七年级数学上册第3章整式的加减3.4整式的加减1同类项同步练习1新版华东师大版20180816190

合集下载

七级数学上册3.4整式的加减3.4.1同类项跟踪训练含解析新版华东师大版0919177

七级数学上册3.4整式的加减3.4.1同类项跟踪训练含解析新版华东师大版0919177

同类项一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.42.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=24.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣96.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣17.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.28.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.19.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1二.填空题(共7小题)10若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= _________ .11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是_________ .12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________ .13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= _________ .14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= _________ .15.当m= _________ 时,﹣x3b2m与x3b是同类项.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为_________ .三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.23.若单项式的和仍是单项式,求m,n的值.第三章整式加减3.4.1.1同类项参考答案与试题解析一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.4考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.解答:-解:∵﹣5x2y m和x n y是同类项,∴n=2,m=1,m+n=2+1=3,故选:C.点评:-本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.2.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b考点:-同类项.分析:-本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a,a的指数为1,解答:-解:2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误,故选:A.点评:-考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=2考点:-同类项.分析:-根据同类项是字母相同相同,且相同的字母的指数也相同,可得答案.解答:-解:单项式﹣x a+1y3与x2y b是同类项,a+1=2,b=3,a=1,b=3,故选:A.点评:-本题考查了同类项,相同的字母的指数也相同是解题关键.4.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.解答:-解:由同类项的定义,得,解得.故选C.点评:-同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣9考点:-同类项.分析:-根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可求得a和b的值.解答:-解:根据同类项的定义可知:2a﹣1=5,3a+b=1,解得:a=3把a=3代入到3a+b=1,解得:b=﹣8.故选B.点评:-本题考查同类项定义,判断两个项是不是同类项,一看所含字母是否相同,二看相同字母的指数是否相同.6.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣1考点:-同类项.专题:-探究型.分析:-先根据同类项的定义列出方程组,求出n、m的值,再把m、n的值代入代数式进行计算即可.解答:-解:∵与﹣x3y2n是同类项,∴,解得,∴2010=(﹣1)2010=1.故选C.点评:-本题考查的是同类项的定义,能根据同类项的定义列出关于m、n的方程组是解答此题的关键.7.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.2考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2m﹣n=3,m+2n=4,然后解方程组,再把方程组的解代入m n进行计算即可.解答:-解:∵单项式﹣3x2m﹣n y4与x3y m+2n是同类项,∴2m﹣n=3,m+2n=4,解方程组,得,∴m n=21=2.故选D.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫同类项.8.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.1考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,由同类项的定义可先求得a和b的值,从而求出它们的差.解答:-解:由同类项得定义得,,解得,则a﹣b=2﹣0=2.故选A.点评:-同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1考点:-同类项;解二元一次方程组.分析:-根据同类项的定义即可列出方程组,求出m、n的值即可.解答:-解:依题意,得,将①代入②,可得2(2n﹣3)+3n=8,即4n﹣6+3n=8,即7n=14,n=2.则m=1.故选B.点评:-本题考查的是同类项和方程的综合题目.两个单项式的和为单项式,则这两个单项式必须是同类项.二.填空题(共7小题)10.若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= ﹣5 .考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数也相同,可得m、n的值再根据有理数的乘法,可得答案.解答:-解:2a3b n+2与﹣3a m﹣2b是同类项,m﹣2=3,n+2=1,m=5,n=﹣1,mn=5×(﹣1)=﹣5,故答案为:﹣5.点评:-本题考查了同类项,相同字母的指数也相同是解题关键.11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是 5 .考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.解答:-解:∵单项式2x2y m与﹣3x n y3是同类项,∴m=3,n=2,∴m+n=3+2=5.故答案为5.点评:-本题考查同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.注意:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为 3 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2n=6解得n值即可.解答:-解:∵代数式﹣4x6y与x2n y是同类项,∴2n=6解得:n=3故答案为:3.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= 1 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出m,n的值,再代入代数式计算即可.解答:-解:∵﹣2x m﹣1y3和x n y m+n是同类项,∴m﹣1=n,3=m+n,解得m=2,n=1,所以(n﹣m)2012=(1﹣2)2012=1.故答案为:1.点评:-本题考查了同类项的定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= 13 .考点:-同类项.分析:-本题考查同类项的定义(所含字母相同,相同字母的指数相同),可得:m﹣2=3,n+1=2,解方程即可求得m,n的值,从而求出2m+3n的值.解答:-解:由同类项的定义,可知m﹣2=3,n+1=2,解得n=1,m=5,则2m+3n=13.故答案为:13点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.15.当m= 0.5 时,﹣x3b2m与x3b是同类项.考点:-同类项.专题:-计算题.分析:-利用同类项的定义计算即可求出m的值.解答:-解:由﹣x3b2m与x3b是同类项,得到2m=1,解得:m=0.5,故答案为:0.5点评:-此题考查了同类项,熟练掌握同类项的定义是解本题的关键.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为﹣12a5b2.考点:-同类项;单项式乘单项式.分析:-根据同类项的定义,相同字母的指数相同得到关于m、n的方程组,通过解方程组求得它们的值,然后将其代入两个单项式,利用单项式的乘法法则进行解答即可.解答:-解:∵单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,∴,解得,则这两个单项式是﹣3a b与4b,∴﹣3a b×4b=﹣12a5b2.故答案是:﹣12a5b2.点评:-本题考查了同类项的定义和整式的乘法,根据同类项定义中相同字母的指数相同确定出具体的单项式是解题的关键.三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.考点:-同类项.专题:-计算题.分析:-(1)根据同类项所含字母相同,相同字母的指数相同可得a的值,代入求解即可;(2)利用2mx a y+5nx2a﹣3y=0,得出它们的系数和为0,进而得出答案.解答:-解:(1)∵单项式是同类项,∴2a﹣3=a,∴a=3,∴(7a﹣22)2004=1;(2)∵2mx a y+5nx2a﹣3y=0,2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项,∴2m+5n=0,∴(2m+5n)2005=0.点评:-此题主要考查了同类项,利用同类项定义得出系数关系是解题关键.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数相同,可得m,n的值,根据有理数的加法运算,可得答案.解答:-解:∵3a m•b4与﹣5a4•b n﹣1是同类项,∴m=4,n﹣1=4,n=5,m+n=×4+5=2+5=7.点评:-本题考查了同类项,同类项是字母相同,且相同字母的指数相同.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.考点:-同类项;代数式求值.分析:-利用同类项的定义求出m,n的值,代入代数式求值即可.解答:-解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣1.点评:-本题主要考查了同类项及代数式求值,解题的关键是根据同类项的定义求出m,n的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?考点:-同类项;单项式.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m和n的值,根据合并同类项法则合并同类项即可.解答:-解:由﹣5.1×10m x2y n与3n x m+1y n是同类项,得m=1,﹣5.1×10x2y n+3n x2y n=(﹣51+3n)x2y n,由﹣51+3n>0得n最小是4,即(﹣51+34)x2y4=30x2y4,合并同类项后,单项式的系数是30,次数是6.点评:-本题考查的是同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同,(2)相同字母的指数相同,是易混点,还要注意同类项与字母的顺序无关,与系数无关,以及合并同类项的法则,难度适中.21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.考点:-同类项.分析:-根据同类项的定义列出方程,求出m的值.(1)将m的值代入代数式计算.(2)将m的值代入2ax m y+5bx2m﹣3y=0,且xy≠0,得出2a+5b=0,即a=﹣2.5b.代入求得的值.解答:-解:单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.m=2m﹣3,解得m=3(1)将m=3代入,(4m﹣13)2009=﹣1.(2)∵2ax m y+5bx2m﹣3y=0,且xy≠0,∴(2a+5b)x3y=0,∴2a+5b=0,a=﹣2.5b.∴=﹣点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.考点:-同类项.分析:-根据(1)小题的解题方法,结合同类项的概念直接进行计算.解答:-解:根据同类项的意义,可知x的指数相同,即:m﹣3n=3.y的指数也相同,即3m+11n=7.所以:(m﹣3n)+(3m+11n)=3+7,即:4m+8n=4(m+2n)=10所以:m+2n=.点评:-本题主要考查了同类项的概念,注意类比方法的运用.23.若单项式的和仍是单项式,求m,n的值.考点:-同类项;解二元一次方程组.专题:-计算题.分析:-由同类项的定义,即相同字母的指数相同,得到关于m、n的方程组,即可求得m和n的值.解答:-解:由同类项的定义,得,解得m=1,n=﹣0.5.故答案为m=1,n=﹣0.5.点评:-本题主要考查同类项的定义这类题目的解题关键是从同类项的定义出发,列出方程(组)并求解.。

合并同类项 华东师大版数学七年级上册素养提升练(含解析)

合并同类项 华东师大版数学七年级上册素养提升练(含解析)

第3章整式的加减3.4整式的加减3.4.1 同类项3.4.2 合并同类项基础过关全练知识点1同类项的定义1.(2023四川达州达川铭仁园学校期末)下列各组中的两个单项式不是同类项的是()a2cA.-25mn和3mnB.-125和93C.x2y2和-3y2x2D.7.2a2b和122.下列单项式中,与-2a2b是同类项的是()A.2abB.-ab2C.a2b2D.-4a2b3.(2023北京东城期末)单项式5a5b3与2a n b3是同类项,则常数n的值为()A.5B.4C.3D.24.【开放型试题】(2022辽宁鞍山期末)写出单项式2ab2c3的同类项:(写出一个即可).5.【教材变式·P102T1】将如图所示的两个框中的同类项用线连起来.6.【新独家原创】已知x m y3与-y n x2是同类项,求代数式2m-n+2(m-n)2 023的值.知识点2合并同类项7.(2022湖南郴州十八中月考)合并同类项:-4x4-5x4+x4=()A.-8x4B.-9x4C.-10x4D.08.(2023山西临汾期末)下列运算结果正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3y3-2y3=1D.3a2b-3ba2=09.(1)(2022四川达州中考)计算:2a+3a= ;(2)(2023江西赣州定南期中)计算:-3a2b+7a2b= ;(3)(2023广西贺州富川期中)合并同类项:x2+5y-4x2-3y-1= .10.(2023福建泉州期中)化简:(1)4xy-3x2-3xy-2y+2x2;(2)2a2-3ab+4b2-6ab-2b2.11.(2023湖北恩施州期中)已知|a+3|+(b-2)2=0.(1)求a,b的值;(2)求多项式5a2+2ab-3b2-ab+3b2-5a2的值.能力提升全练12.(2022江苏泰州中考,3,★☆☆)下列计算正确的是()A.3ab+2ab=5abB.5y2-2y2=3C.7a+a=7a2D.m2n-2mn2=-mn213.【新考法】(2023山西吕梁汾阳期末,4,★★☆)如图,从标有单项式的四张卡片中找出所有能合并的同类项,若它们合并后的结果为a,则代数式a2+2a+1的值为()A.-1B.0C.1D.214.(2023甘肃陇南成县期中,9,★★☆)如果单项式-x a+1y3与x2y b是同类项,那么(2a-b)2 022的值是()A.2 022B.-2 022C.-1D.115.【方程思想】(2023山东烟台招远期末,5,★★☆)多项式x2+2kxy-3y2+xy-8化简后不含xy项,则k的值为()A.0B.3C.12D.-1216.(2022湖南永州中考,11,★☆☆)若单项式3x m y与-2x6y是同类项,则m= .17.化简下列各式.(1)(2023山东济南高新区期中,21,★☆☆)x2+4-2x2+3x-5-6x;(2)(2023陕西宝鸡陈仓期中,18,★☆☆)14a2b-13ab2-14a2b+23ab2-13a3;(3)(2023广西梧州岑溪期中,22,★☆☆)x2y-6xy-3x2y+5xy+2x2y;(4)(2023湖北黄冈蕲春期中,17(4),★☆☆)-12mn+5mn2-1+13mn-5n2m+1.18.【整体思想】(2022福建泉州晋江一中、华侨中学期中,19,★★☆)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2-5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a-3的值.素养探究全练19.【运算能力】有这样一道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a3+6a3b-3a2b-10a3+3a2b的值.小明说:“本题中a=0.35,b=-0.28是多余的条件.”小强马上反对说:“多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?”你同意哪位同学的说法?请说明理由.答案全解全析基础过关全练1.D 根据同类项的定义可知,-25mn和3mn、-125和93、x2y2和-3y2x2都是同类项,7.2a2b和12a2c所含字母不同,因此不是同类项,故选D.2.D 2ab与-2a2b所含字母相同,但相同字母的指数不相同,选项A不符合题意;-ab2与-2a2b所含字母相同,但相同字母的指数不相同,选项B不符合题意;a2b2与-2a2b所含字母相同,但相同字母的指数不相同,选项C不符合题意;-4a2b与-2a2b所含字母相同,并且相同字母的指数也相同,选项D符合题意,故选D.3.A ∵单项式5a5b3与2a n b3是同类项,∴n=5,故选A.4.答案-2ab2c3(答案不唯一)解析只要符合单项式的字母部分为ab2c3即可,故答案可以为-2ab2c3(答案不唯一).5.解析连线如下.6.解析因为x m y3与-y n x2是同类项,所以m=2,n=3,所以2m-n+2(m-n)2 023=2×2-3+2(2-3)2 023=4-3+2×(-1)2 023=4-3-2=-1.7.A -4x4-5x4+x4=(-4-5+1)x4=-8x4.故选A.8.D 3a和2b不是同类项,不能合并,选项A不符合题意;2a3和3a2不是同类项,不能合并,选项B不符合题意;3y3-2y3=y3,选项C不符合题意;3a2b-3ba2=0,选项D符合题意,故选D.9.答案(1)5a(2)4a2b(3)-3x2+2y-1解析(1)2a+3a=5a.故答案为5a.(2)-3a2b+7a2b=(-3+7)a2b=4a2b.故答案为4a2b.(3)x2+5y-4x2-3y-1=(1-4)x2+(5-3)y-1=-3x2+2y-1.故答案为-3x2+2y-1.10.解析(1)原式=(4xy-3xy)+(-3x2+2x2)-2y=xy-x2-2y.(2)原式=2a2+(-3ab-6ab)+(4b2-2b2)=2a2-9ab+2b2.11.解析(1)由题意得a+3=0,b-2=0,∴a=-3,b=2.(2)5a2+2ab-3b2-ab+3b2-5a2=ab,∵a=-3,b=2,∴原式=ab=(-3)×2=-6.能力提升全练12.A A.3ab+2ab=(3+2)ab=5ab,符合题意;B.5y2-2y2=(5-2)y2=3y2,不符合题意;C.7a+a=(7+1)a=8a,不符合题意;D.单项式m2n与-2mn2不是同类项,故不能合并,不符合题意.故选A.13.C 由题意得,a=-12x2y3+23y3x2-16x2y3=0,∴a2+2a+1=1,故选C.14.D ∵单项式-x a+1y3与x2y b是同类项,∴a+1=2,b=3,∴a=1,b=3,∴(2a-b)2 022=(2×1-3)2 022=(-1)2 022=1.故选D.15.D原式=x2+(2k+1)xy-3y2-8,∵多项式x2+2kxy-3y2+xy-8化简后不含xy项,∴2k+1=0,∴k=-12,故选D.16.答案 6解析∵3x m y与-2x6y是同类项,∴m=6.故答案为6.17.解析(1)原式=(x2-2x2)+(3x-6x)+(4-5)=-x2-3x-1.(2)原式=(14−14)a2b+(23−13)ab2-13a3=13ab2-13a3.(3)原式=(1-3+2)x2y+(5-6)xy=-xy.(4)原式=-12mn+13mn+5mn2-5n2m+1-1=-16mn.18.解析(1)3(x+y)2-5(x+y)2+7(x+y)2=(3-5+7)(x+y)2=5(x+y)2.(2)因为a2+2a+1=0,所以2a2+4a-3=2(a2+2a+1)-5=0-5=-5.素养探究全练19.解析同意小明的说法.理由如下:7a3-6a3b+3a3+6a3b-3a2b-10a3+3a2b=(7+3-10)a3+(-6+6)a3b+(-3+3)a2b=0.因为合并同类项后的结果为0,与a,b的取值无关,所以小明的说法正确.。

