北京交通大学概率论期末试卷

合集下载

概率论期末试题及答案

概率论期末试题及答案

概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。

北京交通大学概率论与数理统计期末考试试卷A、B及答案A、B

北京交通大学概率论与数理统计期末考试试卷A、B及答案A、B

北京交通大学概率论与数理统计期末考试试卷A 、B 及答案A 、BA 卷一.(本题满分8分)某中学学生期末考试中数学不及格的为%11,语文不及格的为%7,两门课程都不及格的为%2.⑴ 已知一学生数学考试不及格,求他语文考试也不及格的概率(4分);⑵ 已知一学生语文考试不及格,求他数学考试及格的概率(4分). 二.(本题满分8分)两台车床加工同样的零件,第一台车床加工出现不合格品的概率为0.03,第二台车床加工出现不合格品的概率为0.05;把两台车床加工的零件放在一起,已知第一台车床加工的零件数比第二台车床加工的零件多一倍.现从这两台车床加工的零件中随机地取出一件,发现是不合格品,求这个零件是第二台车床加工的概率.三.(本题满分8分)设随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤≤=其它002cos πx x C x f . ⑴ 求常数C (3分);⑵ 现对X 独立重复地观察4次,用Y 表示观察值大于3π的次数,求()2Y E (5分). 四.(本题满分8分) 在正方形(){}1,1,≤≤=q p q p D :中任取一点()q p ,,求使得方程02=++q px x 有两个实根的概率. 五.(本题满分8分)一个工厂生产某种产品的寿命X (单位:年)的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex f x. 该工厂规定:该产品在售出的一年内可予以调换.若工厂售出一个该产品,赢利100元,而调换一个该产品,需花费300元.试求工厂售出一个该产品净赢利的数学期望. 六.(本题满分9分)设G 是由X 轴、Y 轴及直线022=-+y x 所围成的三角形区域,二维随机变量()Y X ,在G 内服从均匀分布.求X 与Y 的相关系数YX ,ρ.七.(本题满分9分)某餐厅每天接待400位顾客,假设每位顾客的消费额(单位:元)服从区间()100,20上的均匀分布,并且每位顾客的消费额是相互独立的.试求:⑴ 该餐厅每天的平均营业额(3分);⑵ 用中心极限定理计算,该餐厅每天的营业额在其平均营业额的760±元之间的概率(6分).(附:标准正态分布的分布函数()x Φ的某些取值:八.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pq k X P () ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 的极大似然估计量. 九.(本题满分8分)设总体X 存在二阶矩,记()μ=X E ,()2v a r σ=X ,()n X X X ,,,21 是从该总体中抽取的一个样本,X 是其样本均值.求()X E (4分)及()X D (4分).十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为5=λ的指数分布,其密度函数为()⎩⎨⎧≤>=-055x x e x f xX . 现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令:T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数. 十一.(本题满分9分)设总体X 服从指数分布,其概率密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,()nX X X ,,,21 是取自该总体中的一个样本.⑴ 求出统计量()i n i X X ≤≤=11min 的密度函数()()x f 1,并指出该分布是什么分布?⑵ 求常数a ,使得i ni X a T ≤≤=1min 为θ的无偏估计.十二.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN.令aY X U +=,bY X V -=(a与b 都是常数),试给出随机变量U 与V 相互独立的充分必要条件.A 卷参考答案一.(本题满分8分)某中学学生期末考试中数学不及格的为%11,语文不及格的为%7,两门课程都不及格的为%2.⑴ 已知一学生数学考试不及格,求他语文考试也不及格的概率(4分);⑵ 已知一学生语文考试不及格,求他数学考试及格的概率(4分). 解:设=A “某学生数学考试不及格”,=B “某学生语文考试不及格”. 由题设,()11.0=A P ,()07.0=B P ,()02.0=AB P . ⑴ 所求概率为()()()11211.002.0===A P AB P A B P . ⑵ 所求概率为()()()()()()7507.002.007.0=-=-==B P AB P B P B P B A P B A P .二.(本题满分8分)两台车床加工同样的零件,第一台车床加工出现不合格品的概率为0.03,第二台车床加工出现不合格品的概率为0.05;把两台车床加工的零件放在一起,已知第一台车床加工的零件数比第二台车床加工的零件多一倍.现从这两台车床加工的零件中随机地取出一件,发现是不合格品,求这个零件是第二台车床加工的概率. 解:设=A “任取一个零件是不合格品”,=B “任取一个零件是第一台车床加工的”. 所求概率为()A B P .由Bayes 公式得()()()()()()()B A P B P B A P B P B A P B P A B P +=11503.03205.03105.031=⨯+⨯⨯=.三.(本题满分8分)设随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤≤=其它002cos πx x C x f . ⑴ 求常数C (3分);⑵ 现对X 独立重复地观察4次,用Y 表示观察值大于3π的次数,求()2Y E (5分). 解:⑴ 由密度函数的性质,()1=⎰+∞∞-dx x f ,得()C xC dx x C dx x f 22sin22cos 100====⎰⎰+∞∞-ππ, 因此,21=C . ⑵ 由于()212112sin 2cos 213333=-====⎪⎭⎫ ⎝⎛>⎰⎰+∞ππππππx dx x dx x f X P .所以,随机变量Y 的分布列为()kk C k Y P ⎪⎭⎫ ⎝⎛⋅==214, ()4,3,2,1,0=k . 所以 ()()∑==⋅=422k k Y P k Y E51614164316621641161022222=⋅+⋅+⋅+⋅+⋅=. 四.(本题满分8分) 在正方形(){}1,1,≤≤=q p q p D :中任取一点()q p ,,求使得方程02=++q px x 有两个实根的概率. 解:设=A “方程02=++q px x 有两个实根”,所求概率为()A P . 设所取的两个数分别为p 与q ,则有11<<-p ,11<<-q . 因此该试验的样本空间与二维平面点集(){}11,11,<<-<<-=q p q p D :中的点一一对应.随机事件A 与二维平面点集(){}04,2≥-=q p q p D A :,即与点集()⎭⎬⎫⎩⎨⎧≥=q p q p D A 4,2:中的点一一对应.所以, ()241312412214113112=⎪⎪⎭⎫ ⎝⎛+=⨯⎪⎪⎭⎫⎝⎛+==--⎰p p dp p D D A P A 的面积的面积. 五.(本题满分8分)一个工厂生产某种产品的寿命X (单位:年)的密度函数为()⎪⎩⎪⎨⎧≤>=-000414x x ex f x. 该工厂规定:该产品在售出的一年内可予以调换.若工厂售出一个该产品,赢利100元,而调换一个该产品,需花费300元.试求工厂售出一个该产品净赢利的数学期望. 解:设Y 为工厂售出一个产品的净赢利,则⎩⎨⎧<-≥=13001100X X Y 所以,{}{}300300100100-=⋅-=⋅=Y P Y P EY {}{}13001100<⋅-≥⋅=X P X P⎰⎰-+∞-⋅-⋅=14144130041100dx e dx e xx5203.1113001004141=⎪⎪⎭⎫ ⎝⎛-⋅-⋅=--e e六.(本题满分9分)设G 是由X 轴、Y 轴及直线022=-+y x 所围成的三角形区域,二维随机变量()Y X ,在G 内服从均匀分布.求X 与Y 的相关系数YX ,ρ.解:由于区域G 的面积为1,因此()Y X ,的联合密度函数为()()()⎩⎨⎧∉∈=Gy x Gy x y x f ,0,1,. 当10<<x 时,()()()x dy dy y x f x f xX -===⎰⎰-+∞∞-12,220,所以,()()⎩⎨⎧<<-=其它01012x x x f X .当20<<y 时,()()21,210y dy dx y x f y f yY -===⎰⎰-∞+∞-, 所以,()⎪⎩⎪⎨⎧<<-=其它2021y yy f Y .()()()31312121210=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x xf X E X , ()()32212=⎪⎭⎫ ⎝⎛-⋅==⎰⎰+∞∞-dy y y dy y yf Y E Y , ()()()6141312121222=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x f x X E X , ()()32212222=⎪⎭⎫ ⎝⎛-⋅==⎰⎰+∞∞-dy y ydy y f y YE Y,所以,()()()()1813161var 222=⎪⎭⎫ ⎝⎛-=-=X E X E X ,()()()()923232v a r 222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y , ()()⎰⎰⎰⎰⎰--+∞∞-+∞∞-⋅===1220222012,dx y x xydy dxdxdy y x xyf XY E xx,()()6121324122212123102=⎪⎭⎫ ⎝⎛+-=+-=-=⎰⎰dx x x x dx x x ,所以,()()()()181323161,cov -=⨯-=-=Y E X E XY E Y X . ()()()2192181181var var ,cov ,-=-==Y X Y X YX ρ. 七.(本题满分9分)某餐厅每天接待400位顾客,假设每位顾客的消费额(单位:元)服从区间()100,20上的均匀分布,并且每位顾客的消费额是相互独立的.试求:⑴ 该餐厅每天的平均营业额(3分);⑵ 用中心极限定理计算,该餐厅每天的营业额在其平均营业额的760±元之间的概率(6分).(附:标准正态分布的分布函数()x Φ的某些取值:解:⑴ 设i X 表示第i 位顾客的消费额,()400,,2,1 =i .则有40021,,,X X X 相互独立,()100,20~U X i ,()400,,2,1 =i .所以,()60=i X E ,()316001280var 2==i X . 再设X 表示餐厅每天的营业额,则∑==4001i i X X .所以,()()240006040040014001=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i X E X E X E (元).⑵ 由独立同分布场合下的中心极限定理,有{}⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯≤⨯-≤⨯-=≤-≤-3160040076031600400240003160040076076024000760X P X P ()901.019505.021645.123160040076031600400760=-⨯=-Φ=⎪⎪⎪⎪⎭⎫⎝⎛⨯-Φ-⎪⎪⎪⎪⎭⎫ ⎝⎛⨯Φ≈. 八.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pq k X P () ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 的极大似然估计量. 解:似然函数为(){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ======== 22112211,,, ()()()()nx nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=pnx p n p L dp d nk k ,解方程,得x p 1=.因此p 的极大似然估计量为ξ1ˆ=p . 九.(本题满分8分)设总体X 存在二阶矩,记()μ=X E ,()2v a r σ=X ,()n X X X ,,,21 是从该总体中抽取的一个样本,X 是其样本均值.求()X E (4分)及()X D (4分). 解:()()μμμ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===n n n X E n X n E X E n i ni i n i i 1111111,()()n n n n X n X n X n i n i i n i i 22212212111v a r 11v a r v a r σσσ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===.十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为5=λ的指数分布,其密度函数为()⎩⎨⎧≤>=-055x x e x f xX . 现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令:T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数. 解:X 的密度函数为()⎩⎨⎧≤>=-00055x x e x f xX , Y 的密度函数为()⎩⎨⎧≤>=-055y y e y f yY 由题意,知 Y X T +=,设T 的密度函数为()t f T ,则 ()()()()⎰⎰+∞-+∞∞--=-=55dx x t f edx x t f x f t f Y xYXT作变换 x t u -=,则 dx du -=,当0=x 时,t u = ;当+∞→x 时,-∞→u .代入上式,得 ()()()()⎰⎰∞---∞--=-=t Y utt Y u t T du u f eedu u f et f 55555当0≤t 时,由()0=y f Y ,知()0=t f T ; 当0>t 时, ()tt u u tT te du e e et f 55552555-∞---=⋅=⎰综上所述,可知随机变量T 的密度函数为 ()⎩⎨⎧≤>=-0255t t te t f tT . 十一.(本题满分9分)设总体X 服从指数分布,其概率密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,()nX X X ,,,21 是取自该总体中的一个样本.⑴ 求出统计量()i n i X X ≤≤=11min 的密度函数()()x f 1,并指出该分布是什么分布?⑵ 求常数a ,使得i ni X a T ≤≤=1min 为θ的无偏估计.解:① 由于总体X 的密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,因此其分布函数为 ()()⎪⎩⎪⎨⎧>-≤==-∞-⎰0100x ex dt t f x F x xθ .所以()i ni X X ≤≤=11min 的密度函数为()()()()()θθθθθnxx n x n e n e e n x f x F n x f -----=⋅⎪⎪⎭⎫ ⎝⎛=-=11111,()0>x . 即随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布.② 由于随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布,所以()()()n X E X E i n i θ==≤≤11min .所以,若使()()()θθ=⋅==≤≤na X aE X E i n i 11min ,只需取n a =即可.即若取n a =,即i ni X n T ≤≤=1min ,则T 是未知参数θ的无偏估计量.十二.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN.令aY X U +=,bY X V -=(a与b 都是常数),试给出随机变量U 与V 相互独立的充分必要条件. 解:由于随机变量X 与Y 相互独立,而且都服从正态分布,又aY X U +=,bY X V -=,所以U 与V 也都是服从正态分布的随机变量.所以,U 与V 相互独立的充分必要条件是()0,cov =V U . 而 ()()bY X aY X V U -+=,cov ,cov()()()()Y Y ab X Y a Y X b X X ,cov ,cov ,cov ,cov -+-= ()()()21σab Y abD X D -=-=.因此,随机变量U 与V 相互独立的充分必要条件是01=-ab .B 卷一、填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________.3.设随机变量 X 的分布函数为,4,1 42 ,7.021 ,2.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F 则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} = _________ .5.设随机变量 X 服从二项分布 b (100, 0.2), 则 E (X ) = ________, D (X ) = ___________. 6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X +2Y ) = _________. 7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) = σ 2, 则由切比雪夫不等式有 P {|X - μ | <2σ } ≥ _________________.8.从正态总体 N (μ, σ 2)(σ 未知) 随机抽取的容量为 25的简单随机样本, 测得样本均值5=x ,样本的标准差s = 0.1,则未知参数 μ 的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示). 二、选择题(只有一个正确答案,每小题3分,共18分)1.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 ( ).(A) )(1)(B P A P -= (B) )()()(B P A P AB P = (C) 1)(=B A P (D) 1)(=AB P2.设随机变量 X 的概率密度为)(x f X , 则随机变量X Y 2-=的概率密度为)(y f Y 为 ( ).(A) )2-(2y f X (B) )2(y f X - (C) )2(21y f X - (D) )2(21yf X --3.设随机变量 X 的概率密度为)(e21)(4)2(2+∞<<-∞=+-x x f x π,且b aX Y +=)1,0(~N ,则下列各组数中应取 ( ). (A)1,21==b a (B) 2,22==b a (C) 1,21-==b a (D) 2,22-==b a 4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 ),(211σμN 和 ),(222σμN , 则Y X Z +=也服从正态分布,且 ( ).),(~ )A (22211σσμ+N Z ),(~ )B (2121σσμμ+N Z ),(~ )C (222121σσμμ+N Z ),(~ )D (222121σσμμ++N Z5.对任意两个相互独立的随机变量 X 和 Y , 下列选项中不成立的是 ( ). (A) D (X + Y ) = D (X ) + D (Y ) (B) E (X + Y ) = E (X ) + E (Y )(C) D (XY ) = D (X )D (Y ) (D) E (XY ) = E (X )E (Y )6.设 X 1, X 2为来自总体 N (μ, 1) 的一个简单随机样本, 则下列估计量中μ 的无偏估计量中最有效的是 ( ).(A) 212121X X +=μ (B) 213231X X +=μ (C) 214341X X +=μ (D) 215352X X +=μ 三、解答(本题 8 分)一个袋中共有10个球,其中黑球3个,白球7个,先从袋中先后任取一球(不放回)(1) 求第二次取到黑球的概率; (2) 若已知第二次取到的是黑球,试求第一次也取到黑球的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧≤≤+= ,0 20,1)(x ax x f 求: (1) 常数 a 的值; (2) 随机变量 X 的分布函数 F (x ); (3) }.21{<<X P 五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为⎩⎨⎧<<=-其他,0,,0,e ),(x y y x f x求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为求 E (X ), D (X ).七、(本题6分)对敌人的防御阵地进行100次轰炸,每次轰炸命中目标的炸弹数目是一个随机变量,七期望值是2,方差是1.69。

概率论期末考试试卷

概率论期末考试试卷

概率论期末考试试卷一、选择题(每题2分,共20分)1. 某事件A的概率为0.4,事件B的概率为0.6,且事件A和B互斥,那么事件A和B至少有一个发生的概率是:A. 0.2B. 0.4C. 0.8D. 0.62. 抛一枚均匀硬币两次,求两次都是正面的概率是:A. 0.25B. 0.5C. 0.75D. 1.03. 随机变量X服从正态分布N(0, σ²),那么P(X > 0)的概率是:A. 0.5B. 0.3C. 0.7D. 不能确定4. 某工厂的零件合格率为90%,求生产10个零件中至少有8个合格的概率:A. 0.3487B. 0.3828C. 0.4307D. 0.55. 从1到100的整数中随机抽取一个数,求该数是3的倍数的概率:A. 0.1B. 0.3C. 0.333D. 0.5...(此处省略其他选择题)二、填空题(每题2分,共10分)6. 如果事件A和B是相互独立事件,且P(A)=0.3,P(B)=0.5,则P(A∩B)=______。

