线性代数课后习题答案周勇

合集下载

线性代数第五版答案(全)

线性代数第五版答案(全)

线性代数课后习题答案第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解381141102--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)ba c ac b c b a ; 解ba c a cbc b a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a cb a ; 解222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然 数 从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n ); 解 逆序数为2)1(-n n : 3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4. 计算下列各行列式:(1)7110025*******214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---=143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 265232112131412-26503212213041224--=====cc 041203212213041224--=====rr000003212213041214=--=====r r .(3)efcf bf decd bd ae ac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b ec b e c b ad f ---=abcdefadfbce 4111111111=---=.(4)dc b a 100110011001---.解dc b a100110011001---dc b a ab ar r 10011001101021---++=====d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cdc ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213ab a b a a b a ab ac c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3. (2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b ba a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a .(4)444422221111d c b a d c b a d c b a=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a d a c a b ---------=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++---=))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x x n n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有111 00 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x xa xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得nnnn a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ,11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明DD D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a aa a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a DD n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. DD D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算 下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n行展开))1()1(10 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=an-a n -2=a n -2(a 2-1).(2)xa a a x aa a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上 , 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有nnn n n n n n n n a a a n a a a na a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+.再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)d e t (⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n ≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121n n n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nnn a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i nn a a a a a a a a 1111131********0010 00000 10000 01000 001)11)((121∑=+=ni in a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 2841120351*******1512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==DD x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为665510006510006510065100065==D ,15075100165100065100650000611==D , 114551010651000650000601000152-==D ,7035110065000060100051001653==D , 39551601000051000651010654-==D ,2121100005100065100651100655==D ,所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E .(3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ .用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i ns i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i n s i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211.12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(d i a g 4-= =2diag(1, -2, 1). 22.已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26.计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫⎝⎛=22022A ,则 ⎪⎭⎫ ⎝⎛=21A O OA A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫⎝⎛OB A O ; 解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143.由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD OBD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211BD CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. ) ~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. ) ~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201. 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010*********故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B ,求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ,所以⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ,所以⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫⎝⎛---==-4741121BA X . 5.设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A ,求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫ ⎝⎛---011100101010110001~,所以⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式. 例如,⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.000是等于0的2阶子式,10001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫ ⎝⎛---443112112013; 解⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211,矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. )~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301,矩阵的秩为3,070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B . 11.设⎪⎪⎭⎫⎝⎛----=32321321k k k A ,问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r .(1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x xx x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .。

线性代数课后参考答案

线性代数课后参考答案

第一章作业参考答案1-1. 求以下排列的逆序数:(1)134782695 (3)13…(2n-1)(2n)(2n-2)…2 解:(1)t=0+0+0+0+4+2+0+4=10(2)t=0+0+…+0+2+4+6+…+2(n-1)=2(1+2+3+…+n-1)=(1)2(1)2n n n n -⨯=-1-2. 在6阶行列式的定义式中,以下的项各应带有什么符号? (1)233142561465a a a a a a解:()12(234516)4,•3126454t t t t ====128t t t =+=为偶数,故该项带正号。

1-3. 用行列式的定义计算:(1)0004004304324321(3)0123100010001x x x a a a x a ---+解:(1)12412312400040043(1)(1)444425604324321tq q q a a a ++=-=-⨯⨯⨯⨯=∑ (3)1320123100010()(1)(1)001x x x x x x a x x a x a a a x a --=⨯⨯⨯++-⨯⨯⨯-⨯-+233432103210(1)(1)(1)(1)(1)a a x a x a x a x a +-⨯-⨯-⨯+-⨯-⨯=++++1-4. 计算下列行列式:(1) 1111111111111111--- (3)1200340000130051- (5)1111111111111111a a b b+-+- (7)n a b b b b a b b D b b b a=解:(1)11111111111102001(2)(2)(2)81111002011110002--==⨯-⨯-⨯-=-----(3)()120034001213(1423)113532001334510051-=⨯=⨯-⨯⨯-⨯-⨯=⎡⎤⎣⎦- (5)111111111111111000001111000011110000a a a a a aab a b a b b a b a b++----==+-------2221111110000000000000000a aa b a a a b b b bab+--===---(7)(1)(1)(1)n a b b b a n b a n b a n b b a b b b a bD b b b a b b a+-+-+-==111111100[(1)][(1)][(1)]()00000n ba b a b a n b a n b a n b a b bb a a b--=+-=+-=+---1-5. 证明:(1)332()xy x y y x y x x y x yx y ++=-++ (3)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++证明:(1)2()2()2()xy x y x y x y x y y x y x y x y x x yx y x y x y +++++=+++1111112()2()00x y y x y x x y xx y x yx yyx=++=+-+--2332()[()]2()x y x y x y x y =+-+-=-+(3)22222222222222222222(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469a a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d ++++++++++++=++++++++++++222221262126021262126a ab bc cd d ++==++1-6. 计算下列行列式:(1)00100000100n a a D a a =(3)123111000022000001(1)n nn n ------ 解:(1)2001000000000(1)10000000100100nn a a a a a D a aa a a==+-⨯⨯2nn a a-=-(3)123112321110001100002200022000001(1)0000(1)n nn n n n n ----=-------112323342101000(1)!(1)002002(1)n n n n n n n n +++++++++++--+===----1-7. 解下列方程:(1)24211231223()023152319x D x x -==-解:要使原方程有解,观察可知只有两种可能:①当221x -=时,即1x =±时,4()0D x = ②当295x -=时,即2x =±时,4()0D x = 综上所述,原方程的解为1,-1,2,-21-8. 设1578111120963437D --=--,试证:414243440A A A A +++=证明:根据拉普拉斯定理可知4142434411110A A A A ⨯+⨯+⨯+⨯=即414243440A A A A +++=1-9. 用Cramer 法则解下列方程组:(1)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩解:该方程组的系数行列式为215113062702121476D ---==--,常数向量8950β⎛⎫⎪⎪= ⎪- ⎪⎝⎭1815193068152120476D ---==--- 22851190610805121076D --==----3218113962702521406D --==-- 4215813092702151470D --==---312412343,•4,•1,•1D D D Dx x x x D D D D∴====-==-==1-10. (1)问λ取何值时,下列齐次方程组有非零解?12312313220300x x x x x x x x λλ++=⎧⎪++=⎨⎪-=⎩解:要使原方程有解,由定理1.8知2223112001λλλλ=+-=- 解得11λ=或22λ=-。