华师大版七年级上册数学练习课件-第3章 整式的加减-3.4 2合并同类项

华师大版七年级上册数学练习课件-第3章 整式的加减-3.4 2合并同类项

▪ =(1-1)x3+(5-2)·x2+(4-5)
▪ =3x2-1.
▪ (2)a2-2ab+b2-2a2+2ab-4b2
▪ =(a2-2a2)+(-2ab+2ab)+(b2-4b2)
▪ =(1-2)a2+(-2+2)ab+(1-4)b2
▪ =-a2-3b2.
▪ 点评:如果两个同类项的系数互为相反数,合并同类项后,
C.乘法分配律
D.乘法结合律
5.代数式 3x2+5x-6x2+7 中的同类项是___3_x2_与_-__6_x2_______,它们的系数和是 ____-_3_____,合并同类项之后的代数式是____-_3_x_2+__5_x+__7_____.
6.代数式-12a3b,3a3b,-14a3b 的和是__94_a_3_b_______.
▪ 小明说:本题中a=0.35,b=-0.28是多余的条件,小强马 上反对说:这多项式中每一项都含有a和b,不给出a、b的值 怎么能求出多项式的值呢?
▪ 你同意哪名同学的观点?请说明理由.
▪ 解:7a3-6a3b+3a3+6a3b-3a2b-10a3+3a2b
▪ (7+3-10)a3+(-6+6)a3b+(3-3)a2b=0.
9
能力提升
▪ 9.合并同类项m-3m+5m-7m+…+2013Bm的结果为
()
▪ A.0
B.1007m
▪ C.m
D.以上答案都不对
D
▪ 10.4x2+2y-3xy+7+3y-8x2-2合并同类项的结果有
()
▪ A.一项 B.二项
▪ C.三项 D.四项
10
11.【2018·山东淄博中考】若单项式 am-1b2 与12a2bn 的和仍是单项式,则 nm 的值

华师版七年级数学上册作业课件(HS) 第3章 整式的加减 第1课时 去括号

华师版七年级数学上册作业课件(HS) 第3章 整式的加减 第1课时 去括号

9.下列去括号正确的是( B) A.a-(b-c)=a-b-c B.x2-[-(-x+y)]=x2-x+y C.m-2(p-q)=m-2p+q D.a+(b-c-2d)=a+b-c+2d 10.化简-(a-1)-(-a-2)+3的值是( B ) A.4 B.6 C.0 D.无法计算
11.下面的计算:①-(a-b)=-a+b;②2(a+b)=2a+b; ③4a-(3b+c)=4a-3b+c;④-5(-5a+1)=-25a-5,
14.三角形的周长为 48,第一边长为 3a+2b,
第二边长的 2 倍比第一边少 a-2b+2,求第三边长是多少.
解:由题意,第二边长为12[(3a+2b)-(a-2b+2)], 所以第三边的长为 48-(3a+2b)-12[(3a+2b)-(a-2b+2)]= 48-3a-3b-12(2a+4b-2)=48-3a-2b-a-2b+1=49-4a-4b. 答:第三边长为 49-4a-4b
5.(1)(2017·淮安)2(x-y)+3y= 2x+y ; (2)(5a+4b)-2(a+b)= 3a+2b.
6.计算: (1)(4ab-b2)-2(a2+2ab-b2); 解:原式=-2a2+b2
(2)-3(2x2-xy)+4(x2+xy-6); 解:原式=-2x2+7xy-24
(3)6x2-2xy-2(3x2+12xy). 解:原式=-3xy
7.当1<m<3时,化简|m-1|-|m-3|= 2m-4 . 8.如图所示是两种长方形铝合金窗框.已知窗框的长都是y米,窗框宽都 是x米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?
解:由题意可知,做2个(1)型的窗户需要铝合金2(3x+2y)米,做5个(2)型的 窗户需要铝合金5(2x+2y)米,所以共需铝合金2(3x+2y)+5(2x+2y)=(16x+ 14y)米

七年级数学上册第3章整式的加减3.4.1_3.4.2同步测试题新版华东师大版202107011151

七年级数学上册第3章整式的加减3.4.1_3.4.2同步测试题新版华东师大版202107011151

第三章3.-3.同步测试题一、选择题1.下列各式中,与3x 2y 3是同类项的是() A .2x 5B .3x 3y 2 C .-12x 2y 3D .-13y 52.、下列式子中是同类项的是() A .62和x 2B .11abc 和9bcC .3m 2n 3和-n 3m 2D .2b 和ab 23.下面不是同类项的是()A .-2与12B .-2a 2b 与a 2bC .2m 与2nD .-x 2y 2与12x 2y 24.计算2a -3a ,结果正确的是()A .-1B .1C .-aD .a5.计算2m 2n -3nm 2的结果为() A .-1 B .-5m 2n C .-m 2n D .不能合并6.下列计算正确的是()A .3a +2a =5a 2B .3a -a =3C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b7.对于单项式:①6x 3;②xy 23;③-2x ;④-14x 2;⑤13xy 2z ,其中说法正确的是() A .没有同类项B .②与③是同类项C .②与⑤是同类项D .①与④是同类项8.如果3x m y 与-2x 2y n 是同类项,那么m n等于() A .1 B .-2 C .2 D .-19.下列说法:①12xy 2与xy 2是同类项;②0与-1不是同类项;③12m 2n 与2mn 2是同类项;④12πR 2与3R 2是同类项.其中正确的有() A .1个B .2个C .3个D .4个10.已知多项式ax +bx 合并后的结果为2x ,则下列关于a ,b 的叙述一定正确的是()A .a =b =x =2B .a -b =2C .a =b =2D .a +b =211.已知-2m 6n 与5m 2x n y的和是单项式,则() A .x =2,y =1 B .x =3,y =1C .x =32,y =1 D .x =1,y =312.如果关于a ,b 的代数式7a 4-6a 2b +5a 3+ma 2b 的值与b 无关,那么() A .a =0 B .b =0 C .m =0 D .m =613.若x 为有理数,|x|-x 表示的数是()A .正数B .非正数C .负数D .非负数14.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被()A .9整除B .10整除C .11整除D .12整除二、填空题15.写出-2x 3y 4的一个同类项:_______.16.如果单项式-xyb +1与12x a -2y 3是同类项,那么(a -b )2 019=_______. 17.在2x 2y ,-2xy 2,-3x 2y ,2xy 四个单项式中,有两个是同类项,它们的和是_______.18.合并同类项:4a 2+6a 2-a 2=_______.19.如果等式12x 2a +1y 2-14xy 3b -4=14xy 2成立,那么a +b =_______. 三、解答题20.指出下列各组中的两项是不是同类项,如不是,请说明理由.(1)2xy 2与13xy 2;(2)-5与0;(3)2a 2b 与3ab 2; (4)12xyz 与2xy ;(5)-ab 与ba.21.合并下列多项式中的同类项:(1)2x +5+3x -7;(2)5x 2-7xy +3x 2+6xy -4x 2.(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3;(4)15x n +6x n +1-4x n -7x n +1+x n +1.22.把a -b 看成一个整体,对式子3(a -b)2-7(a -b)+8(a -b)2+6(a -b)进行化简.23.已知|m -2|+|3-3n|=0,问2xm -n +1y 3与4x 2y m +n 是同类项吗?并说明理由.24.已知-3x2m -1y n +4与73x n y 5是同类项,求代数式(1-m)2 020·(n -3378)2 020的值.参考答案一、选择题1.下列各式中,与3x 2y 3是同类项的是(C ) A .2x 5B .3x 3y 2 C .-12x 2y 3D .-13y 52.、下列式子中是同类项的是(C ) A .62和x 2B .11abc 和9bcC .3m 2n 3和-n 3m 2D .2b 和ab 23.下面不是同类项的是(C )A .-2与12B .-2a 2b 与a 2bC .2m 与2nD .-x 2y 2与12x 2y 24.计算2a -3a ,结果正确的是(C )A .-1B .1C .-aD .a5.计算2m 2n -3nm 2的结果为(C ) A .-1 B .-5m 2n C .-m 2n D .不能合并6.下列计算正确的是(D )A .3a +2a =5a 2B .3a -a =3C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b7.对于单项式:①6x 3;②xy 23;③-2x ;④-14x 2;⑤13xy 2z ,其中说法正确的是(B ) A .没有同类项B .②与③是同类项C .②与⑤是同类项D .①与④是同类项8.如果3x m y 与-2x 2y n 是同类项,那么m n等于(C ) A .1 B .-2 C .2 D .-19.下列说法:①12xy 2与xy 2是同类项;②0与-1不是同类项;③12m 2n 与2mn 2是同类项;④12πR 2与3R 2是同类项.其中正确的有(B ) A .1个B .2个C .3个D .4个10.已知多项式ax +bx 合并后的结果为2x ,则下列关于a ,b 的叙述一定正确的是(D )A .a =b =x =2B .a -b =2C .a =b =2D .a +b =211.已知-2m 6n 与5m 2x n y的和是单项式,则(B ) A .x =2,y =1 B .x =3,y =1C .x =32,y =1 D .x =1,y =312.如果关于a ,b 的代数式7a 4-6a 2b +5a 3+ma 2b 的值与b 无关,那么(D ) A .a =0 B .b =0 C .m =0 D .m =613.若x 为有理数,|x|-x 表示的数是(D )A .正数B .非正数C .负数D .非负数14.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被(C )A .9整除B .10整除C .11整除D .12整除二、填空题15.写出-2x 3y 4的一个同类项:答案不唯一,如:x 3y 4.16.如果单项式-xyb +1与12x a -2y 3是同类项,那么(a -b )2 019=1. 17.在2x 2y ,-2xy 2,-3x 2y ,2xy 四个单项式中,有两个是同类项,它们的和是-x 2y .18.合并同类项:4a 2+6a 2-a 2=9a 2.19.如果等式12x 2a +1y 2-14xy 3b -4=14xy 2成立,那么a +b =2. 三、解答题20.指出下列各组中的两项是不是同类项,如不是,请说明理由.(1)2xy 2与13xy 2;(2)-5与0;(3)2a 2b 与3ab 2; (4)12xyz 与2xy ;(5)-ab 与ba. 解:(1)、(2)、(5)都符合同类项的定义,都是同类项;(3)2a 2b 与3ab 2虽然所含的字母相同,但相同字母的指数都不相同,所以它们不是同类项;(4)12xyz 与2xy 所含的字母不相同,故它们不是同类项. 21.合并下列多项式中的同类项:(1)2x +5+3x -7;解:原式=(2+3)x +5-7=5x -2.(2)5x 2-7xy +3x 2+6xy -4x 2.解:原式=(5+3-4)x 2+(-7+6)xy=4x 2-xy.(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3;解:原式=a 3+(-a 2b +a 2b)+(ab 2-ab 2)+b 3=a 3+b 3.(4)15x n +6x n +1-4x n -7xn +1+x n +1. 解:原式=(15-4)x n +(6-7+1)xn +1=11x n . 22.把a -b 看成一个整体,对式子3(a -b)2-7(a -b)+8(a -b)2+6(a -b)进行化简.解:原式=(3+8)(a -b)2+(-7+6)(a -b)=11(a -b)2-(a -b).23.已知|m -2|+|3-3n|=0,问2xm -n +1y 3与4x 2y m +n 是同类项吗?并说明理由. 解:由题意,得m =2,n =1.所以2x m -n +1y 3=2x 2y 3,4x 2y m +n =4x 2y 3. 因为它们都含有字母x ,y ,且x 的指数都是2,y 的指数都是3,所以它们是同类项.24.已知-3x 2m -1y n +4与73x n y 5是同类项,求代数式(1-m)2 020·(n -3378)2 020的值. 解:由题意,得m =1,n =1.所以(1-m)2 020·(n -3378)2 020=(1-1)2 020×(1-3378)2 020=0.。

