【运筹学】复习参考资料知识点与习题集
管理运筹学复习题及部分参考答案
一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策二、简答题 1.简述运筹学的工作步骤。
2.运筹学中模型有哪些基本形式 3.简述线性规划问题隐含的假设。
4.线性规划模型的特征。
5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解 6.简述对偶理论的基本内容。
7.简述对偶问题的基本性质。
8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。
9.简述运输问题的求解方法。
10.树图的性质。
11.简述最小支撑树的求法。
12.绘制网络图应遵循什么规则。
三、书《收据模型与决策》2.13 14. 有如下的直线方程:2x 1 +x 2 =4 a. 当x 2 =0 时确定x 1 的值。
当x 1 =0 时确定x 2 的值。
b. 以x 1 为横轴x 2 为纵轴建立一个两维图。
使用a 的结果画出这条直线。
c. 确定直线的斜率。
d. 找出斜截式直线方程。
然后使用这个形式确定直线的斜率和直线在纵轴上的截距。
答案: 14. a. 如果x 2 =0,则x 1 =2。
如果x 1 =0,则x 2 =4。
c. 斜率= -2 d. x 2 =-2 x 1 +4 2.40 你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。
模型的代数形式如下所示。
Maximize 成本=15 x 1 +20 x 2 约束条件约束1:x 1 + 2x 2 10 约束2:2x 1 3x 2 6 约束3:x 1 +x 2 6和x 1 0,x 2 0 a. 用图解法求解这个模型。
b. 为这个问题建立一个电子表格模型。
c. 使用Excel Solver 求解这个模型。
答案: a. 最优解:(x 1 , x 2 )=(2, 4),C=110 b c.活动获利 1 2总计水平A B C 1 2 2 3 1 1 10 10 8 6 6 6 单位成本方案15 20 2 4 $110.00 3.2 考虑具有如下所示参数表的资源分配问题: 资源每一活动的单位资源使用量可获得的资源数量 1 2 1 2 3 2 3 2 1 3 4 10 20 20 单位贡献$20 $30 单位贡献=单位活动的利润b. 将该问题在电子表格上建模。
运筹学 本(复习资料)
《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。
[ ]3.任何线性规划问题存在并具有惟一的对偶问题。
[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
运筹学期末考试复习资料
《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。
答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。
答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。
答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。
答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。
答案:对7.LP 问题的可行域是凸集。
答案:对8.动态规划实质是阶段上枚举,过程上寻优。
答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。
答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。
答案:错11.LP问题的基可行解对应可行域的顶点。
答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。
答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。
答案:对14.对偶问题的对偶问题一定是原问题。
答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。
《运筹学》复习资料整理总结
《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。
确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。
都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。
问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。
问题中用一组决策变量来表示一种方案。
3. 线性规划问题标准型的特征。
4. 化标准型的方法。
123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。
6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。
7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。
8. 最优解:函数达到最优的可行解叫做最优解。