7. 随机变量X的期望值E(X)是______。

8. 已知随机变量X服从二项分布B(n, p),求X的方差Var(X)=______。

9. 某事件的发生与否对另一个事件的发生概率没有影响,这两个事件被称为______。

10. 随机变量X服从泊松分布,其参数λ=2,则P(X=1)=______。

三、简答题(每题10分,共20分)11. 解释什么是大数定律,并给出一个实际应用的例子。

12. 描述什么是中心极限定理,并解释它为什么在统计学中非常重要。

四、计算题(每题15分,共30分)13. 一个袋子里有5个红球和3个蓝球,随机抽取3个球,求以下事件的概率:(1) 抽到的3个球都是红球;(2) 至少抽到1个蓝球。

14. 某工厂生产的产品中,每个产品是次品的概率为0.01。

求生产100个产品中恰好有5个次品的概率。

五、论述题(每题20分,共20分)15. 论述条件概率和全概率公式在实际问题中的应用,并给出一个具体的例子。

北京交通大学-学年概率论与数理统计期末考试试卷(A卷)答案.doc

北京交通大学-学年概率论与数理统计期末考试试卷(A卷)答案.doc

北 京 交 通 大 学2009~2010学年第一学期概率论与数理统计期末考试试卷(A 卷)答案一.(本题满分8分)某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解:设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分()()40951.01091155=-=-=A P A P .…………….6分二.(本题满分8分)设随机事件A ,B ,C 满足:()()()41===C P B P A P ,()0=AB P ,()()161==BC P AC P .求随机事件A ,B ,C 都不发生的概率. 解:由于AB ABC ⊂,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有()0=ABC P .…………….2分所求概率为()C B A P .注意到C B A C B A ⋃⋃=,因此有…………….2分 ()()C B A P C B A P ⋃⋃-=1…………….2分()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 83016116104141411=-+++---=.…………….2分 三.(本题满分8分)某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为p ,()10<<p .求此人第6次射击时恰好第2次命中目标的概率. 解:{}次命中目标次射击时恰好第第26P{}次射击时命中目标次目标,第次射击中命中前615P =…………….2分 {}{}次射击时命中目标第次目标次射击中命中前615P P ⋅=…………….2分()()424115151p p p p p C -=⋅-=.…………….4分四.(本题满分8分)某种型号的电子元件的使用寿命X (单位:小时)具有以下的密度函数:()⎪⎩⎪⎨⎧≤>=1000100010002x x x x p .⑴ 求某只电子元件的使用寿命大于1500小时的概率(4分);⑵ 已知某只电子元件的使用寿命大于1500小时,求该元件的使用寿命大于2000小时的概率(4分). 解:⑴ 设{}小时于电子元件的使用寿命大1500=A ,则(){}()321000100015001500150021500=-===>=+∞+∞+∞⎰⎰x dx x dx x p X P A P .…………….4分 ⑵ 设{}小时于电子元件的使用寿命大0002=B ,则所求概率为()A B P . ()()(){}(){}()A P X P A P X X P A P AB P A B P 20002000,1500>=>>==.…………….2分而 {}()211000100020002000200022000=-===>+∞+∞+∞⎰⎰x dx x dx x p X P , 所以, (){}()4332212000==>=A P X P A B P .…………….2分五.(本题满分8分)设随机变量X 服从区间[]2,1-上的均匀分布,而随机变量⎩⎨⎧≤->=0101X X Y . 求数学期望()Y E . 解:(){}(){}1111-=⨯-+=⨯=Y P Y P Y E …………….2分 {}(){}0101≤⨯-+>⨯=X P X P …………….2分()()⎰⎰⎰⎰-∞-+∞-=-=0120003131dx dx dx x p dx x p X X313132=-=.…………….4分 六.(本题满分8分)设在时间t (分钟)内,通过某路口的汽车数()t X 服从参数为t λ的Poisson (泊松)分布,其中0>λ为常数.已知在1分钟内没有汽车通过的概率为2.0,求在2分钟内至少有1辆汽车通过的概率. 解:()t X 的分布列为(){}()tk e k t k t X P λλ-==!,()Λ,2,1,0=k .…………….2分因此在1=t 分钟内,通过的汽车数为 (){}λλ-==e k k X P k!1,()Λ,2,1,0=k .由题设,(){}2.001===-λe X P ,所以5ln =λ.…………….3分因此,(){}(){}()252425111!0521021125ln 220=-=-=⋅-==-=≥--e e X P X P λ.…………….3分 七.(本题满分8分) 设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<<<<=其它020,101,xy x y x f 求:⑴ 随机变量Y 边缘密度函数()y f Y (4分);⑵ 方差()Y D (4分). 解:⑴ ()()⎰+∞∞-=dx y x f y f Y ,.因此,当0≤y 或者2≥y 时,()0=y f Y .…………….1分 当20<<y 时,()()2,2y dx dx y x f y f y Y ===⎰⎰∞+∞-. 所以, ()⎪⎩⎪⎨⎧<<=其它202y y y f Y .…………….3分⑵ ()()34621203202====⎰⎰+∞∞-y dy y dy y yf Y E Y . ()()2821242322====⎰⎰∞+∞-ydy y dy y f y Y E Y …………….2分所以, ()()()()929162342222=-=⎪⎭⎫⎝⎛-=-=Y E Y E Y D .…………….2分八.(本题满分8分)现有奖券10000张,其中一等奖一张,奖金1000元;二等奖10张,每张奖金200元;三等奖100张,每张奖金10元;四等奖1000张,每张奖金2元.而购买每张奖券2元,试计算买一张奖券的平均收益. 解:设X :购买一张奖券所得的奖金. 则X 的分布律为所以,…………….2分 ()531000010002100001001010000102001000011000=⨯+⨯+⨯+⨯=X E …………….4分 再令Y 表示购买一张奖券的收益,则2-=X Y ,因此 ()()572532-=-=-=X E Y E (元).…………….2分 九.(本题满分8分)两家电影院竞争1000名观众,假设每位观众等可能地选择两个电影院中的一个,而且互不影响.试用中心极限定理近似计算:甲电影院应设多少个座位,才能保证“因缺少座位而使观众离去”的概率不超过1%?附:标准正态分布()1,0N 的分布函数()x Φ的某些数值表解:设甲电影院应设N 个座位才符合要求.设1000名观众中有X 名选择甲电影院,则⎪⎭⎫⎝⎛21,1000~B X .…………….1分 由题意,{}99.0≥≤N X P .而 ()500211000=⨯=X E ,()25021211000=⨯⨯=X D .…………….2分 所以,{}()()()()⎭⎬⎫⎩⎨⎧-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤250500250500N X P X D X E N X D X E X P N X P99.0250500≥⎪⎭⎫⎝⎛-Φ≈N …………….3分查表得33.2250500≥-N ,所以有 84.53625033.2500=⨯+≥N . 所以,应至少设537个座位,才符合要求.…………….2分十.(本题满分8分) 设总体X 的密度函数为()⎩⎨⎧<<=其它0102x x x f , ()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.令()()n n X X X X ,,,max 21Λ=,试求()n X 的密度函数()()x f n . 解:总体X 的分布函数为()⎪⎩⎪⎨⎧≥<<≤=111002x x x x x F .…………….3分 因此()n X 的密度函数为()()()()()()⎪⎩⎪⎨⎧<<⋅==--其它102121x x x n x f x F n x f n n n …………….4分⎩⎨⎧<<=-其它010212x nx n .…………….1分十一.(本题满分12分) 设总体X 的密度函数为()⎪⎩⎪⎨⎧≤>=+ααβαβαββx x x x f 01,; ,其中1,0>>βα为参数,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.⑴ 当1=α时,求未知参数β的矩估计量M βˆ(6分);⑵ 当1=α时,求未知参数β的最大似然估计量Lβˆ(6分). 解:⑴ 当1=α时,密度函数为()⎩⎨⎧≤>=--10111x x x x f βββ,; , 所以,()()1111-==⋅==⎰⎰⎰+∞-+∞--+∞∞-βββββαββdx x dx xx dx x xf X E ,; .…………….2分解方程:()1-=ββX E ,得解:()()1-=X E X E β.…………….2分 将()X E 替换成X ,得未知参数β的矩估计量为1ˆ-=X X Mβ.…………….2分 ⑵ 当1=α时,密度函数为()⎩⎨⎧≤>=--10111x x x x f βββ,; , 所以,似然函数为()()()111+-===∏ββββi n ni i x x f L ,;,()()n i x i ,,1,1Λ=>.…………….2分所以,()()()n x x x n L Λ21ln 1ln ln +-=βββ.对β求导,得()n x x x nL Λ21ln ln -=∂∂ββ.…………….2分 令0ln =∂∂βL ,得方程()0ln 21=-n x x x nΛβ. 解得 ()n x x x nΛ21ln =β.因此,β的最大似然估计量为 ()n X X X nΛ21ln ˆ=β.…………….2分十二.(本题满分8分) 设总体()2,~σμN X ,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.X 与2S 分别表示样本均值与样本方差.令nS X T 22-=,求()T E ,并指出统计量T 是否为2μ的无偏估计量.解:()μ=X E ,()nX D 2σ=,…………….2分由 ()()()()22X E X E X D -=,得 ()()()()2222μσ+=+=nX E X D XE .…………….2分又 ()22σ=S E ,所以有…………….1分()()⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=n S E X E n S X E T E 2222()2222μμσ=-⎪⎪⎭⎫ ⎝⎛+=n S E n .…………….2分 这表明nS X T 22-=是2μ的无偏估计量.…………….1分北 京 交 通 大 学2010~2011学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分) 在正方形(){}1,1,≤≤=q p q p D :中任取一点()q p ,,求使得方程02=++q px x 有两个实根的概率. 解:设=A “方程02=++q px x 有两个实根”,所求概率为()A P . 设所取的两个数分别为p 与q ,则有11<<-p ,11<<-q . 因此该试验的样本空间与二维平面点集(){}11,11,<<-<<-=q p q p D :中的点一一对应.…………………………………2分随机事件A 与二维平面点集(){}04,2≥-=q p q p D A :,即与点集()⎭⎬⎫⎩⎨⎧≥=q p q p D A 4,2:…………………2分中的点一一对应.所以, ()241312412214113112=⎪⎪⎭⎫ ⎝⎛+=⨯⎪⎪⎭⎫⎝⎛+==--⎰p p dp p D D A P A的面积的面积.…………………4分 二.(本题满分8分)从以往的资料分析得知,在出口罐头导致索赔的事件中,有%50是质量问题;有%30是数量短缺问题;有%20是产品包装问题.又知在质量问题的争议中,经过协商解决的占%40;在数量短缺问题的争议中,经过协商解决的占%60;在产品包装问题的争议中,经过协商解决的占%75.如果在发生的索赔事件中,经过协商解决了,问这一事件不属于质量问题的概率是多少?解:设=1A “事件属于质量问题”,=2A “事件属于数量短缺问题”, =3A “事件属于产品包装问题”.=B “事件经过协商解决”.所求概率为()B A P 1.…………………2分 由Bayes 公式,得 ()()()()()()()()()332211111A B P A P A B P A P A B P A P A B P A P B A P ++=…………………2分37735849.075.02.060.03.040.05.040.05.0=⨯+⨯+⨯⨯=.…………………2分所以,()()62264151.037735849.01111=-=-=B A P B A P .…………………2分三.(本题满分8分)设随机事件A 满足:()1=A P .证明:对任意随机事件B ,有()()B P AB P =. 解:因为()1=A P ,所以,()()0111=-=-=A P A P .…………………2分 所以,对任意的随机事件B ,由A B A ⊂,以及概率的单调性及非负性,有 ()()00=≤≤A P B A P , 因此有()0=B A P .…………………2分所以,对任意的随机事件B ,由B A AB B ⋃=,以及AB 与B A 的互不相容性,得 ()()()()()()AB P AB P B A P AB P B A AB P B P =+=+=⋃=0.………………4分四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧<<+=其它0102x bx ax x p ,并且已知()21=X E ,试求方差()X D . 解:由()1=⎰+∞∞-dx x p 及()()21==⎰+∞∞-dx x xp X E ,得()()32112ba dx bx ax dx x p +=+==⎰⎰+∞∞-,…………………2分 ()()432112ba dx bx ax x dx x xp +=+==⎰⎰+∞∞-.…………………2分由此得线性方程组 ⎪⎩⎪⎨⎧=+=+2143132b a ba .解此线性方程组,得6,6-==b a .…………………2分 所以,()()()1035164166612222=⋅-⋅=-==⎰⎰+∞∞-dx x x x dx x p x XE ,所以,()()()()20121103222=⎪⎭⎫ ⎝⎛-=-=X E X E X D .…………………2分 五.(本题满分8分)经验表明,预定餐厅座位而不来就餐的顾客比例为%20.某餐厅有50个座位,但预定给了52位顾客,问到时顾客来到该餐厅而没有座位的概率是多少? 解:设X 表示52位预订了座位的顾客中来就餐的顾客数,则()8.0,52~B X .…………1分 则所求概率为()50>X P .…………………2分 ()()()525150=+==>X P X P X P …………………2分052525215151522.08.02.08.0⋅⋅+⋅⋅=C C 9330001278813.0=.…………………3分六.(本题满分10分)将一颗均匀的骰子独立地掷10次,令X 表示这10次出现的点数之和,求()X E (5分)与()X D (5分). 解:设k X 表示第k 次出现的点数,()10,,2,1Λ=k . 则1021,,,X X X Λ相互独立,而且∑==101k k X X .而k X 的分布列为 ()61==j X P k ,()6,,2,1Λ=j .…………………2分 所以,()()∑∑==⋅==⋅=616161j j k k j j X P j X E2721616161=⨯==∑=j j , ()10,,2,1Λ=k .…………………2分所以,由数学期望的性质,得()()35102727101101101=⨯===⎪⎭⎫ ⎝⎛=∑∑∑===k k k k k X E X E X E .…………………2分()()∑∑==⋅==⋅=612612261j j k kj j X P jXE691916161612=⨯==∑=j j , ()10,,2,1Λ=k .…………………2分所以,由1021,,,X X X Λ的相互独立性,及数学期望的性质,得()()345510691691101101101=⨯===⎪⎭⎫ ⎝⎛=∑∑∑===k k k k k X D X D X D .…………………2分七.(本题满分10分)设随机变量()1,0~N X ,求随机变量122+=X Y 的密度函数.解:由题意,随机变量X 的密度函数为()2221x X e x p -=π,()+∞<<∞-x .………1分设随机变量122+=X Y 的分布函数为()y F Y ,则有()()()⎪⎭⎫ ⎝⎛-≤=≤+=≤=211222y X P y X P y Y P y F Y ,…………………2分所以,当1≤y 时,()0=y F Y ;…………………1分 当1>y 时,()⎪⎪⎭⎫⎝⎛-≤≤--=⎪⎭⎫⎝⎛-≤=2121212y X y P y X P y F Y⎰⎰------==210221212222221y x y y x dx edx eππ…………………2分因此有 ()⎪⎪⎩⎪⎪⎨⎧≤>=⎰--112221022y y dxey F y x Y π ,…………………2分 所以,随机变量122+=X Y 的密度函数为()()⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫⎝⎛-⋅='=-⎪⎪⎭⎫⎝⎛--1121212122212212y y y ey F y p y Y Y π ()⎪⎩⎪⎨⎧≤>-=--10112141y y e y y π .…………………2分八.(本题满分10分) 设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<<<=其它0103,x y x y x p , 求X 与Y 的相关系数Y X ,ρ. 解:()()4333,13102====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dxdy y x xp X E x , ()()83233,103100====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x ydy xdx dxdy y x yp Y E x,…………………2分()()5333,141322====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dxdy y x p x X E x,()()513,1410222====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy y xdx dxdy y x p y Y E x ,…………………2分()()103233,1041002====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x ydy dx x dxdy y x xyp XY E x ,所以有 ()()()()16038343103,cov =⨯-=-=Y E X E XY E Y X ,…………………2分 ()()()()8034353222=⎪⎭⎫ ⎝⎛-=-=X E X E X D , ()()()()320198351222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y D ,…………………2分 因此,有()()()573320198031603,cov ,=⋅==Y D X D Y X Y X ρ.…………………2分 九.(本题满分10分)一生产线生产的产品成箱包装,假设每箱平均重kg 50,标准差为kg 5.若用最大载重量为kg 5000的汽车来承运,试用中心极限定理计算每辆车最多装多少箱,才能保证汽车不超载的概率大于977.0(设()977.02=Φ,其中()x Φ是标准正态分布()1,0N 的分布函数).解:若记i X 表示第i 箱的重量,()n i ,,2,1Λ=.则n X X X ,,,21Λ独立同分布,且()()25,50==i i X D X E , ()n i ,,2,1Λ=.…………………2分再设n Y 表示一辆汽车最多可装n 箱货物时的重量,则有 ∑==ni i n X Y 1.由题意,得 ()977.010100055050005505000>⎪⎭⎫ ⎝⎛-Φ≈⎪⎭⎫ ⎝⎛-≤-=≤n n n n n n Y P Y P n n .…………4分查正态分布表,得 2101000>-=nnx ,…………………2分 当99=n 时,2005.1<=x ;98=n 时,202.2>=x ,故取98=n ,即每辆汽车最多装98箱货物.…………………2分十.(本题满分8分)设总体()1,0~N X ,()621,,,X X X Λ是取自该总体中的一个样本.令()()26542321X X X X X X Y +++++=,试确定常数c ,使得随机变量cY 服从2χ分布. 解:因为()1,0~N X i ,()6,,1Λ=i ,而且61,,X X Λ相互独立,所以()3,0~321N X X X ++,()3,0~654N X X X ++.…………………2分因此()1,0~3321N X X X ++,()1,0~3654N X X X ++.…………………2分 而且3321X X X ++与3654X X X ++相互独立.因此由2χ分布的定义,知 ()2~33226542321χ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++X X X X X X ,…………………2分即()()()2~3226542321χX X X X X X +++++. 取31=c ,则有()2~2χcY .…………………2分十一.(本题满分12分) 设总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它;0101x xx f θθθ ,其中0>θ为参数,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.⑴ 求参数θ的矩估计量Mθˆ(6分);⑵ 求参数θ的最大似然估计量L θˆ(6分). 证明:⑴ ()()11101+==⋅==⎰⎰⎰-+∞∞-θθθθθθθdx x dx xx dx x xf X E ;,…………………3分因此,得方程 ()1+=θθX E ,解方程,得 ()()21⎪⎪⎭⎫⎝⎛-=X E X E θ,将()X E 替换成X ,得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X M θ.…………………3分 ⑵ 似然函数为 ()()∏∏=-===ni i n ni i x x f L 1121θθθθ;,…………………2分取对数,得 ()()∑=-+=ni ix nL 1ln 1ln 2ln θθθ,对θ求导,得 ()⎪⎭⎫⎝⎛+=+=∑∑==ni i ni i x n x n L d d 11ln 21ln 212ln θθθθθθ,所以,得似然方程 0ln 211=⎪⎭⎫⎝⎛+∑=ni i x n θθ,…………………2分 解似然方程,得21ln ⎪⎪⎪⎪⎭⎫ ⎝⎛=∑=ni i x n θ, 因此,参数θ的最大似然估计量为 21ln ˆ⎪⎪⎪⎪⎭⎫⎝⎛=∑=ni i L X n θ.…………………2分北 京 交 通 大 学2010~2011学年第一学期概率论与数理统计期末考试试卷(A 卷)答案一.(本题满分8分)一间宿舍内住有6位同学,求这6位同学中至少有2位的生日在同一个月份(不考虑出生所在的年份)的概率. 解:设=A “6位同学中至少有2位的生日在同一个月份”. 所求概率为()A P .…………………………..1分 考虑事件A 的逆事件:=A “6位同学的生日各在不同的月份”.…………………………..1分()()777199074.02985984665280112116612=-=-=-=P A P A P . ……..2分 …..2分 …………..2分二.(本题满分8分)有朋友自远方来访,他乘火车、轮船、汽车、飞机来的概率分别是3.0,1.0,4.0和2.0.如果他乘火车、轮船、汽车、飞机来的话,迟到的概率分别为31、72、52、61,结果他未迟到,试问他乘火车来的概率是多少? 解:设=B “朋友来访迟到”,=1A “朋友乘火车来访”, =2A “朋友乘轮船来访”,=3A “朋友乘汽车来访”, =4A “朋友乘飞机来访”.