(完整版)新版线性代数习题及答案(复旦版主编:周勇朱砾)

(完整版)新版线性代数习题及答案(复旦版主编:周勇朱砾)

线性代数习题及答案all in习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n -1)…321; (4) 13…(2n -1)(2n )(2n -2)…2. 【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n -1)…3·2·1)= 0+1+2 +…+(n -1)=(1)2n n -;(4) τ(13…(2n -1)(2n )(2n -2)…2)=0+1+…+(n -1)+(n -1)+(n -2)+…+1+0=n (n -1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D xxx=的展开式中包含3x 和4x 的项.解: 设123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(-1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2)ab ac ae bd cd de bfcfef-------;(3)111001101a b c d ---; (4)1234234134124123.【解】(1)125062312101232562r r D+---=--;(2)1114111111D abcdef abcdef--==------;21011111(3)(1)111011001011;b c D a a b cd c c d d dd abcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.1041202220044101231114r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1)22222()111a ab b a a b b a b +=-; (2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++;(3)232232232111()111a a a a b b ab bc ca b b c c cc =++(4)2000()000n n a ba b D ad bc c d cd==-; (5)121111111111111nni i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏. 【证明】(1)1323223()()()2()2001()()()()()2()21c c c c a b a b b a b b a b a b b a b a b b a b a b b a b a b a b a b--+--=--+--+==-=-=--左端右端.(2)32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b c c c c c cd d d d d d ---++++++++====++++++++左端右端. (3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11x x x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)0000000(),n n n n ab aba ba bD abc dc dc d c d dc ad D bc D ad bc D ---=-=⋅-⋅=-据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=- 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n -1阶行列式结论成立,进而证明阶数为n 时结论也成立. 按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+但由归纳假设11121111,n n n i i D a a a a ---=⎛⎫+= ⎪⎝⎭∑ 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏8. 计算下列n 阶行列式.(1)111111n x xD x=(2)122222222232222n D n=;(3)000000000nx y x y D x y yx=. (4)nijD a =其中(,1,2,,)ija i j i j n =-= ;(5)2100012100012000002100012nD =.【解】(1) 各行都加到第一行,再从第一行提出x +(n -1),得11111[(1)],11n x D x n x =+-将第一行乘(-1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---(2)21311122221000101001002010002n r r n r r r r D n ---=-按第二行展开222201002(2)!.00200002n n -=---(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000(1)(1).n n n n n n n n x y y x y x y D xy x y x y yxx yx x y y x y +-+-+=+-=⋅+⋅-⋅=+-(4)由题意,知11121212221201211012213123n n n n n nnn a a a n a a a D n a a a n n n --==---- 0122111111111111111111111n n ------------后一行减去前一行自第三行起后一行减去前一行0122112211111120000200002000000000220n n n n --------=-按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---按第列展开.(5)210002000001000121001210012100012000120001200000210002100021000120001200012n D ==+122n n D D --=-.即有112211n n n n D D D D D D ----=-==-=由()()()112211n n n n D D D D D D n ----+-++-=- 得11,121n n D D n D n n -=-=-+=+.9. 计算n 阶行列式.121212111n n n na a a a a a D a a a ++=+【解】各列都加到第一列,再从第一列提出11ni i a=+∑,得232323123111111,11n nnn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑ 将第一行乘(-1)后加到其余各行,得23111010011.001001nnnn i i i i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑10. 计算n 阶行列式(其中0,1,2,,ia i n ≠=).1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=.【解】行列式的各列提取因子1(1,2,,)n j a j n -=,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式.【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=-12. 用克莱姆法则解方程组.(1)12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩ (2) 121232343454556 1,56 0,56 0, 560,5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩ 【解】方程组的系数行列式为1110111013113121110131180;12105212110121123140123123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========- 12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解.14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件? 【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b . 15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-=于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2) 500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3)[]32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) ()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210131010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1)32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4)3322211122233312211213311323322311()()()ij i j i j a x a x a x a a x x a a x x a a x x a x x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 2.设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B ,求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗?【解】(1)2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA(3) 由于AB ≠BA ,故(A +B )(A -B )≠A 2-B 2. 3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ;(3) 若AX =AY ,≠A O , 则X =Y .【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E(3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0则AX =AY ,但X ≠Y .4.设101A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k .【解】2312131,,,.010101k k λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A 5.100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =,求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =.【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A = 今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k k k k k k k k k kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦A A A= 所以,对于一切自然数k ,都有121(1)2.000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =6. 已知AP =PB ,其中100100000210001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P =求A 及5A .【解】因为|P |= -1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PBP而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PBP PB P A7. 设a b cd ba d c c d ab dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b c d b a dc a b cd a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即42222222224()()a b c d a b c d -++++++A =A A =A E于是有22222()a b c d ==-+++A .8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A , 所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB -BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= -B ,故(B 2)′=B ′·B ′= -B ·(-B )=B 2; (AB -BA )′=(AB )′-(BA )′=B ′A ′-A ′B ′ = -BA -A ·(-B )=AB -BA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′ = -BA +A ·(-B )= -(AB +BA ).所以B 2是对称矩阵,AB -BA 是对称矩阵,AB+BA 是反对称矩阵.12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为a b c d ⎡⎤⎢⎥⎣⎦,则由 1101⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=a b c d ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d a a bcd c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数. 13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵.【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, 而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵.(1)1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4)1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5)5200210000830052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0n n a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦,未写出的元素都是0(以下均同,不另注). 