中考数学复习专题汇编---第五讲 第4课时 二次函数与圆的综合

合集下载

数学中考复习资料《与二次函数有关的综合问题》备课

数学中考复习资料《与二次函数有关的综合问题》备课

与二次函数有关的综合问题二次函数是中考的重点和热点问题,而二次函数综合问题是中考中难中之难,要求考生不但对二次函数的特点要牢固掌握,而且还要善于将二次函数和其他的有关知识(方程、不等式以及几何等知识)联系在一起。

解决这类问题的关键就是要认真仔细地将题目中所提供的信息进行加工梳理,有条不紊地进行"抽丝剥茧",最终解决问题。

下面就近五年德州中考题谈一谈二次函数综合题常见类型及应对策略。

一:常见题型: 2011年23. (本题满分12分)在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x x y =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKPA 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时:①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.A P y =本题考查了二次函数的综合运用,关键是用菱形、圆的性质,形数结合解题。

2012年23.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理、二次函数的最值问题等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.2013年:24.(本题满分12分)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC.抛物线2=++经过点A、B、C.y ax bx c(1)求抛物线的解析式.(2)若点P是第二象限内抛物线上的动点,其横坐标为t.①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标.②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由.本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用。

专题四二次函数中的圆的综合问题2020年中考数学冲刺难点突破二次函数问题(解析版)

专题四二次函数中的圆的综合问题2020年中考数学冲刺难点突破二次函数问题(解析版)

2020年中考数学冲刺难点突破二次函数问题专题四二次函数中的圆的综合问题1、如图,抛物线y=ax2 - 2ax+m的图象经过点P (4, 5),与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,且S AFAB=10.(1)求抛物线的解析式;(2)在抛物线上是否存在点Q使得4PAQ和4PBQ的面积相等?若存在,求出Q点的坐标,若不存在,请说明理由;(3)过A、P、C三点的圆与抛物线交于另一点D,求出D点坐标及四边形PACD的周长.1 20 -【答案】(1) y=x2-2x-3; (2)点Q 的坐标为:(-2, 5)或(--,-一);(3) 6J2+4而.3 9 ,【思路引导】(1)因为抛物线y=ax2-2ax+m,函数的对称轴为:x= 1, S APAB= 10= - XABxyp= — ABX5,解得AB=4,2 2即可求解;(2)分A、B在点Q (Q')的同侧;点A、B在点Q的两侧两种情况,分别求解即可;(3)过点P作PO± x轴于点O',则点O'(4, 0),则AO'= PO'= 5,而CO'=5,故圆。

是过A、P、C三点的圆,即可求解.【详解】解:(1) y= ax2 - 2ax+m,函数的对称轴为:x= 1,S PAB=10= - ^AB>y p= - ABX5,解得:AB=4,2 2故点A、B的坐标分别为:(-1, 0)、(3, 0),抛物线的表达式为:y=a (x+1) (x-3),将点P的坐标代入上式并解得:a=1,故抛物线的表达式为:y= x2-2x- 3…①;(2)①当A、B在点Q (Q')的同侧时,如图1,图1△PAQ和APEQ'的面积相等,则点P、Q关于对称轴对称,故点Q' ( - 2, 5);②当A、B在点Q的两侧时,如图1,设PQ交x轴于点E,分别过点A、B作PQ的垂线交于点M、N, △PAQ和△ PBQ的面积相等,则AM = BN,而/BEN=/AEM, Z AME = Z BNE = 90°,AME^A BNE (AAS),.•.AE = BE,即点E是AB的中点,则点E (1, 0),将点P、E的坐标代入一次函数表达式并解得:直线PQ 的表达式为:y= 5x- 5…②, 3 3联立①②并解得:x= - 1或4 (舍去4), 31 20故我 Q (—-,--),3 9............ . 1 20综上,点Q 的坐标为:(-2, 5)或(-一,-——);3 9(3)过点P 作PO ±x 轴于点O',则点O' (4, 设点 D (m, m 2—2m —3),点 O' (4, 0),则 DO'= 5,即(m-4) 2+ (m 2-2m-3) 2=25,化简彳导:m (m+1) (m —1) (m —4) = 0,解得:m=0或-1或1或4 (舍去0, - 1, 4),故:m = 1,故点 D (1, - 4);四边形 pACD 的周长=P A+AC+CD+pD = 5/2+710+/2+310=6/2+4710【方法总结】 本题考查了二次函数与三角形面积、三点共圆、四边形的周长、长度公式,综合性较强,灵活运用二次函数的知识是解题的关键.0),则 AO '= PO '= 5,而 CO '= 5,故圆。

二次函数与圆知识点总结1

二次函数与圆知识点总结1

初三数学二次函数和圆的知识点总结1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx axy ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx axy ++=2用配方法可化成:()k h x a y +-=2的形式,其中abac k ab h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k axy +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx axy ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx axy 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(abac a b4422--,对称轴是直线ab x 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx axy ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx axy ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab (即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab .10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向 对称轴顶点坐标2ax y =当0>a 时 开口向上 当0<a 时开口向下0=x (y 轴) (0,0) k axy +=20=x (y 轴) (0, k ) ()2h x a y -= h x =(h ,0) ()k h x a y +-=2h x =(h ,k )c bx axy ++=2ab x 2-=(ab ac a b4422--,)11.用待定系数法求二次函数的解析式 (1)一般式:c bx axy ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx axy ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点 二次函数c bx axy ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax=++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx axy 的图像G 的交点,由方程组cbx axy n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点. (6)抛物线与x 轴两交点之间的距离:若抛物线c bx axy ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax的两个根,故ac x x ab x x =⋅-=+2121,()()aaac ba c ab x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=4442221221221211.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理, 即“垂径定理”“中径定理” “弧径定理”“中垂定理”.几何表达式举例: ∵ CD 过圆心∵CD ⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”; “等弧对等弦”;“等弦对等(优,劣)弧”; “等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) ∵∠AOB=∠COD∴ AB = CD(2) ∵ AB = CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”; (4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1) (2)(3) (4)几何表达式举例: (1) ∵∠ACB=21∠AOB∴ …………… (2) ∵ AB 是直径∴ ∠ACB=90° (3) ∵ ∠ACB=90°∴ AB 是直径(4) ∵ CD=AD=BD∴ ΔABC 是Rt Δ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角. 几何表达式举例: ∵ ABCD 是圆内接四边形 ∴ ∠CDE =∠ABC∠C+∠A =180° 6.切线的判定与性质定理:如图:有三个元素,“知二可推一”; 需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点; ※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例: (1) ∵OC 是半径∵OC ⊥AB ∴AB 是切线 (2) ∵OC 是半径∵AB 是切线 ∴OC ⊥AB (3) ……………ABCD OABCDEO 平分优弧过圆心垂直于弦平分弦平分劣弧∴AC BCADBD==AE=BE AB C DEFOABCOABCDEA B COABCD∵∴∥ =AB CD AC BDABCO是半径垂直是切线7.切线长定理:从圆外一点引圆的两条切线, 它们的切线长相等;圆心和这一 点的连线平分两条切线的夹角.几何表达式举例:∵ PA 、PB 是切线 ∴ PA=PB∵PO 过圆心 ∴∠APO =∠BPO 8.弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等; (3)弦切角的度数等于它所夹的弧的度数的一半.(如图) 几何表达式举例: (1)∵BD 是切线,BC 是弦∴∠CBD =∠CAB(2)∵ ED ,BC 是切线∴ ∠CBA =∠DEF9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等; (2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.几何表达式举例:(1) ∵PA ²PB=PC ²PD∴……… (2) ∵AB 是直径∵PC ⊥AB∴PC 2=PA ²PB10.切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何表达式举例: (1) ∵PC 是切线,PB 是割线 ∴PC 2=PA ²PB (2) ∵PB 、PD 是割线∴PA²PB=PC ²PD11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦; (2)如果两圆相切,那么切点一定在连心线上.(1) (2)几何表达式举例: (1) ∵O 1,O 2是圆心∴O 1O 2垂直平分AB (2) ∵⊙1 、⊙2相切∴O 1 、A 、O 2三点一线 12.正多边形的有关计算:(1)中心角αn ,半径R N , 边心距r n ,边长a n ,内角βn , 边数n ;(2)有关计算在Rt ΔAOC 中进行.公式举例:(1) αn =n360︒; (2)n1802n ︒=αABCDABCDEF PABOABCPABCDPAB O1O2AO1O2αnβnABCDEOa r nnnR ABCDPABCPO ∵ EF AB=ABO几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高 三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2.(4)扇形面积S 扇形 =LR21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高) (2)圆锥的侧面积:S 圆锥侧 =LR21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:OCAB已知弦构造弦心距.OA BC已知弦构造Rt Δ.OABC已知直径构造直角.OAB已知切线连半径,出垂直.O BCADP圆外角转化为圆周角.OACDBP圆内角转化为圆周角.O DCPAB构造垂径定理.OAC DPB构造相似形.M01ANO2两圆内切,构造外公切线与垂直.01CNO2DEABM两圆内切,构造外公切线与平行.NAM02O1两圆外切,构造内公切线与垂直.CBMNADEO102两圆外切,构造内公切线与平行.CE A DB O两圆同心,作弦心距,可证得AC=DB.ACBO102两圆相交构造公共弦,连结圆心构造中垂线. BACOPPA 、PB 是切线,构造双垂图形和全等.OABCDE相交弦出相似.OPABC一切一割出相似, 并且构造弦切角.OBCEADP两割出相似,并且构造圆周角.OABCP双垂出相似,并且构造直角.B ACDEF规则图形折叠出一对全等,一对相似.FEDBAC OGH圆的外切四边形对边和相等.ABOCD若AD ∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.EACBOD等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.EFCDBAORtΔABC的内切圆半径:r=2cba-+.O补全半圆.ABCo1o2AB=2221)rR(OO--.CABo1o2AB=2221)rR(OO+-.AC D PO BPC过圆心,PA是切线,构造双垂、RtΔ.BCDOAPO是圆心,等弧出平行和相似.D EMAB CFNG作AN⊥BC,可证出:ANAMBCGF=.。