……..1分 所求概率为()B A P 1,由Bayes 公式得 ……..1分 ()()()()()()()()()()()44332211111A B P A P A B P A P A B P A P A B P A P A B P A P B A P +++=…..2分⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯=6112.05214.07211.03113.03113.0 ……..2分652.0534.0751.0323.0323.0⨯+⨯+⨯+⨯⨯=1050.29494382356==. ……………..2分三.(本题满分8分)设随机变量X 的密度函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<≤=其它010525525025x x x xx f试求随机变量X 的分布函数()x F . 解:当0<x 时, ()()00===⎰⎰∞-∞-xx dt dt t f x F ; …….1分当50<≤x 时,()()50250200x dt t dt dt t f x F xx=+==⎰⎰⎰∞-∞-;……..2分当105<≤x 时,()()255055015212552250x x dt t dt t dt dt t f x F xx -+-=⎪⎭⎫⎝⎛-++==⎰⎰⎰⎰∞-∞-;……..2分当10≥x 时,()()102552250105505=+⎪⎭⎫⎝⎛-++==⎰⎰⎰⎰⎰∞-∞-xx x dt dt t dt t dt dt t f x F .……..2分因此,随机变量X 的分布函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=10110550152150500022x x xx x x x x F .……..1分四.(本题满分8分)试决定常数C ,使得!k C p kk λ=,()Λ,2,1=k 为某一离散型随机变量X 的分布列,其中0>λ为参数. 解:若使!k Cp kk λ=,()Λ,2,1=k 是某一随机变量X 的分布列,当且仅当0!≥=k Cp kk λ,()Λ,2,1=k ,而且11=∑∞=k k p , ……..2分因此有()11111!!kkk k k k p CC C e k k λλλ∞∞∞=======-∑∑∑,……..4分所以有 11C e λ=-.……..2分 五.(本题满分8分)设U 与V 分别是掷一颗均匀的骰子两次先后出现的点数.试求一元二次方程02=++V Ux x有两个不相等的实数根的概率. 解:一元二次方程02=++V Ux x 有两个不相等的实数根的充分必要条件是042>-V U ,或者V U 42>.……..2分又()V U ,的联合分布列为()361,===j V i U P ,()6,,2,1,Λ=j i .……..2分 所以,一元二次方程02=++V Ux x 有两个不相等的实数根的充分必要条件是()V U ,的取值应为下列情形之一:()1,3,()2,3,()1,4,()2,4,()3,4,()1,5,()2,5,()3,5,()4,5,()5,5,()6,5,()1,6,()2,6,()3,6,()4,6,()5,6,()6,6.……..2分()361702==++有两个不相等的实数根一元二次方程V Ux x P .……..2分 六.(本题满分8分)设随机变量X 服从区间()1,2-上的均匀分布,试求随机变量2X Y =的密度函数()y f Y . 解:随机变量X 的密度函数为()⎪⎩⎪⎨⎧<<-=其它01231x x p X .……..1分设2X Y =的分布函数为()y F Y ,则有 ()()()y X P y Y P y F Y ≤=≤=2.……..1分 当0≤y 时,()0=y F Y ;当40≤<y 时,()()()()()y F y F y X y P y X P y F XX Y --=≤≤-=≤=2;当4>y 时,()1=y F Y .……..1分综上所述,得随机变量2X Y =的分布函数为()()()⎪⎩⎪⎨⎧≥<<--≤=11400y y y F y F y y F XXY .……..1分 因此,随机变量2X Y =的密度函数为()()()()()⎪⎩⎪⎨⎧<<-+='=其它04021y y p y p y y F y p XXY Y .……..1分当10<<y 时,10<<y ,01<-<-y ,于是有()31=y p X,()31=-y p X,因此有()()()()yy y p y p y y p XXY 3131312121=⎪⎭⎫ ⎝⎛+=-+=; 当41<<y 时,21<<y ,12-<-<-y ,于是有()0=y p X,()31=-y p X, 因此有()()()()yy y p y p y y p XXY 613102121=⎪⎭⎫ ⎝⎛+=-+=.……..2分 因此,随机变量2X Y =的密度函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤<=其它41611031y y y y y p Y .……..1分七.(本题满分8分)试解释“在大量独立重复试验中,小概率事件几乎必然发生”的确切意思. 解:设A 是一随机事件,其概率()10<<A P .……..1分现独立重复做试验,则在n 次独立重复试验中,事件A 至少发生一次的概率为()()nA P --11.……..2分令∞→n ,则有()()()()()11lim 111lim =--=--∞→∞→nn nn A P A P .……..2分这表明,只要试验次数n 充分大,不管随机事件A 的概率多么小,随机事件A 在n 次独立重复试验中至少发生一次的概率与1可以任意接近,即随机事件A 在n 次独立重复试验中至少发生一次是几乎必然的.……..3分八.(本题满分8分)一公寓有200户住户,一户住户拥有汽车辆数X 的分布列为试用中心极限定理近似计算,至少要设多少车位,才能使每辆汽车都具有一个车位的概率至少为95.0?(设:()95.0645.1=Φ,其中()x Φ是()1,0N 的分布函数.) 解:设需要的车位数为n ,i X 表示第i 个住户需要的车位数,()200,,2,1Λ=X .则随机变量20021,,,X X X Λ独立同分布,而且()2.13.026.011.00=⨯+⨯+⨯=i X E ,()8.13.026.011.002222=⨯+⨯+⨯=i X E ,……..2分 于是有()()()()36.02.18.1222=-=-=i i i X E X E X D .……..1分由题意,得⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛≤∑∑∑∑∑∑======200120012001200120012001i i i i i i i i i i i i X D X E n X D X E X P n X P ⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯-≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=∑∑∑===36.02002.1200200120012001n X D X E X P i i i i i i⎪⎭⎫⎝⎛-Φ≈72240n .……..3分由题设,95.072240≥⎪⎭⎫⎝⎛-Φn ,因此得645.172240≥-n , 所以有 9583.25372645.1240=⨯+≥n .因此至少需要254个车位,才能满足题设要求.……..2分九.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从参数为λ的指数分布,令Y X V Y X U +=-=3,34,试求二维随机变量()V U ,的相关系数V U ,ρ. 解:因为X 与Y 都服从参数为λ的指数分布,所以()()λ1==Y E X E ,()()21var var λ==Y X .……..1分于是有()()()()λλλ113143434=⋅-⋅=-=-=Y E X E Y X E U E ,()()()()λλλ411333=+⋅=+=+=Y E X E Y X E V E .再由X 与Y 的相互独立性,得()()()()2222519116var 9var 1634var var λλλ=⋅+⋅=+=-=Y X Y X U ,()()()()22210119var 93var var λλλ=+⋅=+=+=Y E X Y X V . ……..3分()()()[]()223512334Y XY X E Y X Y X E UV E --=+-= ()()()223512Y E XY E X E --=()()()()()()()()()()22var 35var 12Y E Y Y E X E X E X +⋅-⋅-+⋅=⎪⎭⎫⎝⎛+⋅-⋅⋅-⎪⎭⎫ ⎝⎛+⋅=22221131151112λλλλλλ2222136524λλλλ=--=.……..2分所以有()()()()2294113,cov λλλλ=⋅-=-=V E U E UV E V U .因此有()()()105910259var var ,cov 222,===λλλρV U V U VU .……..2分 十.(本题满分8分)设总体X 存在二阶矩,总体期望()μ=X E ,总体方差()2σ=X D ,()n X X X ,,,21Λ是从中抽取的一个样本,X 是样本均值,2S 是样本方差.⑴ 计算方差()X D (4分);⑵ 如果()2,~σμN X ,计算方差()2S D (4分).解:⑴ ()()n n n n X D n X n D X D n i n i i n i i 2221221211111σσσ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===.……..4分⑵ 因为总体()2,~σμN X ,()n X X X ,,,21Λ是取自总体X 中的一个样本,所以()()1~1222--n S n χσ.……..2分所以,()()()()()()12121111142422242222-=-⋅-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⋅-=n n n S n D n S n n D S D σσσσσσ.……..2分十一.(本题满分10分)设()10<<B P ,证明:随机事件A 与B 相互独立的充分必要条件是()()1=+B A P B A P .证明:必要性:设随机事件A 与B 相互独立,所以随机事件A 与B 也相互独立.因此有()()A P B A P =, ()()A P B A P =,……..3分因此有()()()()1=+=+A P A P B A P B A P .……..2分 充分性:由于 ()()1=+B A P B A P , 所以有 ()()()B A P B A P B A P =-=1.因此有()()()()()()()()()B P AB P A P B P AB A P B P B A P B P AB P --=--==11.……..3分 由()10<<B P ,得()01>-B P ,因此有 ()()()()()()()AB P A P B P B P AB P -=-1.整理,得 ()()()()()()()B P AB P B P A P AB P B P AB P -=-. 即得 ()()()B P A P AB P =.这表明随机事件A 与B 相互独立.……..2分十二.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3,Λ,N ,其中N 是未知的正整数.()n X X X ,,,21Λ是取自该总体中的一个样本.试求N 的最大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的最大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1Λ=. 所以似然函数为 (){}nni i i N x X P N L 11===∏=, ()()n i N x i ,,2,1,1Λ=≤≤.……..3分当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1Λ=≤≤,即{}()n n x x x x N =≥,,,max 21Λ.所以,N 的最大似然估计量为()n X N =ˆ.……..4分 ⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N .……..3分北 京 交 通 大 学2012~2013学年第一学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案某些标准正态分布的数值其中()x Φ是标准正态分布的分布函数. 一.(本题满分5分)口袋中有10个球,分别标有号码1到10,从中任意取出4个球.求最小号码是5的概率. 解:设=A “取出4个球,最小号码是5”.10个球取出4个球,有取法410C 种.………….2分若最小号码是5,有取法35C 种,因此()2112101041035===C C A P .………….3分二.(本题满分5分)一间宿舍住有5位同学,求他们之中至少有两位的生日在同一个月份的概率. 解:设=A “5位同学至少有两位的生日在同一月份”.5位同学,每一位在12个月份中任意选择,共有512种可能.………….2分 考虑A 的逆事件A ,它表示5位同学中,没有两位的生日是同一月份的.则 ()()6181.012115512=-=-=PA P A P .………….3分三.(本题满分8分),已知男人中%5的是色盲患者,女人中色盲患者占%25.0,今从男女比例为21:22的人群中随机地挑选一人,发现是色盲患者,问此人是男性的概率是多少? 解:设=A “任选一人为男性”,=B “任选一人是色盲患者”. 所求概率为()B A P .由Bayes 公式,得 ()()()()()()()A B P A P A B P A P A B P A P B A P +=………….3分9544.00025.0432105.0432205.04322=⨯+⨯⨯=.………….5分 四.(本题满分8分)在一小时内,甲、乙、丙三台机床需要维修的概率分别是9.0,8.0和85.0,而且这三台机床是否需要维修是相互独立的.求在一小时内⑴ 至少有一台机床不需要维修的概率;(4分) ⑵ 至多只有一台机床需要维修的概率.(4分) 解:设{}甲机床需要维修=A ,{}乙机床需要维修=B ,{}丙机床需要维修=C .则 ⑴ {}()()C B A P C B A P P ⋃⋃-=⋃⋃=1维修至少有一台机床不需要…….2分 ()()()388.085.08.09.011=⨯⨯-=-=C P B P A P .………….2分⑵ {}()C B A C B A C B A C B A P P ⋃⋃⋃=修至多有一台机床需要维………….2分 ()()()()C B A P C B A P C B A P C B A P +++=()()()()()()()()()()()()C P B P A P C P B P A P C P B P A P C P B P A P +++=059.085.02.01.015.08.01.015.02.09.015.02.01.0=⨯⨯+⨯⨯+⨯⨯+⨯⨯=.…….2分五.(本题满分8分)试确定常数a ,b ,c ,d 的值,使得函数()⎪⎩⎪⎨⎧>≤≤++<=e x d e x d cx x bx x ax F 1ln 1为一连续型随机变量的分布函数. 解:因为连续型随机变量的分布函数()x F 是连续函数,因此函数()x F 在分段点1=x 及e x =处连续,所以有()()()10101F F F =+=-,即有d c a +=.………….2分 ()()()e F e F e F =+=-00,即有d d ce be =++.………….2分 又分布函数()x F 必须满足:()0lim =-∞→x F x ,()1lim =+∞→x F x .因而有()0lim ==-∞→x F a x ,()1lim ==+∞→x F d x .………….2分由此得方程组 ⎩⎨⎧=++=+1101ce be c ,解此方程组,得1,1,1,0=-===d c b a .………….2分六.(本题满分8分)某地区成年男子的体重X (以kg 计)服从正态分布()2,σμN .若已知()5.070=≤X P ,()25.060=≤X P ,⑴ 求μ与σ的值;⑵ 如果在该地区随机抽取5名成年男子,求至少有两个人的体重超过kg 65的概率. 解:⑴ 由已知()5.0707070=⎪⎭⎫⎝⎛-Φ=⎪⎭⎫ ⎝⎛-≤-=≤σμσμσμX P X P ,()25.0606060=⎪⎭⎫⎝⎛-Φ=⎪⎭⎫ ⎝⎛-≤-=≤σμσμσμX P X P ………….2分 得⎪⎪⎩⎪⎪⎨⎧=-=⎪⎭⎫ ⎝⎛-Φ-=⎪⎭⎫ ⎝⎛-Φ75.025.016015.070σμσμ .即⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛--Φ=⎪⎭⎫⎝⎛-Φ75.0605.070σμσμ ,查正态分布表,得⎪⎩⎪⎨⎧=--=-675.060070σμσμ ,解方程组,得70=μ,81.14=σ.………….2分⑵ 设=A “从该地区任意选取一名成年男子,其体重超过kg 65”.则()()⎪⎭⎫⎝⎛-≤--=⎪⎭⎫ ⎝⎛-≤--=≤-=>3376.081.1470181.14706581.1470165165X P X P X P X P ()()6631.03376.03376.01=Φ=-Φ-=.………….2分 设X :该地区随机抽取的5名成年男子中体重超过kg 65的人数. 则 ()6631.0,5~B X .设=B “5人中至少有两人的体重超过kg 65. 则 ()()()()()101112===-=≤-=≥=X P X P X P X P B P9530.03369.06631.03369.06631.0141155005=⨯⨯-⨯⨯-C C . (已知()75.0675.0=Φ,()6631.034.0=Φ)………….2分七.(本题满分8分) 设二维随机变量()Y X ,的联合密度函数为()()⎪⎩⎪⎨⎧-<<+=其它01045,22x y y x y x f求:随机变量Y 的边缘密度函数()y f Y . 解:当10<<y 时, ()()()()⎰⎰⎰----+∞∞-+=+==yyyY dx y xdx y x dx y x f y f 1021122545,………….3分()()()6211511312531252123103y y y y y xy x yx +-=⎪⎭⎫ ⎝⎛-+-⋅=⎪⎭⎫⎝⎛+⨯=-=.…….3分所以,随机变量Y 的边缘密度函数为()()⎪⎩⎪⎨⎧<<+-=其它01062115y y y y f Y .………….2分 八.(本题满分10分) 设n X X X ,,,21Λ是n 个独立同分布的随机变量,1X 服从参数为λ的指数分布.令{}n X X X T ,,,m in 21Λ=,求随机变量T 的密度函数. 解:对于任意的实数x ,随机变量T 的分布函数为 ()(){}()x X X X P x T P x F n T ≤=≤=,,,m in 21Λ{}()x X X X P n >-=,,,m in 121Λ()x X x X x X P n >>>-=,,,121Λ …………………….2分()()()x X P x X P x X P n >>>-=Λ211()()()()()()()()nX n x F x X P x X P x X P --=≤-≤-≤--=11111121Λ.………….3分所以,随机变量T 的密度函数为()()()()()x f x F n x F x f X n X T T 11--='=. ………….2分如果1X 服从参数为λ的指数分布,则1X 的密度函数为()⎩⎨⎧≤>=-0x x e x f xX λλ . 分布函数为()()⎩⎨⎧≤>-==-∞-⎰0001x x e dt t f x F xxX X λ .………….1分 因此此时{}n X X X T ,,,m in 21Λ=的密度函数为()()()()()x n x n xX n X T e n e e n x f x F n x f λλλλλ-----=⋅⋅=-=111,()0>x .………….2分九.(本题满分8分) 设随机向量()321,,X X X 间的相关系数分别为312312,,ρρρ,且,()()()0321===X E X E X E ,()()()02321>===σX D X D X D .令:211X X Y +=,322X X Y +=,133X X Y +=.证明:321,,Y Y Y 两两不相关的充要条件为1312312-=++ρρρ.证明:充分性:如果1312312-=++ρρρ,则有01312312=+++ρρρ.而 ()()322121,cov ,cov X X X X Y Y ++= ()()()()32223121,cov ,cov ,cov ,cov X X X X X X X X +++=()()()()()()()3223231132112var X D X D X X D X D X D X D ⋅++⋅+⋅=ρρρ ()0121323122232213212=+++=+++=σρρρσρσσρσρ………….3分 这说明随机变量1Y 与2Y 不相关.同理可得 ()0,cov 32=Y Y ,()0,cov 13=Y Y ,这就证明了随机变量321,,Y Y Y 两两不相关. ………….1分必要性:如果随机变量321,,Y Y Y 两两不相关,则有()0,cov 21=Y Y ,()0,cov 32=Y Y ,()0,cov 13=Y Y而由上面的计算,得()()01,cov 213231221=+++=σρρρY Y , ………….3分由于02>σ,所以1132312+++ρρρ,即1132312-=++ρρρ. ………….1分十.(本题满分8分) 设总体X 的密度函数为()⎩⎨⎧<<-=其它若011x xx f()5021,,,X X X Λ是从X 中抽取的一个样本,X 与2S 分别表示样本均值与样本方差.求()X E ,()X D ,()2S E .解:因为()()011=⋅==⎰⎰-+∞∞-dx x x dx x xf X E ,()()2121311222==⋅==⎰⎰⎰-+∞∞-dx x dx x xdx x f x XE , 所以,()()()()2122=-=X E X E X D . 所以,()()0==X E X E ,………….2分()()10015021===n X D X D ,………….3分 ()()212==X D S E .………….3分十一.(本题满分8分) 设总体()4,0~N X ,()921,,,X X X Λ是取自该总体中的一个样本.求系数a 、b 、c ,使得统计量()()()298762543221X X X X c X X X b X X a T ++++++++=服从2χ分布,并求出自由度. 解:因为()921,,,X X X Λ是取自总体()4,0N 中的简单随机样本,所以()4,0~N X i ,()9,,2,1Λ=i而且921,,,X X X Λ相互独立.所以()8,0~21N X X +,()12,0~543N X X X ++,()16,0~9876N X X X X +++.…….2分所以,()1,0~821N X X +,()1,0~12543N X X X ++,()1,0~169876N X X X X +++.…….2分 因此,()()()()3~161282298762543221χX X X X X X X X X ++++++++.…….2分因此,当161,121,81===c b a 时,统计量()()()()3~161282298762543221χX X X X X X X X X T ++++++++=,自由度为3.………….2分十二.(本题满分8分)一家有500间客房的旅馆的每间客房装有一台kW 2(千瓦)的空调机,该旅馆的开房率为%80.求需要多少电力,才能有%99的可能性保证有足够的电力使用空调机. 解:设X :该旅馆开房数目,则()8.0,500~B X .………….2分a :向该旅馆供应的电力.则若电力足够使用空调机,当且仅当a X ≤2.因此()⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯-=⎪⎭⎫ ⎝⎛≤=≤2.08.05008.050022.08.05008.050022.08.05008.050022a a X P a X P a X P . 由题设,99.02.08.05008.05002≥⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φa ,………….3分 查表,得33.22.08.05008.05002≥⨯⨯⨯-a,………….1分 所以有 ()68.8412.08.050033.28.05002=⨯⨯⨯+⨯⨯≥a .即至少向该旅馆供电842千瓦,才能保证该旅馆的空调机正常使用.………….2分十三.(本题满分8分) 设总体X 的密度函数为()()⎩⎨⎧≤>=+-cx cx x c x f 01θθθ. 其中0>c 是已知常数,而1>θ是未知参数.()n X X X ,,,21Λ是从该总体中抽取的一个样本,试求参数θ的最大似然估计量. 解:似然函数为()()()()()121111+-=+-====∏∏θθθθθθθn n n ni i n i i x x x c x c x f L Λ………….2分所以,()()∑=+-+=ni i x c n n L 1ln 1ln ln ln θθθθ.所以,()∑=-+=ni i x c n nL d d 1ln ln ln θθθ.………….2分 令:()0ln =θθL d d,即0ln ln 1=-+∑=ni i x c n n θ,………….2分得到似然函数的唯一驻点cn x nni iln ln 1-=∑=θ.所以参数θ的最大似然估计量为cn Xnni iln ln ˆ1-=∑=θ.………….2分。

