20.212X=80.848H(5 )负荷模型采用默认参数,但需要注意与整个系统模型相匹配参数的设置(电压、频率等),负荷LD1容量设置为发电机额定功率的3%,功率因数0.95;LD2容量为发电机额定功率的15%,功率因数0.9,参数计算如下:负载1:ɸ=arccos0.95=18.19Tanɸ=0.329P1=0.03*60*0.95=1.71kwQ1=1.71*0.329=563V ar负载2:ɸ=arccos0.9=25.84Tanɸ=0.484P2=0.15*60*0.9=8.1kwQ2=8.1*0.484=3.92KW负载1:负载2;性能研究要求:(1)观察系统稳态运行时,负载1、负载2的电压,有功功率和无功功率。

单机-无穷大系统稳态运行实验、电力系统暂态稳定实验电力系统分析实验报告

单机-无穷大系统稳态运行实验、电力系统暂态稳定实验电力系统分析实验报告

单机—无穷大系统稳态运行实验一、实验目的1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.了解和掌握输电系统稳态不对称运行的条件;不对称对运行参数的影响;不对称运行对发电机的影响等。

二、原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。

为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。

因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。

实验用一次系统接线图如图2所示。

图2 一次系统接线图本实验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。

原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。

为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。

为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。

此外,台上还设置了模拟短路故障等控制设备。

三、实验项目和方法1.单回路稳态对称运行实验1.1实验操作步骤(1)检查与运行状态的调整①合上电源前,先检查各模拟仪表仪器的指针是否归零。

②合上状态开关QF2、QF6、QF4、QFS,使系统运行在单回路状态下;并检查个数字仪器仪表是否正常。

单机-无穷大系统实验实验报告

单机-无穷大系统实验实验报告

实验报告课程名称: 电力系统分析综合实验 指导老师: 成绩:__________________实验名称:__单机-无穷大系统实验______实验类型:________________同组学生姓名:__________一.实验目的了解和掌握三相对称稳态情况下,输电系统各种运行状态与运行参数的数值变化范围。

二.原理与说明通过本实验了解和掌握电力系统稳态对称运行特性,在巩固理论概念的同时掌握“数值概念”-如在典型运行方式下,用相对值表示的电压损耗、电压降落等数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据等。

三.实验项目和方法 1.机组手动启动和建压(1)在调速装置上检查“模拟调节”电位器指针是否指在0位置,如不在,则应调到0位置。

将操作台上的“手动励磁”调节旋钮反时针旋到0;(2)合上操作台的“电源开关”,在调速装置、励磁调节器、微机准同期控制器上分别确认其“微机正常”灯为闪烁状态,在微机保护装置上确认“装置运行”灯为闪烁状态。

在调速装置上确认“并网”灯为熄灭状态,“输出0”、“停机”灯亮。

检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄; (3)按调速装置上的“模拟方式”按钮使“模拟方式”灯亮;(4)把操作台上“励磁方式”开关置于“手动励磁”位置,在励磁调节器上确认“它励”灯亮; (5)在励磁调节器上选择恒UF 运行方式,合上“励磁开关”; (6)把实验台上“同期方式”开关置“断开”位置;(7)合上“系统开关”和线路开关“QF2、QF4、QF6”,检查系统电压接近额定值380V ;(8)合上“原动机开关”,再顺时针旋转调速装置上的指针电位器,当发电机旋转后,观察机组稳定情况,然后通过顺时针旋转指针电位器缓慢加速到额定转速;(9)顺时针调节操作台上的“手动励磁”旋钮增加励磁电压,在维持发电机为额定频率时,增加发电机电压为额定电压。

2.并网参照手动准同期(按准同期并列条件合闸)的方法进行并网操作。

基于simulink的Matlab仿真作业(电气工程专业)1

基于simulink的Matlab仿真作业(电气工程专业)1

MATLAB在电力系统仿真实验中的应用张三(陕西西安西安科技大学710054)摘要:在介绍Matlab内容的基础上, 以电力系统仿真实验为例, 阐述了在Matlab软件Simulink环境下的电力系统工具箱(PSB), 是如何进行电力系统仿真实验与分析的。