华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)

华东师大版七年级数学上册第三章  整式的加减  专题训练试题(含答案)

华东师大版七年级数学上册第三章整式的加减专题训练试题专题(一)整式的化简与求值1.已知有理数a,b,c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()A .a+cB .c-aC .-a-cD .a+2b-c2.有理数a,b 在数轴上的位置如图所示,则化简式子|a+b|+a 的结果是______.3.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x-7的值为______.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a-7b)-(4a-5b);(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);(5)3x 2-[5x-(12x-3)+3x 2].6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;(3)2(a 2b-ab 2)-3(a 2b-1)+2ab 2+1,其中a=2,|b+1|=0.8.若单项式3x 2y 5与-2x1-a y 3b-1是同类项,求下面代数式的值:5ab 2-[6a 2b-3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b<_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b_____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2020.”小明做题时把“x =2020”错抄成了“x =-2020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是()A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是()A.1009+1010+…+3026=20172B.1009+1010+…+3027=20182C.1010+1011+…+3028=20192D.1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.参考答案专题(一)整式的化简与求值1.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是(A)A.a+c B.c-a C.-a-c D.a+2b-c 2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.若多项式2x2+3x+7的值为10,则多项式6x2+9x-7的值为2.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a-7b)-(4a-5b);解:原式=8a-7b-4a+5b =4a-2b.(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);解:原式=-12x 2y+xy 2+12x 2+13x 2+13x 2y+13xy2=-16x 2y+56x 2+43xy 2.(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);解:原式=2x 3-4y 2-x+2y-x+3y 2-2x 3=-y 2-2x+2y.(5)3x 2-[5x-(12x-3)+3x 2].解:原式=3x 2-(5x-12x+3+3x 2)=3x 2-5x+12x-3-3x2=-92x-3.6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x 2-2x+1+2(2x 2-6x+3)=x 2-2x+1+4x 2-12x+6=5x 2-14x+7.(2)2A-B=2(x 2-2x+1)-(2x 2-6x+3)=2x 2-4x+2-2x 2+6x-3=2x-1.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;解:原式=-x 2+12x-2-12x+1=-x 2-1.当x=12时,原式=-(12)2-1=-54.(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b<0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b<0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2020.”小明做题时把“x=2020”错抄成了“x=-2020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2020和x=-2020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),(10b+a)-(10a+b)=10b+a-10a-b=9b-9a=9(b-a),因为a,b都是整数,所以a-b,b-a也是整数.所以这两个数的差一定是9的倍数.专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n+6D .3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C )A .1009+1010+…+3026=20172B .1009+1010+…+3027=20182C .1010+1011+…+3028=20192D .1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2019个单项式是-4037x2019,第2020个单项式是4039x2020.。

华东师大版七年级数学上册习题课件:3.4 整式的加减 1.同类项 2.合并同类项

华东师大版七年级数学上册习题课件:3.4 整式的加减  1.同类项 2.合并同类项

18.(导学号 40324145)如果单项式2mxay与-5nx2a-3y是关于x、y的 单项式,且它们是同类项. (1)求(7a-22)2 017的值; (2)若2mxay-5nx2a-3y=0,求(2m-5n)2 016的值. 解:(1)根据题意得a=2a-3,解得a=3. 原式=(7×3-22)2 017=-1. (2)因为2mxay与-5nx2a-3y是同类项且2mxay-5nx2a-3y=0,所以2m -5n=0,所以(2m-5n)2 016=0.
C.-3t与200t D.ab2与-b2a
3.若-2xay6与5x2yb-2是同类项,那么b-a=____.
6
4.若 2x2y2b+3 与12xa+1y23b-1 是同类项,求 a、b 的值. 解:由题意可知:a+1=2,2b+3=23b-1,所以 a=1. 因为 2b+3=23b-1,所以 6b+9=2b-3. 所以 b=-3.即 a=1,b=-3.
7.若4x2mym+n与-3x6y2的和是单项式,则mn=____.
-3
8.合并同类项: (1)3a2-2a+4a2-7a; 解:原式=(3a2+4a2)+(-2a-7a)=7a2-9a. (2)3(x-3y)-2(y-2x)-x; 解:原式=3x-9y-2y+4x-x =(3x+4x-x)+(-9y-2y) =6x-11y.
知识点2:合并同类项
D
5.下列合并同类项正确的是( )
A.3x+2x2=5x3 B.2a2b-a2b=1
C.-ab-ab=0 D.-y2x+xy2=0
6.下列计算中,错误的是( A ) A.8x2+3y2=11x2y2 B.4x2-9x2=-5x2
C.5a2b-5ba2=0 D.3m-(-2m)=5m