【解】(1)5221-⎡⎤⎢⎥-⎣⎦; (2) 121012001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3)12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4)10011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5)1200250000230058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩ 【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而1110022110≠-故112311101111122.02211130122*********x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)-1=(A -1)*. (3) 若AA ′=E ,则(A *)′=(A *)-1.【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A * =(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A -1,从而(A -1) *=|A -1|(A -1)-1=|A |-1A . 于是A * (A -1) *=|A |A -1·|A |-1A =E ,所以(A -1) *=(A *)-1. (3) 因AA ′=E ,故A 可逆且A -1=A ′. 由(2)(A *)-1=(A -1) *,得(A *)-1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换.【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X AY且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1)12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =;(2)211211************--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ;(3)142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4)010100043100001201001010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B同理(2) X =100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.034102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若k A =O (k 为正整数),证明:121()k ---E A =E +A+A ++A .【证明】作乘法212121()()k k k k k ----=-----=-=E A E +A+A ++A E +A+A ++A A A A A E A E,从而E -A 可逆,且121()k ---E A =E +A+A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1.【证】因为A 2-A -2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-A A E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E,A E A E E,A E A E E.由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A+B ,求B .【解】由AB =A +2B 得(A -2E )B =A . 而22310,1102121==-≠---A E即A -2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A 22. 设1-P AP =Λ.其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A .【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦A P P P P ΛΛ 23. 设m 次多项式01()m m f x a a x a x =+++,记01()m m f a a a =+++A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P .【证明】(1)232311232200,00λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,000kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m mm m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦A E +A++A ++++++ (2) 由(1)与A =P -1BP ,得B =PAP -1.且B k =( PAP -1)k = PA k P -1,又0111011011()()().mm m m mm f a a a a a a a a a f ----=+++=+++=++=B E B B E PAP PA P P E A+A PP A P24.a b c d ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc c d c d ad bca bc ab bd a ad ab bd ad bc ac cd cb d ac cd ad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E0 故A 满足方程2()0x a d x ad bc -++-=.25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2)1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)-1=E ,由此又得A =AE =AA *( A *)-1=|A |( A *)-1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n -1 若|A |=0,由(1)知也有| A *|=|A |n -1.26. 设52003200210045000073004100520062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1)AB ; (2)BA ; (3) 1-A ;(4)|A |k (k 为正整数).【解】(1)2320001090000461300329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦AB =; (2) 19800301300003314005222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦BA =;(3)11200250000230057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)k k =-A . 27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)00310021********-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.【解】(1) 对A 做如下分块12⎡⎤=⎢⎥⎣⎦A A A 00 其中1230012;,01025001⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.000030001000001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A A A同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A A A A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r ααα线性无关,证明向量组12,,,r βββ也线性无关,这里12.i i +++β=ααα【证明】 设向量组12,,,r βββ线性相关,则存在不全为零的数12,,,,r k k k 使得1122.r r k k k +++=0βββ把12i i +++β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0ααα.又已知12,,,r ααα线性无关,故1220,0, 0.r rr k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩该方程组只有惟一零解120r k k k ====,这与题设矛盾,故向量组12,,,r βββ线性无关.7. 略.见教材习题参考答案. 8.12(,,,),1,2,,i i i in i n ααα==α.证明:如果0ij a ≠,那么12,,,n ααα线性无关. 【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα=α1,2,,i n =组成的,所以12,,,n ααα线性无关.9. 设12,,,,r t t t 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -==α是线性无关的.【证明】任取n -r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n rr r n r r r n nnnt t t t t t t t t t t t ---+++-≠从而其n 个行向量线性无关,由此知其部分行向量12,,,r ααα也线性无关.10. 设12,,,sααα的秩为r 且其中每个向量都可经12,,,rααα线性表出.证明:12,,,rααα为12,,,s ααα的一个极大线性无关组.【证明】若12,,,r ααα (1)线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,s ααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组.【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k kk k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0).13. 设12,,,n ααα为一组n 维向量.证明:12,,,n ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n ααα线性表示,则单位向量12,,,n εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n ααα的秩为n ,因此线性无关.必要性:设12,,,n ααα线性无关,任取一个n 维向量α,则12,,,n ααα线性相关,所以α能由12,,,n ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案. 16. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价. 17. 设A 为m ×n 矩阵,B 为s ×n 矩阵.证明:max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故 ()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有max{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jk βββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir ααα表示,若α属于B的行向量组,则它可由12,,,j j jkβββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir ααα,12,,,j j jk βββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ×n 矩阵且A 的行向量组线性无关,K 为r ×s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r . 【证明】设A =(A s ,P s ×(n -s )),因为A 为行无关的s ×n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ×n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ×s 矩阵R (K )≤r ,∴ R (K )=r .(⇐)当r =R (K )时,即K 行无关,由B =KA =K (A s ,P s ×(n -s ))=(KA s ,KP s ×(n -s))知R (B )=r ,即B 行无关. 19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα; (2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα. 21. 略.见教材习题参考答案. 22. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++x x x =0}是否构成向量空间?为什么?【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数.【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标. 【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX . 则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.习题四1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩ (2) 1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②-①×2得 x 2-2x 3=0 ③-① 得2x 3=4 得同解方程组由⑥得 x 3=2, 由⑤得 x 2=2x 3=4,由④得 x 1=2-2x 3 -2x 2 = -10, 得 (x 1,x 2,x 3)T =(-10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1)123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2) 1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3)1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4) 123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