实践证明, 利用Matlab做仿真实验, 可以通过实验现象较快地理解课程理论, 初步掌握用仿真来分析复杂电力系统的能力。

关键词:Matlab ; 电力系统; 仿真实验一:引言现代电力系统是一个超高压、大容量和跨区域的巨大的联合系统。

电力系统事故具有突发性强、维持时间短、复杂程度高、破坏力大的特点, 因而使得事后对故障原因分析、查找变得尤其困难。

在这种情况下, 许多大型电力科研与教学实验一则是实际条件难以满足, 二则系统安全运行也不容许进行一些实验(如系统短路实验等)。

电力系统暂态仿真是了解电力系统在遭受扰动后系统中各种电气参数变化趋势的一种方法。

电力系统故障暂态仿真是模拟短路发生时候故障点和故障线路的电压和电流的变化情况, 开关暂态仿真是模拟一次闭合或操作后流过系统的暂态电流或一次开断操作后, 当工频电流被遮断时, 出现在遮断设备的端子上暂态恢复电压, 从而了解不同电网配置下电流和电压振荡的振幅、频率和形式。

Matlab (Matrix laboratory ) 语言最初是在1980年由美国的CleVeMoler博士研制的, 其目的是为线性代数等课程提供一种方便可行的实验手段。

MathWorks公司在80年代发行使之成为著名数值型计算软件。

Matlab具有编程效率高、程序设计灵活、图形处理功能强大等优点。

为准确建立系统模型和进行仿真分析, Matlab提供了系统模型图形输入工具Simulink工具箱。

通过鼠标在模型窗口画出研究的系统的模型, 直接对系统进行仿真。

Simulink提供了用方框图进行建模的模型窗口, 与传统的用微分方程和积分方程建模相比, 更直接,更方便灵活。

基于MATLAB-SIMULINK短路故障仿真及分析

基于MATLAB-SIMULINK短路故障仿真及分析

基于MATLAB/SIMULINK短路故障仿真及分析随着电力系统的规模不断增大,很多大型电力科研试验很难以进行。

采用传统的方法进行仿真计算工作量大也不直观。

MA TLAB具有强大的数值计算功能和开放灵活的可视化应用界面,在科学技术和工程的各个领域应用都非常的广泛。

因此MA TLAB的出现给电力系统仿真带来了新的方法和手段。

电力系统仿真是将电力系统中的各环节组成部分等进行数字化建模,以达到模拟实际电力系统运行状况的目的。

本文对实例进行仿真,对结果进行分析,以期能够说明MA TLAB在电力系统仿真中的应用。

目录1 引言 (1)1.1 MATLAB/Simulink概述 (1)1.1.1 MATLAB简介及特点 (1)1.1.2 SIMULINK简介及特点 (3)1.2 电力系统仿真概述 (4)1.3 基于MATLAB/Simulink电力系统仿真的发展趋势 (7)2 三相短路故障仿真分析 (9)2.1 电力系统故障简述 (9)2.2 仿真实例 (11)2.2.1 实例仿真摘要 (11)2.2.2 仿真模型建立 (12)2.2.3 三相短路故障仿真及结论分析 (20)3 同步发电机机端短路故障仿真分析 (26)3.1 暂态过程仿真及分析 (26)3.2 其它故障仿真分析 (28)4 结束语 (29)1 引言MATLAB是当前国际认可的优秀科技应用软件之一,它以矩阵运算为基础,把计算可视化程序设计融合到交互的工作环境中,可实现工程计算,算法研究,建模和仿真,数据分析及可视化,科学和工程绘图,应用程序开发等功能。