华东师大版七年级数学上册第三章同步测试题及答案

华东师大版七年级数学上册第三章同步测试题及答案

华东师大版七年级数学上册第三章同步测试题及答案3.1列代数式一.选择题1.以下是代数式的是()A.m=ab B.(a+b)(a﹣b)=a2﹣b2C.a+1 D. S=πR22.某商场举办促销活动,将原价x元的衣服改为(+1)元出售.下列叙述可作为此商场的促销标语的是()A.原价打三四折再加一元B.原价打四三折再加一元C.原价加一元再打三四折D.原价打七五折再加一元3.代数式a+b2读作()A.a与b的平方B.a与b的和的平方C.a的平方与b的平方的和D.a与b的平方的和4.用﹣a表示的一定是()A.正数B.负数 C.正数或负数D.以上都不对5.下列代数式中符合书写要求的是()A.B.n2C.a÷b D.6.在2x2,1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A.5个B.4个C.3个D. 2个7.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是()A.(a+b)元B.(a﹣b)元C.(a+5b)元D.(a﹣5b)元8.黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为()A.(11+t)℃B.(11﹣t)℃C.(t﹣11)℃D.(﹣t﹣11)℃二.填空题9.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为_________ 10.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为11.实验中学初三年级12个班中共有团员a人,则表示的实际意义是_________ .12.若x=﹣1,则代数式x3﹣x2+4的值为_________ .13.今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为_________ 元/千克.14.对单项式“5x”,我们可以这样理解:香蕉每千克5元,某人买了x千克,共付款“5x”元.请你结合生活实际,再给出“5x”的另一个合理解释为:_________ .三.解答题15.说出下列代数式的意义:(1)2(a+3);(2)a2+b2;(3).16.用字母表示图中阴影部分的面积.17.某镇有A、B两家纯净水销售站,它们所提供的纯净水的价格、质量都相同.为了促销,A站的纯净水每桶降价20%销售;B站规定:每个用户购买B站的纯净水,第1桶按照原价销售,若用户继续购买,则从第2桶开始每桶降价25%销售,促销活动都是三个月.若小明家预计三个月要购买12桶纯净水,请你帮他判断购买哪家的纯净水较省钱,并说明理由.18.如果某三角形第一条边长为(2a﹣b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少b(cm),求这个三角形的周长(用a、b的代数式表示).19.用如图正方形纸板制作一个无盖的长方体盒子,可在正方体的四角减去相同的正方形,剩余部分即可做成一个无盖的长方体形盒子.(1)设正方形纸的边长为a,减去的小正方形的边长为x,请用a与x表示这个无盖长方体形盒子的容积;(2)把正方形的纸板换成长为a,宽为b的长方形纸板,怎样做一个无盖长方体形盒子?画图说明你的做法;(3)把(2)中做的长方体形盒子的容积用代数式表示出来;(4)比较(1)和(3)的结果,说说它们的区别和联系.20.小明将连续的奇数1,3,5,7,9,…,排成如图所示的数阵,用一个矩形框框住其中的9个数,如图所示.(1)矩形阴影框中的9个数的和与中间一个数存在怎样的关系?(直接写出笞案)(2)若将矩形框上下左右移动,这个关系还成立吗?为什么?答案一、1. C 2.D 3.D4.D 分析:﹣a表示的有可能是A中说的正数,有可能B中说的负数,有可能C中说的正数或负数.故选D.5.D6.A 分析:因为1﹣2x=0,a>0,含有=和>,所以不是代数式,所以代数式的有2x2,ab,0,,π,共5个.故选A.7.A 分析:b÷(1﹣20%)+a=a+b.故选A.8.C 分析:设最低气温为x℃,则t﹣x=11,x=t﹣11.故选C.二、 9.分析:由题意得这批图书共有ab册,则图书的一半是:册.10.体育委员买了3个足球、2个篮球,剩余的经费11.平均每班团员数12.2分析:x3﹣x2+4=(﹣1)3﹣(﹣1)2+4=﹣1﹣1+4=﹣2+4,=2.13.0.9a 分析:因为原来鸡肉价格为a元/千克,现在下降了10%,所以五月份的价格为a﹣10%a=(1﹣10%)a=0.9a.14.某人的行走速度是x米/分,5分钟行走的路程三.15.解:(1)2(a+3)的意义是2与(a+3)的积;(2)a2+b2的意义是a,b的平方的和;(3)的意义是(n+1)除以(n﹣1)的商.16.解:(1)阴影部分的面积=ab﹣bx;(2)阴影部分的面积=R2﹣πR2.17.解:设每桶纯净水的原价为a元,则购买12桶纯净水,在A站需花费的金额为(1﹣20%)a•12=9.6a(元);在B站需花费的金额为a+(1﹣25%)a•11=9.25a(元);因为9.6a>9.25a,所以小明家应选择到B家纯净水销售站购买纯净水,这样较省钱.18.解:周长=(2a﹣b)+[(2a﹣b)+(a+b)]+[2(2a﹣b)﹣b]=2a﹣b+2a﹣b+a+b+4a﹣2b﹣b=9a﹣4b.19.解:(1)依题意,长方体盒子容积为:(a﹣2x)2•x;(2)画图如下:(3)设减去的正方形边长为x,根据题意得:(a﹣2x)(b﹣2x)•x;(4)(1)中底面积为正方形面积为(a﹣2x)2,(3)中底面积为长方形,面积为(a﹣2x)(b﹣2x),高都为x,(3)中当a=b时即得到(1)中的结果.20.解:(1)计算阴影框中9个数的和为,3+5+7+17+19+21+31+33+35=171,171÷19=9,所以,矩形阴影框中的9个数的和是中间一个数的9倍;(2)假设将矩形框向下移动一个格,则中间的数为33.则9个数的和为,17+19+21+31+32+33+35+45+47+49=297,297÷33=9,再假设将矩形框向左移动一个格,则中间的数为17,则9个数的和为:1+3+5+15+17+19+29+31+33=153,153÷17=9.所以这个关系还成立.3.2 代数式的值一、选择题1.当a=1,b=2时,a2+b2的值是( )A.5B.6C.7D.82.若a=-,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为 ( )A.2B.-1C.-3D.03.根据如图的程序计算y的值,若输入的x的值为,则输出的y值为( )A. B. C. D.二、填空题4.若m,n互为倒数,则mn2-(n-1)的值为______.5.在高中时我们将学到:叫做二阶行列式,它的算法是:ad-bc,那么=______.6.定义新运算“⊗”,a⊗b=a-4b,则12⊗(-1)=______.三、解答题7.求代数式的值:4x2+3xy-x2-9,其中x=2,y=-3.8.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.如果用a表示脚印长度,b表示身高.关系类似于:b=7a-3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(2)在某次案件中,抓获了两名可疑人员,一个身高为 1.87m,另一个身高 1.75m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?9.第22届冬奥会将于2014年2月7日在索契拉开帷幕,激起了人们参与体育运动的热情,我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220-a).(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?答案1.A 分析:当a=1,b=2时,a2+b2=12+22=1+4=5.2. D 分析:c,d互为倒数,所以cd=1.当a=-,b=2时,2(a+b)-3cd=2×(-+2)-3×1=2×-3=3-3=0.3. B 分析:因为2<<4,所以当x=时,输出的y值为.4.1 分析:因为m,n互为倒数,所以mn=1,所以mn2-(n-1)=mn·n-n+1=n-n+1=1.5.-2 分析:根据题意可知,本题求当a=1,b=2,c=3,d=4时,ad-bc的值,所以ad-bc=1×4-2×3=4-6=-2.6.8 分析:12⊗(-1)=×12-4×(-1)=8.7.解:原式=3x2+3xy-9,当x=2,y=-3时,原式=3×4+3×2×(-3)-9=-15.8.解:(1)当a=24.5时,b=7×24.5-3.07=168.43(cm).即身高约为168.43cm.(2)当a=26.3时,b=7×26.3-3.07=181.03(cm).187-181.03=5.97.181.03-175=6.03.因为5.97<6.03,所以身高为1.87m的可疑人员的可能性更大.9.解:(1)当a=14时,b=0.8(220-a)=0.8×(220-14)=0.8×206=164.8≈165(次).(2)因为10秒钟心跳次数为22次,所以1分钟心跳次数为22×6=132(次).当a=45时,b=0.8(220-a)=0.8×(220-45)= 140>132,所以这个人没有危险.3.3 整式一、选择题1.单项式-的系数和次数依次是( )A.-2,2B.-,4C.,5D.-,52.代数式x,-,-,,中共有整式( )A.2个B.3个C.4个D.5个3.代数式(a-1)x3+(b-1)x是关于x的一次式,则a,b的值可以为( )A.0,3B.0,1C.1,2D.1,1二、填空题4.单项式-ab2c3的系数是________.5.(2012·泰州中考)根据排列规律,在横线上填上合适的代数式:x,3x2,5x3,______,9x5,….6.把多项式2x2-3x+x3按x的降幂排列是______.三、解答题7.把下列代数式按单项式、多项式、整式进行归类.x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1,.8.已知多项式-3x2y m+1+x3y-3x4-1是五次四项式,单项式3x3n y3-m z与多项式的次数相同.(1)求m,n的值.(2)把这个多项式按x降幂排列.9.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案1.D 分析:-=-xy2z2,即单项式的系数为-,次数为1+2+2=5.故选项D正确.2.B 分析:整式包括单项式和多项式,有x,-,,共有3个.3. C 分析:因为是关于x的一次式,所以不含有x3的项,即a-1=0,所以a=1;代数式是关于x的一次式,故b-1≠0,即b≠1.综上满足条件的只有C.4. -分析:因为单项式-ab2c3中的数字因数是-,所以单项式-ab2c3的系数是-.5. 7x4分析:系数分别为1,3,5,所以所填系数应为7,再看字母以及字母的指数,发现分别为x,x2,x3,所以所填部分的字母及字母的指数应为x4.答案: 6. x3+2x2-3x 分析:2x2,-3x,x3中的x的次数依次为2,1,3,所以按x的降幂排列是x3+2x2-3x.7.解:单项式有x2y,-,-29,600xz,axy.多项式有a-b,x+y2-5, 2ax+9b-5,xyz-1.整式有x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1.8.解:(1)根据题意知:m+1=3,m=2,因为单项式3x3n y3-m z是五次单项式,所以3n+3-m+1=5,n=1.(2)原多项式是-3x 2y 3+x 3y-3x 4-1,按x 的降幂排列为:-3x 4+x 3y-3x 2y 3-1.9.解:由于代数式是关于x,y 的五次单项式,所以b+2=0,b=-2,2+|a|=5,所以a=±3.当a=3时,a-3=0,该式就不再是关于x,y 的单项式了,故a=-3.所以a 2-3ab+b 2=(-3)2-3× (-3)×(-2)+(-2)2=9-18+4=-5.3.4 整式的加减一、选择题1.如果代数式4252y y -+的值为7,那么代数式212y y -+的值等于( ) A.2B.3C.-2D.42.下面的式子,正确的是( )A.3a 2+5a 2=8a 4B.5a 2b-6ab 2=-ab 2C.6xy-9yx=-3xyD.2x+3y=5xy3.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( ) A.3x 2y-4xy 2B.x 2y-4xy 2C.x 2y+2xy 2D.-x 2y-2xy 24.若A=x 2-5x +2,B=x 2-5x-6,则A 与B 的大小关系是( ) A.A>B B.A=B C.A<B D.无法确定5.若A = 5a 2-4a +3,B =3a 2-4a +2,则A 与B 的大小关系是( ) A .A =B B .A>B C .A<B D .以上都可能成立6.当x =-1时,2ax 3-3bx +8的值为18,则12b -8a +2的值为( ) A .40 B .42 C .46 D .567.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1 B .5x +1 C .-13x -1 D .13x +18.三个连续奇数,中间的一个是2n +1(n 是整数),则这三个连续奇数的和为( ) A .2n -1 B .2n +3 C .6n +3 D .6n -3 9.若A 和B 都是五次多项式,则A -B 一定是( ) A .十次多项式 B .五次多项式C .次数不高于5的整式D .次数不高于5的多项式 二、填空题10.如果x =1时,代数式2ax 3+3bx +4的值是5,那么x =-1时,代数式2ax 3+3bx +4的值是__________. 11.定义a b c d 为二阶行列式,规定它的运算法则为abad bc c d =-,那么二阶行列式23____________11x x =-+.三、解答题 12.化简:(1) 7-3x-4x 2+4x-8x 2-15; (2) 2(2a 2-9b)-3(-4a 2+b) ; (3) 8x 2-[-3x-(2x 2-7x-5)+3]+4x.13.先化简,后求值:(1)(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y ;(2)若()0322=++-b a ,求3a 2b -[2ab 2-2(ab -1.5a 2b )+ab]+3ab 2的值.14.有这样一道题目:“当a =0.35,b =-0.28时,求多项式7a 3-3(2a 3b -a 2b -a 3)+ (6a 3b -3a 2b )-(10a 3-3)的值”.小敏在计算时把a =0.35,b =-0.28抄成了a =-0.35,b =0.28,结果她的结果也是正确的,你知道这是为什么吗?15.某工厂第一车间有m 人,第二车间的人数比第一车间的人数的2倍少5人,第三车间的人数比第一车间的人数的3倍还多7人,则第三车间的人数比第一、第二车间的人数的和多还是少?请说明理由.16.已知A=2x2-9x-11,B=3x2-6x+4,求:(1)A-B;(2)122A B+.17.图中的数阵是由全体奇数排成的.(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在图中任意作一个类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2 016,2 018或2 025吗?若能,请写出这九个数中最小的一个;若不能,请说出理由.18.一辆出租车从A地出发,在一条东西走向的街道上营运,每次行驶的路程(向东记为正)记录如下(9<x<26,单位:km):(1(2)这辆出租车一共行驶了多少路程?答案一、1.A 2.C 3.C 4.A5.B 分析:可用作差法:A -B =5a 2-4a +3-(3a 2-4a +2)=5a 2-4a +3-3a 2+4a -2=2a 2+1.因为a 2≥0,所以2a 1+1≥1,所以A -B>0,即A>B.6.B 分析:把x =-1代入2ax 3-3bx +8得2a ×(-1)3—36×(-1)+8=-2a +3b +8.因为此式的值为18,所以-2a +3b +8=18,所以3b -2a =10,所以12b -8a = 40,所以12b -8a +2=40+2=42.7.A 分析:设这个多项式为M ,则M =3x 2+4x -1-(3x 2+9x )=3x 2+4x -1-3x 2-9x =-5x -1.8.C 分析:已知三个连续奇数中的中间一个为2n +1(n 为整数),那么,较小的一个为2n -1,较大的一个为2n +3,所以这三个奇数的和为(2n -1)+(2n +1)+(2n +3)=6n +3.9.C 分析:当A ,B 中含字母的项不都相同时,A -B 是次数不高于5的多项式;当A ,B 中含字母的项都相同时,A -B 为常数,此时是单项式,属于整式,故选C .二、10.3 分析:把x =1代入2ax 3+3bx +4=5,进行变形,然后利用整体代入法求值.因为当x =1时,代数式2ax 3 +3bx +4的值是5,所以2a + 3b +4=5,即2a +3b =1.当x =-1时,2ax 3+3bx +4=-2a -3b +4=-(2a +3b )+4=-1+4=3.11.-x +5 分析:由题意得2(x +1)-3(x -1)=2x +2-3x +3=-x +5.三、12、(1) -12x 2+x-8 ;(2) 16a 2-21b ; (3) 10x 2-8.13.(1)-x-8y=13;(2)ab 2+ab=12.14.解:7a 3-3(2a 3b -a 2b -a 3)+(6a 3b -3a 2b )-(10a 3-3)=7a 3-6a 3 b +3a 2 b +3a 3 +6a 3 b -3a 2b -10a 3+3=(7a 3+3a 3-10a 3)-6a 3b +6a 3b +3a 2b -3a 2b +3=3.因为3是常数,不含字母a 和b ,所以无论a ,b 是何值,结果都不变.故小敏将a ,b 抄错时,结果也是正确的.15.解:第三车间的人数比第一、第二车间的人数的和多12人,理由如下:由题意得,第二车间的人数为2m -5,第三车间的人数为3m +7,所以3m +7-(2m -5+m )=3m +7-(3m -5)=3m +7-3m +5=12>0,故第三车间的人数比第一、第二车间的人数的和多12人.16.解:(1)A -B = (2x 2-9x -11)-(3x 2-6x +4)=2x 2-9x -11-3x 2+6x -4=-x 2-3x -15;(2)22112(2911)2(364)22A B x x x x +=--+-+ 222911335612872222x x x x x x =--+-+=-+. 17.解:(1)平行四边形框内的九个数之和是中间的数的9倍.(2)任意作一个类似(1)中的平行四边形框,规律仍然成立,理由:不妨设平行四边形框中间的数为n ,则这九个数按大小顺序依次为(n -18),(n -16),(n -14), (n -2) ,n ,(n +2),(n +14),(n +16),(n +18).显然,其和为9n ,是n 的9倍.这九个数之和不能等于2 016.若和为2 016,则9n =2 016,n =224,是偶数,显然不在数阵中, 这九个数之和也不能等于2 018,因为2 018不能被9整除.这九个数之和能等于2 025,中间数为225,最小的数为225-18=207.题后总结:方框形题要从横行和竖列两个方面找数字间的规律.18.解:(1)因为9<x<26,所以x>0,102x -<,x -5>0,2(9-x )<0. 又因为向东为正,所以这辆出租车第一次向东行驶,第二次向西行驶,第三次向东行驶,第四次向西行驶.(2)因为1|||5||2(9)|2x x x x +-+-+-152(9)2x x x x =++---151822x x x x =++--+9232x =-,所以这辆出租车一共行驶了923km 2x ⎛⎫- ⎪⎝⎭.。

2024秋七年级数学上册第三章整式的加减3.4整式的加减2去括号与添括号教案(新版)华东师大版

2024秋七年级数学上册第三章整式的加减3.4整式的加减2去括号与添括号教案(新版)华东师大版
展示一些关于整式的图片或视频片段,让学生初步感受整式的魅力或特点。
简短介绍整式的基本概念和重要性,为接下来的学习打下基础。
2.整式基础知识讲解(10分钟)
目标:让学生了解整式的基本概念、组成部分和原理。
过程:
讲解整式的定义,包括其主要组成元素或结构。
详细介绍整式的组成部分或功能,使用图表或示意图帮助学生理解。
-分类:单项式和多项式。
2.整式的加减法则:
-同类项的定义和加减法。
3.去括号与添括号的方法:
-原则:正数去括号,负数去括号,添括号保持等式平衡。
-示例:去括号和添括号的具体步骤。
4.练习题:
-加减运算题目和去括号添括号题目。
5.作业布置与反馈:
-课后练习题和作业要求。
2024秋七年级数学上册第三章整式的加减3.4整式的加减2去括号与添括号教案(新版)华东师大版
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间ห้องสมุดไป่ตู้
教学内容
本节课的教学内容来自于2024秋七年级数学上册第三章整式的加减3.4节,主要涉及整式的加减法则,特别是去括号与添括号的方法。具体内容包括:
1.掌握去括号的原则,即如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(2)视频:播放一些与整式加减相关的视频,让学生更直观地了解去括号与添括号的过程。
(3)在线工具:利用在线工具,让学生进行整式加减的练习,及时反馈学生的学习情况,提高教学效果。
教学过程设计
1.导入新课(5分钟)
目标:引起学生对整式加减的兴趣,激发其探索欲望。