【2021中考专题】二次函数与圆综合压轴题

【2021中考专题】二次函数与圆综合压轴题

【2021中考专题】二次函数与圆综合压轴题★初中数学研学堂★★方法揭秘★解决函数与圆的综合问题的关键是找准函数与圆的结合点,弄清题目的本质,利用圆的基本性质和函数的性质、数形结合、方程思想、全等与相似,以便找到对应的解题途径.常见的考法有:1. 直线与圆的位置关系:平面直角坐标系中的直线与圆的位置关系问题关键是圆心到直线的距离等于半径的大小,常用的方法有:(1)利用圆心到直线的距离等于半径的大小这一数量关系列出关系式解决问题(2)利用勾股定理解决问题(3) 利用相似列出比例式解决问题2.函数与圆的新定义题目:利用已掌握的知识和方法理解新定义,化生为熟3.函数与圆的性质综合类问题:利用几何性质,结合图形,找到问题中的“不变”关键因素和“临界位置”.01★典例剖析★如图,抛物线y=ax2+9/4x+c经过点A(-1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y 轴,交抛物线于点P.(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.010202典例剖析★在平面直角坐标系中,二次函数y=1/2x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,PA,PC,若S△PAC=15/2,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.010203【二次函数压轴】相似三角形存在性问题的解题策略【二次函数压轴】5种解题策略带你玩转45°角【2021中考】一道综合性较强的以等边三角形为背景的几何压轴题【2021中考】一道相似压轴题解法微探【2021中考专题】二次函数压轴题之角的存在性【2021中考】分享一道相似三角形几何压轴题【2021中考】两道网研几何综合题解法探究【2021中考】一道网研几何综合题的解法探究倍半角、相似基本型破解几何压轴题【2021中考备考干货分享】最值系列之胡不归模型★公众号★。

中考数学复习专题汇编---第五讲 第4课时 二次函数与圆的综合

中考数学复习专题汇编---第五讲 第4课时 二次函数与圆的综合

(
)
OA OM = ,∴OM2=OA·OB, OM OB ∵二次函数的图象与 x 轴交于点 A(x1,0),B(x2,0),
∴ ∴OA=-x1,OB=x2,x1·x2=-(c+1), ∵OM=c+1,∴(c+1)2=c+1,
解得 c=0 或-1(舍去),∴c=0,OM=1, ∴y=-x2+bx+1, ∴x1·x2=-1,x1+x2=b, 1 m2-1 b m2-1 设 A(m,0)(m<0),则 B(- ,0),b= ,对称轴为 x= = , m m 2 2m 1 ∵yAM 经过点 A(m,0),M(0,1),∴yAM=- x+1,
∴在 Rt△OMB 中,OB=2,OM=r-1, 由勾股定理,得 22+(r-1)2=r2. 5 ∴r= .∴AD=5. 2 ∴点 D 的坐标是(4,0). ∵抛物线 y=ax2+bx+c 过点 A(-1,0),B(0,-2),D(4,0),
{
a-b+c=0, 3 c=-2, 解得 b=- , 16a+4b+c=0, 2 c=-2.
OP OB OP 2 = .即 = . PH FH 3.5-OP 1.5 ∴OP=2.
∴ ∴△PEF 的周长最小时,点 P 的坐标是(2,0). (3)存在.Q1
( ) (
3 5 3 5 3 , ,Q2 ,- ,Q3 ,-4 , 2 2 2 2 2
) (
)
Q4 ,-
(
3 2
25 . 16 (40 分)
A(x1, 0), B(x2, 0),且 x1< x2,与 y 轴的正半轴交于
点 M,以 AB 为直径的半圆恰好经过点 M,二次函数的对 称轴 l 与 x 轴,直线 BM,直线 AM 分别相交于点 D,E, 图 5-4-1
DE 1 F,且满足 = ,求二次函数的表达式. EF 3 b 解: (1)二次函数的对称轴为 x=- , 2a

初中数学二次函数与圆相结合的压轴题专题,中考数学二次函数与圆相结合的经典题型讲解及答案解析

初中数学二次函数与圆相结合的压轴题专题,中考数学二次函数与圆相结合的经典题型讲解及答案解析

【仲烦1】(我市)已知圆P的圆心在反比例函数y=-(A:>1)上,并与工轴相交于X、3两点.且x始终与]轴相切于定点C(0,1).⑴求经过三点的二次匣1数图象的解析式;(2)若二次函教图象的顶点为D,问当上为何值时'四边形也站尹为菱形.【耕音】解:(1)连接PC、PAx PB,谊P点ffPHXx轴.垂足为H・(1分)与y轴相切于点C(0, 1),.-.PC±y^.•.•P点在反比例函数》二占的囹象上,X•.•P点坐标为(k,1).(2分)•.•PAU.在RtAAPH中,AH=厨2_尸於后一1,•'•A(k-90 ).(3分)•.•由。

P交x轴于A、B两点,且PHJLAB,由垂径击理可知,PH垂直平分AB.AOB=OA+2AH=k•••B3小2_1,0).《4分〉故过A、B两点的抛物线的对称轴为PH所在的直钱斛析式为x=k.可设该抛物线解析式为y=a<x-k)2+h.(5分)又二.抛物线过C(。

,1),B(k-^2_r0),[ak^-^h=1•3|—?昭得a=l,h=1-k^.(7分)•.•抛物线解析式为y=心)2+1上2.(B分)(2)由<1)知抛物线顶点D坐标为(k,l-k2>•・•DH-k2-l.若四边形ADBP为装形.则必有PH=DH.(10分)VPH=1,.•-k2-l=l.又">1,(11分)•・•当k取以时,PD与AB互相垂直平分,则四边形ADBP为菱形•(12分)3【百麒2]翎南省韶关市)25.如图6,在平面直角坐标系中旭边形OABC是矩形,。

虹4应=2,直线),=-":与坐标轴交于D、E。

设M是加的中点,P是线段DE上的动点.(1)求M、D两点的坐标;<2)当P在什么位置时,PA=PB?求出此时P点的坐标j<3)过P作PH1BC,垂足为H,当以PM为直径的OF与BC相切于点N时,求梯形PHBH的面积.图6【分析】(1)因为四边形OABC是逅形,0A=4,AB=2»直线>=r-?与坐标轴交于D、E,M是AB的中点2.所以令y=0,即司术出D的坐标,而AM-1.印以M(4,1);(2)因为PA=PB.断以P是AB的香直平分线和直线ED的交点,而AE的中垂线是y=l,断以P的纵坐标为1,令直线ED的解析式中的y=l,求出的x的值即为相应的P的横坐标;(3〉可设P(x,y>,连将PN、MN、NF,因为点P在y・x-:上,所以P《x,粮据蹦意可2得PNlMNi FN±BCi F是圈心,又因N是钱段HB的中点,HN-NB-—»PH-2-(-x*-)t2 2 2BM=1,利用直径对的圆周角是直甬可得到ZHPX-ZHNP=ZHNP-ZBNM=90°•所以ZHPN=ZB取ph ir£x+| NM,又因ZPHN-ZB-900-所以可得到R tAPNH<^RtANMB•所以—•A2=—^,这BM BN—4-x1—样牧可得到关于X的方程,解之即可求出X的值,而饬求面招的四边形是一个直角梯形,南以Spg=也皿滋或"医号)("6+应)=.21_色叵.2 2 24满答】俄;《1)M", 1),D《9,0);(2分)2(2)V PA=PB>•七点P在线段AB的中毒线上,•.•点P的纵坐标是I,3又•:点P在尸-X-—上,2・.•点P的坐标为(【,1)?(4分)(3)设P(x,y),连接PN、MN、NF,3点P lSy=・x+-上,匕3・'・P(x ,-w+—),2依题意知:PN«LMN>FN^BC,F是圆心,・'・N是线段HB的中点,HN=NB=±M,PH=2.2口,BM=1,<6分)22HPN-ZHNP=NHNP-ZBNM=90°,NHPN=ZBNN1,又ZPHN=ZB=90°5RtAPNH^RtANMBs:HN_PH•'两南,4-x x*.."F=二,-等」22,(8分)x?-12x+14=0»朋得;x-6-j22(^-*>^舍去),k=6-皿=些罕=空也艾竺=一*孕屈,(9分)2【例题31(||-4省白银等7市新课程)28.在直角坐标系中>0A的丰径为4,圆心A曜标为(2, 0),S与X轴交于E、尸两点,与),轴交于(7、D两点,过点(7作0X的切线时,交x轴于点3.(1)求直线C5的解析式:(2)若抛物线.件履7)日€的顶点在直线3C上,与x轴的交点恰为点E、已求该抛物线的解析式J(3)试判断点C是否在抛物线上?(4)在抛物线上是否存在三个点,由它构成的三角形与A4OC相似?直接与出两组这样的点•4[分析】(1>SHAC.根撮区]的李径求出AC. W1B点人的坐麻求出0A,燃后利用勾腹定理列式求出0C・从而得到点C的坐标,再求出ZCAO=60=.然后粮掘直有三甬形两锐角互余米出NB=30。

中考数学压轴题二次函数与圆

中考数学压轴题二次函数与圆

中考数学压轴题二次函数与圆中考数学压轴题二次函数与圆第四讲:二次函数与圆综合一、二次函数与圆综合0) B (x 2,0) 两点,【例1】已知:抛物线M :y =x 2+(m -1) x +(m -2) 与x 轴相交于A (x 1,,(Ⅰ)若x 1x 2(Ⅱ)若x 11,求m 的取值范围;,2) ,若存在,求出(Ⅲ)试判断是否存在m ,使经过点A 和点B 的圆与y 轴相切于点C (0M :y =x 2+(m -1) x +(m -2) 的值;若不存在,试说明理由;7) ,与(Ⅰ(Ⅳ)若直线l :y =kx +b 过点F (0,)中的抛物线M 相交于P ,Q 两点,且使=,求直线l 的解FQ 2【解析】(Ⅰ)解法一:由题意得,x 1x 2=m -2m 为正整数,∴m =1.∴y =x 2-1.解法二:由题意知,当x =0时,y =02+(m -1) ⨯0+(m -2)解法三:∆=(m -1) 2-4(m -2) =(m -3) 2,-(m -1) ±(m -3) ∴x =,∴x 1=-1,x 2=2-m .∴x 2=2-m >0.∴m(x +1)(x +m -2) =0,∴.(以下同解法三.) x 1=-1,x 2=2-m (Ⅱ)解法一:x 11,∴x 1-10.,即x 1x 2-(x 1+x 2) +1x 1+x 2=-(m -1) ,x 1x 2=m -2,∴(m -2) +(m -1) +1解法二:由题意知,当x =1时, y =1+(m -1) +(m -2)∴m 的取值范围是m∴2-m >1 x 11,2) ,所以A ,B 两点在y 轴的同侧,解法一:因为过A ,B 两点的圆与y 轴相切于点C (0,∴x 1x 2>0.由切割线定理知,OC 2=OA OB ,即22=x 1x 2.∴x 1x 2=4,∴x 1x 2=4. ∴m -2=4. ∴m =6.解法二:连接O 'B ,O 'C .圆心所在直线x =-设直线x =b m -11-m与x 轴交于点D ,圆心为O ', 2则O 'D =OC =2,O 'C =OD =.AB , AB =x 2-x 1==m -3,BD =2在Rt △O 'DB 中, O 'D 2+DB 2=O 'B 2.⎛m -3⎛⎛1-m ⎛即2+ ⎛= ⎛.解得 m =6.(Ⅳ)设P (x 1,y 1) ,Q (x 2,y 2) ,则y 1=x 12-1,y 2=x 2-1.0) Q (x 2,0) .则PP 过P ,Q 分别向x 轴引垂线,垂足分别为P 1(x 1,,1∥FO ∥QQ 1.所以由平行线分线段成比例定理知,1=.=,即x 2=-2x 1.因此,过P ,Q 分别向y 轴引垂线,垂足分别为P 2(0,y 1) ,Q 2(0,y 2) ,则PP 2∥QQ 2.所以△FP 2P ∽△FQ 2Q .∴2=.∴21-2(x 12-1) =x 2-1. 7-y 11∴=.∴21-2y 1=y 2. 22y 2-72∴23-2x 1=4x 1-1.∴x 12=4,∴x 1=2,或x 1=-2.3) .直线l 过P (2,,3) F (0,7) ,当x 1=2时,点P (2,⎛7=k ⨯0+b ,⎛b =7,3=k ⨯2+b . k =-2. ⎛⎛3) .直线l 过P (-2,,3) F (0,7) ,当x 1=-2时,点P (-2,⎛7=k ⨯0+b ,⎛b =7,k =2. 3=k ⨯(-2) +b . ⎛⎛故所求直线l 的解析式为:y =2x +7,或y =-2x +7.【例2】已知抛物线y =ax 2+bx +c 与y 轴的交点为C ,顶点为M ,直线CM 的解析式y =-x +2并且线段CM的长为(1)求抛物线的解析式。