9.图解法适合于变量个数为2个的线性规划问题。
10.单纯形法解线性规划问题如何确定初始基本可行解。
(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。
(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。
(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。
(完整word版)最全的运筹学复习题及答案
5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2)。
表示约束条件的数学式都是线性等式或不等式;(3)。
表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2.图解法适用于含有两个变量的线性规划问题.3.线性规划问题的可行解是指满足所有约束条件的解。
4.在线性规划问题的基本解中,所有的非基变量等于零.5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7.线性规划问题有可行解,则必有基可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解.9.满足非负条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13.线性规划问题可分为目标函数求极大值和极小_值两类。
14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解. 17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18。
如果某个约束条件是“≤"情形,若化为标准形式,需要引入一松弛变量。
19。
如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j =X j ′- X j 。
运筹学复习重点
二、表解形式的单纯形法 千里之行,始于足下。
(1)建立初始单纯形表:包括决策变量、基变量及其价值系数,以
及约束方程组的增广矩阵。
(2)找出初始可行基:在增广矩阵中寻找单位子矩阵形式的可行
基,进而得到相应的基变量。
(3)计算
zj
=
m
∑ ciaij
,其中ci
是基变量的价值系数,进而计算检验数
σ j = z j − ci=j1。
第 9 页源 /共 37 页 9
千里之行,始于足下。
对称形式下原问题和对偶问题在形式上的对比
原问题:
对偶问题:
用矩阵形式表示,对称形式下原问题与其对偶问题
的对比如下:
max z = CX
min ω = Y ′b
AX ≤ b
A′Y ≥ C′
≥ 0 第 10 页源 /共 37 页 10
千里之行,始于足下。
四、工作指派问题
工作指派问题是这样一类问题: 有n个人和n件事,已知第i个人做第j件事的 费用为cij (i, j = 1, 2,", n),要求确定人和事之间的 一一对应的指派方案,使完成这n件事的总 费用最少。
对于工作指派问题,一般用匈牙利法进行求解。
第 11 页源 /共 37 页 11
千里之行,始于足下。
令始点 vs的标号为[0, ∞] 。
标号规则:
1)若从已标号顶点 vi 顶点vj 标号为 [vi , β
出发的弧是正向弧,当
{ (v j )] ,其中β (vj ) = min β (vi
fij ),
< cij
cij时,
} − fij ;
2)若从已标号顶点 vi出发的弧是反向弧,当 f ji > 0 时,
管理运筹学期末复习权威资料
运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。
运筹学-总复习(整理全部重点题目)-
《管理运筹学》总复习第一天:1)(★★★★★)课本Page59第5题(租赁问题):某公司在今后四个月内需租用仓库堆放物资。
已知各个月所需的仓库面积数字如下所示:设第个月签订的打算租用个月合同仓库面积为,那么这个月共有可能有如下合同:第一个月:第二个月:第三个月:第一个月:因此目标函数为:约束条件为:2)(★★★)讲义Page8例1(人力资源问题):福安商场是个中型百货商场,他对销售员的需求经过统计分析如下表。
为了保证售货人员充分的休息,售货人员每周工作5天,休息2天,并且要求休息的两天是连续的。
问如何安排售货人员的工作作息,才能做到既满足工作需要,又使配备的工作人员最少?解:设在星期开始休息的人数为,表示星期一到星期日那么,目标函数为:约束条件为:周一:周二:周三:周四:周五:周六:周日:非负约束:3)(★)【据说出题时会和整数规划相融合】讲义Page10例5(投资问题):某部门现有资金200万,今后五年内考虑给以下项目投资。
已知,项目A:从第一年到第五年都每年年初都可以投资,当年末能收回本利110%;项目B:从第一年到第四年都每年年初都可以投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万;项目C:需在第三年初投资,第五年末收回本利140%,但规定最大投资额不能超过80万;项目D:须知第二年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万;据测定每万元每次投资的风险指数如下表:1)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大?2)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万的基础上使得其投资总的风险系数最小?解:设第年初投资在项目上的金额为,其中,。