2022秋七年级数学上册第3章整式的加减3.4整式的加减1同类项2合并同类项课件新版华东师大版

2022秋七年级数学上册第3章整式的加减3.4整式的加减1同类项2合并同类项课件新版华东师大版

13.若代数式 k2x+y-x+ky+10 的值与 x,y 的取值无关,则 k 的值为( D ) A.0 B.±1 C.1 D.-1
14.若 3xm+5y2 与 x8yn 的和是单项式,则 mn=___6___. 【点拨】由题意得 m+5=8,n=2, 解得 m=3,故 mn=6.
15.如图,在 3×3 的方格内,填写了一些单项式,已知图中各行、 各列及对角线上三个单项式之和都相等,则 x 的值为 __-__1____.
10.合并下列各式中的同类项:
(1)15x+4x-10x; 解:原式=(15+4-10)x=9x.
(2)7a2+3a+8-5a2-3a-8; 原式=(7a2-5a2)+(3a-3a)+(8-8)=2a2.
(3)-10x2+13x3-x+3x4-4x-3+x3. 原式=3x4+(13x3+x3)-10x2+(-x-4x)-3=3x4+14x3-
(2)在解答第二个问题时,马小虎同学把 y=-1 错看成 y=1,可 是他得到的最后结果却是正确的,你知道这是为什么吗?
解:在第一个问题的前提下,代数式为 3x2+8y2, y 的指数为偶数, 故无论 y 的取值为-1 还是 1,y2 的值都恒等于 1,所以马小虎同 学把 y=-1 看成 y=1,却能得到正确的结果.
(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下 面吧!
解:因为 2x2+7xy+3y2+x2-kxy+5y2 =(2x2+x2)+(3y2+5y2)+(7xy-kxy) =3x2+8y2+(7-k)xy, 所以只要 7-k=0,即 k=7,这个代数式中就不含 xy 项. 所以当 k=7 时,代数式中不含 xy 项.
10x2-5x-3.
11.先合并同类项,再求值:3x2+4x-2x2-x+x2-3x-1,其 中 x=-1.

七年级数学上册 3.4 整式的加减 3.4.4.1 整式加减跟踪训练(含解析)(新版)华东师大版-(

七年级数学上册 3.4 整式的加减 3.4.4.1 整式加减跟踪训练(含解析)(新版)华东师大版-(

整式加减一.选择题(共9小题)1.化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y2.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b3.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cm B.104cm C.106cm D.108cm4.化简(2x﹣3y)﹣3(4x﹣2y)结果为()A.﹣10x﹣3y B.﹣10x+3y C.10x﹣9y D.10x+9y5.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7 B.6 C.5 D.46.把四X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcm B.4ncm C.2(m+n)cm D.4(m﹣n)cm7.化简(﹣2a)2﹣(﹣2a)2(a≠0)的结果是()A.0 B.2a2C.﹣4a2D.﹣6a28.已知有一整式与(2x2+5x﹣2)的和为(2x2+5x+4),则此整式为()A. 2 B.6 C.10x+6 D.4x2+10x+29.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B. 5x+1 C.﹣13x﹣1 D.13x+1二.填空题(共6小题)10.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2= _________ .11.计算:3(2x+1)﹣6x= _________ .12.在数轴上有示a、b、c三个实数的点的位置如图所示化简式子:|b﹣a|+|c﹣a|﹣|c﹣b|= _________ .13.已知A=3x﹣2,B=1+2x,则A﹣B= _________ .14.一个多项式与m2+m﹣2的和是m2﹣2m.这个多项式是_________ .15.化简:(x2+y2)﹣3(x2﹣2y2)= _________ .三.解答题(共6小题)16.化简:3(2x2﹣y2)﹣2(3y2﹣2x2).17.先化简再求值:若A=9a3b2﹣5b3﹣1,B=﹣7a2b3+8b3+2,求A+B+A,3B﹣A的值.18.有理数a、b、c在数轴上的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|+|a﹣b|.19.2(x2﹣x+1)﹣2(﹣2x+3x2)+(1﹣x)20.化简:4xy2﹣3x2y﹣{3x2y+xy2﹣}.21.“小马虎”在计算“M+N”时,误将“M+N”看成“M﹣N”,结果答案为xy﹣yz+5zx,如果N=7xy﹣yz+xz,你能求出正确的结果吗?第三章整式加减.1整式加减参考答案与试题解析一.选择题(共9小题)1.化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y考点:-整式的加减.专题:-计算题.分析:-原式去括号合并即可得到结果.解答:-解:原式=x﹣y﹣x﹣y=﹣2y.故选C.点评:-此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b考点:-整式的加减;列代数式.专题:-几何图形问题.分析:-根据题意列出关系式,去括号合并即可得到结果.解答:-解:根据题意得:2=4a﹣8b.故选B点评:-此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.3.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cm B.104cm C.106cm D.108cm考点:-整式的加减;圆的认识.分析:-根据圆的周长公式分别求出半径变化前后的钢丝长度,进而得出答案.解答:-解:设地球半径为:rcm,则地球的周长为:2πrcm,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,故此时钢丝围成的圆形的周长变为:2π(r+16)cm,∴钢丝大约需要加长:2π(r+16)﹣2πr≈100(cm)=102(cm).故选:A.点评:-此题主要考查了圆的周长公式应用以及科学记数法等知识,根据已知得出图形变化前后的周长是解题关键.4.化简(2x﹣3y)﹣3(4x﹣2y)结果为()A.﹣10x﹣3y B.﹣10x+3y C.10x﹣9y D.10x+9y考点:-整式的加减.分析:-先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:-解:(2x﹣3y)﹣3(4x﹣2y)=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点评:-本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.5.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7 B.6 C.5 D.4考点:-整式的加减.专题:-计算题;压轴题.分析:-设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个正方形面积的差.解答:-解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=16﹣9=7,故选A.点评:-本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.6.把四X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcm B.4ncm C.2(m+n)cm D.4(m﹣n)cm考点:-整式的加减.专题:-压轴题.分析:-本题需先设小长方形卡片的长为a,宽为b,再结合图形得出上面的阴影周长和下面的阴影周长,再把它们加起来即可求出答案.解答:-解:设小长方形卡片的长为a,宽为b,∴L上面的阴影=2(n﹣a+m﹣a),L下面的阴影=2(m﹣2b+n﹣2b),∴L总的阴影=L上面的阴影+L下面的阴影=2(n﹣a+m﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),又∵a+2b=m,∴4m+4n﹣4(a+2b),=4n.故选:B.点评:-本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.7.化简(﹣2a)2﹣(﹣2a)2(a≠0)的结果是()A.0 B.2a2C.﹣4a2D.﹣6a2考点:-整式的加减.分析:-应按照整式运算顺序,先算乘方,再算整式的加减.解答:-解:原式=4a2﹣4a2=0.故选A.点评:-整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.对于本题注意先算乘方,再算整式的加减.8.已知有一整式与(2x2+5x﹣2)的和为(2x2+5x+4),则此整式为()A. 2 B.6 C.10x+6 D.4x2+10x+2考点:-整式的加减.专题:-计算题.分析:-由于一整式与(2x2+5x﹣2)的和为(2x2+5x+4),那么把(2x2+5x+4)减去(2x2+5x﹣2)即可得到所求整式.解答:-解:依题意得(2x2+5x+4)﹣(2x2+5x﹣2)=2x2+5x+4﹣2x2﹣5x+2=6.故选B.点评:-本题考查的是有理数的运算能力.正确理解题意是解题的关键.9.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1考点:-整式的加减.专题:-计算题.分析:-本题涉及多项式的加减运算,解答时根据各个量之间的关系作出回答.解答:-解:设这个多项式为M,则M=3x2+4x﹣1﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1.故选:A.点评:-此题考查了整式的加减运算,解决此类题目的关键是熟练运用多项式的加减运算、去括号法则.括号前添负号,括号里的各项要变号.二.填空题(共6小题)10.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=﹣9 .考点:-整式的加减.专题:-几何图形问题.分析:-先求出正方形的面积,再根据扇形的面积公式求出以A为圆心,2为半径作圆弧、以D为圆心,3为半径作圆弧的两扇形面积,再求出其差即可.解答:-解:∵S正方形=3×3=9,S扇形ADC==,S扇形EAF==π,∴S1﹣S2=S扇形EAF﹣(S正方形﹣S扇形ADC)=π﹣(9﹣)=﹣9.故答案为:﹣9.点评:-本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.11.计算:3(2x+1)﹣6x= 3 .考点:-整式的加减.专题:-计算题.分析:-原式去括号合并即可得到结果.解答:-解:原式=6x+3﹣6x=3.故答案为:3.点评:-此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.12.在数轴上有示a、b、c三个实数的点的位置如图所示化简式子:|b﹣a|+|c﹣a|﹣|c﹣b|= 0 .考点:-整式的加减;数轴;绝对值.专题:-计算题.分析:-由数轴上点右边的数总比左边的数大,判断出a,b及c的大小,进而确定出b﹣a,c﹣a及c﹣b 的正负,利用绝对值的代数意义化简绝对值运算,合并即可得到结果.解答:-解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.故答案为:0点评:-此题考查了整式的加减运算,涉及的知识有:数轴上点的表示,绝对值的代数意义,以及合并同类项法则,判断出绝对值号中式子的正负是解本题的关键.13.已知A=3x﹣2,B=1+2x,则A﹣B= x﹣3 .考点:-整式的加减.分析:-首先表示出A﹣B,然后去括号、合并同类项即可求解.解答:-解:原式=(3x﹣2)﹣(1+2x)=3x﹣2﹣1﹣2x=x﹣3.故答案是:x﹣3.点评:-本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.14.一个多项式与m2+m﹣2的和是m2﹣2m.这个多项式是﹣3m+2 .考点:-整式的加减.专题:-常规题型.分析:-根据一多项式与m2+m﹣2的和是m2﹣2m,利用两多项式的和减去已知多项式求出未知个多项式即可.解答:-解:∵一多项式与m2+m﹣2的和是m2﹣2m.∴这个多项式是:m2﹣2m﹣(m2+m﹣2)=﹣3m+2.故答案为:﹣3m+2.点评:-此题主要考查了整式的加减运算,根据已知得出两多项式的和减去已知多项式求出未知个多项式是解决问题的关键.15.化简:(x2+y2)﹣3(x2﹣2y2)= ﹣2x2+7y2.考点:-整式的加减.分析:-本题考查了整式的加减运算,解答时要先去括号,再合并同类项得出结果.解答:-解:原式=x2+y2﹣3x2+6y2=﹣2x2+7y2.点评:-整式的加减运算,是各地中考的常考点.解决此类题目的关键是去括号法则,注意运用乘法的分配律,不要漏乘括号里的项.三.解答题(共6小题)16.化简:3(2x2﹣y2)﹣2(3y2﹣2x2).考点:-整式的加减.分析:-熟练运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:-解:3(2x2﹣y2)﹣2(3y2﹣2x2)=6x2﹣3y2﹣6y2+4x2=10x2﹣9y2.点评:-关键是去括号.①不要漏乘;②括号前面是“﹣”,去括号后括号里面的各项都要变号.17.先化简再求值:若A=9a3b2﹣5b3﹣1,B=﹣7a2b3+8b3+2,求A+B+A,3B﹣A的值.考点:-整式的加减.分析:-根据题意将A,B直接代入进而合并同类项得出即可.解答:-解:∵A=9a3b2﹣5b3﹣1,B=﹣7a2b3+8b3+2,∴A+B+A=9a3b2﹣5b3﹣1﹣7a2b3+8b3+2+9a3b2﹣5b3﹣1=18a3b2﹣7a2b3﹣2b3;3B﹣A=3×(﹣7a2b3+8b3+2)﹣(9a3b2﹣5b3﹣1)=﹣21a2b3﹣9a3b2+29b3+7.点评:-此题主要考查了整式的加减运算,正确合并同类项是解题关键.18.有理数a、b、c在数轴上的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|+|a﹣b|.考点:-整式的加减;数轴;绝对值.分析:-由图知,b>0,a﹣c<0,b﹣c>0,a﹣b<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数可得,|b|+|a﹣c|+|b﹣c|+|a﹣b|=b+c﹣a+b﹣c+b﹣a=3b.解答:-解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=b+c﹣a+b﹣c+b﹣a=3b﹣2a.点评:-本题考查了整式的加减,绝对值与数轴,用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.19.2(x2﹣x+1)﹣2(﹣2x+3x2)+(1﹣x)考点:-整式的加减.专题:-计算题.分析:-原式去括号合并即可得到结果.解答:-解:原式=2x2﹣2x+2+4x﹣6x2+1﹣x=﹣4x2+x+3.点评:-此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.化简:4xy2﹣3x2y﹣{3x2y+xy2﹣}.考点:-整式的加减.专题:-计算题.分析:-原式去括号合并即可得到结果.解答:-解:原式=4xy2﹣3x2y﹣3x2y﹣xy2+2xy2﹣4x2y+x2y﹣2xy2=3xy2﹣9x2y.点评:-此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.“小马虎”在计算“M+N”时,误将“M+N”看成“M﹣N”,结果答案为xy﹣yz+5zx,如果N=7xy﹣yz+xz,你能求出正确的结果吗?考点:-整式的加减.分析:-首先用结果xy﹣yz+5zx加上N=7xy﹣yz+xz,得出M,再进一步算出M+N算得正确的结果.解答: -解:(xy﹣yz+5zx)+(7xy﹣yz+xz)+(7xy﹣yz+xz)=xy﹣yz+5zx+7xy﹣yz+xz+7xy﹣yz+xz=xy+7xy+7xy﹣yz﹣yz﹣yz+5zx+xz+xz=15xy﹣3yz+7zx.正确的结果是15xy﹣3yz+7zx.点评:-此题考查整式的加减运算,根据题意列出算式,进一步利用去括号的方法和合并同类项的方法解决问题.。