中考冲刺复习二次函数、圆基础

中考冲刺复习二次函数、圆基础

中考复习1.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.2.如图,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点E,点D为AC的中点,连接DE.(1)求证:DE是⊙O的切线.(2)若CE=1,OA=,求∠ACB的度数.3.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE于点D.(1)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.4.如图,在△ABC中,AB=AC,点D在BC边上,且AD=BD,⊙O是△ACD的外接圆,AE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若AB=2,AD=3,求直径AE的长.5.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当,CE=4时,直接写出CG的长.6.四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=,BC=1,求PD的长.7.如图,AB是⊙O的直径,点C,点D在⊙O上,,AD与BC相交于点E,AF与⊙O相切于点A,与BC延长线相交于点F.(1)求证:AE=AF.(2)若EF=12,sin∠ABF=,求⊙O的半径.8.如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且P A=PC,PD∥AC,与BA的延长线交于点D.(1)求证:PD是⊙O的切线;(2)若tan∠P AC=,AC=12,求直径AB的长.二次函数一.选择题(共20小题)1.关于二次函数y=x2+2x﹣8,下列说法正确的是()A.图象的对称轴在y轴的右侧B.图象与y轴的交点坐标为(0,8)C.图象与x轴的交点坐标为(﹣2,0)和(4,0)D.y的最小值为﹣92.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0B.1C.2D.33.如图,抛物线y=ax2+bx+c与直线y=kx+h交于A,B两点,下列是关于x的不等式或方程,结论正确的是()A.ax2+(b﹣k)x+c>h的解集是2<x<4B.ax2+(b﹣k)x+c>h的解集是x>4C.ax2+(b﹣k)x+c>h的解集是x<2D.ax2+(b﹣k)x+c=h的解是x1=2,x2=44.将抛物线y=(x+1)2+1平移,使平移后得到抛物线y=x2+6x+6.则需将原抛物线()A.先向左平移1个单位长度,再向上平移5个单位长度B.先向左平移2个单位长度,再向下平移4个单位长度C.先向右平移1个单位长度,再向上平移5个单位长度D.先向右平移2个单位长度,再向上平移4个单位长度5.二次函数y=(a﹣1)x2﹣(2a﹣3)x+a﹣4的图象与x轴有两个公共点,a取满足条件的最小整数,将图象在x轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,当直线y=kx﹣2与新图象恰有三个公共点时,则k的值不可能是()A.﹣1B.﹣2C.1D.26.函数y=ax2+1和y=ax+a(a为常数,且a≠0),在同一平面直角坐标系中的大致图象可能是()A.B.C.D.7.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①abc<0;②a﹣b+c>0;③c﹣4a=1;④b2>4ac;⑤am2+bm+c≤1(m为任意实数).其中正确的有()A.2个B.3个C.4个D.5个8.在同一平面直角坐标系中,若抛物线y=mx2+2x﹣n与y=﹣6x2﹣2x+m﹣n关于x轴对称,则m,n的值为()A.m=﹣6,n=﹣3B.m=﹣6,n=3C.m=6,n=﹣3D.m=6,n=39.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个10.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.411.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1B.2C.3D.412.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米13.已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是()A.a≥﹣2B.a<3C.﹣2≤a<3D.﹣2≤a≤314.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A.B.4C.﹣D.﹣15.贫困户老王在精准扶贫工作队的帮扶下,在一片土地上种植了优质水果蓝莓,经核算,种植成本为18元/千克.今年正式上市销售,通过30天的试销发现:第1天卖出20千克;以后每天比前一天多卖4千克,销售价格y元/千克)与时间x(天)之间满足如表:(其中,x,y均为整数)时间x(天)(1≤x<(20≤x≤30)20)销售价格y(元/千克)﹣0.5x+3825(1)试销中销售量P(千克)与时间x(天)之间的函数关系式为.(2)求销售蓝莓第几天时,当天的利润w最大?最大利润是多少元?(3)求试销的30天中,当天利润w不低于870元的天数共有几天.16.某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).17.已知抛物线y=ax2+2ax+3a2﹣4.(1)该抛物线的对称轴为;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,y1),N(2,y2)在该抛物线上,若y1>y2,求m的取值范围.18.已知经过点的抛物线y=﹣x2+bx+c与直线交于点D,E,如图.(1)求抛物线的解析式,并用配方法求顶点坐标;(2)横坐标为m的点P是抛物线上位于点D,E之间的一个动点(不含点D和E),连接PD,PE.当m取何值时,△PDE的边DE上的高h取得最大值,最大值是多少?19.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标.20.已知关于x的方程x2+(2m﹣1)x+m2﹣1=0.(1)m为何值时,方程有两个不相等的实数根?(2)若抛物线y=x2+(2m﹣1)x+m2﹣1交x轴于A,B两点,且AB=3,求m的值.21.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y 轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.22.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.23.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.24.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形?若能,求出点N的坐标;若不能,请说明理由.25.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.26.在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC 的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;27.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;12.若关于x 的方程212x a x +=--的解是非负数,则a 的取值范围是______ .13.关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是___ .一元二次方程24.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +a 2﹣1=0有一个根为x =0,则a = . 25.若关于x 的一元二次方程x 2+2x ﹣k =0无实数根,则k 的取值范围是 .26.关于x 的一元二次方程(a +1)x 2+bx +1=0有两个相等的实数根,则代数式8a ﹣2b 2+6的值是 . 37.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于 . 41.已知关于x 的方程:4x 2+4mx +2m ﹣1=0(m 为实数). (1)求证:对于任意给定的的实数x ,方程恒有两个实数根; (2)设x 1,x 2是方程的两个实数根,求证:x 1+x 2+m =0. 反比例函数1.如图,一次函数y 1=ax +b 与反比例函数y 2=的图象交于A 、B 两点.点A 的横坐标为2,点B 的纵坐标为1.(1)求a ,b 的值. (2)在反比例y 2=第三象限的图象上找一点P ,使点P 到直线AB 的距离最短,求点P 的坐标.2.如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点B (2,2),反比例函数y =(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G 是否在反比例函数图象上.3.如图,一次函数y=﹣x+1的图象与两坐标轴分别交于A,B两点,与反比例函数的图象交于点C(﹣2,m).(1)求反比例函数的解析式;(2)若点P在y轴正半轴上,且与点B,C构成以BC为腰的等腰三角形,请直接写出所有符合条件的P点坐标.4.如图,在平面直角坐标系中,将点A(2,4)绕原点O顺时针旋转90°后得到点B,连接AB.双曲线y=(m≠0)恰好经过AB的中点C.(1)直接写出点B的坐标.(2)求直线AB及双曲线的函数解析式.5.如图,已知边长为4的正方形ABCD中,AB⊥y轴,垂足为点E,AD⊥x轴,垂足为点F,点A在双曲线y=上,且A点的横坐标为1.(1)请求出B,C两点的坐标;(2)线段BF,CE交于点G,求出点G到x轴的距离;(3)在双曲线上任取一点H,连接BH,FH,是否存在这样的点H,使△BFH的面积等于5,若存在,请直接写出适合的所有的点坐标;若不存在,请说明理由.6.如图,平行四边形OABC中,AB=2,OA=2,它的边OC在x轴的负半轴上,对角线OB在y轴的正半轴上.反比例函数y=的图象经过点A,一次函数y=kx+b的图象经过A、C两点且与反比例函数图象的另一支交于点D.(1)求反比例函数和一次函数的解析式;(2)连接BD,求△BDC的面积.7.如图,一次函数y=﹣x+1的图象与两坐标轴分别交于A,B两点,与反比例函数的图象交于点C(﹣2,m).(1)求反比例函数的解析式;(2)若点P在y轴正半轴上,且与点B,C构成以BC为腰的等腰三角形,请直接写出所有符合条件的P点坐标.8.如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.(1)n=,k=;(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.1.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).一.填空题(共19小题)1.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.2.在平面直角坐标系xOy中,点P(2,a)在函数的图象上,则点Q(a,3a﹣5)位于第象限.3.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为.4.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.5.比较大小:.(填“>”,“<”或“=”)6.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.7.已知是方程组的解,则代数式(a+b)(a﹣b)的值为.8.如图,数轴上点A表示的实数是.9.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.10.已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.11.已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.12.估算:≈(结果精确到1)13.已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为.14.如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为.15.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.16.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.17.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.18.如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE 的长为.19.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是 .。