2020-2021大学《概率论》期末课程考试试卷A(含答案)

2020-2021大学《概率论》期末课程考试试卷A(含答案)

第1页共2页 第1页共2页12020-2021大学《概率论》期末课程考试考试卷A适用专业: 考试日期: 考试时间:120分钟试卷总分:100分 试卷类型:闭卷一、(共10小题,每空2分)填空题:1. 比较概率P(A)、P(A+B)、P(AB)与P(A)+P(B)大小2.试用事件A 、B 、C 表示下列事件:(1)A 、B 、C 同时发生 ;(2) A 、B 、C 至少有一个发生 ;(3)仅A 发生 ;(4) A 、B 、C 不可能同时发生 .3.设P(A)=0.5,P(B)=0.4.则(1)当A 、B 互斥时,P(AUB)= ; (2)当A 、B 独立时,P(AB)= ; (3)当A 包含B 时, P(AUB)= . (4)当A 、B 独立时,P(AUB)= ;4.设P(A)=41, P(B)= 51 , P(AUB)=31 , 则P(AB)= . 5.设E ξ=5,则E(3ξ+2)= . 6. 设 D ξ=9 ,则D(2ξ +3)= .7. 设ξ服从正态N(2,9)分布, 则E ξ= ,2ξ+1服从____________.8.设A i 表示某人第i 次摸球中奖 (i=1,2,3),则A 1A 2A 3表示 ,A 1UA 2UA 3表示 . A 1A 23A 表示 . 9.若E ξ=4,D ξ=0.2,则≥≤≤)53(ξP .10. 设随机变量ξ服从()5,2上的均匀分布,则方程42X +4ξX -2=0有实根的概率是____________,且E ()32-ξ=_____________.二、(共4小题,每小题6分)计算下列各题1.一袋中有五个红球,三个白球,二个黑球,求任取三个球中恰好有一红,一白,一黑的概率。

2. 设随机变量ξ的密度函数为)(x ϕ==⎩⎨⎧0sin x k ()()ππ,0,0∉∈x x 求(1)常系数k 及概率P(4π<ξ<2π).院系______________专业班级_____________姓名_____________序号______--------------------------------密------------------------------------封------------------------------------线-----------------------------------第2页共2页 第2页共2页 23.甲、乙二人同时射击,甲击中目标的概率为0.8, 乙击中目标的概率为0.9求:(1)两人同时击中目标的概率, (2)至少有一人击中目标的概率.4.N 个人同乘一辆长途汽车,沿途有n 个车站,每到一个车站时,如果没有人下车,则不停车.设每个人在任一车站下车是等可能的,求停车次数的数学期望.三、(共3小题,每小题10分)解答下列各题1.某批产品废品率为0.03,进行20次重复抽样检查.问抽取20件产品中,(1)恰好有2件为废品的概率是多少?(2) 至少有一件为废品的概率是多少?2. 某测量误差ξ∽N(0,1).求(1)误差绝对值不超过2的概率.(已知0Φ(2)=0.97725).(2)三次测量中至少有一次误差绝对值不超过2的概率.3.设()ηξ,的联合密度函数为ϕ(x ,y)=其它,2,0,0)sin(21π<<⎪⎩⎪⎨⎧+y x y x ,试求 E(ηξ+).四、(6分)证明题在某一试验中事件A 出现的概率为p,试证明在n 次重复独立试验中事件A 出现奇数次的概率为2)21(1np --.院系______________专业班级_____________姓名_____________序号______----------------------------------密------------------------------------封------------------------------------线-----------------------------------第3页共2页 第3页共2页32020-2021大学《概率论》期末课程考试考试卷A 答案适用专业: 考试日期: 考试时间:120分钟 试卷总分:100分 试卷类型:闭卷一、(共10小题,每空2分)填空题:1.比较概率P(A)、P(A+B)、P(AB)与P(A)+P(B)大小P(A)+P(B)≥ P(A+B)≥P(A)≥ P(AB);2.试用事件A 、B 、C 表示下列事件: (1)A 、B 、C 同时发生 ABC ; (2) A 、B 、C 至少有一个发生 C B A ; (3)仅A 发生 C B A ;(4) A 、B 、C 不可能同时发生 A C C B B A . 3.设P(A)=0.5,P(B)=0.4.则(1)当A 、B 互斥时,P(AUB)= 0.9 ; (2)当A 、B 独立时,P(AB)= 0.2 ; (3)当A 包含B 时, P(AUB)= 0.5 . (4)当A 、B 独立时,P(AUB)= 0.7 ;4.设P(A)=41 , P(B)= 51 , P(AUB)=31, 则P(AB)=607 .5.设E ξ=5,则E(3ξ+2)= 17 . 6. 设 D ξ=9 ,则D(2ξ +3)= 36 .7. 设ξ服从正态N(2,9)分布, 则E ξ= 2 ,2ξ+1服从N(5,36). 8.设A i 表示某人第i 次摸球中奖 (i=1,2,3),则A 1A 2A 3表示三次都未中奖 ,A 1UA 2UA 3表示至少有一次中奖 . A 1A 23A 表示 只有第三次未中奖. 9.若E ξ=4,D ξ=0.2,则≥≤≤)53(ξP 0.8 .10. 设随机变量ξ服从()5,2上的均匀分布,则方程42X +4ξX -2=0有实根的概率是__1__,且E ()32-ξ=__4__. 二、(共4小题,每小题6分)计算下列各题1. 一袋中有五个红球,三个白球,二个黑球,求任取三个球中恰好有一红,一白,一黑的概率。