整式的加减 华东师大版数学七年级上册素养提升练(含解析)

整式的加减 华东师大版数学七年级上册素养提升练(含解析)

第3章整式的加减3.4整式的加减3.4.4 整式的加减基础过关全练知识点整式的加减1.已知多项式A=x2+2y2-z2,B=-4x2+3y2+2z2,那么A+B= ()A.5x2-y2-z2B.3x2-5y2+z2C.3x2+5y2+z2D.-3x2+5y2+z22.(2023河南许昌禹州期中)多项式2x2-7x+3减去5x2-x-4的结果是()A.-3x2-6x+7B.-3x2-8x-1C.7x2-8x+7D.-3x2-6x-13.【新独家原创】多项式2m+5n与3m+2n的和比它们的差多 ()A.6m+4nB.4m+4nC.6m-4nD.-6m+4n4.(2023湖南郴州永兴期末)一个多项式加上3x2-6x+4得到-7x2+x+1,则这个多项式是.,则5(a2-2ab)-[a2-5.(2023江西宜春丰城中学期中)若a=-3,b=133b+3(ab+b)]= .6.化简:(1)(2023吉林榆树期末)(3a2-a+7)-(-4a2+2a+6);(2)5(3a2b-ab2)-4(-ab2+3a2b).7.【教材变式·P112T8】先化简,再求值.(1)(2023山西阳泉期末)3(a2-4a)-(-2a+4a2),其中a=-1;(2)(2023吉林长春外国语学校期末)2(x2y-2xy)-3(x2y-3xy)+x2y,其中x=-1,y=1;5(3)(2023四川泸州泸县四中期末)(2a2−b2−3ab)-(a2-3ab)-(−a2+12ab),其中a=1,b=-2;2(4)(2023河南南阳唐河期末)2xy-[1(5xy−16x2y2)−2(xy−4x2y2)],其中x=-12,y=4;2(5)(2023重庆九龙坡渝高中学期末)3(xy2-2xy)-2(3y2x-3yx+1)+4xy2,其中x,y满足(x-2)2+|2y+1|=0;(6)(2023北京平谷期末)3(a2b+a-2b)-2(a2b+a)-(a2b-5b-1),其中a、b满足a-b=5.8.【一题多变】(2022河南周口太康朱口一中入学测试)已知A=x2+xy-y2,B=3x2-4xy-2y2.(1)化简2A-(2B-A);(2)若x=-1,y=2,对(1)的化简结果求值.[变式1](2023陕西汉中宁强期末)小明在计算A-B时,误将A-B看成了A+B,结果求出的答案是-2x2-x+3,已知B=4x2-5x-6.请你帮他纠错,正确地算出A-B.[变式2](2023河南南阳第一完全学校期末)已知A=3x2-x+2y-4xy,B=2x2-3x-y+xy. (1)当x+y=-6,xy=-1,求2A-3B的值;7(2)若2A-3B的值与x的取值无关,求2A-3B的值.能力提升全练9.【整体思想】(2023云南昭通绥江期中,11,★☆☆)若x-2y=3,则代数式x-2y-2(y-x)-(x-3)的值为 ()A.-3B.3C.6D.910.【代数推理】(2022四川内江期末,10,★☆☆)如果M=x2-3x+5,N=-x2-3x+2,那么M 与N的大小关系是()A.M<NB.M=NC.M>ND.无法确定11.(2022内蒙古包头中考,17,★☆☆)若一个多项式加上3xy+2y2-8,结果得2xy+3y2-5,则这个多项式为.12.(2023山东济南高新区期末,16,★★☆)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,如下:-x2-4xy+4y2=-x2+3y2,则被捂住的多项式是.13.(2022陕西榆林绥德期末,12,★★☆)王华乘公交车去公园玩,王华上车时,发现车上共有(4x+2y)人,车到中途时,有一半人下车,但又上来若干人,这时公交车上共有(8x-4y)人,则中途上车的有人.14.【数形结合思想】(2023吉林松原前郭期末,19,★★☆)已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:(1)用“>”或“<”填空:a-b0,b-c0,c-a0,b+c0;(2)化简:|a-b|+|b-c|-|c-a|+|b+c|.15.【代数推理】(2023湖北黄石阳新期中,23,★★☆)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)请列式表示这个两位数,并化简;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新两位数与原两位数的和能被22整除.素养探究全练16.【运算能力】(2022四川眉山仁寿期末)已知A=2a2b-3ab2+abc,小明错将“2A-B”看成“2A+B”,算得结果C=2a2b-5ab2+4abc.(1)求B;(2)求2A-B;(3)小明说2A-B的值与c的取值无关,对吗?若a=-2,b=-1,求2A-B的值.答案全解全析基础过关全练1.D A+B=x2+2y2-z2+(-4x2+3y2+2z2)=x2+2y2-z2-4x2+3y2+2z2=-3x2+5y2+z2.故选D.2.A 根据题意知,(2x2-7x+3)-(5x2-x-4)=2x2-7x+3-5x2+x+4=-3x2-6x+7,故选A.3.A 根据题意,得[(2m+5n)+(3m+2n)]-[(2m+5n)-(3m+2n)]=(2m+5n+3m+2n)-(2m+5n-3m-2n)=(5m+7n)-(-m+3n)=5m+7n+m-3n=6m+4n,故选A.4.答案-10x2+7x-3解析根据题意,得这个多项式为-7x2+x+1-(3x2-6x+4)=-7x2+x+1-3x2+6x-4=-10x2+7x-3.故答案为-10x2+7x-3.5.答案49解析5(a2-2ab)-[a2-3b+3(ab+b)]=5a2-10ab-(a2-3b+3ab+3b)=5a2-10ab-a2-3ab=5a2-a2-10ab-3ab=4a2-13ab,当a=-3,b=13时,原式=4×(-3)2-13×(-3)×13=36+13=49.故答案为49.6.解析(1)原式=3a2-a+7+4a2-2a-6=7a2-3a+1.(2)原式=15a2b-5ab2+4ab2-12a2b=3a2b-ab2.7.解析(1)3(a2-4a)-(-2a+4a2)=3a2-12a+2a-4a2=-a2-10a,当a=-1时,原式=-(-1)2-10×(-1)=-1+10=9.(2)2(x2y-2xy)-3(x2y-3xy)+x2y=2x2y-4xy-3x2y+9xy+x2y=5xy,当x=-1,y=15时,原式=5×(-1)×15=-1.(3)原式=2a 2-b 2-32ab -a 2+3ab +a 2-12ab =2a 2+ab -b 2,当a =1,b =-2时,原式=2×12+1×(-2)-(-2)2=2-2-4=-4.(4)原式=2xy -(52xy −8x 2y 2−2xy +8x 2y 2)=2xy -12xy =32xy ,当x =-12,y =4时,原式=32×(−12)×4=-3.(5)原式=3xy 2-6xy -6y 2x +6yx -2+4xy 2=xy 2-2,∵(x -2)2+|2y +1|=0,∴x =2,y =-12, ∴原式=2×(−12)2-2=12-2=-32. (6)3(a 2b +a -2b )-2(a 2b +a )-(a 2b -5b -1)=3a 2b +3a -6b -2a 2b -2a -a 2b +5b +1=a -b +1,∵a -b =5,∴原式=6.8.解析 (1)∵A =x 2+xy -y 2,B =3x 2-4xy -2y 2,∴2A -(2B -A )=2A -2B +A =3A -2B =3(x 2+xy -y 2)-2(3x 2-4xy -2y 2)=3x 2+3xy -3y 2-6x 2+8xy +4y 2=-3x 2+11xy +y 2.(2)当x =-1,y =2时,-3x 2+11xy +y 2=-3×(-1)2+11×(-1)×2+22=-3×1+(-22)+4=-3+(-22)+4=-21.[变式1] 解析 由题意得,A =(-2x 2-x +3)-(4x 2-5x -6)=-2x 2-x +3-4x 2+5x +6=-6x 2+4x +9,则A -B =(-6x 2+4x +9)-(4x 2-5x -6)=-6x 2+4x +9-4x 2+5x +6=-10x 2+9x +15.[变式2] 解析 (1)∵A =3x 2-x +2y -4xy ,B =2x 2-3x -y +xy ,∴2A -3B =2(3x 2-x +2y -4xy )-3(2x 2-3x -y +xy )=6x 2-2x +4y -8xy -6x 2+9x +3y -3xy =7x +7y -11xy ,当x +y =-67,xy =-1时,2A -3B =7x +7y -11xy =7(x +y )-11xy =7×(−67)-11×(-1)=-6+11=5. (2)∵2A -3B =7x +7y -11xy =(7-11y )x +7y ,∴当2A -3B 的值与x 的取值无关时,7-11y =0,∴y =711,∴2A -3B =0+7×711=4911.能力提升全练9.D ∵x-2y=3,∴原式=x-2y-2y+2x-x+3=2x-4y+3=2(x-2y)+3=6+3=9,故选D.10.C 因为M-N=(x2-3x+5)-(-x2-3x+2)=x2-3x+5+x2+3x-2=2x2+3>0,所以M>N.故选C.11.答案y2-xy+3解析由题意得,这个多项式为(2xy+3y2-5)-(3xy+2y2-8)=2xy+3y2-5-3xy-2y2+8=y2-xy+3.故答案为y2-xy+3.12.答案4xy-y2解析由题意得被捂住的多项式是-x2+3y2-(-x2-4xy+4y2)=-x2+3y2+x2+4xy-4y2=4xy-y2.故答案为4xy-y2.13.答案(6x-5y)(4x+2y)=8x-4y-2x-y=6x-5y,则中途上车的有(6x-5y)人.解析根据题意得,(8x-4y)-12故答案为(6x-5y).14.解析(1)根据数轴可知,-1<c<0<b<1<a<2,∴a-b>0,b-c>0,c-a<0,b+c<0,故答案为>;>;<;<.(2)原式=(a-b)+(b-c)+(c-a)-(b+c)=a-b+b-c+c-a-b-c=-b-c.15.解析(1)由题意可得这个两位数为10(a+2)+a=11a+20.(2)由题意可得,新两位数是10a+a+2=11a+2,故新两位数与原两位数的和是11a+2+11a+20=22(a+1),故新两位数与原两位数的和能被22整除.素养探究全练16.解析(1)由题意可知B=C-2A=(2a2b-5ab2+4abc)-2(2a2b-3ab2+abc)=2a2b-5ab2+4abc-4a2b+6ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(2a2b-3ab2+abc)-(-2a2b+ab2+2abc)=4a2b-6ab2+2abc+2a2b-ab2-2abc=6a2b-7ab2.(3)对.当a=-2,b=-1时,原式=6×(-2)2×(-1)-7×(-2)×(-1)2=6×4×(-1)-7×(-2)×1=-24+14=-10.。