2024年中考数学综合与实践:圆、二次函数有关重难点题型

2024年中考数学综合与实践:圆、二次函数有关重难点题型

综合与实践、圆、二次函数有关重难点题型题型一综合与实践1.综合与实践问题情境:综合与实践课上,老师让同学们以“等腰直角三角形”为主题开展数学活动,并提出如下问题:如题2-1图,将等腰Rt△ABC的直角边AC与等腰Rt△ADC的斜边AC 重合,∠BAC=∠ADC=90°,试判断线段BC 与CD之间的数量关系,并加以证明.(1)数学思考:请你解答老师提出的问题;(2)猜想证明:如题2-2图,点 E 是线段AD上的一个动点(不与A,D重合),连接CE,过点 E作EF⊥CE,分别交AB,AC于F,G两点,连接FC,试判断△CEF的形状,并说明理由.2.综合与实践【阅读理解】如题1-1图,在△ABC中,AM是BC边上的高线,由勾股定理得AM²=AB²−BM²,AM²= AC²−CM²,故AB²−BM²=AC²−CM².【知识迁移】如题1-2 图,在矩形ABCD中,当点P在矩形ABCD内任意位置时,连接AP,BP,CP,DP.求证: AP²+ CP²=BP²+DP².【探索发现】如题1-3 图,若点 P在矩形ABCD 的外部时,上述结论是否仍然成立?请加以判断,并说明理由.【尝试应用】如题1-4图,在△ABC中, AB=3,AC=4,Q为平面内一点,且AQ=1,∠BQC=90°,求 BC 的最大值.3.如题1-1图,正方形ABCD的边AB上有一点E,连接DE.(1)若AD=3AE,则sin∠ADE= ;(2)如题1-2图,将边 CB绕点 C顺时针旋转,旋转角为α,使得点 B 的对应点 F 落在DE上(点F不与点D 重合),连接BF,求∠BFE的度数;(3)如题1-3图,在(2)的条件下,若E为AB的中点,DF=n,正方形ABCD的面积为S,求S关于n的函数关系式.4.小颖在学习了摩擦力的相关知识后,准备在水平面上探究滑动摩擦力与压力之间的关系,探究步骤如下:第一步:如题3-1图,在一水平放置的木板上放置一个质量为1kg的木块(压力大小=重力大小),用弹簧测力计沿水平方向拉动木块,使木块做匀速直线运动(滑动摩擦力的大小可以由弹簧测力计读出);第二步:在木块上增加质量不同的砝码,使木块做匀速直线运动;当在木块上增加质量不同的砝码后,设弹簧测力计所拉物体的质量为m(kg),弹簧测力计的示数为F(N),通过多次测量,得到如下数据:(1)把表中的图的坐标系中,描点,连线,画出弹簧测力计拉力F关于物体质量m的图象;(2)观察所画的图象,猜测F和m之间的函数关系,求出函数表达式;(3)小颖将水平拉动木块实验变成在斜面拉动木块实验,如题3-3图,用弹簧测力计拉着木块分别沿倾斜程度不同的斜面向上做匀速直线运动.经测算,在弹性范围内,沿斜面的拉力 F(N)是高度h(m)的一次函数.当斜面水平放置在地面上时,弹簧测力计的读数为2N,高度h每增加0.1m,弹簧测力计的读数增加0.8N,若弹簧测力计的最大量程是8N,求装置高度h的取值范围.5.综合与实践某数学实验小组在学习了电阻的知识后,计划通过实验探究铂电阻在0∼100°C范围内的温度特性,具体过程如下:【知识背景】电阻温度计是根据导体电阻随温度而变化的规律来测量温度的温度计,铂电阻温度计是最精确的温度计.【实验过程】如题2-1图,将电阻温度计接入电路,开始使导体温度升温,控制温度在( 0°C−100°C范围内,每升温20°C记录一次指示仪表输出的电阻值(单位:Ω),实验完毕后,关闭所有电源.【收集数据】记录的数据如下表:(1)如题2-2图,建立平面直角坐标系,横轴表示温度( (°C),纵轴表示电阻值(Ω),描出以上表中的数据为坐标的各点,并进行连线;(2)观察上述各点的分布规律,判断它们是否在同一条直线上,若在同一条直线上,请你建立适当的函数模型,并求出解析式,若不在同一条直线上,请说明理由;(3)当温度为50°C时,求铂电阻的电阻值.题型二圆的综合题1. 如题1图, △ABC内接于⊙O,AB是⊙O 的直径,分别过点 C 作⊙O 的切线,过点 O作AB的垂线,两线相交于点 D.(1)求证: ∠D=2∠A;(2)请用无刻度的直尺和圆规过点O 作AC 的垂线交AC 于点 E(保留作图痕迹,不写作法);(3)在(2)的条件下,若AB=8,CD=3,求OE的长.2. 如题2图, △ABC内接于⊙O,延长BA至点D,连接DC,使DB=DC,过点A作AE⊥AB交DC于点E,连接B E,BE 与AC相交于点F,且满足∠ADE=2∠EAC.(1)求证:CA=CB;(2)若AD:AB=1:4,求tan∠ABC的值;的值.(3)在(2)的条件下,求AFFC3.如题1-1图, △ABC内接于⊙O,BC是⊙O的直径,CD是∠ACB的平分线,交⊙O 于点D,连接OD,交AB于点E.(1)求证:OD∥AC;,求直线AF与⊙O的位关系.(2)如题1-2图,延长OD至点 F,连接AF,使得AF=BC,且tanB=12在△ABC中,AB=AC,点O是AB边上一动点,以点O为圆心,OB长为半径作圆,交BC于点 D.过点 D作DE⊥AC,垂足为E.(1)如题2-1图,若点O为AB的中点,求证:BD=CD;(2)如题2-2图,当点O为AB 上任意一点时,求证:DE 与⊙O 相切;(3)如题2-3图,若⊙O与AC相切于点F,且⊙O的半径为3,CE=1,求AF的长.如题4图,四边形ABCE内接于⊙O, AB=AC,CE⊥BC,,过点A作BC的平行线交CE的延长线于点 D.(1)求证:AD是⊙O的切线;(2)若DE=2,AE平分∠CAD,求⊙O的半径;(3)新考法探究线段数量关系若( CE=m,DE=n,⊙O的直径为d,探究m,n与d的数量关系,并说明理由.题型三二次函数综合题1. 已知抛物线y₁=ax²−4ax+c经过点(3,−2),与x轴交于点A(x₁,0),B两点.(1)若抛物线过点(−1,2),求抛物线的解析式;(2)若−1<x₁<0,点P(5,n)(n⟩0))在该抛物线上,求a的取值范围;(3)若抛物线y₁向上平移两个单位长度后得到抛物线y₂,抛物y₁与直线y₁=kx+b(k≠0)交于点(x₁,0)(x₁<2),且函数y=y₁+y₁的图象与x轴仅有一个交点.求证:k=2a.2.如题2图,在平面直角坐标系中,抛物线y=−x²+bx+c交x轴于A,B(1,0)两点,交y轴于点C(0,3),连接AC,BC.(1)求抛物线的解析式;(2)N是线段AC上一点,过点N作NN′⊥x轴于点N′,若△ABC的面积被 NN'分为1∶2的两部分,求点N 的坐标;(3)将抛物线向左平移m(m⟩0))个单位长度,与原抛物线的交点为点 D,连接 AD,BD,AC 与 BD 相交于点 E,若△ADE与△BCE的面积差为1,求m的值.3.已知抛物线y=25x2+bx+c的顶点坐标为(−2,185),与x轴交于点A,B(点A在点 B左侧),与y轴交于点C.(1)求b,c的值;(2)点M(-4,2),N是抛物线上两点,若点N到对称轴的距离等于点M到对称轴距离的2倍,求点 N的坐标;(3)若点 P是第二象限内抛物线上一点,连接PB交AC于点D,求PDBD的最大值.x−3与x轴,y轴交于A,B两点,抛物线y=x²+bx+c经过A,B两点,M是射线4.如题2图,直线y=34BA上一动点,过点 M作MN∥y轴交抛物线于点 N.(1)求抛物线的解析式;(2)当M在线段BA上时,连接AN,BN,若S∆ABN=S∆ABO,求此时点M的坐标;(3)新考法与点的运动结合点M从点 B 出发,沿射线BA方向以每秒5个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,MB=MN?请直接写出所有符合条件的t值.5.如题3图,在平面直角坐标系中,已知抛物线y=ax²+bx−2(a≠0)与x轴交于点A(−1,0),B(0),与y 轴交于点 C,点P为直线BC下方抛物线上一动点.(1)求抛物线的解析式;(2)过点P作PE⊥x轴于点 E,连接OP,是否存在点 P 使得. ∠OPE=∠ABC?若存在,求出点的横坐标;若不存在,请说明理由;(3) 将抛物线沿着x轴翻折,点P 的对应点为P′,连接P'B,求△P′CB面积的最大值及此时点 P的坐标.。

中考数学复习----二次函数与圆、相似的综合运用

中考数学复习----二次函数与圆、相似的综合运用
二次函数与圆、相似的综合运用
题型1、二次函数与圆的综合:
1-1、如图,点 ,以点 为圆心、 为半径的圆与 轴交于点 .已知抛物 过点 和 ,与 轴交于点 .
⑴ 求点 的坐标,并画出抛物线的大致图象.
⑵ 点 在抛物线 上,点 为此抛物线对称轴上一个动点,求 最小值.
⑶ 是过点 的 的切线,点 是切点,求 所在直线的解析式.
⑴求二次函数的解析式;
⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.
2-3、已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。
(1) 求抛物线的解析式;
(2) 若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
1-2、如图,已知点 的坐标是 ,点 的坐标是 ,以 为直径作 ,交 轴的负半轴于点 ,连接 、 ,过 、 、 三点作抛物线.
⑴求抛物线的解析式;
⑵点 是 延长线上一点, 的平分线 交 于点 ,连结 ,求直线 的解析式;
⑶在⑵的条件下,抛物线上是否存在点 ,使得 ?如果存在,请求出点 的坐标;如果不存在,请说明理由.
(2)过点 作线段 的垂线交抛物线于点 , 如果以点 为圆心的圆与直线 相切,请判断抛物线的对称轴 与⊙ 有怎样的位置关系,并给出证明;
(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积.
练习、如图所示,在平面直角坐标系Oxy中,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C.