交通大学概率论与数理统计第二学期期末考试试卷5及答案

交通大学概率论与数理统计第二学期期末考试试卷5及答案

交 通 大 学2014~2015学年第二学期概率论与数理统计期末考试试卷(A 卷)一.(本题满分8分)一间宿舍住有6位同学,求这6位同学中至少有2位同学的生日在同一月份的概率. 解:设=A “6位同学的生日至少有两位在同一月份”,则 =A “6位同学的生日都在不同的月份”,所以()()7771990741.02985984665280112116612=-=-=-=P A P A P . 二.(本题满分8分)验收一批共有60件的产品.按照验收规则,随机抽取3件,只要3件中有一件是不合格品,就拒收整批产品.设验收时不合格品被误判为合格品的概率为0.03;而合格品被误判为不合格品的概率为0.01.如果这60件产品中有3件为不合格品,问这批产品被接收的概率是多少? 解:设:{}这批产品被接收=A{}件是不合格品件产品中有抽取的i B i 3= ()3210,,,=i 则由全概率公式,得 ()()()i i i B A P B P A P ∑==3()()()()()3360573323601572333602571333603570303.001.0103.001.0103.001.01⋅+-⨯⋅+-⨯⋅+-⋅=C C C C C C C C C C C C 8338.0=三.(本题满分8分)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船的停泊时间是3小时,乙船的停泊时间是2小时,求它们中任何一艘都不需要等候码头空出的概率是多少?解:设甲船于X 时到达码头,乙船于Y 时到达码头.则240,240≤≤≤≤Y X .并且X 与Y 相互独立.甲、乙两船的到达时刻()y x ,与平面中区域(){}240,240,≤≤≤≤=y x y x D :中的点一一对应.设=A “甲乙两船中任何一艘都不需要等候码头空出.” 则随机事件A 发生当且仅当3≥-X Y 或者2≥-Y X . 因此随机事件A 与平面区域(){}2,3,-≤-≥-=x y x y y x D A 或者:中的点一一对应.所以,()()802951388.024222121222=+⨯==的面积的面积A D D A P . 四.(本题满分8分) 设随机变量X 服从区间()b a ,上的均匀分布,并且()3=X E ,()34=X D ,试求常数a 与b . 解:因为随机变量X 服从区间()b a ,上的均匀分布,所以()2ba X E +=,()()122a b X D -=. 由题设条件()3=X E ,()34=X D ,得方程组 ()⎪⎪⎩⎪⎪⎨⎧=-=+3412322a b ba ,解此方程组,得1=a ,5=b . 五.(本题满分8分)设随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤>=-0002222x x ex x f x σσ ,其中0>σ为常数,求()nX E ,(n 为正整数)(结果用Γ函数表示).解:()()⎰⎰⎰+∞-++∞-+∞∞-=⋅==2122222221dx e x dx e xxdx x f x X E x n x nn n σσσσ.作变量替换222σx u =,则u x 222σ=,u x ⋅=σ2,dx x xdx du 2222σσ==.当0=x 时,0=u ;当+∞→x 时,+∞→u .代入上式,得 ()()⎰+∞-=022du eu XE un nσ()()()⎪⎭⎫ ⎝⎛+Γ===⎰⎰+∞--⎪⎭⎫ ⎝⎛++∞-12222220112220222n du e udu eu nu n n unn σσσ. 六.(本题满分9分)设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<<<=其它010,2x y y cx y x f , ⑴ 求常数c (3分);⑴ 求随机变量X 的边缘密度函数()x f X (4分);⑶ 求随机变量Y 关于X 条件密度函数()x y f XY(2分). 解:⑴ 由联合密度函数的性质,有()1,=⎰⎰+∞∞-+∞∞-dxdy y x f ,因此()102,11040210cdx x c ydy cx dx dxdy y x f x====⎰⎰⎰⎰⎰+∞∞-+∞∞-,所以,10=c . ⑵ 当10<<x 时, ()()402510,x ydy x dy y x f x f xX ===⎰⎰+∞∞-所以随机变量X 的边缘密度函数为()⎩⎨⎧<<=其它1054x x x f X .⑶ 当10<<x 时,()054>=x x f X ,因此当10<<x 时,()()()⎪⎩⎪⎨⎧<<==其它02,2x y x yx f y x f x y f X X Y七.(本题满分9分)设二维随机变量()Y X ,服从矩形(){}1020,≤≤≤≤=y x y x D ,:上的均匀分布.记:⎩⎨⎧>≤=YX YX U 10 ⎩⎨⎧>≤=Y X Y X V 2120 试求U 与V 的相关系数V U ,ρ;(7分)并判断U 与V 是否相互独立?(2分) 解:由题意可得 {}41=≤Y X P , {}212=>Y X P , {}412=<<Y X Y P ,所以,{}{}{}41200=≤=≤≤===Y X P Y X Y X P V U P ,,,{}{}()0210=∅=>≤===P Y X Y X P V U P ,,, {}{}{}41201=≤<=≤>===Y X Y P Y X Y X P V U P ,,, {}214141111=--===V U P ,, ()V U ,的联合分布律及各自的边缘分布律为所以,()43=U E ,()163=U D ,()21=V E ,()41=V D .又 ()21=UV E , 所以,()()()()()()81214321cov =⨯-=-=V E U E UV E V U , ()314116381cov ,=⨯==DVDU V U V U ,ρ 由于0≠ρ,所以U 与V 相关,从而U 与V 不独立.八.(本题满分8分)设随机变量X 与Y 相互独立,分别服从参数为1λ与2λ的Poisson 分布.试求随机变量Y X Z +=的分布律; 解:X 的分布律为 ()1!1λλ-==e k k X P k() ,,,210=kY 的分布律为 ()2!2λλ-==e k k Y P k () ,,,210=k所以,Y X Z +=的取值为 ,,,210,并且 ()(){}∑=-====+==nk k n Y k X P n Y X P n Z P 0,{}{}∑=-===nk k n Y P k X P 0()∑=----=nk k n ke k n ek 02121!!λλλλ()()∑=-+--=n k kn k k n k n n e 021!!!!21λλλλ()()21!21λλλλ+-+=en n 即Y X Z +=的分布律为{}()()21!21λλλλ+-+==en n Z P n () ,,,210=n九.(本题满分8分)一报刊亭出售4种报纸,它们的价格分别为8.1,5.1,0.1,6.0(元),而且每份报纸售出的概率分别为1.0,35.0,3.0,25.0.若某天售出报纸400份,试用中心极限定理计算该天收入至少450元的概率.标准正态分布()1,0N 的分布函数()x Φ的值:解:设k X :该天售出第k 份报纸的收入.()400.,2,1 =k 则k X 的分布律为()155.11.08.135.05.13.00.125.06.0=⨯+⨯+⨯+⨯=k X E , ()5015.11.08.135.05.13.00.125.06.022222=⨯+⨯+⨯+⨯=k X E , 所以,()()()[]167475.0155.15015.1222=-=-=k k k X E X E X D令X 表示该天的总收入,则有 ∑==4001k k X X .由独立同分布场合下的大数定律,有{}⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯⨯-≥⨯⨯-=⎭⎬⎫⎩⎨⎧≥=≥∑∑==167475.0400155.1400450167475.0400155.140045045040014001k k k k X P X P X P()9292.0466.11466.1167475.0400155.140014001=-Φ-≈⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-<⨯⨯--=∑=k k X P .十.(本题满分9分)设总体X 存在二阶矩,记()μ=X E ,()2σ=X D .()n X X X ,,,21 是取自该总体的一个样本,2S 是样本方差.计算()2SE .解:()()()⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--=∑∑==n i in i i X X E n X X n E SE 121221111 ()()()⎪⎭⎫⎝⎛----=∑=n i i X X E n 1211μμ()()()()()⎪⎭⎫ ⎝⎛----+--=∑=n i i i X X X X E n 122211μμμμ()()()()⎪⎭⎫ ⎝⎛----+--=∑∑==n i n i i i X X X n X E n 1122211μμμμ()()⎪⎭⎫ ⎝⎛----=∑=n i i X n X E n 12211μμ()()⎪⎭⎫ ⎝⎛----=∑=n i i X nE X E n 12211μμ()()()()⎪⎭⎫ ⎝⎛----=∑=n i i i X E X nE X E X E n 12211()()⎪⎭⎫⎝⎛--=∑=n i i X nD X D n 111()2221221111σσσσσ=--=⎪⎪⎭⎫ ⎝⎛⋅--=∑=n n n n n n i 十一.(本题满分8分) 设总体X 的密度函数为()()1;+-=θθθθx c x f , ()c x >.其中0>c 是已知参数,而1>θ是未知参数.()n X X X ,,,21 是从该总体中抽取的一个样本,求未知参数θ的矩估计量. 解:()()()11111-=-⋅==⋅==-+∞-+∞+-+∞∞-⎰⎰⎰θθθθθθθθθθθθcc c dx x c dx xc x dx x xf X E cc,解方程 ()1-=θθcX E ,得 ()()c X E X E -=θ.将()X E 用样本均值X 替换,得参数θ的矩估计量为cX X-=θˆ. 十二.(本题满分9分)设总体X 服从指数分布,其概率密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,()n X X X ,,,21是取自该总体中的一个样本.⑴ 求出统计量()i n i X X ≤≤=11min 的密度函数()()x f 1,并指出该分布是什么分布?(5分)⑵ 求常数a ,使得i ni X a T ≤≤=1min 为θ的无偏估计(4分).解:① 由于总体X 的密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,因此其分布函数为 ()()⎪⎩⎪⎨⎧>-≤==-∞-⎰0100x ex dt t f x F x xθ .所以()i ni X X ≤≤=11min 的密度函数为()()()()()θθθθθnxxn xn enee n xf x F n x f -----=⋅⎪⎪⎭⎫ ⎝⎛=-=11111,()0>x .即随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布.② 由于随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布,所以()()()n X E X E i n i θ==≤≤11min .所以,若使()()()θθ=⋅==≤≤n a X aE X E i n i 11min ,只需取n a =即可.即若取n a =,即i ni X n T ≤≤=1min ,则T 是未知参数θ的无偏估计量.。

北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案

北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案

北 京 交 通 大 学2011~2012学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分)在某个社区,60%的家庭拥有汽车,30%的家庭拥有房产,而20%的家庭既有汽车又有房产.现随机地选取一个家庭,求此家庭或者有汽车或者有房产但不是都有的概率. 解:设=A “任取一个家庭拥有汽车”,=B “任取一个家庭拥有房产”.由题设得 ()6.0=A P ,()3.0=B P ,()2.0=AB P .因此有 ()()()()4.02.06.0=-=-=-=AB P A P AB A P B A P ; ()()()()1.02.03.0=-=-=-=AB P B P AB B P B A P . 所求概率为()()()5.01.04.0=+=+=⋃B A P B A P B A B A P . 二.(本题满分8分)假设一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大? 解:设{}此药疗效显著=1A ,{}此药疗效一般=2A ,{}此药无效=3A,{}次感冒某人一年中患2=B . 由题设,可知如果事件1A 发生,则X 服从参数为1=λ的Poisson 分布;如果事件2A 发生,则X 服从参数为3=λ的Poisson 分布;如果事件3A 发生,则X 服从参数为4=λ的Poisson 分布.因此,由Bayes 公式,我们有()()()()()∑==31111k kkA BP A P A B P A P B A P2206.02441.02337.02122.02122.042321212=⨯+⨯+⨯⨯=----eeee .三.(本题满分8分)某人住家附近有一个公交车站,他每天上班时在该站等车的时间X (单位:分钟)服从41=λ的指数分布,如果他候车时间超过5分钟,他就改为步行上班.求他一周5天上班时间中至少有2天需要步行的概率. 解:X 的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex p xX .设=A “候车时间超过5分钟”,则()4554415-+∞-==≥=⎰edx eX P p x .设Y :一周5天中他需要步行上班的天数.则()p B Y ,5~,因此所求概率为()()()()41155005111112p p C p p C Y P Y P ----=≤-=≥4438.0151144545545=⎪⎪⎭⎫⎝⎛-⋅⋅-⎪⎪⎭⎫⎝⎛--=---e e e . 四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧≤≤+=其它5.002x xcx x f .⑴ 求常数c ;⑵ 求X 的分布函数()x F . 解:⑴ 由密度函数的性质()1=⎰+∞∞-dxx f ,得()()()()⎰⎰⎰⎰+∞∞-+∞∞-++==5.05.0001dxx f dx x f dx x f dxx f ()81242135.00235.002+=⎪⎭⎫ ⎝⎛+=+=⎰c x x c dx x cx ,解方程,得21=c .⑵ 当0≤x 时,()()0==⎰∞-xdtt f x F ;当5.00<<x 时,()()()()()27212320xx dt t tdt t f dt t f dtt f x F xx x+=+=+==⎰⎰⎰⎰∞-∞-;当5.0≥x 时,()()()()()15.05.00=++==⎰⎰⎰⎰∞-∞-xxdtt f dt t f dt t f dtt f x F .综上所述,随机变量X 的分布函数为()⎪⎩⎪⎨⎧≥<<+≤=5.015.0027023x x x x x x F . 五.(本题满分8分) 设n 个随机变量n X X X ,,,21 相互独立,都服从区间()1,0上的均匀分布,令()n X X X Y ,,,max 21 =,⑴ 求随机变量Y 的密度函数()x p Y ;⑵ 求数学期望()Y E . 解:⑴ 随机变量X 的密度函数为()⎩⎨⎧<<=其它101x x p X ,分布函数为()⎪⎩⎪⎨⎧≥<<≤=111000x x xx x F X . 随机变量Y 的密度函数为 ()()()()⎩⎨⎧<<==--其它01011x nx x p x F n x p n X n X Y .⑵ ()()111+=⋅==⎰⎰-+∞∞-n n dx nxx dx x xp Y E n Y .六.(本题满分8分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤<≤=其它10421,22y x y x y x p⑴ 求随机变量Y 的边际密度函数;(5分)⑵ 求条件密度函数()y x p YX .(3分) 解:当0≤y ,或者1≥y 时,()0=y p Y ; 当10<<y 时,()()⎰⎰⎰--+∞∞-===yyyyY dxx yydx x dx y x p y p 22421421,253022731221221y xy dx xyyy=⋅==⎰所以,随机变量Y 的边际密度函数为()⎪⎩⎪⎨⎧<<=其它102725y yy p Y .当10<<y 时,()02725>=y y p Y ,因此当10<<y 时,X 关于Y 的条件密度函数为()()()y p y x p y x p Y Y X ,=2322522327421-==yx y yx即当10<<y 时,条件密度函数为()⎪⎩⎪⎨⎧≤<≤=-其它10232232y x y x y x p Y X .七.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN .再令bY aX U+=,bY aX V -=,其中a 与b 是不全为零的常数,求随机变量U 与V 的协方差()V U ,cov 与相关系数V U ,ρ.解:由于随机变量X 与Y 都服从正态分布()2,σμN ,所以()()μ==Y E X E ,()()2σ==Y D X D .()()()()()μμμb a b a Y bE X aE bY aX E U E +=⋅+⋅=+=+=; ()()()()()μμμb a b a Y bE X aE bY aX E V E -=⋅-⋅=-=-=. 再由于随机变量X 与Y 相互独立,故有()()()()()222222222σσσb a b a Y D b X D a bY aX D U D +=⋅+⋅=+=+=, ()()()()()222222222σσσb a b a Y D b X D a bY aX D V D +=⋅+⋅=+=-=, ()()bY aX bY aX V U -+=,cov ,cov ()()()()()2222222,c o v,c o v σb a Y D b X D a Y Y b X X a -=-=-=,所以,()()()2222,,cov ba b a VD UD VU V U +-==ρ.八.(本题满分8分)某药厂断言,该厂生产的某种药品对治愈一种疑难的血液病的治愈率为8.0.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言;否则就拒绝这一断言.试用中心极限定理计算,⑴ 如果实际上对这种疾病的治愈率确为8.0,问拒绝这一断言的概率是多少?⑵ 如果实际上对这种疾病的治愈率为7.0,问接受这一断言的概率是多少? (附,标准正态分布()1,0N 的分布函数()x Φ的某些数值:解:设X :100位服用此药品的病人中治愈此病的人数,则()p B X ,100~.⑴ 当8.0=p 时, ()()⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯-=≤=2.08.01008.0100752.08.01008.010075X P XP P 拒绝断言()()1056.08944.0125.1125.125.12.08.01008.0100=-=Φ-=-Φ=⎪⎭⎫⎝⎛-≤⨯⨯⨯-=X P . ⑵ 当7.0=p 时, ()()⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯--=>=3.07.01007.0100753.07.01007.0100175X P XP P 接受断言()1379.08621.0109.1109.13.07.01007.01001=-=Φ-≈⎪⎭⎫⎝⎛≤⨯⨯⨯--=X P . 九.(本题满分8分) 设总体()2,~σμN X ,()921,,,X X X是取自总体X 中的一个样本,令∑==61161i i X Y , ∑==97231i i X Y ,()∑=-=9722221i i Y X U.计算统计量()UY Y Z 212-=的分布(不需求出Z 的密度函数,只需指出Z 所服从的分布及其参数). 解:由题设可知,⎪⎪⎭⎫⎝⎛6,~21σμN Y ,⎪⎪⎭⎫⎝⎛3,~22σμN Y , 所以有 ⎪⎪⎭⎫⎝⎛-2,0~221σN Y Y .因此有()1,0~221N Y Y σ-.又由()∑=-=9722221i iY XU ,得()2~2222χσU.因此由t 分布的构造,得 ()()2~21222222121t UY Y UY Y Z ⋅-=-=σσ. 十.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pqk X P () ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 的极大似然估计量. 解:似然函数为 (){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ======== 22112211,,,()()()()nx nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=pnxpn p L dpd nk k,解方程,得xp 1=.因此p 的极大似然估计量为Xp 1ˆ=.十一.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3, ,N ,其中N 是未知的正整数.()n X X X ,,,21 是取自该总体中的一个样本.试求N 的极大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的极大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1 =.所以似然函数为 (){}nni i i Nx X P N L 11===∏=, ()()n i N x i ,,2,1,1 =≤≤.当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1 =≤≤,即{}()n n x x x x N =≥,,,max 21 .所以,N 的最大似然估计量为()n X N =ˆ.⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N . 十二.(本题满分10分)三个朋友去喝咖啡,他们决定用如下的方式付账:每人各掷一枚均匀的硬币,如果某人掷出的结果与其余两人的不一样,则由该人付账;如果三人掷出的结果都一样,则重新掷下去,直到确定了由谁付账时为止.求:⑴ 抛掷硬币次数X 的数学期望;(5分)⑵ 进行了3次还没确定付账人的概率.(5分) 解:⑴ X 的取值为 ,3,2,1.并且()43411⋅⎪⎭⎫⎝⎛==-k k X P , () ,3,2,1=k .即随机变量X 服从参数43=p 的几何分布,因此()341==pX E .⑵ ()()015625.0641414313333==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=>=X P P 次还未确定付账人进行了.。