第一年初:,,不能浪费资金,所以有,第一年年末收回:第二年初:,,,用第一年年末的收回投资,所以有:,第二年年末收回:第三年初:,,,用第二年年末收回投资,所以有:,第三年年末收回:第四年初:,,用第三年年末收回进行投资,所以有:,第四年年末收回:第五年初:用第四年年末回收进行投资,所以有:,第五年年末收回:同时,根据项目的要求,有:第(1)问答如下:目标函数为:约束条件为:第(2)问答如下:目标函数为:约束条件为:4)(★★★★)讲义Page11分析讨论题3(工厂布局问题):设有某种原料产地A1,A2,A3,把这种原料经过加工,制成成品,再运往销地。
运筹学考试复习资料
《运筹学课程》第一次作业 第一题:某工厂生产某一种型号的机床,每台机床上需要2.9m 、2.1m 、1.5m 的轴、分别为1根、2根、1根。
这些轴需用同一种圆钢制作,圆钢的长度为7.4m 。
如果要生产100台机床,问应如何安排下料,才能用料最省?试建立其线性规划模型。
第二题:用图解法求解,线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0,52426155..2max 212121221x x x x x x x t s x x Z 第一题:求以下各图的最小支撑树(1)(2)第二题:表1《运筹学课程》第二次作业第一题:用图解法求解下列线性规划问题,并指出问题是具有唯一最忧解、多重最优解、无界解或无可行解.第二题:将下列线性规划模型的一般形式转化为标准型(1)()⎪⎪⎩⎪⎪⎨⎧∞-∞∈≥≤++=+-≥+-+-=,321321321321321,0,1036345..32max x x x x x x x x x x x x t s x x x Z (2)()⎪⎩⎪⎨⎧-∞∞∈≥≤-≤-+--=++-+-=,,0,0824..22min 321321321321x x x x x x x x x t s x x x Z第三题:用单纯型法求解线性规划问题,并用图解法进行验证注:按照我上课所讲例题的求解步骤进行(参照课件),好好理解单纯型法的基本原理,做题时先不要使用单纯型法的表格形式。
第四题:自己亲自动手推到一下单纯型法中的检验数,参照课件中29-31页。
第一题:(1)求点v 1到图中个点的最短路;(2)指出v 1不可到达哪些点。
第二题:已知某地区的交通网络如图所示,图中点代表居民小区,边表示公路,l ij为小区间公路距离,问该地区中心医院应建在哪个小区较为合适。
第一题:用最简单方法求解该线性规划问题(提示:求出该问题的对偶问题,然后用单纯型法求解对偶问题,可减少计算量,从最后一张单纯形表获得原问题的最优解)第二题:表1第三题:已知产销平衡问题,见表2表2分别用“最小元素法”和“伏格尔法”求该问题的初始基可行解,并求出这两个基可行解的目标函数值。
运筹学复习资料
运筹学复习资料
运筹学是数学和计算机科学的一个分支,旨在寻找最佳决策和优化问题的解决方案。
以下是有关运筹学的复习资料:
1. 模型建立:在运筹学中,解决问题的第一步是建立数学模型。
数学模型是指将实际问题抽象为数学语言,建立相应的数学方程式,使之成为可计算的问题。
在建模时需要明确问题目标、约束条件等。
2. 线性规划:线性规划是一种常用的优化方法,其目标函数和约束条件都是线性的。
采用单纯形法、内点法等算法可以求得最优解。
常见应用包括生产计划、库存管理等方面。
3. 整数规划:整数规划针对决策变量必须为整数这一特殊问题,增加了解整数约束条件的限制,采用分支定界法、割平面法等算法进行求解。
常见应用包括制造业需求计划、网络设计等方面。
4. 动态规划:动态规划和线性规划不同,其适用于序列决策问题,采用递推式方法实现求解。
常见应用包括背包问题、任务调度等方面。
5. 随机规划:随机规划引入随机变量,结合概率模型,可对不确定因素进行分析。
常见应用包括金融风险管理、供应链问题等方面。
6. 对策论:对策论是一种博弈论,面对竞争环境下的决策,需要考虑对手的策略,采用最小最大原则求解博弈双方的最佳决策。
常见应用包括竞价拍卖、垄断竞争等方面。
运筹学是实际问题求解的一种强有力的工具和方法,深入了解运筹学的理论与方法对于提高问题求解的精度、效率具有重要意义。
(完整版)《运筹学》习题集
第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
运筹学复习资料
运筹学复习一、单纯形方法〔表格、人工变量、根底知识〕线性规划解的情况:唯一最优解、多重最优解、无界解、无解。
其中,可行域无界,并不意味着目标函数值无界。
无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。
有界可行域对应唯一最优解和多重最优解两种情况。
线性规划解得根本性质有:满足线性规划约束条件的可行解集〔可行域〕构成一个凸多边形;凸多边形的顶点〔极点〕与根本可行解一一对应〔即一个根本可行解对应一个顶点〕;线性规划问题假设有最优解,那么最优解一定在凸多边形的某个顶点上取得。
单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。
换基迭代要求除了进基的非基变量外,其余非基变量全为零。
检验最优性的一个方法是在目标函数中,用非基变量表示基变量。