上海中考数学压轴题专题复习——二次函数的综合

上海中考数学压轴题专题复习——二次函数的综合

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线233333y x x =--+“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3);(3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵2234323y x x =-+a=233-,则抛物线的“衍生直线”的解析式为2323y=; 联立两解析式求交点2234323332323y=y x x ⎧=--+⎪⎪⎨⎪⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩x=1y=0⎧⎨⎩, ∴A (-2,3B (1,0);(2)如图1,过A 作AD ⊥y 轴于点D ,在223432333y x x =--+中,令y=0可求得x= -3或x=1, ∴C (-3,0),且A (-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN 为该抛物线的“衍生三角形”,∴N 在y 轴上,且AD=2,在Rt △AND 中,由勾股定理可得DN=22AN -AD =13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N 点的坐标为(0,23-3),(0,23+3);(3)①当AC 为平行四边形的边时,如图2 ,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC=EF ,∴∠ ACK=∠ EFH ,在△ ACK 和△ EFH 中ACK=EFH AKC=EHF AC=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK ≌△ EFH ,∴FH=CK=1,HE=AK=23∵抛物线的对称轴为x=-1,∴ F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点的横坐标为0时,则F (0,233),此时点E 在直线AB 下方, ∴E 到y 轴的距离为EH-OF=32343,即E 的纵坐标为43∴ E(-1,-433);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-433)、(0,233)或E(-1,43 -3),F(-4,1033)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题3.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.5.如图1,在平面直角坐标系中,直线AB :y =kx +b (k <0,b >0),与x 轴交于点A 、与y 轴交于点B ,直线CD 与x 轴交于点C 、与y 轴交于点D .若直线CD 的解析式为y =﹣1k(x +b ),则称直线CD 为直线AB 的”姊线”,经过点A 、B 、C 的抛物线称为直线AB 的“母线”.(1)若直线AB 的解析式为:y =﹣3x +6,求AB 的”姊线”CD 的解析式为: (直接填空);(2)若直线AB 的”母线”解析式为:2142y x x =-+,求AB 的”姊线”CD 的解析式; (3)如图2,在(2)的条件下,点P 为第二象限”母线”上的动点,连接OP ,交”姊线”CD 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求y 的最大值;(4)如图3,若AB 的解析式为:y =mx +3(m <0),AB 的“姊线”为CD ,点G 为AB 的中点,点H 为CD 的中点,连接OH ,若GH =5,请直接写出AB 的”母线”的函数解析式.【答案】(1)1(6)3y x =+;(2)(2,0)、(0,4)、(﹣4,0);(3)当m =﹣32,y 最大值为338;(4)y =x 2﹣2x ﹣3.【解析】【分析】(1)由k ,b 的值以及”姊线”的定义即可求解;(2)令x =0,得y 值,令y =0,得x 值,即可求得点A 、B 、C 的坐标,从而求得直线CD 的表达式;(3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 从而求得直线OP 的表达式,将直线OP 和CD 表达式联立并解得点Q 坐标, 由此求得P Q y y ,从而求得y =﹣12m 2﹣32m+3,故当m =﹣32,y 最大值为338; (4)由直线AB 的解析式可得AB 的“姊线”CD 的表达式y =﹣1m(x+3),令x =0,得 y 值,令y =0,得x 值,可得点C 、D 的坐标,由此可得点H 坐标,同理可得点G 坐标, 由勾股定理得:m 值,即可求得点A 、B 、C 的坐标,从而得到 “母线”函数的表达式.【详解】(1)由题意得:k =﹣3,b =6, 则答案为:y =13(x+6); (2)令x =0,则y =4,令y =0,则x =2或﹣4,点A 、B 、C 的坐标分别为(2,0)、(0,4)、(﹣4,0),则直线CD 的表达式为:y =12(x+4)=12x+2; (3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 则直线OP 的表达式为:y =n mx , 将直线OP 和CD 表达式联立得122n y x m y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:点Q (2438m m m --+,222838m m m m +-+-) 则P Q y y =﹣12m 2﹣32m+4, y =1P Q P Q Q y y y PQ OQ y y -==-=﹣12m 2﹣32m+3, 当m =﹣32,y 最大值为338;(4)直线CD的表达式为:y=﹣1m(x+3),令x=0,则y=﹣3m,令y=0,则x=﹣3,故点C、D的坐标为(﹣3,0)、(0,﹣3m),则点H(﹣32,﹣32m),同理可得:点G(﹣32m,32),则GH2=(32+32m)2+(32﹣32m)2=(5)2,解得:m=﹣3(正值已舍去),则点A、B、C的坐标分别为(1,0)、(0,3)、(﹣3,0),则“母线”函数的表达式为:y=a(x﹣1)(x+3)=a(x2﹣2x﹣3),即:﹣3a=﹣3,解得:a=1,故:“母线”函数的表达式为:y=x2﹣2x﹣3.【点睛】此题是二次函数综合题目,考查了“姊线”的定义,待定系数法求二次函数解析式,二次函数的最值问题,掌握二次函数的有关性质是解答此题的关键.6.如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【答案】(1)抛物线的解析式为y=x2﹣4x,自变量x的取值范图是0≤x≤4;(2)△PAB的面积=15.【解析】【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【详解】(1)由题意得,322a b b a+-⎧⎪⎨-⎪⎩==,解得14a b -⎧⎨⎩==,∴抛物线的解析式为y=x 2-4x , 令y=0,得x 2-2x=0,解得x=0或4, 结合图象知,A 的坐标为(4,0),根据图象开口向上,则y≤0时,自变量x 的取值范围是0≤x≤4;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ), ∵PA ⊥BA ∴∠PAF+∠BAE=90°, ∵∠PAF+∠FPA=90°, ∴∠FPA=∠BAE 又∠PFA=∠AEB=90° ∴△PFA ∽△AEB,∴PF AF AE BE =,即244213x x x--=-, 解得,x= −1,x=4(舍去) ∴x 2-4x=-5∴点P 的坐标为(-1,-5),又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1 所以BP 与x 轴交点为(14,0) ∴S △PAB=115531524⨯⨯+= 【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.7.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)【解析】试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想8.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【解析】试题分析:(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D (4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.试题解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,),m =,则P(1,8a),∵四边形APDQ为矩形,∴∠APD=90°,∴,∴,即,∵,∴,∴P2(1,-4).综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,)或(1,-4).考点:二次函数综合题.9.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c 分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m 为何值时,△MAB 面积S 取得最小值和最大值?请说明理由; (3)求满足∠MPO=∠POA 的点M 的坐标.【答案】(1)点P 的坐标为(3,4),抛物线的解析式为y=﹣x 2+3x+4;(2)当m=0时,S 取最小值,最小值为12;当m=3时,S 取最大值,最大值为5.(3)满足∠MPO=∠POA 的点M 的坐标为(0,4)或(247,12449).【解析】【分析】(1)代入y=c 可求出点C 、P 的坐标,利用一次函数图象上点的坐标特征可求出点A 、B 的坐标,再由△PCB ≌△BOA 即可得出b 、c 的值,进而可得出点P 的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F 的坐标,过点M 作ME ∥y 轴,交直线AB 于点E ,由点M 的横坐标可得出点M 、E 的坐标,进而可得出ME 的长度,再利用三角形的面积公式可找出S=﹣12(m ﹣3)2+5,由m 的取值范围结合二次函数的性质即可求出S 的最大值及最小值;(3)分两种情况考虑:①当点M 在线段OP 上方时,由CP ∥x 轴利用平行线的性质可得出:当点C 、M 重合时,∠MPO=∠POA ,由此可找出点M 的坐标;②当点M 在线段OP 下方时,在x 正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA ,设点D 的坐标为(n ,0),则DO=n ,()()22304n -+-DO=DP 可求出n 的值,进而可得出点D 的坐标,由点P 、D 的坐标利用待定系数法即可求出直线PD 的解析式,再联立直线PD 及抛物线的解析式成方程组,通过解方程组求出点M 的坐标.综上此题得解. 【详解】(1)当y=c 时,有c=﹣x 2+bx+c , 解得:x 1=0,x 2=b ,∴点C 的坐标为(0,c ),点P 的坐标为(b ,c ), ∵直线y=﹣3x+3与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为(1,0),点B 的坐标为(0,3), ∴OB=3,OA=1,BC=c ﹣3,CP=b , ∵△PCB ≌△BOA ,∴BC=OA ,CP=OB , ∴b=3,c=4,∴点P 的坐标为(3,4),抛物线的解析式为y=﹣x 2+3x+4; (2)当y=0时,有﹣x 2+3x+4=0, 解得:x 1=﹣1,x 2=4, ∴点F 的坐标为(4,0),过点M 作ME ∥y 轴,交直线AB 于点E ,如图1所示, ∵点M 的横坐标为m (0≤m≤4),∴点M 的坐标为(m ,﹣m 2+3m+4),点E 的坐标为(m ,﹣3m+3), ∴ME=﹣m 2+3m+4﹣(﹣3m+3)=﹣m 2+6m+1, ∴S=12OA•ME=﹣12m 2+3m+12=﹣12(m ﹣3)2+5, ∵﹣12<0,0≤m≤4, ∴当m=0时,S 取最小值,最小值为12;当m=3时,S 取最大值,最大值为5; (3)①当点M 在线段OP 上方时,∵CP ∥x 轴, ∴当点C 、M 重合时,∠MPO=∠POA , ∴点M 的坐标为(0,4);②当点M 在线段OP 下方时,在x 正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA ,设点D 的坐标为(n ,0),则DO=n ,∴n 2=(n ﹣3)2+16, 解得:n=256, ∴点D 的坐标为(256,0), 设直线PD 的解析式为y=kx+a (k≠0), 将P (3,4)、D (256,0)代入y=kx+a , 342506k a k a +=⎧⎪⎨+=⎪⎩,解得:2471007k a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线PD 的解析式为y=﹣247x+1007, 联立直线PD 及抛物线的解析式成方程组,得:2241007734y x y x x ⎧=+⎪⎨⎪=-++⎩﹣,解得:1134x y =⎧⎨=⎩,2224712449x y ⎧=⎪⎪⎨⎪=⎪⎩.∴点M 的坐标为(247,12449). 综上所述:满足∠MPO=∠POA 的点M 的坐标为(0,4)或(247,12449).【点睛】本题考查了待定系数法求一次函数解析式、一次(二次)函数图象上点的坐标特征、全等三角形的性质、二次函数的性质、三角形的面积以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的性质求出b 、c 的值;(2)利用三角形的面积公式找出S=﹣(m ﹣3)2+5;(3)分点M 在线段OP 上方和点M 在线段OP 下方两种情况求出点M 的坐标.10.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b a -=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b a -=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.。