Simulink是MATLAB所提供的一个集成环境,它是用来对动态系统进行建模,仿真和分析的。

它是一种结合了框图界面和交互仿真功能的,具有非线性动态系统仿真功能的出色工具[1]。

为支撑社会经济的不断发展,电力工业的发展也非常迅速,重要表现之一就是电力系统的规模不断扩大,这就大大增加了许多大型电力科研试验的进行。

单机-无穷大系统稳态运行实验、电力系统暂态稳定实验电力系统分析实验报告

单机-无穷大系统稳态运行实验、电力系统暂态稳定实验电力系统分析实验报告

单机—无穷大系统稳态运行实验一、实验目的1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.了解和掌握输电系统稳态不对称运行的条件;不对称对运行参数的影响;不对称运行对发电机的影响等。

二、原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。

为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。

因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。

实验用一次系统接线图如图2所示。

图2 一次系统接线图本实验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。

原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。

为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。

为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。

此外,台上还设置了模拟短路故障等控制设备。

三、实验项目和方法1.单回路稳态对称运行实验1.1实验操作步骤(1)检查与运行状态的调整①合上电源前,先检查各模拟仪表仪器的指针是否归零。

②合上状态开关QF2、QF6、QF4、QFS,使系统运行在单回路状态下;并检查个数字仪器仪表是否正常。

Simulink系统仿真课程设计

Simulink系统仿真课程设计

控制系统设计:用于设计、分析和优化控制系统
信号处理:用于处理和分析信号,如滤波、变换等
通信系统设计:用于设计、分析和优化通信系统
电力系统仿真:用于模拟和分析电力系统的运行状态和性能
基于模型的仿真:通过建立数学模型来模拟真实系统的行为
连续系统与离散系统:Simulink支持连续系统和离散系统的仿真
实践应用:完成了多个仿真项目,提高了解决问题的能力
展望未来:将继续深入学习Simulink,提高仿真能力,为实际工程问题提供解决方案
课程设计目标:掌握Simulink系统仿真的基本原理和操作方法
课程设计内容:包括Simulink的基本操作、模型搭建、仿真分析等
课程设计成果:完成一个完整的Simulink系统仿真项目
确定仿真参数:根据仿真模型确定所需的参数,如时间、空间、物理量等
确定仿真环境:根据仿真模型和参数确定仿真环境,如实验室、现场等
明确仿真目的:确定仿真的目标和需求,如性能优化、故障诊断等
确定仿真模型:根据仿真目的选择合适的模型,如物理模型、数学模型等
确定系统模型:根据实际需求确定系统模型
建立数学方程:根据系统模型建立相应的数学方程
实验分析:对实验结果进行分析和解释
实验结果:展示实验的结果和数据
实验成绩占总成绩的比例
实验报告的质量和完整性
实验操作的熟练程度和准确性
实验结果的分析和解释
实验过程中遇到的问题和解决方法
实验报告的格式和规范性
课程内容:包括Simulink基础、建模、仿真、优化等
学习成果:掌握了Simulink的基本操作和建模技巧
重复仿真:重复步骤1-3,直至得到满意的仿真结果
线性控制系统:由线性元件组成的控制系统

基于MATLABSimulink的电力系统仿真实验【范本模板】

基于MATLABSimulink的电力系统仿真实验【范本模板】

基于MATLAB/Simulink的电力系统故障分析10kv系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:三相短路仿真波形如下:如图1——a、b、c三相短路电流仿真波形图分析:正常运行时,a、b、c三相大小相等,相位相差120度。

发生三相短路时,a、b、c三相电压全如图2-—线路1的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。

如图3——线路1的零序电压分析:在没有故障时,没有零序电压,突然出现故障时,零序电流为故障电压的3倍,为3U0.如图4——线路1的故障相电压如图5-—线路3的零序电流如图6——线路3的短路电流如图7——三相对称电源电压如图8——线路2的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。

如图9——三相对称电源电流如图10——三相对称电源零序电压如图11——一相短路电流10kv系统两相短路分析仿真模块搭建同三相短路,只有三相故障模块参数改变如下:注:a、b两相短路分析:两相短路原理同三相短路,两相短路复合序网图是无零序并联网,短路两相电压相等,电流互为相反数,非故障相电流为零。