要求检验数全部小于等于零。
“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。
〞这句话是最小比值法的一种通俗的说法,但是很有意义。
这里,x1为进基变量,x3为出基变量。
将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。
单纯型原理的矩阵描述。
在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。
最初基变量对应的基矩阵的逆矩阵。
这个样子:'1222 1 0 -382580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5 所有的检验数均小于或等于零,有最优解。
但是如果出现非基变量的检验数为0,那么有无穷多的最优解,这时应该继续迭代。
解的结果应该是: X *= a X 1*+(1-a)X 2*〔0<=a<=1〕说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。
《运筹学》习题集汇总
第一章线性规划1.1 将下述线性规划问题化成标准形式 1 min z =-3x 1 + 4x 2 - 2x 3 + 5 x 4st.4x 1 - x 2 + 2x 3 - x 4 =-2 x 1 + x 2 - x 3 +2 x4 ≤ 14 -2x 1 + 3x 2 +x 3 -x 4 ≥ 2 x 1 ,x 2 ,x 3 ≥ 0,x 4 无约束2 min z = 2x 1 -2x 2 +3x 3- x 1 + x 2 + x 3 = 4 -2x 1 + x 2 -x 3 ≤ 6 x 1≤0 ,x 2 ≥ 0,x 3无约束st.1.2用图解法求解LP 问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1 min z =2x 1+3x 24x 1+6x 2≥6st 2x 1+2x 2≥4 x 1,x 2≥02 max z =3x 1+2x 2 2x 1+x 2≤2 st 3x 1+4x 2≥12x 1,x 2≥03 max z =3x 1+5x 2 6x 1+10x 2≤120 st 5≤x 1≤103≤x 2≤84 max z =5x 1+6x 2 2x 1-x 2≥21.3 找出下述LP 问题所有基解,指出哪些是基可行解,并确定最优解(1)min z =5x 1-2x 2+3x 3+2x 41st -2x 1+3x 2≤2 x 1,x 2≥0x 1+2x 2+3x 3+4x 4=7 st 2x 1+2x 2+x 3 +2x 4=3x 1,x 2,x 3,x 4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1 maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02 maxz =2x 1+x 23x 1+5x 2≤15 st 6x 1+2x 2≤24x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
运筹学复习资料
运筹学复习资料导言:运筹学是一门研究管理、决策和规划问题的学科,使用数学、统计学和计算机科学等工具和技术来解决实际问题。
在现代社会中,运筹学在各个领域都有广泛的应用,包括制造业、物流管理、供应链管理、信息技术等。
本文档将介绍运筹学的基本概念、方法和应用,以帮助读者复习和理解该学科。
一、运筹学的概述1.1 定义和背景运筹学是一门综合性学科,旨在解决实际问题和优化决策。
它结合了数学、统计学和计算机科学等多个领域的方法和技术,可以帮助决策者做出最佳的决策。
1.2 运筹学的历史运筹学的起源可以追溯到第二次世界大战期间,当时运筹学的方法和技术被用于军事决策和规划。
随着计算机的发展和应用,运筹学得到了快速发展,并在各个领域都得到了广泛应用。
二、线性规划2.1 线性规划的基本概念线性规划是运筹学中最重要的方法之一,其基本思想是通过数学模型来描述和解决实际问题。
线性规划的目标是寻找一个最优解,使得目标函数最大或最小,同时满足一系列约束条件。
2.2 线性规划的求解方法线性规划的求解方法主要有图形法和单纯形法两种。
图形法适用于二维规划问题,通过绘制等式和不等式的图形来找到最优解。
而单纯形法适用于高维规划问题,通过迭代计算来找到最优解。
三、网络优化3.1 网络的基本概念在运筹学中,网络是指由节点和弧组成的图形,用于描述和解决一系列连接和流动问题。
节点表示供应点或需求点,弧表示连接的路径。
网络优化的目标是寻找最佳的路径和流量分布。
3.2 最小生成树算法最小生成树算法是网络优化中常用的一种算法,用于寻找一个连通图的最小生成树。
最小生成树算法主要有Prim算法和Kruskal 算法两种,可以有效地减少路径的总长度。
四、整数规划4.1 整数规划的概念整数规划是一种特殊的线性规划问题,其变量需要取整数值。
整数规划适用于某些决策变量只能是整数的问题,如分配问题、路径选择问题等。
4.2 整数规划的求解方法整数规划的求解方法主要有分支定界法和割平面法两种。
运筹学重点及部分习题
阶段ⅤK = 5F6(S6)=0有:
F5(S5)= Max{4X5+6S5}
0≤X5≤S5
因为4X5+6S5随X5单调递增,所以取X5=S5
此时X5=S5F5(S5)=10S5
阶段ⅣK= 4
F4(S4)=Max{4X4+6S4+F5(S5))}