2024秋七年级数学上册第三章整式的加减3.3整式1单项式教案(新版)华东师大版

2024秋七年级数学上册第三章整式的加减3.3整式1单项式教案(新版)华东师大版
-引导学生将所学知识运用到实际生活中,培养学生的数学应用能力。
-鼓励学生参加数学竞赛或数学讲座,提高自己的数学素养和技能。
课堂小结,当堂检测
1.课堂小结
本节课我们学习了整式的加减法,特别是单项式的概念及表示方法。首先,我们讲解了单项式的定义,即一个数或字母的乘积叫做单项式,例如2x、-5y^2等。接着,我们介绍了单项式的表示方法,包括数字因数和字母因式的表示方式。然后,我们学习了整式的加减法规则,包括同类项的合并、同类项的减法等。最后,我们通过实例演示了如何运用单项式进行整式的加减计算,解决实际问题。
2.利用例题讲解,让学生在实践中掌握知识。
3.小组讨论,共同解决问题。
五、教学过程
1.导入:回顾上一节课的内容,引出本节课的主题。
2.新课讲解:讲解单项式加减法的计算方法,举例说明。
3.实例分析:分析实际问题,引导学生运用单项式进行解决。
4.练习巩固:学生独立完成练习题,老师进行讲解和指导。
5.课堂小结:总结本节课所学内容,强调重点。
-实践活动法:通过小组练习,让学生在实践中学会应用。
-合作学习法:培养学生在小组中的合作和沟通能力。
作用与目的:
-确保学生准确理解单项式和整式加减法的概念和方法。
-培养学生的实际操作能力和解决问题的能力。
-提升学生的团队合作意识和沟通能力。
3.课后拓展应用
教师活动:
-布置作业:布置相关的练习题,巩固学生对整式加减法的掌握。
-阅读材料:《数学难题集》中收录的一些关于单项式和整式加减法的经典难题。
-视频资源:有关整式加减法的教学视频,供学生自主学习。
-视频资源:数学竞赛或数学讲座的视频,提高学生的数学素养和技能。
2.拓展要求:

2022-2023学年华东师大版七年级数学上册《3-4整式的加减》同步练习题(附答案)

2022-2023学年华东师大版七年级数学上册《3-4整式的加减》同步练习题(附答案)

2022-2023学年华东师大版七年级数学上册《3.4整式的加减》同步练习题(附答案)一.选择题1.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2022=()A.1B.﹣1C.52022D.﹣520222.若4a2b n﹣1与a m b2是同类项,则m+n的值是()A.6B.5C.4D.33.下列说法中,错误的是()A.单项式2mn2与﹣5m2n是同类项B.单项式的次数是2C.单项式﹣x2y3的系数是﹣1D.多项式a3+2ab﹣1是三次三项式二.填空题4.如果单项式2a x﹣3b2与﹣ab y是同类项,那么多项式a x+3a y﹣1的次数是次.5.在等号右边的横线上填空:2m﹣n+1=2m﹣();3x+2y+1=3x﹣().6.填空a﹣(b﹣c+d)=a﹣d+()7.若一个多项式与﹣3x2+5x﹣7的和是﹣x2+2x﹣6,则这个多项式为.8.王老师在黑板上书写了一个正确的整式加减运算等式,随后用手盖住了一部分,如图所示,所盖住的部分为.9.有一道题目是:一个整式A减去x2﹣y2,小张误当成了加法计算,结果得到一个整式x2+y2,那么原来的整式A是.10.单项式x m+1y2﹣n与2y2x3的和仍是单项式,则m n=.三.解答题11.已知单项式x b y a+1与单项式﹣5x6﹣b y2是同类项,c是多项式2mn﹣5m﹣n﹣3的次数.(1)a=,b=,c=.(2)若关于x的二次三项式ax2+bx+c的值是3,求代数式2019﹣2x2﹣6x的值.12.合并同类项:(1)7a+3a2+2a﹣a2+3.(2)a2﹣3a﹣3a2+a2+a﹣8.13.合并下列各式的同类项:(1)a+2b+3a﹣2b;(2)3x2+6x+5﹣4x2+7x﹣6;(3)x2y﹣3xy2+2yx2﹣y2x;(4)3(x+y)2﹣(x﹣y)+2(x+y)2+(x﹣y)﹣5(x+y)2(提示:把(x﹣y)和(x+y)各看作一个字母因式).14.化简:(1)5m+2n﹣m﹣3n;(2)3a2﹣1﹣2a﹣5+3a﹣a2;(3)ab2﹣5a2b﹣a2b+0.75ab2;(4)4(m+n)﹣5(m+n)+2(m+n).15.先化简,再求值:3(a2b﹣2ab2﹣1)﹣2(2a2b﹣3ab2)+1,其中a=2,b=﹣1.16.先化简,再求值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣4,y=.17.先化简,再求值:(1)(﹣3mx2+mx﹣3)﹣(﹣1﹣mx2﹣mx),其中m=2,x=﹣3;(2),其中a、b满足|a+3|+(b﹣2)2=0.18.先化简,再求值:4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x,y满足.19.(1)如图,数轴上的点A,B,C分别表示有理数a,b,c.化简:|a|﹣|b+2|﹣|a+c|﹣|b+1|+|1﹣c|;(2)已知关于x、y的多项式(3y﹣ax2﹣3x﹣1)﹣(﹣y+bx﹣2x2)中不含x项和x2项,且﹣x+b=0,求代数式:﹣x﹣b的值.20.如果多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1中不含x的三次项和x的一次项,求|﹣7a﹣b3|的值.21.已知整式﹣x2+2y﹣mx+5﹣nx2+6x﹣20y的值与字母x的取值无关.求m2﹣2mn﹣n3的值.参考答案一.选择题1.解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,∴(a﹣b)2022=(3﹣2)2022=12022=1.故选:A.2.解:∵4a2b n﹣1与a m b2是同类项,∴m=2,n﹣1=2,∴m=2,n=3,∴m+n=2+3=5,故选:B.3.解:A.2mn2与﹣5m2n所含字母相同,但相同字母的指数不相同,不是同类项,故选项A符合题意;B.单项式的次数是2,说法正确,故选项B不合题意;C.单项式﹣x2y3的系数是﹣1,说法正确,故选项C不合题意;D.多项式a3+2ab﹣1是三次三项式,说法正确,故选项D不合题意;故选:A.二.填空题4.解:因为单项式2a x﹣3b2与﹣ab y是同类项,所以x﹣3=1,y=2,所以x=4,y=2,所以多项式a x+3a y﹣1的次数是4次.故答案为:4.5.解:2m﹣n+1=2m﹣(n﹣1);3x+2y+1=3x﹣(﹣2y﹣1).故答案为:n﹣1;﹣2y﹣1.6.解:a﹣(b﹣c+d)=a﹣d+(﹣b+c),故答案为:﹣b+c7.解:由题意可得:﹣x2+2x﹣6﹣(﹣3x2+5x﹣7)=﹣x2+2x﹣6+3x2﹣5x+7=2x2﹣3x+1.故答案为:2x2﹣3x+1.8.解:由题意可得,所盖住的部分为:x2﹣5x+1﹣(﹣3x+2)=x2﹣5x+1+3x﹣2=x2﹣2x﹣1.故答案为:x2﹣2x﹣1.9.解:由题意可得,A=(x2+y2)﹣(x2﹣y2)=x2+y2﹣x2+y2=2y2,故答案为:2y2.10.解:依题意得:m+1=3,2﹣n=2,m=2,n=0,∴m n=20=1.故答案为:1.三.解答题11.解:(1)因为单项式x b y a+1与单项式﹣5x6﹣b y2是同类项,所以a+1=2,b=6﹣b,所以a=1,b=3,因为c是多项式2mn﹣5m﹣n﹣3的次数,所以c=2.故答案为:1,3,2.(2)依题意得:x2+3x+2=3,所以x2+3x=1,所以2019﹣2x2﹣6x=2019﹣2(x2+3x)=2019﹣2×1=2017.12.解:(1)7a+3a2+2a﹣a2+3=(7a+2a)+(3a2﹣a2)+3=9a+2a2+3;(2)a2﹣3a﹣3a2+a2+a﹣8=(1﹣3+)a2+(﹣3+)a﹣8=﹣a2﹣a﹣8.13.解:(1)原式=(1+3)a+(2﹣2)b=4a;(2)原式=(3﹣4)x2+(6+7)x+(5﹣6)=﹣x2+13x﹣1;(3)原式=(1+2)x2y+(﹣3﹣1)xy2=3x2y﹣4xy2;(4)原式=(3+2﹣5)(x+y)2+(1﹣1)(x﹣y)=0.14.解:(1)5m+2n﹣m﹣3n=4m﹣n;(2)3a2﹣1﹣2a﹣5+3a﹣a2=2a2+a﹣6;(3)ab2﹣5a2b﹣a2b+0.75ab2=ab2﹣5a2b﹣a2b+ab2=ab2﹣a2b;(4)4(m+n)﹣5(m+n)+2(m+n)=(4﹣5+2)(m+n)=m+n.15.解:原式=3a2b﹣6ab2﹣3﹣4a2b+6ab2+1=﹣a2b﹣2,当a=2,b=﹣1时,原式=﹣22×(﹣1)﹣2=﹣4×(﹣1)﹣2=4﹣2=2.16.解:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)]=﹣3y+3(3x2﹣3xy)﹣y﹣2(4x2﹣4xy)=﹣3y+9x2﹣9xy﹣y﹣8x2+8xy=x2﹣xy﹣4y,当x=﹣4,y=时,原式=(﹣4)2﹣(﹣4)×﹣4×=16+1﹣1=16.17.解:(1)(﹣3mx2+mx﹣3)﹣(﹣1﹣mx2﹣mx)=﹣mx2+mx﹣1+1+mx2+mx=mx,当m=2,x=﹣3时,原式=×2×(﹣3)=﹣4;(2)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,∴a=﹣3,b=2,∴=2ab2﹣a﹣b﹣2ab2﹣a2b+b+a=﹣a2b,当a=﹣3,b=2时,原式=﹣×(﹣3)2×2=﹣×9×2=﹣6.18.解:∵,∴,,∴,.原式=4xy﹣(2x2+2xy﹣4y2﹣3x2+6xy﹣3y2)=4xy﹣(﹣x2+8xy﹣7y2)=4xy+x2﹣8xy+7y2=x2﹣4xy+7y2===3.19.解:(1)∵a<﹣2<b<﹣1,0<c<1,∴b+2>0,a+c<0,b+1<0,1﹣c>0,∴|a|﹣|b+2|﹣|a+c|﹣|b+1|+|1﹣c|=﹣a﹣(b+2)﹣(﹣a﹣c)﹣(﹣b﹣1)+1﹣c=﹣a﹣b﹣2+a+c+b+1+1﹣c=0.(2)原式=3y﹣ax2﹣3x﹣1+y﹣bx+2x2=(2﹣a)x2﹣(b+3)x+4y﹣1,由题意得2﹣a=0,b+3=0,解得a=2,b=﹣3,∵x2﹣x﹣3=0,∴x1=2,x2=﹣1,当x=2时,原式=×23﹣3×22﹣2﹣(﹣3)=8﹣12﹣2+3=﹣3,当x=﹣1时,原式=×(﹣1)3﹣3×(﹣1)2﹣2﹣(﹣3)=﹣1﹣3﹣2+3=﹣3.∴﹣x﹣b的值为﹣3.20.解:因为多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x的三次项和一次项,所以a﹣1=0,b+1=0,所以a=1,b=﹣1,所以|﹣7a﹣b3|=|﹣7﹣(﹣1)3|=6.21.解:﹣x2+2y﹣mx+5﹣nx2+6x﹣20y=(﹣1﹣n)x2+(6﹣m)x+5﹣18y,∵整式﹣x2+2y﹣mx+5﹣nx2+6x﹣20y的值与字母x的取值无关,∴﹣1﹣n=0,6﹣m=0,解得n=﹣1,m=6,∴m2﹣2mn﹣n3===.。

七年级数学上册 3.4 整式的加减 3.4.1 同类项跟踪训练(含解析)(新版)华东师大版-(新版)

七年级数学上册 3.4 整式的加减 3.4.1 同类项跟踪训练(含解析)(新版)华东师大版-(新版)