北京交通大学《概率论与数理统计》2018-2019学年第二学期期末考试B卷

北京交通大学《概率论与数理统计》2018-2019学年第二学期期末考试B卷

北京交通大学2018~2019学年第二学期概率论与数理统计期末考试试卷(B 卷)一.(本题满分8分)将三封信随机投入编号为1、2、3、4的四个信箱,记X 为1号信箱内信的数目,Y 表示有信的信箱数目,求:二维随机变量()Y X ,的联合分布律(5分)及随机变量X 与Y 各自的边缘分布律(3分).解:X 的可能取值为0,1,2,3;Y 的可能取值为1,2,3.()Y X ,的联合分布律以及X 与Y 各自的边缘分布律为YX123⋅i p 0643641864664271064964186427206490649364100641jp ⋅64464366424二.(本题满分8分)设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<≤=其它,0122y x ycx y x f ⑴试确定常数c (4分);⑵求随机变量X 的边缘密度函数()x f X (4分).解:⑴()211214121x f x y dxdy dx cx ydy +∞+∞-∞-∞-===⎰⎰⎰⎰,所以,421=c .⑵当11<<-x 时,()()()421218214212x x ydy x dy y x f x f xX -===⎰⎰+∞∞-,因此,X 的边缘密度函数为()()⎪⎩⎪⎨⎧<<--=其它011182142x x x x f X 三.(本题满分8分)某人有n 把钥匙,其中只有一把能打开他的房门,他逐个试开,试过的不再重试.令X 表示试开次数,求随机变量X 的数学期望()X E (4分)与方差()X D (4分).解:随机变量X 的取值为n ,,2,1 ,并且{}nk X P 1==,()n k ,,2,1 =.(){}()2121111111+=+⋅=⋅=⨯==⨯=∑∑∑===n n n n k n n k k X P k X E n k nk nk ,(){}()()()()612161211111212122++=++⋅=⋅=⨯==⨯=∑∑∑===n n n n n n k n n k k X P k XE n k nk nk ,所以,()()()()()()1212161212222-=⎪⎭⎫ ⎝⎛+-++=-=n n n n X E XE X D .四.(本题满分8分)设随机变量()2,~σμN X ,再设μ-=X Y .求随机变量Y 的数学期望()Y E (4分)与方差()Y D (4分).解:随机变量X 的密度函数为()()22221σμσπ--=x X e x f ,()+∞<<∞-x .所以,()()()()⎰⎰∞+∞---∞+∞--=-=-=dxe x dx xf x X E Y E x X 22221σμμσπμμ()()222xx eμσμμ-+∞-=-⎰,令σμ-=xu,则σdxdu=,代入上式,得()σππσσπ222222222=-==+∞-∞+-⎰uueduueYE,()()()222σμ==-=XDXEYE,所以,()()()()⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=-=πσσπσ21222222YEYEYD.五.(本题满分8分)设甲、乙两种电器的使用寿命X与Y都服从指数分布,其密度函数分别为()⎩⎨⎧≤>=-xxexfxXλλ与()⎩⎨⎧≤>=-yyeyfyYμμ其中0>λ,0>μ都是参数.并且X与Y相互独立.试求甲种电器的使用寿命不超过乙种电器的使用寿命的概率.解:因为随机变量X与Y相互独立,所以()YX,的联合密度函数()()()()⎩⎨⎧>>==+-其它,0,yxeyf xfyx fyxYXμλλμ.所求概率为()YXP≤,则有()()()⎰⎰⎰⎰+∞+∞+-≤==≤,xyxyxdyedxdxdyyx fYXPμλλμ()()⎰⎰⎰⎰+∞+-+∞∞+--+∞+∞--=-==dxedxeedyedxe xxyxxyxμλμλμλλλλμ()μλλμλλμλ+=+-=+∞+-xe.六.(本题满分8分)某箱装有100件产品,其中一、二、三等品分别为70件、20件、10件.现从中抽取一件产品,记⎩⎨⎧=其它若抽到为一等品01X ⎩⎨⎧=其它若抽到为二等品1Y 试求X 与Y 的相关系数ρ,并判断X 与Y 是否相互独立?解:()Y X ,的联合分布律及各自的边缘分布律为YX01⋅i p 00.10.20.310.700.7jp ⋅0.80.2所以,()7.0=X E ,()21.0=X D ,()2.0=Y E ,()16.0=Y D .又()0=XY E ,所以,()()()()()()14.0cov -=-=Y E X E XY E Y X ,()7638.016.021.014.0cov -=-==DYDX Y X ,ρ,由于0≠ρ,所以随机变量X 与Y 相关,从而随机变量X 与Y 不独立.七.(本题满分8分)设随机变量X 与Y 满足:()2=X E ,()3=Y E ,()4=X D ,()16=Y D ,()14=XY E ,试用Chebyshev (切比雪夫)不等式估计概率{}323≥-Y X P .解:()()()032232323=⨯-⨯=-=-Y E X E Y X E ,()()()()Y X Y D X D Y X D ,cov 2324923⨯⨯-+=-()()()()Y E X E XY E -⨯-⨯+⨯=1216449()4614126436=-⨯-+=,所以,由Chebyshev (切比雪夫)不等式,有{}()(){}32323323≥---=≥-Y X E Y X P Y X P ()94923=-≤Y X D .八.(本题满分8分)设随机变量n X X ,,1 相互独立,都服从区间()1,0上的均匀分布,令()n X X U ,,max 1 =,求U 的密度函数()x f U (4分)以及()U E (4分).解:i X 的密度函数为()⎩⎨⎧<<=其它0101x x p ,分布函数为()⎪⎩⎪⎨⎧≥<<≤=111000x x x x x F .所以,随机变量U 的密度函数为()()()()()⎩⎨⎧<<==--其它01011x nx x p x F n x p n n U .所以,()()()1111+==⋅==⎰⎰⎰-+∞∞-n n dx x n dx nx x dx x xp U E nn n .九.(本题满分8分)设随机变量X 与Y 相互独立而且具有相同的分布,其中X 的分布律为X 012P313131令:()Y X U ,min =,()Y X V ,max =.求二维随机变量()V U ,的联合分布律,以及U 与V 各自的边缘分布律(6分).并说明随机变量U 与V 是否相互独立(2分).解:()V U ,的联合分布律以及U 与V 各自的边际分布律为VU12⋅i p 0919292951091929329191jp ⋅919395由于{}{}{}91910200,2⨯===≠===V P U P V U P ,所以,随机变量U 与V 不相互独立.十.(本题满分8分)一商店经销某种商品,每周进货的数量X 与顾客对该商品的需求量Y 是相互独立的随机变量,且都服从区间[]2010,上的均匀分布,商店每售出一单位该商品可得利润1000元,若需求量超过了进货量,商品可从其它商店调剂供应,这时每单位该商品可获利润500元,试求此商店经销该商品所得利润的数学期望.证明:由于X 与Y 相互独立,且都服从区间[]2010,上的均匀分布,所以()Y X ,的联合密度函数为.()()()⎪⎩⎪⎨⎧≤≤≤≤==其它,,0201020101001y x y f x f y x f Y X 再设Z 为商店所得利润,则有()⎩⎨⎧<-+≥=YX X Y X Y X Y Z 50010001000所以,()()()⎰⎰+∞∞-+∞∞-=dxdyy x f y x h Z E ,,()⎰⎰=201020101001dxdyy x h ,()⎪⎪⎭⎫ ⎝⎛++=⎰⎰⎰⎰20201010201050010001001x x dy y x dx ydy dx 67.141667500320000=+=十一.(本题满分8分)向平面区域(){}0402≥-≤≤=x x y y x D ,:,内随机地投掷一点,即二维随机变量()Y X ,服从平面区域D 上的均匀分布.⑴.试求二维随机变量()Y X ,的联合密度函数;⑵.点()Y X ,到y 轴距离的概率密度函数;⑶.设()D Y X ∈,,过点()Y X ,作y 轴的平行线,设S 为此平行线与x 轴、y 轴以及曲线24x y -=所围成的曲边梯形的面积,求()S E .解:⑴.平面区域D 的面积为()3164202=-=⎰dx x A 所以,二维随机变量()Y X ,的联合密度函数为()()()⎪⎩⎪⎨⎧∉∈=Dy x Dy x y x f ,,0163,⑵.点()Y X ,到y 轴距离的概率密度函数,即是分量X 的边缘密度函数,当20≤≤x 时,()()()24041631632x dy dy y x f x f x X -===⎰⎰-+∞∞-,所以,分量X 的边缘密度函数为()()⎪⎩⎪⎨⎧≤≤-=其它02041632x x x f X ⑶.由题设,所作曲边梯形的面积为()344302X X dx x S X-=-=⎰所以,()()⎰+∞∞-⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=dxx f x x X X E S E X 343433()384163342023=-⋅⎪⎪⎭⎫ ⎝⎛-=⎰dx x x x 十二.(本题满分8分)设随机变量X 与Y 相互独立,且都服从标准正态分布()1,0N .令随机变量22Y X Z +=.试求随机变量Z 的密度函数()z f Z .解:由题意,得()2221x X ex f -=π()∞<<∞-x ,()2221y y ey f -=π()∞<<∞-y .设随机变量22Y X Z +=的分布函数为()z F Z ,则(){}{}z Y X Pz Z P z F Z ≤+=≤=22当0≤z 时,(){}()022=∅=≤+=P z Y X P z F Z;当0>z 时,(){}()()⎰⎰≤+=≤+=zy x YXZdxdyy f x f z Y X P z F 2222⎰⎰≤++-=zy x y x dxdye 2222221π作极坐标变换θθsin ,cos r y r x ==,则有()⎰⎰⎰--==zr zr Z rdrerdr ed z F 022202221πθπ所以,随机变量22Y X Z +=的分布函数为()⎪⎩⎪⎨⎧≤>=⎰-000022z z rdre z F z rZ 所以,随机变量22Y X Z +=的密度函数为()()⎪⎩⎪⎨⎧≤>='=-0022z z zez F z f z Z Z .十三.(本题满分4分)设随机变量X 与Y 相互独立,都服从正态分布⎪⎭⎫⎝⎛21,μN .求数学期望Y X E -.解:因为随机变量X 与Y 相互独立,而且都服从正态分布,所以其差Y X -也服从正态分布.而()()()0=-=-=-μμY E X E Y X E ,()()()12121=+=+=-Y D X D Y X D ,因此,()1,0~N Y X U -=.()ππππ22222210222222=-====-+∞-∞+-∞+∞--⎰⎰u u u e uedu eu U E Y X E .。

概率论期末考试题及答案

概率论期末考试题及答案

概率论期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个事件是必然事件?A. 抛硬币正面朝上B. 抛硬币反面朝上C. 抛硬币出现正面或反面D. 抛硬币出现正面和反面2. 假设随机变量X服从正态分布N(μ, σ²),以下哪个选项是正确的?A. μ是X的期望值B. σ²是X的方差C. μ是X的中位数D. σ²是X的期望值3. 假设随机变量X和Y相互独立,以下哪个选项是正确的?A. P(X∩Y) = P(X)P(Y)B. P(X∪Y) = P(X) + P(Y)C. P(X∩Y) = P(X) + P(Y)D. P(X∪Y) = P(X)P(Y)4. 假设随机变量X服从二项分布B(n, p),以下哪个选项是正确的?A. X的期望值是npB. X的方差是np(1-p)C. X的期望值是nD. X的方差是p(1-p)二、填空题(每题5分,共20分)1. 如果随机变量X服从泊松分布,其概率质量函数为P(X=k) =________,其中λ > 0,k = 0, 1, 2, ...2. 假设随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = ________,其中a < x < b。

3. 假设随机变量X和Y相互独立,且X服从正态分布N(μ, σ²),Y 服从正态分布N(ν, τ²),则Z = X + Y服从正态分布N(μ+ν,________)。

4. 假设随机变量X服从二项分布B(n, p),其期望值E(X) = np,方差Var(X) = ________。

三、解答题(每题30分,共40分)1. 假设随机变量X服从正态分布N(0, 1),求P(-1 < X < 2)。

2. 假设随机变量X服从二项分布B(10, 0.3),求P(X ≥ 5)。

答案:一、选择题1. C2. A3. A4. A二、填空题1. λ^k * e^(-λ) / k!2. 1/(b-a)3. σ² + τ²4. np(1-p)三、解答题1. 根据标准正态分布表,P(-1 < X < 2) = Φ(2) - Φ(-1) =0.9772 - 0.1587 = 0.8185。

北京交通大学概率与数理统计期末大作业

北京交通大学概率与数理统计期末大作业

北京交通大学概率与数理统计期末大作业引言概率与数理统计是数学中的一个重要分支,是应用数学的基础。

在本学期的学习过程中,我们已经掌握了一些基本的概率论和统计学的知识,包括概率分布、随机变量、概率密度函数等。

为了更好地巩固所学的知识,我们需要进行一个期末大作业来检验我们对这门课程的理解。

本文档将介绍我们小组期末大作业的主题以及相应的分析方法和结论。

我们选取了一个与实际生活紧密相关的主题——北京市交通拥堵问题。

通过对交通拥堵问题的数据收集和分析,我们希望能够了解并评估北京市交通拥堵的程度,并提出相应的改善措施。

数据收集我们从北京市交通委员会、第三方数据提供商以及相关的研究文献中获取了大量的交通数据。

数据包括交通流量、车速、道路拥堵指数等指标。

为了保证数据的准确性和全面性,我们选择了不同时间段和地点的数据进行收集。

针对数据的收集过程中可能存在的问题,我们采取了以下方法进行了数据清洗和处理:•通过筛选数据,排除异常值和不完整的数据。

•对原始数据进行归一化处理,以便于后续的分析。

•利用数据可视化技术对数据进行探索和分析。

数据分析在数据收集和处理完成之后,接下来我们对数据进行了详细的分析。

我们通过运用一些基本的概率论和统计学方法,如概率密度函数、频数分布、方差等,来解读这些数据。

我们主要从以下几个方面对交通拥堵进行了分析:1. 交通拥堵程度的评估我们首先计算了每天、每小时的交通拥堵指数。

通过统计这些指标的平均值和方差,我们能够对北京市交通拥堵程度进行客观的评估。

同时,我们还将不同地点的交通拥堵指数进行了对比分析,以了解北京市交通拥堵的空间分布情况。

2. 影响交通拥堵的关键因素在了解交通拥堵的程度后,我们对影响交通拥堵的关键因素进行了分析。

我们通过建立数理统计模型,考虑了一系列可能的因素,如交通流量、道路宽度、道路等级等。

通过对模型的参数估计和显著性检验,我们确定了主要的影响因素,并对其进行了解释。

3. 交通拥堵的时间特征除了评估交通拥堵的程度和确定关键因素外,我们还对交通拥堵的时间特征进行了分析。

2013-2014-1-北京交大数学考试答案(微积分B、几何与代数B、概率统计B)参考答案

2013-2014-1-北京交大数学考试答案(微积分B、几何与代数B、概率统计B)参考答案

5.曲线 y
1 ln(1 e x ) 的斜渐近线为 ______________ ; x 1
2
答: y x . 6.设 f ( x ) 的一个原函数是 F ( x) , a, b 为非零常数,则 答:
f (a
2
x b)dx _________ ;
1 F ( a 2 x b) C . 2 a
V2 ,求 V1 和 V2 ;(2)当 a 为何值时, V1 V2 取得最大值,并求出最大值.
第 4 页 共 20 页
北京交通大学 2013-2014 学年第一学期 数学期末考试卷参考答案
4 解:(1) V1 (2 x ) dx 4 x 4 dx 32 a 5 ; … 2 分 5 a a
…… 2 分
取 x 1, 1 ,得
f (0) f (1 ) , 2! 3! f (0) f ( 2 ) 1 f (1) f (0) , 2! 3! 0 f (1) f (0)
两式相减,得
1 1 f (1 ) f ( 2 ) . 6
(3) 由于 lim
x
f ( x) x 2 ( x 2) lim 1, x x( x 1) 2 x
x 2 ( x 2) lim ( f ( x ) x ) lim x 2 4 , x x ( x 1)
所以,函数图形的斜渐近线为 y x 4 .
x( x 1)( x 4) 14 x 4 ; y . 3 ( x 1) ( x 1) 4
…… 2 分
(1) 当 x (, 4) (1, 0) (1, ) 时, y 0 ;当 x (4, 1) (0, 1) 时, y 0 .因 此,函数的单调递增区间为 (, 4] , (1, 0] 和 [1, ) ;函数的单调递减区间为