0≤X4≤S4
= Max {4X4+6S4+F5(S5)}
= Max {18S3–(1/2)X3}
0≤X3≤S3
由于18S3–(1/2)X3随X3单调递减所以取X3=0
此时:X3= 0F3(S3)= 18S3
阶段ⅡK = 2
F2(S2)= Max {4 X2+6 S2+ F3(S3)}
= Max {4 X2+6 S2+18S3}
= Max {4 X2+6 S2+18(0.8 S2-0.3 X2)}
\= Max {22.32 S1-2.12 X1}
0≤X1≤S1
同理取X1=0
此时X1=0F1(S1) = 22.32 S1
将S1=125代入得:F1(S1)= F1(125) =22.32X125=2790(万元)
即公司五年内可获得最大收益值为2790万元,最优生产计划方案为表6—9所示表6—9
年份
总费用V3+F4
最佳生产量(X3)
3
0
2
13.2
0
13.6
26.8
4
3
19.5
1
7.5
27
4
25.8
2
0.8
26.6
1
1
7.3
(完整版)《运筹学》复习参考资料知识点及习题
第一部分线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。
定义:达到目标的可行解为最优解。
㈡图解法:图解法采用直角坐标求解:x1——横轴;x2——竖轴。
1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。
4、确定最优解及目标函数值。
㈢参考例题:(只要求下面这些有唯一最优解的类型)例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?(此题也可用“单纯形法”或化“对偶问题”用大M法求解)解:设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+72039450552121x x x x 解出x 1=75,x 2=15 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(75,15)T∴max z =Z *= 70×75+30×15=5700⑴⑵ ⑶ ⑷ ⑸、⑹max z = 6x 1+4x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+81022121x x x x 解出x 1=2,x 2=6 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(2,6)T∴max z = 6×2+4×6=36⑴⑵ ⑶ ⑷ ⑸、⑹min z =-3x 1+x 2 s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤≤08212523421212121x x x x x x x x , 解:可行解域为bcdefb ,最优解为b 点。
《运筹学》复习资料
远程教育学院期末复习大纲模板注:如学员使用其他版本教材,请参考相关知识点一、客观部分:(单项选择、多项选择、判断)(一)多选题1.线性规划模型由下面哪几部分组成?(ABC)A决策变量B约束条件C目标函数 D 价值向量★考核知识点:线性规划模型的构成。
(1。
1)附1.1。
1(考核知识点解释):线性规划模型的构成:实际上,所有的线性规划问题都包含这三个因素:(1)决策变量是问题中有待确定的未知因素.例如决定企业经营目标的各产品的产量等.(2)目标函数是指对问题所追求的目标的数学描述.例如利润最大、成本最小等。
(3)约束条件是指实现问题目标的限制因素。
如原材料供应量、生产能力、市场需求等,它们限制了目标值所能到达的程度。
2.下面关于线性规划问题的说法正确的是(AB)A.线性规划问题是指在线性等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题.B.线性规划问题是指在线性不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。
C.线性规划问题是指在一般不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题.D.以上说法均不正确★考核知识点:线性规划模型的线性含义.(1。
1)附1。
1.2(考核知识点解释):所谓“线性"规划,是指如果目标函数是关于决策变量的线性函数,而且约束条件也都是关于决策变量的线性等式或线性不等式,则相应的规划问题就称为线性规划问题。
3.下面关于图解法解线性规划问题的说法不正确的是(BC )A在平面直角坐标系下,图解法只适用于两个决策变量的线性规划B 图解法适用于两个或两个以上决策变量的线性规划C 图解法解线性规划要求决策变量个数不要太多,一般都能得到满意解D 以上说法A正确,B,C不正确★考核知识点:线性规划图解法的条件. (1。
2)附1。
1。
3(考核知识点解释):线性规划图解法的条件:对于只有两个变量的线性规划问题,可以在二维直角坐标上作图。
运筹学期末复习资料1
二,单纯形法举例 maxZ=2x1+3x2 x1+2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 xj ≥ 0
三,最优性检验与单纯形表 1.最优性检验 最优性定理:对某基可行解(XB,0…0),
若最优解.
无界解定理:若对某可行基B,存在σk>0, B-1 pk ≤0,则该线性规划问题无界解.