(完整版)线性代数课后习题答案第1——5章习题详解

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数-(周勇)文档

线性代数-(周勇)文档

线性代数第一章行列式第一节二阶与三阶行列式一、 二元线性方程组与二阶行列式 对于二元线性方程组 1111221a x a x b +=2112222a x a x b += (1.1)使用加减消元法,当112212210a a a a -≠时,方程组(1.1)有解为,122212211121121112122111221221,b a b a b a b ax x a a a a a a a a --==-- . (1.2)(1.2)式中的分子、分母都是4个数分两对相乘再相减而得.其中分母11221221a a a a -是由方程组(1.1)的4个系数确定的,把这4个数按它们在方程组(1.1)中的位置,排成两行两列(横排称行、竖排称列)的数表11122122a a a a (1.3) 表达式11221221a a a a -称为数表(1.3)所确定的行列式,记作11122122a a a a , (1.4)数ij a (i=1,2; j=1,2)称为行列式(1.4)的元素.元素ij a 的第一个下标i 称为行标,表明该元素位于第i 行,第二个下标j 称为列标,表明该元素位于第j 列.上述二阶行列式的定义可用对角线法则记忆.如图1-1所示,即实线连接的两个元素(主对角线)的乘积减去虚线连接的两个元素(次对角线)的乘积.图 1-1例13221-=3×1-(-2)×2=7.二、 三阶行列式三、 定义1.1设有9个数排成3行3列的数表111213212223313233a a a a a a a a a (1.5)用记号111213 212223313233a a aa a aa a a表示代数和112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a++---上式称为数表(1.5)所确定的三阶行列式,即D=111213212223313233a a aa a aa a a=112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a++---(1.6)三阶行列式表示的代数和,也可以由下面的对角线法则来记忆,如图1-2所示,其中各实线连接的3个元素的乘积是代数和中的正项,各虚线连接的3个元素的乘积是代数和中的负项.图1-2例2 计算三阶行列式D=123221345----解由对角线法则D=1×(-2)×(-5)+2×(-1)×(-3)+3×4×2-3×(-2)×(-3)-2×2×(-5)-1×4×(-1)=46.例31010411aa>0的充分必要条件是什么?解由对角线法则1010411aa=21a-21a ->0当且仅当|a |>1,因此可得:1010411a a >0 的充分必要条件是|a |>1.第二节 n 阶行列式的定义一、 全排列及其逆序数把n 个不同元素按某种次序排成一列,称为n 个元素的全排列.n 个元素的全排列的总个数,一般用Pn 表示,且Pn =n !.对于n 个不同元素,先规定各元素间有一个标准次序(如n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说它们构成了一个逆序.一个排列中所有逆序的总和,称为该排列的逆序数,排列 12n i i i L 的逆序数记作τ(12n i i i L ).例如,对排列32514而言,4与5就构成了一个逆序,1与3,2,5也分别构成一个逆序,3与2也构成一个逆序,所以τ(32514)=5.逆序数的计算法:不失一般性,不妨设n 个元素为1至n 这n 个自然数,并规定由小到大为标准次序,设12n i i i L 为这n 个自然数的一个排列,自右至左先计算排在最后一位数字n i 的逆序数,等于排在n i 前面且比n i 大的数字的个数,再计算12n i i -L 的逆序数,然后把所有数字的逆序数加起来,就是该排列的逆序数.例1计算τ[1 3 5…(2n -1)2 4 6…(2n )].解 从排列1 3 5…(2n -1)2 4 6…(2n )看,前n 个数1 3 5…(2n -1)之间没有逆序,后n 个数2 4…(2n )之间也没有逆序,只有前后n 个数之间才构成逆序.2n 最大且排在最后,逆序数为0,2n-2的前面有2n-1比它大,故逆序数为1,2n-4的前面有2n-1、2n-3比它大,故逆序数为2,………………2前面有n-1个数比它大,故逆序数为n-1,因此有τ[1 3 5…(2n -1)2 4 6…(2n )]=0+1+…+(n -1)=(1)2n n -. 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列. 二、 对换在排列中,将任意两个元素对调,其余元素保持不动,这种作出新排列的方法叫做对换.将相邻两个元素对换,叫做相邻对换.定理2.1 一个排列中的任意两个元素对换,排列改变奇偶性.证 先证相邻对换的情形.设排列为1212,m n a a a abb b b K L 对换a 与b ,变为1212,m n a a a abb b b K L 显然这时排列中除a,b 两数的顺序改变外,其他任意两数和任意一个数与a 或b 之间的顺序都没有变.当a >b 时,经对换后,a 的逆序数不变,b 的逆序数减少1;当a <b 时,对换后,a 的逆序数增加1,b 的逆序数不变,所以新排列与原排列奇偶性不同.再证一般对换的情形.设排列为121212,m n p a a a abb b b c c c K L L ,对换a 与b ,变为121212,m n p a a a abb b b c c c K L L .可以把它看做将原排列作n 次相邻对换变成121212,m n p a a a abb b b c c c K L L ,再作n+1次相邻对换变成121212,m n p a a a abb b b c c c K L L .因此经过2n+1次相邻对换,排列变为121212,m n p a a a abb b b c c c K L L .所以这两个排列的奇偶性不同. 