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)ຫໍສະໝຸດ 的边缘密度。解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
八、(6分)一工厂生产的某种设备的寿命 (以年计)服从参数为 的指数分布。工厂规定,出售的设备在售出一年之内损坏可予以调换。若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元,求工厂出售一台设备净盈利的期望。
解:因为 得 ………….2分
用 表示出售一台设备的净盈利
…………3分

………..4分
所以
(元)………..6分
九、(8分)设随机变量 与 的数学期望分别为 和2,方差分别为1和4,而相关系数为 ,求 。
解:已知
则 ……….4分
……….5分
……….6分
=12…………..8分
十、(7分)设供电站供应某地区1 000户居民用电,各户用电情况相互独立。已知每户每日用电量(单位:度)服从[0,20]上的均匀分布,利用中心极限定理求这1 000户居民每日用电量超过10 100度的概率。(所求概率用标准正态分布函数 的值表示).
答案:
解答:设 的分布函数为 的分布函数为 ,密度为 则
因为 ,所以 ,即

另解在 上函数 严格单调,反函数为
所以
4.设随机变量 相互独立,且均服从参数为 的指数分布, ,则 _________, =_________.
答案: ,
解答:
,故
.
5.设总体 的概率密度为
.
是来自 的样本,则未知参数 的极大似然估计量为_________.
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的

北京交通大学《概率论与数理统计》2018-2019学年第二学期期末考试C卷

北京交通大学《概率论与数理统计》2018-2019学年第二学期期末考试C卷

北京交通大学2018~2019学年第二学期概率论与数理统计期末考试试卷(C 卷)一.(本题满分8分)某人钥匙丢了,他估计钥匙掉在宿舍里、教室里以及路上的概率分别为4.0、35.0和25.0,而钥匙在上述三个地方被找到的概率分别为5.0、65.0和45.0.如果钥匙最终被找到,求钥匙是在路上被找到的概率.解:设=B “钥匙被找到”.=1A “钥匙掉在宿舍里”,=2A “钥匙掉在教室里”,=3A “钥匙掉在路上”.由Bayes 公式,得()()()()()∑==31333i iiA B P A P A B P A P B A P 2083.045.025.065.035.05.04.045.025.0=⨯+⨯+⨯⨯=.二.(本题满分8分)抛掷3枚均匀的硬币,设事件{}至多出现一次正面=A ,{}正面与反面都出现=B 判断随机事件A 与B 是否相互独立(4分)?如果抛掷4枚均匀的硬币,判断上述随机事件A 与B 是否相互独立(4分)?解:⑴如果抛掷3枚硬币,则样本点总数为823=.()2184==A P ,()4386==B P ,()83=AB P ,所以有()()()B P A P AB P =⨯==432183,因此此时随机事件A 与B 是相互独立的.⑵如果抛掷4枚硬币,则样本点总数为1624=.()165=A P ,()871614==B P ,()41164==AB P ,所以有()()()B P A P AB P =⨯≠=8716541,因此此时随机事件A 与B 不是相互独立的.三.(本题满分8分)设随机变量X 的密度函数为()()⎩⎨⎧<<-=其它010143x x x f .求:⑴()X E (4分);⑵(){}X E X P >(4分).解:⑴()()()⎰⎰-⋅==+∞∞-1314dxx x dx x xf X E ()2.051514312143341432==⎪⎭⎫ ⎝⎛-+-⋅=-+-=⎰dx x x x x .⑵(){}{}()⎰-=>=>12.03142.0dxx X P X E X P ()4096.062525641234331412.043212.032==⎪⎭⎫ ⎝⎛-+-⋅=-+-=⎰x x x x dx x x x .四.(本题满分8分)某加油站每周补给一次汽油,如果该加油站每周汽油的销售量X (单位:千升)是一随机变量,其密度函数为()⎪⎩⎪⎨⎧<<⎪⎭⎫ ⎝⎛-⨯=其它0100010012014x x x f 试问该加油站每次的储油量需要多大,才能把一周内断油的概率控制在%2以下?解:设该加油站每次的储油量为a .则由题意,a 应满足1000<<a ,而且()02.0≤>a X P .而()()()()5100410010010011001201⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⨯=+==>⎰⎰⎰⎰+∞+∞a dx x dx x f dx x f dx x f a X P aaa.所以,应当有,02.010015≤⎪⎭⎫ ⎝⎛-a .所以,得502.01001≤-a,即10002.015a ≤-,因此有()26949481.5402.011005=-⨯≥a .因此可取55=a (千升),即可使一周内断油的概率控制在%5以下.五.(本题满分8分)设平面区域D 是由双曲线xy 1=,()0>x 以及直线x y =,2=x 所围,二维随机变量()Y X ,服从区域D 上的均匀分布.求:⑴二维随机变量()Y X ,的联合密度函数()y x f ,(4分);⑵随机变量Y 的边缘密度函数()y f Y (4分).解:⑴区域D 的面积为2ln 23ln 21121221-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=⎰x x dx x x A ,所以,二维随机变量()Y X ,的联合密度函数为()()()⎪⎩⎪⎨⎧∉∈-=Dy x D y x y x f ,,2ln 231,.⑵当121<≤y 时,()()⎪⎪⎭⎫⎝⎛--=-==⎰⎰+∞∞-y dx dx y x f y f y Y 122ln 2312ln 231,21;当21≤≤y 时,()()()y dx dx y x f y f yY --=-==⎰⎰+∞∞-22ln 2312ln 231,2.所以,随机变量Y 的边际密度函数为()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤--<≤⎪⎪⎭⎫ ⎝⎛--=其它02122ln 231121122ln 231y y y y y f Y .六.(本题满分8分)设随机变量X 与Y 满足:()2var =X ,()4var =Y ,()1,cov =Y X ,再设随机变量Y X U 32-=,Y X V 23-=,求二维随机变量()V U ,的相关系数V U ,ρ.解:()()()()()32124924,cov 12var 9var 432var var =-⨯+⨯=-+=-=Y X Y X Y X U ,()()()()()22124429,cov 12var 4var 923var var =-⨯+⨯=-+=-=Y X Y X Y X V ,()()Y X Y X V U 23,32cov ,cov --=()()()()231134626,cov 9,cov 4var 6var 6=⨯-⨯+⨯=--+=Y X Y X X X .所以,二维随机变量()V U ,的相关系数为()()()8668451157.011823223223var var ,cov ,====V U V U V U ρ.七.(本题满分8分)设()21,X X 是取自正态总体()2,0σN 中的一个样本.试求随机变量22121⎪⎪⎭⎫⎝⎛-+=X X X X Y 的分布.(不必求出Y 的密度函数,只需指出Y 是哪一种分布,以及分布中的参数即可.)解:由于()21,0~σN X ,()22,0~σN X ,而且1X 与2X 相互独立,所以()2212,0~σN X X +,()2212,0~σN X X -.由于()()()0var var ,cov 212121=-=-+X X X X X X ,而且()2121,X X X X -+服从二元正态分布,所以21X X +与21X X -相互独立.所以,()1~22221χσ⎪⎭⎫ ⎝⎛+X X ,()1~22221χσ⎪⎭⎫ ⎝⎛-X X ;而且2212⎪⎭⎫ ⎝⎛+σX X 与2212⎪⎭⎫ ⎝⎛-σX X 相互独立.所以,()1,1~2222122122121F X X X X X X X X Y ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-+=σσ.八.(本题满分8分)某射手射击,他打中10环的概率为5.0,打中9环的概率为3.0,打中8环的概率为1.0,打中7环的概率为05.0,打中6环的概率为05.0.他射击100次,试用中心极限定理近似计算他所得的总环数介于900环与930环之间的概率.(附表:标准正态分布分布函数()x Φ的部分数值表:x 25.130.135.140.1()x Φ8944.090230.091149.091924.0解:设k X 表示该射手射击的第k 发时所得的环数()100,,2,1 =k ,则k X 的分布律为k X 109876P5.03.01.005.005.0所以,()15.905.0605.071.083.095.010=⨯+⨯+⨯+⨯+⨯=k X E ,()95.8405.0605.071.083.095.010222222=⨯+⨯+⨯+⨯+⨯=k X E ,所以,()()()[]2275.115.995.84222=-=-=k k k X E X E X D .因此,10021,,,X X X 是独立同分布的随机变量,故()()()()()()⎪⎪⎪⎪⎪⎭⎫⎝⎛-≤-≤-=⎪⎭⎫ ⎝⎛≤≤∑∑∑∑∑∑∑∑========10011001100110011001100110011001930900930900k k k k k k k k k k k k k k k k X D X E X D X E X X D X E P X P ⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯-≤⨯⨯-≤⨯⨯-=∑=2275.110015.91009302275.110015.91002275.110015.91009001001k k X P ⎪⎪⎪⎪⎭⎫⎝⎛≤⨯⨯-≤-=∑=35388.12275.110015.910035388.11001k kXP ()()()82289.0191149.02135.1235.135.1=-⨯=-Φ=-Φ-Φ≈.九.(本题满分9分)设随机变量X 与Y 相互独立而且同分布,其中随机变量X 的分布列为{}{}010,01>-==>==p X P p X P ,再设随机变量⎩⎨⎧++=为奇数为偶数Y X Y X Z 01.⑴写出随机变量()Z X ,的联合分布律以及X 与Z 各自的边缘分布律;⑵问p 取什么值时,随机变量X 与Z 相互独立?解:⑴X 与Z 的联合分布列以及X 与Z 各自的边际分布列为ZX01⋅i p 0()p p -1()21p -p -11()p p -12p pjp ⋅()p p -12()22121p p p +--其中{}{}{}{}()p p Y P X P Y X P Z X P -=========1101,00,0;{}{}{}{}()21000,01,0p Y P X P Y X P Z X P -=========;{}{}{}{}()p p Y P X P Y X P Z X P -=========1010,10,1;{}{}{}{}2111,11,1p Y P X P Y X P Z X P =========;⑵如果X 与Z 相互独立,则有{}(){}{}()p p p Z P X P p p Z X P -⋅====-===120110,1,解方程()()p p p p p -⋅=-121,得21=p .并且当21=p 时,有ZX01⋅i p 04141211414121jp ⋅2121可以验证,此时X 与Z 是相互独立的.十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为5=λ的指数分布.X 的密度函数为()⎩⎨⎧≤>=-0055x x e x f x.现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令:T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数.解:X 的密度函数为()⎩⎨⎧≤>=-00055x x e x f xX ,Y 的密度函数为()⎩⎨⎧≤>=-0055y y e y f yY 由题意,知Y X T +=,设T 的密度函数为()t f T ,则()()()()⎰⎰+∞-+∞∞--=-=55dxx t f e dx x t f x f t f Y x Y X T 作变换x t u -=,则dx du -=,当0=x 时,t u =;当+∞→x 时,-∞→u .代入上式,得()()()()⎰⎰∞---∞--=-=tY u tt Y u t T duu f e edu u f et f 55555当0≤t 时,由()0=y f Y ,知()0=t f T ;当0>t 时,()ttu u tT te du e e et f 55552555-∞---=⋅=⎰综上所述,可知随机变量T 的密度函数为()⎩⎨⎧≤>=-00255t t te t f tT .十一.(本题满分9分)设总体X 的密度函数为()θθθxe xf -=21;,()+∞<<∞-x ,其中0>θ是未知参数.()n X X ,,1 是从中抽取的一个样本.求θ的最大似然估计量.解:θ的似然函数为()()()⎭⎬⎫⎩⎨⎧-==∑∏==n i i nni i x x f L 111exp 21;θθθθ,则有()()∑=--=ni ixn L 112ln ln θθθ,对θ求导,得()∑=+-=ni ixn L d d 121ln θθθθ,令()0ln =θθL d d ,即有0112=+-∑=ni i x n θθ,解似然方程,得∑==ni i x n 11θ.所以,θ的最大似然估计量为∑==n i i X n 11ˆθ.十二.(本题满分9分)设总体X 的密度函数为()()⎪⎩⎪⎨⎧<<-=其它0063θθθx x xx f ,其中0>θ是未知参数,()n X X ,, 1是从该总体中抽取的一个样本.⑴.求未知参数θ的矩估计量θˆ(5分);⑵.求方差()θˆvar (4分).解:⑴.()()()26032θθθθ=-==⎰⎰+∞∞-dx x x dx x xf X E ,所以,()X E 2=θ,将()X E 用样本均值∑==ni i X n X 11来替换,得未知参数θ的矩估计为X2ˆ=θ⑵.()()()()X nX X var 4var 42var ˆvar ===θ,而()()()[]22X E X E X D -=()()204622203322θθθθθθ=--=⎪⎭⎫⎝⎛-=⎰⎰+∞∞-dx x x dx x f x所以,()()nn X n 5204var 4ˆvar 22θθθ=⨯==。