2 x1+2x2 ≤ 12 x1+2x2 ≤ 8 4 x1 ≤ 16 4 x2 ≤ 12 x1, x2 ≥ 0 例2.maxZ= 2x1+x2 3x1+5x2 ≤ 15 6x1+2x2 ≤ 24 xj ≥ 0
第二节 线性规划问题的几何意义 基本概念 1.凸集:设k是n维空间的一个点集,若任 意两点x(1) ∈ k, x(2) ∈ K的连线上的 一切点α x(1) + (1-α) x(2) ∈ k,则称 k为凸集. 2.结论:线性规划问题的可行域是凸集. 凸集的每个顶点对应一个基可行解.若线 性规划问题有最优解,必在可行域某顶点 上达到.
四,线性规划问题的标准型 maxZ=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn=b1 a21x1+a22x2+…+a2nxn=b2 …… am1x1+am2x2+…+amnxn=bm xj≥0
用向量和矩阵表示 设C=(c1, c2, c3,…, cn) X=(x1, x2, x3,…, xn)′ pj= (a1j, a2j, a3j,…, amj)′ b= (b1, b2, b3,…, bm)′ A= a11, a12, a13,…, a1n a21, a22, a23,…, a2n am1, am2, am3,…, amn = (p1, p2, p3,…, pn)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。
定义:达到目标的可行解为最优解。
㈡图解法:图解法采用直角坐标求解:x1——横轴;x2——竖轴。
1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。
4、确定最优解及目标函数值。
㈢参考例题:(只要求下面这些有唯一最优解的类型)例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?(此题也可用“单纯形法”或化“对偶问题”用大M法求解)解:设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+72039450552121x x x x 解出x 1=75,x 2=15 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(75,15)T∴max z =Z *= 70×75+30×15=5700⑴⑵ ⑶ ⑷ ⑸、⑹max z = 6x 1+4x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+81022121x x x x 解出x 1=2,x 2=6 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(2,6)T ∴max z = 6×2+4×6=36⑴⑵ ⑶ ⑷ ⑸、⑹min z =-3x 1+x 2 s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤≤08212523421212121x x x x x x x x , 解:可行解域为bcdefb ,最优解为b 点。
由方程组⎩⎨⎧=+=12524211x x x 解出x 1=4,x 2=54∴X *=⎪⎪⎭⎫⎝⎛21x x =(4,54)T∴min z =-3×4+54=-1151⑴⑵ ⑶ ⑷ ⑸ ⑹、⑺二、标准型线性规划问题的单纯形解法: ㈠一般思路:1、用简单易行的方法获得初始基本可行解;2、对上述解进行检验,检验其是否为最优解,若是,停止迭代,否则转入3;3、根据θL 规则确定改进解的方向;4、根据可能改进的方向进行迭代得到新的解;5、根据检验规则对新解进行检验,若是最优解,则停止迭代,否则转入3,直至最优解。
㈡具体做法(可化归标准型的情况):设已知max z = c 1x 1+ c 2x 2+…+x ns.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤+++≤+++≤+++n j x bx a x a x a b x a x a x a b x a x a x a j mn mn m m n n n n ,,,,...210 (2)2112222212111212111 对第i 个方程加入松弛变量x n+i ,i =1,2,…,m ,得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=++++=++++=+++++++n j x b x x a x a x a b x x a x a x a b x x a x a x a j m m n n mn m m n n n n n n ,,,,...210 (22112)22222121111212111 列表计算,格式、算法如下:注①: z j =c n+1 a 1j ++2 a 2j +…++m a mj =∑=+mi ij in a c1,(j=1,2,…,n+m )σj =c j -z j ,当σj ≤0时,当前解最优。
注②:由max{σj }确定所对应的行的变量为“入基变量”;由θL =⎭⎬⎫⎩⎨⎧>0min ik ik i i a a b 确定所对应的行的变量为“出基变量”,行、列交叉处为主元素,迭代时要求将主元素变为1,此列其余元素变为0。