中考复习考试专题系列之二——二次函数与圆的综合应用

中考复习考试专题系列之二——二次函数与圆的综合应用

第二讲 二次函数与圆(1)重难点:1、 复习二次函数和圆的基础题型。

2、 整理二次函数和圆问题常见的考察类型。

3、 正确应用圆和二次函数的基本性质解决实际问题。

4、 归纳总结自己的薄弱点。

教学内容:【经典例题】例1.如图所示,在直角坐标系中,⊙A 的半径为4,A 的坐标为(2,0),⊙A 与x 轴交于E 、F 两点,与y 轴交于C 、D 两点,过C 点作⊙A 的切线BC 交x 轴于B . (1)求直线BC 的解析式;(2)若抛物线c bx ax y ++=2的顶点在直线BC 上,与x 轴的交点恰为⊙A 与x 轴的交点,求抛物线的解析式;(3)试判断点C 是否在抛物线上,并说明理由.例2.已知:如图所示,直线333+=x y 与y x ,轴分别交A 、B 两点,⊙M 经过原点O 及A 、B 两点.(1)求以OA 、OB 两线段长为根的一元二次方程;(2)C 是⊙M 上一点,连结BC 交OA 于D 点,若∠COD=∠CBO ,写出经过O 、C 、A 三点的二次函数的解析式;(3)若延长BC 到E ,使DE=2,连结EA ,试判断直线EA 与⊙O 的位置关系,并说明理由.例3.已知:如图所示,Rt AOC ∆中,直角边OA 在x 轴负半轴上,OC 在y 轴正半轴上,点F在AO 上,以F 为圆心的圆与y 轴,AC 边相切,切点分别为O 、D ,⊙F 的半径为43tan ,23=∠CAO .(1)求过A 、C 两点后一次函数解析的解析式; (2)求过E 、D 、O 三点的二次函数的解析式; (3)证明(2)中抛物线的顶点在直线AC 上.例4.已知:如图所示,抛物线)0(2≠++=a c bx ax y 经过x 轴上的两点)0,(),0,(21x B x A 和y 轴上的点)23,0(-C ,⊙P 的圆心P 在y 轴上,且经过B 、C 两点,若a b 3=,32=AB .(1)求抛物线的解析式;(2)D 在抛物线上,且C 、D 两点关于抛物线的对称轴对称,问直线BD 是否经过圆心P ?并说明理由;(3)设直线BD 交⊙P 于另一点E ,求经过点E 的⊙P 的切线的解析式.例5.在直角坐标系中,抛物线349592942+++-=m mx x y 与x 轴交于A 、B 两点.已知点A 在x 轴的负半轴上,点B 在x 轴的正半轴上,且BO=2AO ,点C 为抛物线的顶点. (1)求此抛物线的解析式和经过B 、C 两点的直线的解析式;(2)点P 在此抛物线的对称轴上,且⊙P 与x 轴,直线BC 都相切,求点P 的坐标.例6.如图所示,在直角坐标系中,O 为坐标原点,A 点坐标为(-3,0),B 点坐标为(12,0),以AB 的中点P 为圆心,AB 为直径作⊙P 与y 轴的负半轴交于点C .抛物线c bx ax y ++=2经过A 、B 、C 三点,其顶点为M . (1)求此抛物线的解析式;(2)设点D 是抛物线与⊙P 的第四个交点(除A 、B 、C 三点以外),求直线AD 的解析式; (3)判断(2)中的直线MD 与⊙P 的位置关系,并说明理由.【拓展训练】1.已知:如图所示,在平面直角坐标系中,过点A (0,2)的直线AB 与以坐标原点为圆心,3为半径的圆相切于点C ,且与x 轴的负半轴相交于点B .(1)求∠BAO 的度数;(2)求直线AB 的解析式;(3)若一抛物线的顶点在直线AB 上,且抛物线的顶点和它与x 轴的两个交点构成斜边长为2的直角三角形,求此抛物线的解析式.2.已知抛物线3)13(2--+=x x y .(1)如图所示,抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,求A 、B 、C 三点坐标.(2)若⊙E 过A 、B 、C 三点,求圆心E 的坐标和AC 的长;(3)OE 的延长线交⊙E 于F ,求过点F 且与⊙E相切的直线l 的解析式.【作业】-----二次函数与圆(一)1.如图所示,抛物线q px x y --=2与x 轴交于A 、B 两点,与y 轴交于C 点,已知4tan tan ,,,=-=∠=∠∠=∠βαβαCBO CAO Rt ACB .(1)求抛物线的解析式,并用配方法求顶点的坐标、对称轴方程;(2)平行于x 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆正好与x 轴相切,求此圆的半径.2.如图所示,二次函数c bx ax y ++=2过A (-1,0)、B (3,0)、C (0,-3),M 为顶点.(1)求二次函数的解析式;(2)ABM ∆内切圆圆心为D ,⊙D 与AB 相切于N 与BM 相切于E ,求它的半径;(3)在(1)中二次函数图像上是否存在一点P ,使PAN ∆的面积为ACM ∆面积的2001倍?若存在,求出P 点的坐标,若不存在,请说明理由.3.如图,在平面直角坐标系xO y 中,半径为1的圆的圆心O 在坐标原点,C 、D 四点.抛物线y =ax 2+bx +c 与y 轴交于点D ,与直线y =x 交于点M 、N ,且MA 、NC 分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长.(3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.x4.如图,在平面直角坐标系中,以点A (-3,0)为圆心、5为半径的圆与x 轴相交于点B 、C 两点(点B 在点C 的左边),与y 轴相交于D 、M 两点(点D 在点M 的下方).(1)求以直线x =-3为对称轴、且经过D 、C 两点的抛物线的解析式;(2)若点P 是这条抛物线对称轴上的一个动点,求PC +PD 的取值范围;(3)若点E 为这条抛物线对称轴上的点,则在抛物线上是否存在这样的点F ,使得以点B 、C 、E 、F为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,说明理由.5.如图,在平面直角坐标系中,直线y =kx +b 与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,⊙P 经过点A 、点B (圆心P 在x 轴负半轴上),已知AB =10,AP =425. (1)求点P 到直线AB 的距离; (2)求直线y =kx +b 的解析式;(3)在⊙P 上是否存在点Q ,使得以A ,P ,B ,Q 为顶点的四边形是菱形?若存在,请求出点Q 的坐标;若不存在,请说明理由.6.在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D .(1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标;(3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.。

初三数学二次函数与圆知识点总结

初三数学二次函数与圆知识点总结

初三数学知识点总结1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根; Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等). 4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .acx x abx x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; ※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式 ac x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记)(1)两根互为相反数 ⇔ a b-= 0且Δ≥0 ⇔ b = 0且Δ≥0;(2)两根互为倒数 ⇔ a c=1且Δ≥0 ⇔ a = c 且Δ≥0;(3)只有一个零根 ⇔ ac = 0且a b-≠0 ⇔ c = 0且b ≠0;(4)有两个零根 ⇔ ac = 0且a b-= 0 ⇔ c = 0且b=0;(5)至少有一个零根 ⇔ ac=0 ⇔ c=0;(6)两根异号 ⇔ ac<0 ⇔ a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值⇔ ac <0且a b->0⇔ a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值⇔ ac <0且a b-<0⇔ a 、c 异号且a 、b 同号;(9)有两个正根 ⇔ ac >0,a b->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ⇔ ac >0,a b-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛-+--a 2ac 4b b x a 2ac 4b b x a 22.7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一 (设增长率为x ): (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和. 9.分式方程的解法: .0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧===------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为 ; ⎪⎩⎪⎨⎧-==⇒==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或 ;.0x ,0x :.1x x Bsin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高 三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:。

2019年秋九年级数学复习课件:第五讲 第4课时 二次函数与圆的综合

2019年秋九年级数学复习课件:第五讲 第4课时 二次函数与圆的综合
把点 B(1,0)代入得 a=12,
故二次函数的表达式为 y=12(x+1)2-2;
– (2)证明:如答图,连结DM, – ∵△MBC为等边三角形, – ∴∠CMB=60°,∴∠AMC=120°, ∵点– D∵平M分D=A︵CM,C∴=∠MAAM,D=∠CMD=12∠AMC=60°, – ∴△MCD,△MDA是等边三角形, – ∴DC=CM=MA=AD,∴四边形AMCD为菱形; – (3)存在.设点P的坐标为(m,n),
– (2)先求出OA=2,OB=m+2,OC=2(m+2),
①判断出∠OCB=∠OAF,求出 tan∠OCB=12,即可求出 OF
=1,即可得出结论;
②先设出 BD=m,再判断出∠DCE=90°,得出 DE 是⊙P 的
直径–,解进:而(求1)出证明BE:=令2my,=D0E,=∴5xm2+,即m可x-得2出m结-论4.=0, – ∴Δ=m2-4[-2m-4]=m2+8m+16, – ∵m>0,∴Δ>0, – ∴该抛物线与x轴总有两个不同的交点;
第4课时 二次函数与圆的综合
典例一 [2019·中考预测]如图 5-4-1,在平面直角坐标系中, 四边形 ABCD 是以 AB 为直径的⊙M 的内接四边形,点 A, B 在 x 轴上,△MBC 是边长为 2 的等边三角形,点 D 平分 A︵C,过点 M 作直线 l 与 x 轴垂直,交⊙M 于点 E,垂足为 M. (1)求过 A,B,E 三点的抛物线的表达式;
12∠AMC=60°,进而得出 DC=CM= MA=AD,即可得出答案;
典例一答图
(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系
式求出P点坐标.
– 解:(1)由题意可知,△MBC为等边三角形,点A, B,C,E均在⊙M上,则MA=MB=MC=ME=2 ,

【全文】中考数学专题《二次函数》复习课件(共54张PPT)

【全文】中考数学专题《二次函数》复习课件(共54张PPT)
即: y=-2x2+4x
例2:某工厂大门是一抛物线水泥建筑物,如图所示,大门底部 宽AB=4m,顶点C离地面高度为4.4m,现有一辆满载货物的汽 车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4米,请判 断这辆车能够顺利通过大门?(请用三种不同的方法解决)
y=ax²
y x
(-2,-4.4)
(2,-4.4)
y
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a 其中正确的结论的个数是( ) A 1个 B 2个 C 3个 D 4个 D
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2
练习: 1、二次函数y=ax2+bx+c(a≠0)的图象如图
B 所示,则a、b、c的符号为( )
A、a<0,b>0,c>0 B、a<0,b>0,c<0 C、a<0,b<0,c>0 D、a<0,b<0,c<0

中考数学专题《二次函数》复习课件(共54张PPT)

中考数学专题《二次函数》复习课件(共54张PPT)