零点漂移轨迹的验证一理论分析对于以下简单的中性点不接地系统,当其发生单相接地故障时,各量之间满足以下关系:其中,分别表示A、 B、 C三相对O’点的导纳则用复数形式可表示为其相量关系如下图:则可得所以,可以推出中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.二matalab仿真模型搭建类似单相短路电源参数设置消弧线圈参数设置其它参数设置类似单相接地短路短路,但是接下来不知该怎么把它的参数通过图形描述出来,以此证明中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆。

如下图:。

实验四-SIMULINK仿真模型的建立及仿真

实验四-SIMULINK仿真模型的建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一)一、实验目的:1、熟悉SIMULINK模型文件的操作。

2、熟悉SIMULINK建模的有关库及示波器的使用。

3、熟悉Simulink仿真模型的建立。

4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。

二、实验内容:1、设计SIMULINK仿真模型。

2、建立SIMULINK结构图仿真模型。

3、了解各模块参数的设定。

4、了解示波器的使用方法。

5、了解参数、算法、仿真时间的设定方法。

例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。

弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。

步骤:1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。

图二:已经复制进库模块的新建模型窗3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。

4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。

5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。

如图三所示:图三:已构建完成的新模型窗6、根据理论数学模型设置模块参数:①设置增益模块<Gain>参数,双击模型窗重的增益模块<Gain>,引出如图四所示的参数设置窗,把<Gain>增益栏中默认数字改为2,单击[OK]键,完成设置;图四:参数已经修改为2的<Gain>增益模块设置窗②参照以上方法把<Gain1>增益模块的增益系数改为100;③修改求和模块输入口的代数符号,双击求和模块,引出如图五所示的参数设置窗,把符号栏中的默认符号(++)修改成所需的代数符号(--),单击[OK]键,完成设置;图五:改变输入口符号的求和模块参数设置窗④对积分模块<Integrator1>的初始状态进行设置:双击积分模块<Integrator1>,引出如图六所示的参数设置窗,把初始条件Initial condition 栏中的默认0初始修改为题目给定的0.05,单击[OK]键,完成设置。

基于MATLABSimulink的电力系统仿真实验

基于MATLABSimulink的电力系统仿真实验

基于MATLAB/Simulink的电力系统故障分析10kv系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:三相短路仿真波形如下:如图1——a、b、c三相短路电流仿真波形图分析:正常运行时,a、b、c三相大小相等,相位相差120度。

发生三相短路时,a、b、c三相电压全如图2——线路1的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。

如图3——线路1的零序电压分析:在没有故障时,没有零序电压,突然出现故障时,零序电流为故障电压的3倍,为3U0。

如图4——线路1的故障相电压如图5——线路3的零序电流如图6——线路3的短路电流如图7——三相对称电源电压如图8——线路2的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。

如图9——三相对称电源电流如图10——三相对称电源零序电压如图11——一相短路电流10kv系统两相短路分析仿真模块搭建同三相短路,只有三相故障模块参数改变如下:注:a、b两相短路分析:两相短路原理同三相短路,两相短路复合序网图是无零序并联网,短路两相电压相等,电流互为相反数,非故障相电流为零。

零点漂移轨迹的验证一理论分析对于以下简单的中性点不接地系统,当其发生单相接地故障时,各量之间满足以下关系:其中,分别表示A、 B、 C三相对O’点的导纳则用复数形式可表示为其相量关系如下图:则可得所以,可以推出中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.二matalab仿真模型搭建类似单相短路电源参数设置消弧线圈参数设置其它参数设置类似单相接地短路短路,但是接下来不知该怎么把它的参数通过图形描述出来,以此证明中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.如下图:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要电力工业迅速发展,电力系统规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,依据电网用电供电系统电路模型要求,因此,论文利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网可能遇到的多种故障方面运行的需要。

论文以MATLAB R2009b电力系统工具箱为平台,通过SimPowerSyetem 搭建了电力系统运行中常见的单机—无穷大系统模型,设计得到了在该系统发生各种短路接地故障并故障切除的仿真结果。

本文做的主要工作有:(1)Simulink下单机—无穷大仿真系统的搭建(2)系统故障仿真测试分析通过实例说明,若将该方法应用到电力系统短路故障的诊断中,快速实现故障的自动诊断、检测,对于提高电力系统的稳定性具有十分重要的意义。