例1:用单纯形法求解(本题即是本资料P2“图解法”例1的单纯形解法;也可化“对偶问题”求解)max z =70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+30x 2+0 x 3+0 x 4+0 x 5 s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,0720394505554093521421321j x x x x x x x x x x j 列表计算如下:∴X*=(75,15,180,0,0)T ∴max z =70×75+30×15=5700例2:用单纯形法求解max z =7x 1+12x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200543604921212121x x x x x x x x , 解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =7x 1+12x 2+0 x 3+0 x 4+0 x 5 s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032005436049521421321j x x x x x x x x x x j 列表计算如下:∴X*=(20,24,84,0,0)T ∴max z =7×20+12×24=428三、非标准型线性规划问题的解法:1、一般地,对于约束条件组:若为“≤”,则加松弛变量,使方程成为“=”; 若为“≥”,则减松弛变量,使方程成为“=”。
我们在前面标准型中是规定目标函数求极大值。
如果在实际问题中遇到的是求极小值,则为非标准型。
可作如下处理: 由目标函数min z=∑=nj jj xc 1变成等价的目标函数max (-z )=∑=-nj jjx c 1)(令-z=z /,∴min z=-max z /2、等式约束——大M 法:通过加人工变量的方法,构造人造基,从而产生初始可行基。
人工变量的价值系数为-M ,M 是很大的正数,从原理上理解又称为“惩罚系数”。
(课本P29)类型一:目标函数仍为max z ,约束条件组≤与=。
例1:max z =3x 1+5x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥=+≤≤018231224212121x x x x x x , 解:加入松弛变量x 3,x 4,得到等效的标准模型:max z =3x 1+5x 2 s.t.⎪⎪⎩⎪⎪⎨⎧=≥=+=+=+4,3,2,1,018231224214231j x x x x x x x j其中第三个约束条件虽然是等式,但因无初始解,所以增加一个人工变量x 5,得到: max z =3x 1+5x 2-M x 5s.t. ⎪⎪⎩⎪⎪⎨⎧=≥=++=+=+5,...,2,1,0182312245214231j x x x x x x x x j 单纯形表求解过程如下:∴X *=(2,6,2,0)T ∴max z =3×2+5×6=36类型二:目标函数min z ,约束条件组≥与=。
例2:用单纯形法求解min z =4x 1+3x 2 s.t.⎪⎩⎪⎨⎧≥≥+≥+012231642212121x x x x x x , 解:减去松弛变量x 3,x 4,并化为等效的标准模型:max z / =-4x 1-3x 2 s.t.⎪⎩⎪⎨⎧=≥=-+=-+4,3,2,1,012231642421321j x x x x x x x j增加人工变量x 5、x 6,得到:max z / =-4x 1-3x 2-Mx 5-Mx 6 s.t⎪⎩⎪⎨⎧=≥=+-+=+-+6,...,2,1,01223164264215321j x x x x x x x x x j单纯形表求解过程如下:∴X*=(2,3,0,0)T∴min z =-max z/ =-(-17)=17四、对偶问题的解法: 什么是对偶问题?1、在资源一定的条件下,作出最大的贡献;2、完成给定的工作,所消耗的资源最少。
引例(与本资料P2例1 “图解法”、P7例1 “单纯形法”同):某工厂生产甲、乙两种产品,这些产品均需在A 、B 、C 三种不同的设备上加工,每种产品在不同设备上加工时需要不同的工时,这些产品售后所能获得的利润值以及这三种加工设备因各种条件下所能使用的有效总工时数如下表:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大? 解:原问题——设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x , 将这个原问题化为它的对偶问题——设y 1、y 2、y 2分别为设备A 、B 、C 单位工时数的加工费。
min w = 540y 1+450y 2+720y 3 s.t.⎪⎩⎪⎨⎧=≥≥++≥++32103035970953321321,,,i y y y y y y y i用大M 法,先化为等效的标准模型:max w / =-540y 1-450y 2-720y 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,0303597095353214321j y y y y y y y y y j增加人工变量y 6、y 7,得到:max z / =-540y 1-450y 2-720y 3-My 6-My 7 s.t⎪⎩⎪⎨⎧=≥=++-++=+-++5,...,2,1,030359709537532164321j y y y y y y y y y y y j大M 法单纯形表求解过程如下:∴该对偶问题的最优解是y *=(0,2,320,0,0)T 最优目标函数值min w =-(-5700)=5700五、运输规划问题:运输规划问题的特殊解法——“表上作业法”解题步骤:1、找出初始调运方案。
即在(m×n)产销平衡表上给出m+n-1个数字格。
(最小元素法)2、(对空格)求检验数。
判别是否达到最优解。
如已是最优解,则停止计算,否则转到下一步。
(闭回路法)3、对方案进行改善,找出新的调运方案。