当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴

中考数学三轮复习冲刺专题训练解析版-二次函数与动点的综合

中考数学三轮复习冲刺专题训练解析版-二次函数与动点的综合
(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.
【答案】(1)点C的坐标为(2,3+2 );(2)OA=3 ;(3)OC的最大值为8,cos∠OAD= .
【解析】
【分析】
(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE= CD=2,DE= ,再由∠OAD=30°知OD= AD=3,从而得出点C坐标;
8.(2019-2020年湖北省模拟数学试卷)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点 P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.
(1)求出该二次函数的表达式及点 的坐标;
(2)若Rt△AOC沿 轴向右平移,使其直角边 与对称轴 重合,再沿对称轴 向上平移到点 与点 重合,得到 ,求此时 与矩形 重叠部分图形的面积;
(3)若Rt△AO C沿 轴向右平移 个单位长度( )得到 , 与 重叠部分图形的面积记为 ,求 与 之间的函数表达式,并写出自变量 的取值范围.
①若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
②取BC的中点N,连接NP,BQ.试探 究 是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
6.(广东2019年中考模拟数学 试题)如图,在△ABC中,AB=AC,AD⊥AB点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0)。

九年级下期末复习专题(二次函数和圆综合)复习(关于动点问题)1

九年级下期末复习专题(二次函数和圆综合)复习(关于动点问题)1

学生: 年级:初三 科目:数学 上课日期:《二次函数和圆综合复习(关于动点问题)》一、知识要点1、二次函数的三种表示方式:1、解析法:用数学表达式表示两个变量之间的对应关系;2、列表法:用列出表格来表示两个变量之间的对应关系;3、图象法:用图象表示两个变量之间的对应关系。

2、求二次函数解析式的三种基本方法:1、一般式:若已知二次函数图像上任意三点的坐标,则设一般式c .bx ax y ++=2。

2、顶点式:若已知二次函数图像的顶点坐标、或对称轴、最大(小)值,则设顶点式k h x a y +-=2)(。

3、交点式:若已知二次函数图像的交点坐标A(x 1,0)、B (x 2,0)、或与x 轴的交点有关,则设交点式)()(21x x x x a y --=。

3、抛物线平移规律: 1. 2. 例1、 如图,已知抛物线y=x 2-ax+a+2与x 轴交于A 和B 两点,与y 轴交于点D (0,8),直线DC 平行于x 轴,交抛物线于另一点C 。

动点P 以每秒2个单位的速度从点C 出发,沿C →D 方向运动,同时点Q 以每秒1个单位的速度从点A 出发,沿A →B 方向运动,连结PQ 和CB 。

设点P 的运动时间为t (s )。

⑴求a 的值;⑵当t 为何值时,PQ 平行于y 轴?⑶当四边形PQBC 的面积等于14时,求t 的值。

例2、如图,已知直线L :y=32x 及抛物线y=ax 2+bx +c(a ≠0),且抛物线C 的图象上部分点的对应值如下表: x ┉ -2 -1 0 1 2 3 4 ┉ y┉-53435┉⑴、求抛物线C 对应的函数关系式;⑵、求直线L 与抛物线C 的交点A 、B 的坐标;⑶、若动点M 与直线L 的上方的抛物线C 上移动,求△ABM 的边AB 上的高h 的最大值。

问题引伸:若动点M 在直线L 的上方的抛物线C 上移动,求△ABM 面积的最大值。

C<0,向下平移∣c ∣个单位c ax y ax y c c +=−−−−−−→−=>2,02个单位向上平移h<0,向左平移∣h ∣个单位2,02)(h x a y ax y h h -=−−−−−−→−=>个单位向右平移D y x Q PO B C A oy x B AO例3、如图,平面直角坐标系中,抛物线y=-12 x 2+32 x +2交x 轴于A 、B 两点,交y 轴于C 点。