完整word版,北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案

完整word版,北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案

北 京 交 通 大 学2011~2012学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分)在某个社区,60%的家庭拥有汽车,30%的家庭拥有房产,而20%的家庭既有汽车又有房产.现随机地选取一个家庭,求此家庭或者有汽车或者有房产但不是都有的概率. 解:设=A “任取一个家庭拥有汽车”,=B “任取一个家庭拥有房产”.由题设得 ()6.0=A P ,()3.0=B P ,()2.0=AB P .因此有 ()()()()4.02.06.0=-=-=-=AB P A P AB A P B A P ; ()()()()1.02.03.0=-=-=-=AB P B P AB B P B A P . 所求概率为()()()5.01.04.0=+=+=⋃B A P B A P B A B A P . 二.(本题满分8分)假设一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大? 解:设{}此药疗效显著=1A ,{}此药疗效一般=2A ,{}此药无效=3A , {}次感冒某人一年中患2=B .由题设,可知如果事件1A 发生,则X 服从参数为1=λ的Poisson 分布;如果事件2A 发生,则X 服从参数为3=λ的Poisson 分布;如果事件3A 发生,则X 服从参数为4=λ的Poisson 分布.因此,由Bayes 公式,我们有 ()()()()()∑==31111k kkA BP A P A B P A P B A P2206.02441.02337.02122.02122.042321212=⨯+⨯+⨯⨯=----ee e e. 三.(本题满分8分)某人住家附近有一个公交车站,他每天上班时在该站等车的时间X (单位:分钟)服从41=λ的指数分布,如果他候车时间超过5分钟,他就改为步行上班.求他一周5天上班时间中至少有2天需要步行的概率. 解:X 的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex p xX . 设=A “候车时间超过5分钟”,则()4554415-+∞-==≥=⎰e dx e X P p x.设Y :一周5天中他需要步行上班的天数.则()p B Y ,5~,因此所求概率为()()()()41155005111112p p C p p C Y P Y P ----=≤-=≥4438.0151144545545=⎪⎪⎭⎫ ⎝⎛-⋅⋅-⎪⎪⎭⎫ ⎝⎛--=---e e e . 四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧≤≤+=其它05.002x x cx x f .⑴ 求常数c ;⑵ 求X 的分布函数()x F .解:⑴ 由密度函数的性质()1=⎰+∞∞-dx x f ,得()()()()⎰⎰⎰⎰+∞∞-+∞∞-++==5.05.001dx x f dx x f dx x f dx x f ()81242135.00235.002+=⎪⎭⎫ ⎝⎛+=+=⎰c x x cdx x cx ,解方程,得21=c . ⑵ 当0≤x 时,()()0==⎰∞-xdt t f x F ;当5.00<<x 时,()()()()()27212320x x dt t t dt t f dt t f dt t f x F xx x +=+=+==⎰⎰⎰⎰∞-∞-;当5.0≥x 时,()()()()()15.05.00=++==⎰⎰⎰⎰∞-∞-xxdt t f dt t f dt t f dt t f x F .综上所述,随机变量X 的分布函数为()⎪⎩⎪⎨⎧≥<<+≤=5.015.0027023x x x x x x F . 五.(本题满分8分) 设n 个随机变量n X X X ,,,21Λ相互独立,都服从区间()1,0上的均匀分布,令()n X X X Y ,,,m ax 21Λ=,⑴ 求随机变量Y 的密度函数()x p Y ;⑵ 求数学期望()Y E . 解:⑴ 随机变量X 的密度函数为()⎩⎨⎧<<=其它0101x x p X ,分布函数为()⎪⎩⎪⎨⎧≥<<≤=111000x x x x x F X .随机变量Y 的密度函数为 ()()()()⎩⎨⎧<<==--其它01011x nx x p x F n x p n X n X Y .⑵ ()()111+=⋅==⎰⎰-+∞∞-n ndx nx x dx x xp Y E n Y . 六.(本题满分8分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤<≤=其它010421,22y x y x y x p⑴ 求随机变量Y 的边际密度函数;(5分)⑵ 求条件密度函数()y x p Y X .(3分) 解:当0≤y ,或者1≥y 时,()0=y p Y ; 当10<<y 时, ()()⎰⎰⎰--+∞∞-===yyyyY dx x y ydx x dx y x p y p 22421421,2503022731221221y x y dx x y yy=⋅==⎰ 所以,随机变量Y 的边际密度函数为()⎪⎩⎪⎨⎧<<=其它102725y yy p Y . 当10<<y 时,()02725>=y y p Y ,因此当10<<y 时,X 关于Y 的条件密度函数为()()()y p y x p y x p Y Y X ,=2322522327421-==y x y y x即当10<<y 时,条件密度函数为()⎪⎩⎪⎨⎧≤<≤=-其它10232232y x y x y x p Y X .七.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN .再令bY aX U +=,bY aX V -=,其中a 与b 是不全为零的常数,求随机变量U 与V 的协方差()V U ,cov 与相关系数V U ,ρ. 解:由于随机变量X 与Y 都服从正态分布()2,σμN ,所以()()μ==Y E X E ,()()2σ==Y D X D .()()()()()μμμb a b a Y bE X aE bY aX E U E +=⋅+⋅=+=+=; ()()()()()μμμb a b a Y bE X aE bY aX E V E -=⋅-⋅=-=-=. 再由于随机变量X 与Y 相互独立,故有()()()()()222222222σσσb a b a Y D b X D a bY aX D U D +=⋅+⋅=+=+=, ()()()()()222222222σσσb a b a Y D b X D a bY aX D V D +=⋅+⋅=+=-=, ()()bY aX bY aX V U -+=,cov ,cov ()()()()()2222222,cov ,cov σb a Y D b X D a Y Y b X X a -=-=-=,所以,()()()2222,,cov ba b a V D U D V U VU +-==ρ. 八.(本题满分8分)某药厂断言,该厂生产的某种药品对治愈一种疑难的血液病的治愈率为8.0.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言;否则就拒绝这一断言.试用中心极限定理计算,⑴ 如果实际上对这种疾病的治愈率确为8.0,问拒绝这一断言的概率是多少?⑵ 如果实际上对这种疾病的治愈率为7.0,问接受这一断言的概率是多少? (附,标准正态分布()1,0N 的分布函数()x Φ的某些数值:解:设X :100位服用此药品的病人中治愈此病的人数,则()p B X ,100~.⑴ 当8.0=p 时,()()⎪⎭⎫ ⎝⎛⨯⨯⨯-≤⨯⨯⨯-=≤=2.08.01008.0100752.08.01008.010075X P X P P 拒绝断言()()1056.08944.0125.1125.125.12.08.01008.0100=-=Φ-=-Φ=⎪⎭⎫⎝⎛-≤⨯⨯⨯-=X P .⑵ 当7.0=p 时,()()⎪⎭⎫ ⎝⎛⨯⨯⨯-≤⨯⨯⨯--=>=3.07.01007.0100753.07.01007.0100175X P X P P 接受断言()1379.08621.0109.1109.13.07.01007.01001=-=Φ-≈⎪⎭⎫⎝⎛≤⨯⨯⨯--=X P .九.(本题满分8分) 设总体()2,~σμN X ,()921,,,X X X Λ是取自总体X 中的一个样本,令∑==61161i i X Y , ∑==97231i i X Y ,()∑=-=9722221i i Y X U .计算统计量()U Y Y Z 212-=的分布(不需求出Z 的密度函数,只需指出Z 所服从的分布及其参数). 解:由题设可知,⎪⎪⎭⎫ ⎝⎛6,~21σμN Y ,⎪⎪⎭⎫⎝⎛3,~22σμN Y ,所以有 ⎪⎪⎭⎫⎝⎛-2,0~221σN Y Y .因此有()1,0~221N Y Y σ-. 又由()∑=-=9722221i i Y X U ,得()2~2222χσU .因此由t 分布的构造,得 ()()2~21222222121t UY Y UY Y Z ⋅-=-=σσ.十.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pq k X P ()Λ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21Λ是取自该总体中的一个样本.试求参数p 的极大似然估计量. 解:似然函数为 (){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ========ΛΛ22112211,,,()()()()n x nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111Λ 所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=p nx p n p L dp d nk k ,解方程,得xp 1=. 因此p 的极大似然估计量为Xp1ˆ=. 十一.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3,Λ,N ,其中N 是未知的正整数.()n X X X ,,,21Λ是取自该总体中的一个样本.试求N 的极大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的极大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1Λ=. 所以似然函数为 (){}nni i i N x X P N L 11===∏=, ()()n i N x i ,,2,1,1Λ=≤≤.当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1Λ=≤≤,即{}()n n x x x x N =≥,,,max 21Λ.所以,N 的最大似然估计量为()n X N =ˆ. ⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N . 十二.(本题满分10分)三个朋友去喝咖啡,他们决定用如下的方式付账:每人各掷一枚均匀的硬币,如果某人掷出的结果与其余两人的不一样,则由该人付账;如果三人掷出的结果都一样,则重新掷下去,直到确定了由谁付账时为止.求:⑴ 抛掷硬币次数X 的数学期望;(5分)⑵ 进行了3次还没确定付账人的概率.(5分) 解:⑴ X 的取值为Λ,3,2,1.并且()43411⋅⎪⎭⎫⎝⎛==-k k X P , ()Λ,3,2,1=k . 即随机变量X 服从参数43=p 的几何分布,因此()341==p X E .⑵ ()()015625.0641414313333==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=>=X P P 次还未确定付账人进行了.。

《概率统计》期末考试题(有答案)

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题一填空题(每小题2分,共20 分)1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为()。

2.设,则().3.设随机变量的分布函数为,则(),( ).4.设随机变量服从参数为的泊松分布,则( )。

5.若随机变量X的概率密度为,则()6.设相互独立同服从区间(1,6)上的均匀分布,().7.设二维随机变量(X,Y)的联合分布律为X Y 1 21则8.设二维随机变量(X,Y)的联合密度函数为,则()9.若随机变量X与Y满足关系,则X与Y的相关系数()。

10.设二维随机变量,则( ).二.选择题(每小题2分,共10 分)1.设当事件同时发生时事件也发生,则有().2.假设事件满足,则()。

(a) B是必然事件(b)(c) (d)3.下列函数不是随机变量密度函数的是( ).(a) (b)(c)(d)4.设随机变量X服从参数为的泊松分布,则概率( )。

5.若二维随机变量(X,Y)在区域内服从均匀分布,则=().三、解答题(1—6小题每题9分,7-8小题每题8分,共70分)1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三车间的正品率分别为0。

95, 0。

96, 0.98。

现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。

2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数的概率分布;(2)求的分布函数.3.设随机变量的密度函数为.(1)求参数;(2)求的分布函数;(2)求.4.设随机变量的密度函数为,求的密度。

5.设二维随机变量(X,Y)在区域内服从均匀分布,求(X,Y)的联合密度函数与两个边缘密度函数,并判断是否独立。

6.设随机变量的数学期望均为0,方差均为1,且任意两个变量的协方差均为.令,求的相关系数。

.7.设X与Y相互独立且同服从参数为的指数分布,求的密度函数。

概率论期末考试题及答案pdf

概率论期末考试题及答案pdf

概率论期末考试题及答案pdf一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,则P(X<0)的值为()。

A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),则E(X)的值为()。

A. npB. n(1-p)C. pD. 1答案:A3. 两个随机变量X和Y相互独立,则P(X>1, Y>1)等于()。

A. P(X>1)P(Y>1)B. P(X>1) + P(Y>1)C. P(X>1) - P(Y>1)D. P(X>1) / P(Y>1)答案:A4. 随机变量X服从泊松分布,其参数为λ,则P(X=k)的值为()。

A. λ^k * e^(-λ) / k!B. λ^k * e^(-λ) * k!C. λ^k * e^(-λ) / (k-1)!D. λ^k * e^(-λ) * (k-1)!答案:A5. 随机变量X服从均匀分布U(a, b),则其期望E(X)的值为()。

A. (a+b)/2B. a+bC. 2a-bD. 2b-a答案:A6. 已知随机变量X服从正态分布N(μ, σ^2),则其方差Var(X)的值为()。

A. μB. σ^2C. 1/σ^2D. 1/μ答案:B7. 随机变量X服从指数分布,其参数为λ,则其期望E(X)的值为()。

A. 1/λB. λC. 1D. 0答案:A8. 随机变量X和Y相互独立,且都服从标准正态分布,则P(X+Y<0)的值为()。

A. 0.5B. 0.25C. 0.75D. 0.9答案:A9. 随机变量X服从二项分布B(n, p),则其方差Var(X)的值为()。

A. npB. np(1-p)C. pD. 1-p答案:B10. 随机变量X服从正态分布N(μ, σ^2),若P(X<μ)=0.5,则μ的值为()。

A. 0B. 1C. μD. σ^2答案:C二、填空题(每题4分,共20分)11. 随机变量X服从标准正态分布,若P(X<1.96)=0.975,则P(X>1.96)=________。

北京交通大学22春“物流管理”《概率论与数理统计》期末考试高频考点版(带答案)试卷号4

北京交通大学22春“物流管理”《概率论与数理统计》期末考试高频考点版(带答案)试卷号4

北京交通大学22春“物流管理”《概率论与数理统计》期末考试高频考点版(带答案)一.综合考核(共50题)1.设随机变量X和Y相互独立,X的概率分布为X=0时,P=1/3﹔X=1时,P=2/3。

Y的概率分布为Y=0时,P=1/3﹔Y=1时,P=2/3。

则下列式子正确的是()A.X=YB.P{X=Y}=1C.P{X=Y}=5/9D.P{X=Y}=0参考答案:C2.现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是()A.0.0124B.0.0458C.0.0769D.0.0971参考答案:A3.已知随机变量X~N(-3,1),Y~N(2,1),且X与Y相互独立,Z=X-2Y+7,则Z~()A.N(0,5)B.N(1,5)C.N(0,4)D.N(1,4)参考答案:A4.在掷硬币的试验中每次正反面出现的概率是相同的,这个概率在每次实验中都得到体现。

()A.错误B.正确5.设随机变量X~B(n,p),已知EX=0.5,DX=0.45,则n,p的值是()。

A.n=5,p=0.3B.n=10,p=0.05C.n=1,p=0.5D.n=5,p=0.1参考答案:D6.对于任意两个随机变量X和Y,若E(XY)=EX*EY,则()。

A.D(XY)=DX*DYB.D(X+Y)=DX+DYC.X和Y相互独立D.X和Y互不相容参考答案:B7.现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生25人。

则样本容量为()A.2B.21C.25D.46参考答案:D8.下列集合中哪个集合是A={1,3,5}的子集()A.{1,3}B.{1,3,8}C.{1,8}D.{12}参考答案:A200个新生儿中,男孩数在80到120之间的概率为(),假定生男生女的机会相同A.0.9954B.0.7415C.0.6847D.0.4587参考答案:A10.炮弹爆炸时产生大、中、小三块弹片。

北京交通大学概率论期末试卷

北京交通大学概率论期末试卷

2006-2007学年第一学期随机数学(B )期末考试试卷答案(A )一.填空题(本题满分15分,共有5道小题,每道小题3分)请将合适的答案填在每题的空中 1.设A 、B 、C 是三个随机事件,且()()51==C P A P ,()31=B P ,()61=AB P ,()81=BC P ,()0=AC P .则A 、B 、C 这三个随机事件中至少有一个发生的概率为________.解:所求概率为()C B A P ⋃⋃.由概率的加法公式得()()()()()()()()ABC P AC P BC P AB P C P B P A P C B A P +---++=⋃⋃. 由于AC ABC ⊂,由概率的单调性、非负性及题设中的条件,得()()AC P ABC P ≤≤0. ()()00=≤≤AC P ABC P ,所以()0=ABC P .因此,()()()()()()()()ABC P AC P BC P AB P C P B P A P C B A P +---++=⋃⋃ 12053008161315151=+---++=. 应填:53120. 2.设随机变量X 的概率密度为()2121120x f x x ⎧⎛⎫-<<⎪ ⎪=⎝⎭⎨⎪⎩其它 则X 的分布函数为: ________.解:因为概率密度在1x ≤,2x ≥处都等于0,即知 当1x ≤时,()0F x =, 当2x ≥时,()1F x =,当12x <<时,02111()()02(1)112()2(2)x xx F x f x dx dx dx xx x x x-∞-∞==+-=+=+-⎰⎰⎰,故所求的分布函数是0,11()2(2),121,2x F x x x x x ≤⎧⎪⎪=+-<<⎨⎪≥⎪⎩3.设随机变量X 服从参数为λ的泊松分布,并且{}{}21===X P X P , 则{}4=X P =________.解:由于随机变量X服从参数为λ的泊松分布,所以X 的分布律为{}() ,,,210!===-k e k k X P kλλ.由已知条件,得{}{}21===X P X P ,得 λλλλ--=e e 22,解此方程,得2=λ,因此X 的分布律为{}() ,,,210!22===-k ek k X P k .所以,{}09022.0!42424===-e X P .应填:4224!e -或0.09022。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北 京 交 通 大 学
2007-2008学年第二学期《随机数学(B )》期末考试试卷(A )
学院 专业 班级
学号
姓名
注意:本试卷共有十二道题,如有不对,请与监考教师调换!
一.(满分6分)已知()
P 0.3A =,()P B 0.4=,()
P 0.5AB =,求P B A B ⋃。

二. (满分8分)城乡超市销售一批照相机共10台,其中有3台次品,其余均为正品,某顾客去选购时,超市已售出2台,该顾客从剩下的8台中任意选购一台,求
(1)该顾客购到正品的概率;
(2)若已知顾客购到的是正品,则已售出的两台都是次品的概率是多少?
三. (满分8分) 设随机变量X 服从[0,4]上的均匀分布,求随机变量2X Y -=的分布函数和概率密度。

四(满分8分) 设二维随机变量()Y X ,的概率密度为
()()
1(+)e
,0,02
0,x+y x y x y f x y -⎧>>⎪=⎨⎪⎩
,其他
求Y X Z +=的概率密度。

五.(满分8分) 设二维随机变量()Y X ,的概率密度为
()210y 01
x <y <x f x y ⎧<=⎨
⎩,其它 ⑴. 求随机变量X, Y 的边缘密度函数()()y f x f Y X ,;随机变量X, Y 是否相互独立? ⑵. 求()y x f Y X ||;()x y f X Y ||
六. (满分10分)设随机变量Y 服从参数为1θ=的指数分布,随机变量
0,Y ,1,2.1,Y>,
k k X k k ≤⎧==⎨⎩
求(1) 1X 和2X 的联合分布律和边缘分布律;(2)12cov(X ,X ), 1
2
X X
ρ.
七.(满分8分)某公司出口某种产品,每出口1吨可获利3万元,若积压1吨,则亏损2万元。

已知国外每年对此公司的产品需求为X吨,X服从在[1000,3000]上的均匀分布,问每年应储备多少产品,才使公司所获利润的数学期望最大。

八.(满分8分)设总体服从参数为 的泊松分布,X 1,X 2, ,X n 是一样本。

(1)写出X 1,X 2, ,X n 的联合分布律。

(2)计算E()X ,D()X 和2E(S )。

(3)设总体的容量为10的一组样本观察值为(1,2,4,3,3,4,5,6,4,8),试计算样本均值和样本方差。

九(满分8分) 某保险公司有10000人参加保险,每人每年交12元保险费,在一年内一个人死亡的概率为0.006,死亡后其家属可向保险公司领到1000元。

试用中心极限定理求 (1) 保险公司亏本的概率是多少?
(2) 保险公司一年的利润不少于40000元的概率是多少?
(已知()2.58980.9952Φ=,其中()x Φ是正态分布()10,N 的分布函数)
十(满分10分) 一批产品中含有废品,从中随机抽取75件,发现废品10件,试用最大似然估计法估计这批产品的废品率。

十一. (满分8分)设某种清漆的9个样品,其干燥时间(以小时计)分别为
6.0 5.7 5.8 6.5
7.0 6.3 5.6 6.1 5.0
设干燥时间总体服从正态分布()
2N ,μσ。

求μ的置信水平为0.95的置信区间。

已知()005t 818595..=,()005t 918331..=,()0025t 82306..=,()0025t 922622..=
十二. (满分10分)设12n X ,X ,X 为取自总体()X U a,b 的样本,()12n 1X =min(X ,X ,X ), 令: ()12n n X =max(X ,X ,X ), 证明:()()1E[X ]+E[X ]n a+b =。

相关文档
最新文档