三、 n 阶行列式的定义为了给出n 阶行列式的定义,我们先研究三阶行列式的定义,三阶行列式的定义为111213212223313233a a a a a a a a a =112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a ++--- 由定义可看出:(1) 上式右边的每一项都是3个元素的乘积,这3个元素位于不同的行、不同的列;且每一项3个元素的第1个下标(行标)依次为123,排成了标准次序,第2个下标(列标)排成了123p p p ,它是1,2,3这3个数的某一个排列,对应上式右端的6项,恰好等于这3个数排列的种数.因此除了正负号外,右端的每一项都可以写成下列形式:112233,p p p a a a ,其中123p p p 是1,2,3的某一个排列,其项数等于P3=3!.(2) 项的正、负号与列标排列的逆序数有关.易验证上式右端带正号的项的列下标的排列都是偶排列,带负号的项的列下标的排列都是奇排列.因此各项所带符号由该项列下标的排列的奇偶性所决定,从而各项可表示为123123()123(1),p p p p p p a a a τ-综合(1)、(2)得:三阶行列式可以写成132123111213()212223123313233(1),p p p p p p a a a a a a a a a a a a τ=-∑其中 123()p p p τ为排列123p p p 的逆序数.∑表示对1,2,3这3个数的所有全排列123p p p 求和.由此,我们引入n 阶行列式的定义.定义21设有2n 个数,排成n 行n 列的数表111212122212n n n n nna a a a a a a a a L L M MMM L作出表中位于不同行不同列的n 个数的乘积2112,n p p np a a a L 并冠以符号(-1)τ(12,,,,n p p p L ),即得1212()12(1)n n p p p p p np a a a τ-L L (21)的项,由于12,,,,n p p p L 为自然数1,2,…,n 的一个排列,这样的排列共有n!个,因而形如(21)式的项共有n!项,所有这n!项的代数和1212()12(1).n n p p p p p n p a a a τ-∑L L 称为n 阶行列式,记为D=111212122212n n n n nna a a a a a a a a L L MMMM L简记为det(aij),其中数aij 称为行列式det(aij)的元素,即111212122212n n n n nna a a a a a a a a L L MMMM L=1212()12(1).n n p p p p p n p a a a τ-∑L L (2.2)按此定义的二阶、三阶行列式,与用对角线法则定义的二阶、三阶行列式是一致的.特别当n=1时,一阶行列式|a |=a ,注意与绝对值记号的区别.例2 按行列式的定义计算下三角形行列式:D=11212212,n n nna a a a a a M M O L其中未写出的元素全为零(以后均如此).解 由定义,n 阶行列式中共有n!项,其一般项为1212(1),n p p n p a a a τ-L其中τ=τ(12,,,n p p p L ).现第1行除11a 外其余元素全为零,故只有一个元素11a ,在第2行中除了2122,a a 外全是零,故应在2122,a a 中取一个,且只能取一个,因为22a 是第1行第1列的元素,11p =,故 2,,n p p L 不能再取1,所以22p =,即第2行取22a ,依此类推,第n 行只能取n p n =,即取元素nn a ,从而有D=11212212n n nna a a a a a M M O L=1122,nn a a a L即D 等于主对角线上元素的乘积. 同理可得上三角行列式111212221122.n n nn nna a a a a a a a a =L LL OM作为三角形式特例的对角行列式(除对角线上的元素外,其他元素都为0,在行列式中未写出来),11221122.nn nna a a a a a =L O例3证明1(1)2,121211(1),1.nn n n n n n a a a a n a a --=--L N证由行列式的定义12,11211(1),1.nn n n n a a a a n a a τ-=--L N其中τ=τ[n (n-1)…1]为排列n (n-1)…1的逆序数,又τ[n (n-1)…1]=(n-1)+(n-2)+…+1=(1),2n n-,所以结论得以证明. 四、 n 阶行列式定义的其他形式利用定理2.1,我们来讨论行列式定义的其他表示法. 对于行列式的任一项1212()12(1),n i j n p p p p p ip jp np a a a a a τ-L L L L其中1…i …j …n 为自然排列,对换 i ip a 与jpj a 成121()1(1),n i j n p p p p ip jp np a a a a τ-L L L L这时,这一项的值不变,而行标排列与列标排列同时作了一次相应的对换.设新的行标排列1…j …i …n 的逆序数为τ1,则τ1为奇数;设新的列标排列12,,,,n p p p L 的逆序数为τ2,则122()(1)(1),n p p p ττ-=--L ,故1212()(1)(1),n p p p τττ+-=-L于是121211()11(1)(1)n i j n i j n p p p p ip jp np p ip jp np a a a a a a a a τττ+-=-L L L L L L L这就说明,对换乘积中两元素的次序,从而行标排列与列标排列同时作了一次对换,因此行标排列与列标排列的逆序数之和并不改变奇偶性.经过一次对换如此,经过多次对换亦如此.于是经过若干次对换,使列标排列[逆序数τ=τ(12,,,,n p p p L )]变为自然排列(逆序数为0);行标排列则相应地从自然排列变为某个新的排列,设此新排列为12,,,,n q q q L 则有1212()12(1),n n q q q q q q n a a a τ-L L又若 i p j =则 j q i =(即 i jip ij q j a a a ==),可见排列12,,,,n q q q L 由排列12,,,,n p p p L 所唯一确定.