同类项一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.42.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=24.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣96.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣17.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.28.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.19.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1二.填空题(共7小题)10若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= _________ .11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是_________ .12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________ .13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= _________ .14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= _________ .15.当m= _________ 时,﹣x3b2m与x3b是同类项.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为_________ .三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.23.若单项式的和仍是单项式,求m,n的值.第三章整式加减.1同类项参考答案与试题解析一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.4考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.解答:-解:∵﹣5x2y m和x n y是同类项,∴n=2,m=1,m+n=2+1=3,故选:C.点评:-本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.2.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b考点:-同类项.分析:-本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a,a的指数为1,解答:-解:2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误,故选:A.点评:-考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=2考点:-同类项.分析:-根据同类项是字母相同相同,且相同的字母的指数也相同,可得答案.解答:-解:单项式﹣x a+1y3与x2y b是同类项,a+1=2,b=3,a=1,b=3,故选:A.点评:-本题考查了同类项,相同的字母的指数也相同是解题关键.4.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.解答:-解:由同类项的定义,得,解得.故选C.点评:-同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣9考点:-同类项.分析:-根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可求得a和b的值.解答:-解:根据同类项的定义可知:2a﹣1=5,3a+b=1,解得:a=3把a=3代入到3a+b=1,解得:b=﹣8.故选B.点评:-本题考查同类项定义,判断两个项是不是同类项,一看所含字母是否相同,二看相同字母的指数是否相同.6.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣1考点:-同类项.专题:-探究型.分析:-先根据同类项的定义列出方程组,求出n、m的值,再把m、n的值代入代数式进行计算即可.解答:-解:∵与﹣x3y2n是同类项,∴,解得,∴2010=(﹣1)2010=1.故选C.点评:-本题考查的是同类项的定义,能根据同类项的定义列出关于m、n的方程组是解答此题的关键.7.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.2考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2m﹣n=3,m+2n=4,然后解方程组,再把方程组的解代入m n进行计算即可.解答:-解:∵单项式﹣3x2m﹣n y4与x3y m+2n是同类项,∴2m﹣n=3,m+2n=4,解方程组,得,∴m n=21=2.故选D.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫同类项.8.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.1考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,由同类项的定义可先求得a和b的值,从而求出它们的差.解答:-解:由同类项得定义得,,解得,则a﹣b=2﹣0=2.故选A.点评:-同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1考点:-同类项;解二元一次方程组.分析:-根据同类项的定义即可列出方程组,求出m、n的值即可.解答:-解:依题意,得,将①代入②,可得2(2n﹣3)+3n=8,即4n﹣6+3n=8,即7n=14,n=2.则m=1.故选B.点评:-本题考查的是同类项和方程的综合题目.两个单项式的和为单项式,则这两个单项式必须是同类项.二.填空题(共7小题)10.若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= ﹣5 .考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数也相同,可得m、n的值再根据有理数的乘法,可得答案.解答:-解:2a3b n+2与﹣3a m﹣2b是同类项,m﹣2=3,n+2=1,m=5,n=﹣1,mn=5×(﹣1)=﹣5,故答案为:﹣5.点评:-本题考查了同类项,相同字母的指数也相同是解题关键.11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是 5 .考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.解答:-解:∵单项式2x2y m与﹣3x n y3是同类项,∴m=3,n=2,∴m+n=3+2=5.故答案为5.点评:-本题考查同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.注意:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为 3 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2n=6解得n值即可.解答:-解:∵代数式﹣4x6y与x2n y是同类项,∴2n=6解得:n=3故答案为:3.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= 1 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出m,n的值,再代入代数式计算即可.解答:-解:∵﹣2x m﹣1y3和x n y m+n是同类项,∴m﹣1=n,3=m+n,解得m=2,n=1,所以(n﹣m)2012=(1﹣2)2012=1.故答案为:1.点评:-本题考查了同类项的定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= 13 .考点:-同类项.分析:-本题考查同类项的定义(所含字母相同,相同字母的指数相同),可得:m﹣2=3,n+1=2,解方程即可求得m,n的值,从而求出2m+3n的值.解答:-解:由同类项的定义,可知m﹣2=3,n+1=2,解得n=1,m=5,则2m+3n=13.故答案为:13点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.15.当m= 0.5 时,﹣x3b2m与x3b是同类项.考点:-同类项.专题:-计算题.分析:-利用同类项的定义计算即可求出m的值.解答:-解:由﹣x3b2m与x3b是同类项,得到2m=1,解得:m=0.5,点评:-此题考查了同类项,熟练掌握同类项的定义是解本题的关键.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为﹣12a5b2.考点:-同类项;单项式乘单项式.分析:-根据同类项的定义,相同字母的指数相同得到关于m、n的方程组,通过解方程组求得它们的值,然后将其代入两个单项式,利用单项式的乘法法则进行解答即可.解答:-解:∵单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,∴,解得,则这两个单项式是﹣3a b与4b,∴﹣3a b×4b=﹣12a5b2.故答案是:﹣12a5b2.点评:-本题考查了同类项的定义和整式的乘法,根据同类项定义中相同字母的指数相同确定出具体的单项式是解题的关键.三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.考点:-同类项.专题:-计算题.分析:-(1)根据同类项所含字母相同,相同字母的指数相同可得a的值,代入求解即可;(2)利用2mx a y+5nx2a﹣3y=0,得出它们的系数和为0,进而得出答案.解答:-解:(1)∵单项式是同类项,∴2a﹣3=a,∴a=3,∴(7a﹣22)2004=1;(2)∵2mx a y+5nx2a﹣3y=0,2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项,∴2m+5n=0,∴(2m+5n)2005=0.点评:-此题主要考查了同类项,利用同类项定义得出系数关系是解题关键.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数相同,可得m,n的值,根据有理数的加法运算,可得答案.解答:-解:∵3a m•b4与﹣5a4•b n﹣1是同类项,∴m=4,n﹣1=4,n=5,m+n=×4+5=2+5=7.点评:-本题考查了同类项,同类项是字母相同,且相同字母的指数相同.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.考点:-同类项;代数式求值.分析:-利用同类项的定义求出m,n的值,代入代数式求值即可.解答:-解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣1.点评:-本题主要考查了同类项及代数式求值,解题的关键是根据同类项的定义求出m,n的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?考点:-同类项;单项式.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m和n的值,根据合并同类项法则合并同类项即可.解答:-解:由﹣5.1×10m x2y n与3n x m+1y n是同类项,得m=1,﹣5.1×10x2y n+3n x2y n=(﹣51+3n)x2y n,由﹣51+3n>0得n最小是4,即(﹣51+34)x2y4=30x2y4,合并同类项后,单项式的系数是30,次数是6.点评:-本题考查的是同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同,(2)相同字母的指数相同,是易混点,还要注意同类项与字母的顺序无关,与系数无关,以及合并同类项的法则,难度适中.21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.考点:-同类项.分析:-根据同类项的定义列出方程,求出m的值.(1)将m的值代入代数式计算.(2)将m的值代入2ax m y+5bx2m﹣3y=0,且xy≠0,得出2a+5b=0,即a=﹣2.5b.代入求得的值.解答:-解:单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.m=2m﹣3,解得m=3(1)将m=3代入,(4m﹣13)2009=﹣1.(2)∵2ax m y+5bx2m﹣3y=0,且xy≠0,∴(2a+5b)x3y=0,∴2a+5b=0,a=﹣2.5b.∴=﹣点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.考点:-同类项.分析:-根据(1)小题的解题方法,结合同类项的概念直接进行计算.解答:-解:根据同类项的意义,可知x的指数相同,即:m﹣3n=3.y的指数也相同,即3m+11n=7.所以:(m﹣3n)+(3m+11n)=3+7,即:4m+8n=4(m+2n)=10所以:m+2n=.点评:-本题主要考查了同类项的概念,注意类比方法的运用.23.若单项式的和仍是单项式,求m,n的值.考点:-同类项;解二元一次方程组.专题:-计算题.分析:-由同类项的定义,即相同字母的指数相同,得到关于m、n的方程组,即可求得m和n的值.解答:-解:由同类项的定义,得,解得m=1,n=﹣0.5.故答案为m=1,n=﹣0.5.点评:-本题主要考查同类项的定义这类题目的解题关键是从同类项的定义出发,列出方程(组)并求解.。

华东师大版七年级数学上册第三单元3.4.1同类项【课时同步训练】

华东师大版七年级数学上册第三单元3.4.1同类项【课时同步训练】

3.4整式的加减第1课时同类项1. 理解同类项的概念.2. 能根据同类项的定义,找出同类项.1. 所含字母________,并且相同字母的指数也________的项叫做同类项;另外,所有的常数项都________同类项.2. 对于同类项的概念,可以理解为有两个相同和两个无关.两个相同:一是________相同;二是相同字母的________相同,两者缺一不可.两个无关:一是同类项与________无关;二是同类项与它们所含相同字母的______无关.3. 代数式3x m y 与-xy n -1是同类项,则m +n =________.4. 下列各组中的两个项是不是同类项?说明理由.(1)2x 2y 与5x 2y ;(2)0.2x 2y 与0.2xy 2;(3)-2xy 2与-y 2x ;(4)3ac 与-5ca ;(5)12x 3y 2与-12x 2y 3;(6)2x 2与2x 3;(7)a 3与53;(8)-125与12.5. 写出与-12x 2y 2是同类项的三个单项式________.6. 当m 为________时,5x 3y m +2与7x 3y 4-m 是同类项.7.如果的取值是和是同类项,则与n m y x y x m m n 31253()A.3和-2B.-3和2C.3和2D.-3和-28.下列各组代数式中,不是同类项的是(). A.n m 25与231nm B. 471ay 与y a 471C.2与2019 D. b ac 2与22019abc9. 将右边两个椭圆框中的同类项用直线段连接起来,其中对应正确的连接线有()A 、1条B 、2条C 、3条D 、4条10. 若单项式x x b a 42和x ab 323的相同字母的次数相同,则x 的整数值等于()A 、1B 、-1C 、±1D 、±1以外的数11.已知M=4243c b a ,N=4323c b a ,P=244b c a ,Q=23343c b a .其中是同类的项有()A.M 和NB.N 和PC.M 和PD.P 和Q 12. 若3x m +5y 与x 3y 是同类项,则m =________.13. 若代数式-4x6y与x2n y是同类项,则常数n的值为 .14. 如果13x a+2y3与-3x3y2b-1是同类项,那么a,b的值分别是( ).A. a=1,b=2B.a=0,b=2C. a=2,b=1D.a=1,b=1参考答案:1. 相同分别相等是2. 字母指数分别系数大小顺序3. 3 解析:m=1,n-1=1,n=2,∴m+n=3.4. (1)是(2)不是(3)是(4)是(5)不是(6)不是(7)不是(8)是理由略5. 答案不唯一,只要字母是x2y2,系数不固定.6. 1 解析:m+2=4-m,m=1.7.C8.B9.B10.B11.C12.213.314.A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4.1 同类项
知识点 同类项
1.在下列单项式中,与2xy 是同类项的是( )
A .2x 2y 2
B .3y
C .xy
D .4x
2.下列各组中的两项不是同类项的是( )
A .2x 2y 3与-3x 2y 3
B .10a 3b 2c 与10a 2b 3c
C .5xy 与yx
D .-与2 13
3.在单项式:①2a 2,②-2ab 2,③3a 2,④-ab ,⑤b 2a 中,下列说法正确的是( ) 12
A .②和④是同类项
B .③和⑤是同类项
C .没有同类项
D .②和⑤是同类项
4.下列关于同类项的说法:(1)指各项的次数相同;(2)指各项所含的字母相同;(3)与各项的系数无关;(4)各项所含字母相同,且相同字母的指数也相同.其中正确的有( )
A .(1)(2)
B .(2)(3)
C .(3)(4)
D .(2)(3)(4)
5.多项式4x 2-x +3+5x -4-中,4x 2的同类项是________,________和5x 是同类
x 22项,3和-4既是________,又是________.
6.用线段把图3-4-1中的同类项连起来: π2ba 2-xy 3x 2n 25m 2n 2 π2x 2n 13
a 2
b -n 2m 2xy 0图3-4-1
7.请将下列各项中与括号中的项是同类项的填在相应的大括号内:
3a 2b ,0,-5ab 2,-3a ,,-ba 2,-52,7a ,2a 2b ,3ab 2,33,a 3,-ab 2. 1613
{-0.1ab 2,…};
{3,…};
{-2a 2b ,…};
{2a ,…}.
8.若单项式5x 2y 和42x m y n 是同类项,求m +n 的值.
9.按下列要求写出两个单项式:①它们是同类项;②系数一正一负,其中一个是分数;③含有两个字母;④单项式的次数是3次:________________.
10.教材练习第3题变式2017·姜堰区期中若单项式9x m +1y 2与单项式4x 3y n -1是同类项,则(m -n)2018=________.
11.判断下列各组中的两项是不是同类项,对于不是同类项的,请说明理由.
(1)3x 2y 与-3x 2y ;(2)0.2a 2b 与0.2ab 2;
(3)11abc 与9bc ;(4)3m 2n 3与-n 3m 2;
(5)4xy 2z 与4x 2yz ;(6)62与x 2.
1
12.已知a2m cb y与3a n b3x+1c是同类项,求代数式1+(2m-n)+(y-3x)的值.
3
1.C [解析] 根据同类项的定义,与2xy 是同类项的是xy .故选C.
2.B 3.D 4.C
5.- -x 常数项 同类项
x 22 6.略
7.解:;
{-0.1ab 2,-5ab 2,3ab 2,-13ab 2,…};
{3,0,16,-52,33,…};
{-2a 2b ,3a 2b ,-ba 2,2a 2b ,…}.
{2a ,-3a ,7a ,…}8.解:∵单项式5x 2y 和42x m y n 是同类项,
∴m =2,n =1,
则m +n =2+1=3.
9.答案不唯一,如:3m 2n 与-m 2n
2310.1
11.解:(1)(4)是同类项.
(2)中相同字母的指数不同;
(3)中所含字母不完全相同;
(5)中相同字母的指数不完全相同;
(6)中一个是常数项,一个是二次项,不是同类项.
12.解:因为a 2m cb y 与3a n b 3x +1c 是同类项,
13所以2m =n ,y =3x +1,
所以2m -n =0,y -3x =1,
所以1+(2m -n )+(y -3x )=1+0+1=2.。

相关文档
最新文档