二次函数与圆知识点总结

二次函数与圆知识点总结

初三数学二次函数和圆的知识点总结1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向 对称轴顶点坐标2ax y =当0>a 时 开口向上 当0<a 时开口向下0=x (y 轴) (0,0) k ax y +=20=x (y 轴) (0, k ) ()2h x a y -=h x =(h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2ab x 2-= (ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=4442221221221211.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理, 即“垂径定理”“中径定理” “弧径定理”“中垂定理”.几何表达式举例: ∵ CD 过圆心∵CD ⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”; “等弧对等弦”;“等弦对等(优,劣)弧”; “等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) ∵∠AOB=∠COD∴ AB = CD(2) ∵ AB = CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”; (4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1) (2)(3) (4)几何表达式举例: (1) ∵∠ACB=21∠AOB ∴ …………… (2) ∵ AB 是直径∴ ∠ACB=90° (3) ∵ ∠ACB=90°∴ AB 是直径 (4) ∵ CD=AD=BD∴ ΔABC 是Rt Δ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角. 几何表达式举例: ∵ ABCD 是圆内接四边形 ∴ ∠CDE =∠ABC∠C+∠A =180° 6.切线的判定与性质定理:如图:有三个元素,“知二可推一”; 需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点; ※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例: (1) ∵OC 是半径∵OC ⊥AB ∴AB 是切线 (2) ∵OC 是半径∵AB 是切线 ∴OC ⊥AB (3) ……………ABCD OABCDE O 平分优弧过圆心垂直于弦平分弦平分劣弧∴ AC BC AD BD==AE=BEABC DEFOABCOABCDEA B COABCD∵ ∴ ∥=AB CD ACBDA BCO是半径垂直是切线7.切线长定理:从圆外一点引圆的两条切线, 它们的切线长相等;圆心和这一 点的连线平分两条切线的夹角.几何表达式举例:∵ PA 、PB 是切线 ∴ PA=PB∵PO 过圆心 ∴∠APO =∠BPO 8.弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等; (3)弦切角的度数等于它所夹的弧的度数的一半.(如图) 几何表达式举例: (1)∵BD 是切线,BC 是弦∴∠CBD =∠CAB (2)∵ ED ,BC 是切线∴ ∠CBA =∠DEF9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等; (2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.几何表达式举例:(1) ∵PA ·PB=PC ·PD∴……… (2) ∵AB 是直径∵PC ⊥AB∴PC 2=PA ·PB10.切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何表达式举例: (1) ∵PC 是切线,PB 是割线 ∴PC 2=PA ·PB (2) ∵PB 、PD 是割线∴PA·PB=PC ·PD11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦; (2)如果两圆相切,那么切点一定在连心线上.(1) (2)几何表达式举例: (1) ∵O 1,O 2是圆心∴O 1O 2垂直平分AB (2) ∵⊙1 、⊙2相切∴O 1 、A 、O 2三点一线 12.正多边形的有关计算:(1)中心角αn ,半径R N , 边心距r n ,边长a n ,内角βn , 边数n ;(2)有关计算在Rt ΔAOC 中进行. 公式举例:(1) αn =n 360︒; (2) n1802n ︒=αABCDABCDEF PABOABCPABCDPAB O1O2AO1O2αnβnABCDEOa r n nnR ABCDP ABCPO ∵ EF AB=ABO几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高 三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:OCAB已知弦构造弦心距.OA BC已知弦构造Rt Δ.OABC已知直径构造直角.OAB已知切线连半径,出垂直.O BC AD P圆外角转化为圆周角.OACD BP圆内角转化为圆周角.ODC PAB构造垂径定理.OACDPB构造相似形.M01ANO2两圆内切,构造外公切线与垂直.01CN O2DEABM两圆内切,构造外公切线与平行.NAM02O1 两圆外切,构造内公切线与垂直.CBMNADEO 102两圆外切,构造内公切线与平行.CE A DB O两圆同心,作弦心距,可证得AC=DB.A CBO102两圆相交构造公共弦,连结圆心构造中垂线. BAC OPPA 、PB 是切线,构造双垂图形和全等.OABCDE相交弦出相似.OP ABC一切一割出相似, 并且构造弦切角.OBCEADP两割出相似,并且构造圆周角.OABCP双垂出相似,并且构造直角.B ACD EF规则图形折叠出一对全等,一对相似.FEDBAC OGH圆的外切四边形对边和相等.ABOCD若AD ∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.EACBOD等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.EFCDBAORtΔABC的内切圆半径:r=2cba-+.O补全半圆.ABCo1o2AB=2221)rR(OO--.CABo1o2AB=2221)rR(OO+-.AC D PO BPC过圆心,PA是切线,构造双垂、RtΔ.BCDOAPO是圆心,等弧出平行和相似.D EMAB CFNG作AN⊥BC,可证出:ANAMBCGF=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时 二次函数与圆的综合(40分)1.(20分)[2017·株洲]已知二次函数y =-x 2+bx +c +1. (1)当b =1时,求这个二次函数的对称轴的方程; (2)若c =-14b 2-2b ,问:b 为何值时,二次函数的图象与x 轴相切;(3)如图5-4-1,若二次函数的图象与x 轴交于点A (x 1,0),B (x 2,0),且x 1<x 2,与y 轴的正半轴交于点M ,以AB 为直径的半圆恰好经过点M ,二次函数的对称轴l 与x 轴,直线BM ,直线AM 分别相交于点D ,E ,F ,且满足DE EF =13,求二次函数的表达式.解: (1)二次函数的对称轴为x =-b 2a, ∵a =-1,b =1,∴x =12;(2)与x 轴相切就是与x 轴只有一个交点,即-x 2+bx -14b 2-2b +1=0有相等的实数根,∴Δ=b 2-4×(-1)×⎝ ⎛⎭⎪⎫-14b 2-2b +1=0 ∴-8b +4=0,解得b =12,即b =12时,函数图象与x 轴相切;(3)∵AB 是半圆的直径,∴∠AMB =90°, ∴∠OAM +∠OBM =90°,∵∠AOM =∠MOB =90°,∴∠OAM +∠OMA =90°, ∴∠OMA =∠OBM ,∴△OAM ∽△OMB ,图5-4-1∴OA OM =OMOB,∴OM 2=OA ·OB , ∵二次函数的图象与x 轴交于点A (x 1,0),B (x 2,0), ∴OA =-x 1,OB =x 2,x 1·x 2=-(c +1), ∵OM =c +1,∴(c +1)2=c +1,解得c =0或-1(舍去),∴c =0,OM =1, ∴y =-x 2+bx +1, ∴x 1·x 2=-1,x 1+x 2=b ,设A (m ,0)(m <0),则B (-1m ,0),b =m 2-1m ,对称轴为x =b 2=m 2-12m,∵y AM 经过点A (m ,0),M (0,1),∴y AM =-1mx +1,∵y BM 经过点B (-1m,0),M (0,1),∴y BM =mx +1,∵x E =m 2-12m ,∴y E =m 2+12,DE =m 2+12,∵x F =m 2-12m ,∴y F =m 2+12m 2,∵DE EF =13,∴DE DF =14, ∴m 2+12m 2+12m 2=14,∴m 2=14(m <0),解得m =-12, ∴b =m 2-1m =32,∴y =-x 2+32x +1.2.(20分)如图5-4-2,在平面直角坐标系中,抛物线y =ax 2+bx +c 与⊙M 相交于A ,B ,C ,D 四点,其中A,图5-4-2B 两点坐标分别为(-1,0),(0,-2),点D 在x 轴上且AD 为⊙M 的直径,E 是⊙M 与y 轴的另一个交点,过劣弧ED ︵上的点F 作FH ⊥AD 于点H ,且FH =1.5. (1)求点D 的坐标及抛物线的表达式;(2)若P 是x 轴上的一个动点,试求出△PEF 的周长最小时点P 的坐标; (3)在抛物线的对称轴上是否存在点Q ,使△QCM 是等腰三角形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由. 解:(1)如答图,连结MB ,设⊙M 的半径为r . ∵A (-1,0),B (0,-2),∴在Rt △OMB 中,OB =2,OM =r -1, 由勾股定理,得22+(r -1)2=r 2. ∴r =52.∴AD =5.∴点D 的坐标是(4,0).∵抛物线y =ax 2+bx +c 过点A (-1,0),B (0,-2),D (4,0),⎩⎨⎧a -b +c =0,c =-2,16a +4b +c =0,解得⎩⎪⎨⎪⎧a =12,b =-32,c =-2.∴抛物线的表达式为y =12x 2-32x -2;(2)如答图,连结BF ,与x 轴相交于点P ,则点P 即为所求.连结MF .∵在△MFH 中,MF =2.5,FH =1.5, ∴MH =MF 2-FH 2=2. ∴OH =3.5.由题意,得△POB ∽△PHF , ∴OP PH =OB FH .即OP 3.5-OP =21.5. ∴OP =2.第2题答图∴△PEF 的周长最小时,点P 的坐标是(2,0). (3)存在.Q 1⎝ ⎛⎭⎪⎫32,52,Q 2⎝ ⎛⎭⎪⎫32,-52,Q 3⎝ ⎛⎭⎪⎫32,-4,Q 4⎝ ⎛⎭⎪⎫32,-2516. (40分)3.(20分)[2016·齐齐哈尔]如图5-4-3,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0). (1)求抛物线的表达式; (2)直接写出B ,C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积(结果用含π的代数式表示).解:(1)由A (-1,0),对称轴为x =2,可得⎩⎨⎧-b 2=2,1-b +c =0,解得⎩⎨⎧b =-4,c =-5, ∴抛物线表达式为y =x 2-4x -5;(2)由A 点坐标为(-1,0),且对称轴方程为x =2,可知AB =6, ∴OB =5,∴B 点坐标为(5,0), ∵y =x 2-4x -5, ∴C 点坐标为(0,-5);(3)如答图,连结BC ,则△OBC 是直角三角形, ∴过O ,B ,C 三点的圆的直径是线段BC 的长度, 在Rt△OBC 中,OB =OC =5, ∴BC =52,图5-4-3第3题答图∴圆的半径为522,∴S =π⎝⎛⎭⎪⎫5222=252π. 4.(20分)[2017·绵阳]如图5-4-4,已知抛物线y =ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2).直线y =12x +1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,⊙C 与直线m 交于对称轴右侧的点M (t ,1).直线m 上每一点的纵坐标都等于1. (1)求抛物线的表达式; (2)证明:⊙C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F .求BE ∶MF 的值. 解: (1)设抛物线顶点式为y =a (x -h )2+k , ∵抛物线的顶点坐标是(2,1),∴y =a (x -2)2+1, 又∵抛物线经过点(4,2), ∴2=a (4-2)2+1,解得a =14,∴抛物线的表达式y =14(x -2)2+1=14x 2-x +2.(2)证明:联立⎩⎪⎨⎪⎧y =14x 2-x +2,y =12x +1,消去y ,整理得x 2-6x +4=0,解得x 1=3-5,x 2=3+5,代入直线方程,解得y 1=52-52,y 2=52+52, ∴B ⎝ ⎛⎭⎪⎫3-5,52-52,D ⎝ ⎛⎭⎪⎫3+5,52+52,∵点C 是BD 的中点, ∴点C 的纵坐标为y 1+y 22=52,利用勾股定理,可算出BD =图5-4-4(x 1-x 2)2+(y 1-y 2)2=5,即半径R =52,即圆心C 到x 轴的距离等于半径R ,∴⊙C 与x 轴相切.(3)法一:如答图①,连结BM 和DM ,∵BD 为直径,∴∠BMD =90°, ∴∠BME +∠DMF =90°, 又∵BE ⊥m 于点E ,DF ⊥m 于点F , ∴∠BME =∠MDF , ∴△BME ∽△MDF ,∴BE MF =EM DF ,即y 1-1x 2-t =t -x 1y 2-1, 代入得32-52(3+5)-t=t -(3-5)32+52,化简得(t -3)2=4,解得t =5或1, ∵点M 在对称轴右侧,∴t =5, ∴BE MF =5+12. 法二:如答图②,过点C 作CH ⊥m ,垂足为H ,连结DM ,由(2)知CM =R =52,CH =R -1=32, 由勾股定理,得MH =2,∵HF =x 2-x 12=5,∴MF =HF -MH =5-2,又∵BE =y 1-1=32-52,∴BE MF =5+12.第4题答图① 第4题答图②(20分)5.(20分)[2017·鄂州]如图5-4-5,已知抛物线y =ax 2+bx +3(a <0)与x 轴交于A (3,0),B 两点,与y 轴交于点C .抛物线的对称轴是直线x =1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE =12.(1)求抛物线的表达式及顶点D 的坐标; (2)求证:直线DE 是△ACD 外接圆的切线;(3)在直线AC 上方的抛物线上找一点P ,使S △PAC =12S △ACD ,求点P 的坐标;(4)在坐标轴上找一点M ,使以点B ,C ,M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.【解析】 (1)利用点A (3,0)及对称轴是直线x =1即可求解; (2)先证明△ACD 是直角三角形,再证明∠ADE =90°;(3)设P (t ,-t 2+2t +3)先求出△ACD 的面积,再用含t 的式子表示△PAC 的面积,最后解方程求得t 的值,从而得到点P 的坐标;(4)∵△ACD 是直角三角形,∴△BCM 也为直角三角形,分B 为直角顶点,C 为直角顶点,M 为直角顶点三种情形求解. 解:(1)把A (3,0)代入y =ax 2+bx +3,得 0=9a +3b +3.①∵抛物线的对称轴为x =1.∴-b2a=1.②解①②组成的方程组,得a =-1,b =2.∴抛物线的表达式为y =-x 2+2x +3.∵y =-x 2+2x +3=-(x -1)2+4, ∴D 的坐标是(1,4).(2)证明:在y =-x 2+2x +3中,当x =0时,y =3.∴C (0,3),OC =3. ∵A (3,0),∴OA =3.在△OAC 中,由勾股定理得AC 2=18.图5-4-5如答图①,过点D作DF⊥y轴,垂足为点F,则DF=4,AF=2.在△ADF中,同理可求AD2=20.过点D作DG⊥y轴,垂足为点G,则DG=1,CG=1.在△CDG中,同理可求CD2=2.∵AC2+CD2=18+2=20,∴AC2+CD2=AD2.∴△ACD是直角三角形,且∠ACD=90°.∴AD是△ACD外接圆的直径.∵CG=DG=1,DG⊥y轴,∴∠GCD=45°.过点E作EH⊥CD,垂足为点H.则EH=CH=EC2=122=24.∵CD2=2,AC2=18,∴CD=2,AC=3 2.∴DH=2-24=324.在△DEH中,tan∠EDH=EHDH=24324=13.在△ACD中,tan∠DAC=CDAC=232=13.∴∠EDH=∠DAC.∵∠ACD=90°,∴∠DAC+∠ADC=90°.∴∠EDH+∠ADC=90°,即∠ADE=90°.∴AD⊥DE.∴DE是△ACD外接圆的切线.(3)∵CD=2,AC=3 2.第5题答图①∴S △ACD =12AC ·CD =3.设直线AC 的函数表达式为y =mx +n .把A (3,0),C (0,3)代入,得 ⎩⎨⎧0=3m +n ,3=n .解得m =-1,n =3.∴直线AC 的函数表达式为y =-x +3.设P (t ,-t 2+2t +3),如答图②,过点P 作PK ∥y 轴交AC 于点K ,交x 轴于点Q .∴K (t ,-t +3).∴PK =-t 2+2t +3-(-t +3) =-t 2+3t .∵S △PAC =S △PCK +S △PAK =12PK ·OQ +12PK ·AQ =12PK (OQ +AQ )=12PK ·OA =12(-t 2+3t )×3=-32t 2+92t . ∵S △PAC =12S △ACD ,∴-32t 2+92t =32,解得t 1=3+52,t 2=3-52.当t =3+52时,-t 2+2t +3=5-52; 当t =3-52时,-t 2+2t +3=5+52.∴P ⎝ ⎛⎭⎪⎫3+52,5-52或⎝ ⎛⎭⎪⎫3-52,5+52. (4)⎝⎛⎭⎪⎫0,-13,(9,0),(0,0).提示:∵△ACD 是直角三角形,△ACD 与△BCM 相似, ∴△BCM 是直角三角形.∵抛物线的对称轴是直线x =1,A (3,0),∴B (-1,0),OB =1. 连结BC .∵OBOC =13,CD AC =13, 第5题答图②第5题答图③又∵∠ACD =∠BOC ,∴△ACD ∽△COB .∴△BCM 与△COB 相似. 当点B 为直角顶点时,如答图③,过点B 作BM 1⊥BC 交x 轴于点M 1. ∴∠CBO +∠OBM 1=90°.∵∠BOC =90°, ∴∠CBO +∠OCB =90°. ∴∠OBM 1=∠OCB . 又∵∠COB =∠BOM 1=90°, ∴△OBC ∽△OM 1B .∴OB OM 1=OC OB ,即1OM 1=31. ∴OM 1=13.∴M 1⎝⎛⎭⎪⎫0,-13.当点C 为直角顶点时,如答图④,过点C 作CM 2⊥BC 交x 轴于点M 2. 同理可求OM 2=9.∴M 2(9,0).当点M 为直角顶点时,如答图⑤,以BC 为直径作⊙N . ∵∠BOC =90°,∴点O 在⊙N 上,此时点M 3在点O 处,即M 3(0,0). 综上所述,点M 的坐标为⎝⎛⎭⎪⎫0,-13,(9,0),(0,0).第5题答图④第5题答图⑤。

相关文档
最新文档