由此可得n 阶行列式的定义如下: 定理22n 阶行列式也可定义为1212()12(1).n n p p p p p n p D a a a τ=-∑L L (2.3)证 按行列式定义有1212()12(1).n n p p p p p n p D a a a τ=-∑L L记 1212()112(1),n n q q q q q q n D a a a τ=-∑L L 按上面的讨论可知:对于D 中任一项1212()12(1),n n q q q q q q n a a a τ-L L 总有D 1中唯一的一项1212()12(1),n n q q q q q q n a a a τ-L L 与之对应并相等;反之,对于D 1中的任一项1212()12(1),n n q q q q q q n a a a τ-L L 同理总有D 中唯一一项1212()12(1),n n q q q q q q n a a a τ-L L 与之对应并相等,所以D =D1.更一般的有n 阶行列式的定义如下: 定理2 3 n 阶行列式可定义为121122(1),n n p q p q p q D a a a ττ+=-∑L (2.4)其中112212(),().n n p p p q q q ττττ==L L第三节 行列式的性质记 D=111212122212n n n n nn a a a a a a a a a L L MMMM L将其中的行与列互换,即把行列式中的各行换成相应的列,得到行列式1121112222121n n nnna a a a a a a a a L L M MM M L上式称为行列式D 的转置行列式,记作 T D (或记为D ′). 性质1 D =T D .证 记D =det(aij)的转置行列式T D =11121212222n n nn nnb b b b b b b b b L L M MM M L则bij=aji(i,j=1,2,…,n),按行列式的定义12121212()()1212(1)(1).n n n n p p p p p p T p p n p p p p n D b b b aaa ττ=-=-∑∑L L L L由定理2.2知TD =D.此性质表明,在行列式中行与列有相同的地位,凡是有关行的性质对列同样成立,反之亦然. 性质2交换行列式的两行(或两列),行列式改变符号. 证 设行列式D1=11121212222n n nn nnb b b b b b b b b L L M MM M L是由行列式D=det(aij)交换第i 和第j 两行得到的,当k ≠i,j 时,bkp=akp;当k=i 或j 时,bip=ajp,bjp=aip.于是11111111()11()1()1()1(1)(1)(1)(1).i j n i j n i j n i j n i j n j i nj i n j i n p p p p p i p j p n p p p p p p i p j p n p p p p p p i p j p n p p p p p p i p j p n p D b b b b a a a a a a a a a a a a D ττττ=-=-=-=-=-∑∑∑∑L L L L L L L L L L L L L L L L L L L L L L L L推论1 如果行列式有两行(或两列)完全相同,则此行列式等于零. 证 把这两行互换,有D =-D,故D=0.性质3 行列式中某一行(或列)的各元素有公因子,则可提到行列式符号的外面,即111211112112121212n n i i m i i m n n nn n n nna a a a a a ka ka ka k a a a a a a a a a =L L M M M M M M M M L L M M M M M M M M L L推论2行列式的某一行(或列)所有元素都乘以同一个数k ,等于用数k 乘此行列式. 推论3行列式的某一行(或列)的元素全为零时,行列式的值等于零. 性质4若行列式中有两行(列)的元素对应成比例,则此行列式等于零. 性质5若行列式的某一行(列)的元素都是两数之和,如1112111212222212()(),()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+L L L L M M M L M L L则D 等于下列两个行列式之和,即1112111112112122222122221212.i n i ni n i n n n ni nnn n ninna a a a a a a a a a a a a a a a D a a a a a a a a ''=+'L L L L LL L L M M M L M M M M L M LLLL证 在行列式的定义中,各项都有第i 列的一个元素()ki kia a '+,从而每一项均可拆成两项之和.性质6把行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上去,行列式的值不变.例如把行列式的第j 列乘以常数k 后加到第i 列的对应元素上,有11111111111212222112221211()().()iii i j ii i j n i j j nn n njnnn i nj njnna a a a a a ka a a a a a a a a ka a a a a a a a a ka a a ++=+L LLL L LL L L LLLM M M M M M M M LLLLLL以上没有给出证明的性质,读者可根据行列式的定义证明.利用这些性质可简化行列式的计算,为了表达简便起见,以ri 表示第i 行,ci 表示第i 列,交换i ,j 两行(列)记为ri rj (ci cj ),第i 行(列)乘以数k 记为kri(kci ),第j 行(列)的元素乘以k 加到第i 行(列)上记为ri+krj(ci+kcj ),第i 行(列)提取公因式记为ri ÷k (ci ÷k ).利用行列式的性质将行列式化为上三角行列式,从而算出行列式的值.