关键词电力系统;暂态稳定;MATLAB;单机—无穷大;AbstractWith the rapid development of power industry, the scale of power system is increasingly large and complex, all kinds of fault, to power plants and power plants and users in a variety of power equipment safety threat, and is likely to lead to the expansion of power system accident, from the technical and safety considering direct electricity experiment was carried out on the possibility is very small, urge electric power simulation are used to solve these problems, according to the power supply system of power grid power circuit model, as a result, paper use MATLAB dynamic simulation software Simulink has set up a simulation model for the single - infinite power system, can satisfy the needs of the running of a fault may encounter a variety of ways.Paper R2009b with MATLAB toolbox power system as a platform, through SimPowerSyetem set up power system in the operation of the common single - infinity system model, design the various kinds of short-circuit ground fault occurs in the system and simulation results of fault removed.The main work is :(1) Building this simulation system of single - infinite under Simulink(2) Fault simulation test analysis of systemThrough examples, if this method to the power system fault diagnosis, fast fault detection and diagnosis, automatic for improving the stability of power system has important significance.keywords:Single—infinite;SimPowerSyetem;Short circuit faults;Wavelettransform目录绪论 (1)第一章电力系统稳定性概述 (1)1.1 电力系统的静态稳定性 (1)1.2 电力系统的暂态稳定性 (1)第二章基于MATLAB的电力系统仿真 (3)2.1 电力系统稳定运行的控制 (3)2.2 MATLAB及SimPowerSystem简介 (3)2.3 配电网的故障现状及分析 (4)2.4 暂态稳定仿真流程 (5)第三章单机—无穷大暂态稳定仿真分析 (5)3.1 电力系统暂态稳定性分析 (6)3.1.1 引起电力系统大扰动的原因 (6)3.1.2 定性分析 (6)3.1.3 提高电力系统稳定性的措施 (8)3.2 单机—无穷大系统原理 (9)第四章Simulink下SimPowerSystem模型应用 (12)4.1 仿真模型的搭建 (12)4.2 运行效果仿真图 (13)4.2.1 改变故障模块中的短路类型 (13)4.2.2 改变系统中的元件参数(改变线路的电阻) (17)4.3 加入电容补偿器后的的仿真图 (18)4.4 小结 (22)第五章结论和展望 (22)参考文献 (24)致谢 (25)绪论随着电力系统规模不断扩大,系统发生故障的影响也越来越大,尤其大区域联网背景下的电力系统故障将会给经济、社会造成重大经济损失,因此保证电力系统安全稳定运行是电力生产的首要任务。

电力系统是一个复杂的动态系统,一方面,它必须时刻保证可靠的电能质量;另一方面,它又处于不断的扰动之中,扰动发生的时间、地点、类型、严重程度均具有较大的随机性。

当扰动发生后,一旦发生稳定性问题,系统可能会在几秒内发生严重后果。

对于系统某一特定的稳定运行状态,以及对于某一特定的扰动,如果在扰动后系统能达到一个可以接受的稳定运行状态,则系统运行处于暂态稳定。

在电力系统规划、设计等工作中都要进行大量的暂态稳定分析。

通过暂态稳定分析,可以看到各种稳定措施的效果以及稳定控制的性能。

因此,通过时域仿真来验证电力系统在某一状态时是否稳定,具有重要的理论和实际意义。

第一章电力系统稳定性概述1.1 电力系统的静态稳定性电力系统的静态稳定性是指电力系统受到小干扰后,不发生自发震荡或非周期性失步,自动恢复到初始运行状态的能力。

电力系统几乎时时刻刻都受到小的干扰。

例如:系统中负荷的小变化;又如架空输电线路因摆动引起的线间距离(影响线路电抗)的微小变化等等。

因此,电力系统的静态稳定问题实际就是确定系统的某个运行稳态能否保持的问题。

1.2 电力系统的暂态稳定性电力系统暂态稳定性是指电力系统在某个运行情况下突然受到较大扰动后,能否经过暂态过程达到新的稳定状态或恢复到原来的状态。

这里所谓的大干扰,一般是指短路故障、突然断开线路或减小发电机出力等。

如果受到大的干扰后仍能达到稳定运行,则电力系统在这种情况下是暂态稳定的。

反之,如果系统受到大的干扰后不能再建立稳态运行状态,而是各发电机组转子间一直有相对运动,相对角不断的变化,因而系统的功率、电流和电压都不断震荡,以致整个系统不再能继续运行下去,则称为系统在这种运行情况下不能保持暂态稳定。