例1计算行列式25123714.59274612D ---=--解152215221734021629570113164201201522021601130120152215220113011300300030033000311(3)39D -----=-=-----=----==--=⨯⨯-⨯=-例2计算n 阶行列式.a b b b b a b b D b b a b b b b a=L L LM M M M L解 注意到行列式的各行(列)对应元素相加之和相等这一特点,把第2列至第n 列的元素加到第1列对应元素上去,得(1)(1)(1)a n b b b a n b a b D a n b b a +-+-=+-L LM M ML[]11(1).1b b a b a n b b a =+-LL M M ML[]100(1).b b a b a n b a b-=+--L LM M M L[]1(1).()n a n b a b -=+--例3计算行列式.2324323631063a b c d aa ba b ca b c d D a a b a b ca b c da ab a bc a b c d++++++=++++++++++++解从第4行开始,后行减前行,得0.02320363a b c d aa ba b cD a a b a b c a a b a b c+++=++++++0.0020063a b c d a a ba b c a a b a a b c +++=+++4000200a b c d a a b a b ca a ab a+++==+ 可见,计算高阶行列式时利用性质将其化为上三角行列式,既简便又程序化. 例4设111111111111,k k kk k n n nkn nna a a a D c cb bc c b b =L M M L L L M M M M LL11111det(),k ij k kk a a D a a a =LMM L 11121det(),n ij n nnb b D b b b =LMM L证明:12.D D D =证 对1D 作运算i j r kr +,把1D 化为下三角行列式,设为111111;kk k kkP D p p P P ==M OL L对2D 作运算i j c kc +,把2D 化为下三角行列式,设为11211221.nn n nnq D q q q q q ==M OL L于是,对D 的前k 行作运算i j r kr +,再对后n 列作运算i j c kc +,把D 化为1111111121111111k kk kk nn k n nkn nnp p p D p p q q D D c c q c c q q ===M O L L L LM M M O LL第四节行列式按一行(列)展开将高阶行列式化为低阶行列式是计算行列式的又一途径,为此先引进余子式和代数余子式的概念.在n 阶行列式中,划去元素aij 所在的行和列,余下的n-1阶行列式(依原来的排法),称为元素aij 的余子式,记为Mij.余子式前面冠以符号(-1)i+j ,称为元素aij 的代数余子式,记为Aij =(-1)i+j Mij.例如四阶行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a中元素23a 的余子式和代数余子式分别为11121423313234414244;a a a M a a a a a a =23232323(1)A M M +=-=-引理一个n 阶行列式D ,如果第i 行所有元素除ij a 外全为零,则行列式.ij ij D a A =证 先证ij a 位于第1行第1列的情形,此时11212221200,n n n nna a a a D a a a =L L M M M L这时第三节例4中当k=1时的特殊情形,按第三节例4的结论有11111111D a M a A ==.再证一般情形,此时1111100.j n ij n nj nna a a a D a a a =L L M M M LL M M M LL我们将D 作如下的调换:把D 的第i 行依次与第i-1行,第i-2行,…,第1行对调,这样数ij a 就调到了第1行第j 列的位置,调换次数为i-1次;再把第j 列依次与第j-1列,第j-2列,…,第1列对调,数ij a 就调到了第1行第1列的位置,调换次数为j-1,总共经过(i-1)+(j-1)次对调,将数ij a 调到第1行第1列的位置,第一行其他元素为零,所得的行列式记为D 1,则,而ij a 在D 1中的余子式仍然是ij a 在D 中的余子式Mij ,利用前面的结果,有1ij ij D a M =于是 1(1)(1)i j i j ij ij ij ij D D a M a A ++=-=-=定理4.1行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 D=ai 1Ai 1+ai2Ai2+…+ainAin(i=1,2,…,n), 或D=a 1jA 1j +a2jA2j +…+anjAnj(j=1,2,…,n). 证1112112120000000n i i in n n nna a a D a a a a a a =++++++++++L M MML L LL M M M L11121111211112112121212000000,n n n i i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++L L L M M M M M M M M M L L L L M M M M M M M M M LLL根据引理有D=ai1Ai1+ai2Ai2+…+ainAin =∑nk=1aikAik(k=1,2,…,n). 类似地,我们可得到列的结论,即D=a1jA1j +a2jA2j +…+anjAnj =∑nk=1akjAkj(j=1,2,…,n).这个定理称为行列式按行(列)展开法则,利用这一法则并结合行列式的性质,可将行列式降阶,从而达到简化计算的目的.例1再解第三节中例1.解 2512001037141216592711234612211D -----==---1311126300(1)11311321021013(1)(3)10++--=-=--=-⨯--=-3×(-1)×(-1)×3=-9. 