引起电力系统大扰动的原因很多,归纳起来,主要有以下几种。

一、引起电力系统大扰动的主要原因(1)负荷的突然变化。

如切除或投入大容量的用户引起较大的扰动。

(2)切除或投入系统的主要元件。

如切除或投入较大容量的发电机、变压器和较重要的线路引起的大的扰动。

(3)电力系统的短路故障。

它对电力系统的扰动最为严重。

在短路故障中,其中以三相短路最为危险,引起电力系统的扰动最大,于是系统的暂态稳定性常常遭到破坏。

但此种严重故障发生的次数最少,据统计,在高压电力系统中发生三相短路的次数一般占总短路次数的6%~7%左右。

两相接地短路和两相短路对于电力系统的扰动也较大,其中两相接地短路的危害程度仅次于三相短路。

但在一般的高压系统中发生这两种短路的次为23%~24%左右,比三相短路发生的次数要多。

单相短路在高压系统中发生的次数最多,一般可占70%左右。

但单相短路对系统的扰动在短路故障中是最小的,其中瞬时性雷击单相短路又占单相短路的70%左右,它对系统的影响就更小了。

二、暂态过程按时间分为下面三个阶段(1)起始阶段:指故障后约1s内的时间段。

在这期间系统中的保护和自动装置有一系列的动作,例如切除故障线路和重合闸、切除发电机等。

但是在这个时间段中发电机的调节系统还来不及起到明显的作用。

(2)中间阶段:在起始阶段后,大约持续5s左右的时间段。

在这期间发电机组的调节系统已发挥作用。

(3)后期阶段:中间阶段以后的时间。

这时动力设备中的过程影响到电力系统的暂态过程。

另外,系统中还将由于频率和电压的下降,发生自动装置切除部分负荷等操作。

三、暂态稳定的分析方法分析方法:不同于静态稳定问题的分析,不能做线性化处理,暂态稳定问题研究的特点有:(1)暂态稳定性与否和原来运行方式及干扰种类有关。

(2)系统暂态稳定过程是一个电磁暂态过程和机电暂态过程汇合在一起的复杂的运动过程,它们互相作用、互相影响。

第二章基于MATLAB的电力系统仿真电力系统在运行中易受到多种因素的影响而发生故障,威胁系统的安全可靠性,因此迅速、准确地探测出电缆故障并对其进行分析,对提高供电可靠性、减少故障修复费用及停电损失具有重要理论意义和实用价值[1]。

目前,线路保护已经进入微机保护时代,电力系统继电保护中的信号处理仍以分析为主,同时考虑到电力运行实际情况,在Matlab/Simulink平台下更好的运用仿真手段更突出了现实意义。

2.1 电力系统稳定运行的控制电力系统暂态功角稳定控制是电力系统稳定运行的第一道防线。

暂态稳定性是指电力系统在受到大干扰( 如短路故障, 突然增加或减少发电机出力、大量负荷, 突然断开线路等) 后, 各同步发电机保持同步运行并过渡到新的或恢复到原来稳态运行方式的能力, 通常指第一或第二振荡周期不失步。

提高电力系统暂态稳定性的措施是多样的, 本文以单机—无穷大系统为例, 主要利用matlb软件对单机—无穷大系统进行仿真,对线路发生接地短路故障在一定时间内切除后,发电机的转速随时间的变化情况,发电机转速的变化又影响了电力系统中电压、电流和发电机电磁功率的变化。

相关文档
最新文档