例2计算行列式11211nnn nna b a b D c d c d =ON NO解 按第1行展开有111121111000000n n n nn n na b a b D a c d c d d ----=ONMM NO M L11111211110(1)00000n n nn n n na b a b b c d c d c --+--+⨯-ONM M NOM L2(1)2(1)2(1)(),n n n n n n n n n n n a d D b c D a d b c D ---=-=-,以此作递推公式,得22(1)11112(2)111111222211111111111()()()()()()()()()(),n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n ni i i i i D a d b c D a d b c a d b c D a b a d b c a d b c a d b c c d a d b c a d b c a d b c a d b c --------------==-=--==---=---=-L LL L C其中记号“∏”表示所有同类型因子的连乘积. 例3 证明范德蒙(Vandermonde)行列式1222212111112111()nn n i j n i j n n n nx x x D x x x x x x x x ≥≥---==-∏f L L L M M M L(4.1)证 用数学归纳法证明.当n=2时,211211()ij n i j D x x x x ≥≥==-∏f (4.1)式成立.假设(4.1)式对n-1阶范德蒙行列式成立,要证(4.1)式对n 阶范德蒙行列式成立.为此,将Dn 降阶,从第n 行开始,后一行减前一行的 1x 倍得2131122133112222213311111100()()()0()()()n n n n n n n n n x x x x x x D x x x x x x x x x x x x x x x x x x ------=------L L LM M MM L按第1列展开,并提取每一列的公因子,有232131122223111()()()n n n n n n n x x x D x x x x x x x x x ---=---LL M M M L上式右端行列式是n-1阶范德蒙行列式,由归纳假设它等于∏n ≥i >j ≥2(xi -xj ),故2131121()()()()().n n i j n i j i j n i j D x x x x x x x x x x ≥≥≥≥=----=-∏∏f f L显然,范德蒙行列式不为零的充要条件是x 1,x 2,…,xn 互不相等. 由定理4.1还可以得到下述推论.推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即ai 1Aj 1+ai 2Aj 2+…+ainAjn=0,i ≠j , 或a1iA1j+a2iA2j +…+aniAnj=0,i ≠j . 证 作行列式(i ≠j)11121121212n i i in i i in n n nna a a a a a a a a a a a L M M M L M M M L M M L则其第j 行与行列式D 的第j 行不相同外,其余各行均与行列式D 的对应行相同.但因该行列式第i 行与第j 行相同,故行列式为零.将其按第j 行展开,便得ai 1Aj 1+ai 2Aj 2+…+ainAjn=0.同理可证a1iA1j+a2iA2j +…+aniAnj=0. 将定理4.1与推论综合起来得 ∑nk=1aikAjk =D,i =j, 0,i ≠j, 或∑nk=1akiAkj =D,i =j, 0,i ≠j.下面介绍更一般的拉普拉斯(Laplace)展开定理. 先推广余子式的概念.定义4.1在一个n 阶行列式D 中,任意取定k 行k 列(k ≤n),位于这些行与列的交点处的k 2个元素,按原来的顺序构成的k 阶行列式M ,称为行列式D 的一个k 阶子式;而在D 中划去这k 行k 列后余下的元素,按原来的顺序构成的n-k 阶行列式N ,称为k 阶子式M 的余子式.若k 阶子式M 在D 中所在的行、列指标分别为i 1,i 2,…,ik 及j 1,j 2,…,jk ,则(-1)(i 1+i 2+…+ik )+(j 1+j 2+…+jk )N 称为k 阶子式M 的代数余子式.如在五阶行列式111213141521222324255152535455a a a a a a a a a a a a a a a M M M M M中选定第2、第5行,第1、第4列,则二阶子式21245154a a M a a的余子式121315323335424345a a a N a a a a a a = 而代数余子式为2514(1).N N +++-=*定理4.2(拉普拉斯定理)设在行列式D 中任意选定k(1≤k ≤n-1)行(或列),则行列式D 等于由这k 行(列)元素组成的一切k 阶子式与它们对应的代数余子式的乘积之和.(不证)例4 用拉普拉斯定理计算行列式12140121.10130131D -=解 若取第1、第2行,则由这两行组成的一切二阶子式共有 246C =个123456121114,,,010201212414,,.121121M M M M M M ===-===--其对应的代数余子式为123456130301,,,311113131110,,.010301A A A A A A ==-===-=则由拉普拉斯定理得D=M1A1+M2A2+…+M6A6=(-1)×(-8)-2×(-3)+1×(-1)+5×1-6×3+(-7)×1 =-7.注 当取定一行(列)即k=1时,就是按一行(列)展开.从以上计算看到,采用拉普拉斯定理计算行列式一般并不简便,其主要是在理论上的应用.第五节克莱姆法则含有n 个未知数x 1,x 2,…,xn 的n 个线性方程的方程组 a 11x 1+a 12x 2+…+a 1nxn=b 1, a21x 1+a22x 2+…+a2nxn=b2, ……………………an1x 1+an 2x 2+…+annxn=bn(5.1)有与二、三元线性方程组类似的结论,它的解可以用n 阶行列式表示,即为下述的克莱姆(Cramer)法则.定理5.1(克莱姆法则)若方程组(5.1)的系数行列式1121121222120,n n n n nna a a a a a D a a a =≠L L M MM M L则方程组有唯一解,且可表示为1212,,,,n n D D Dx x x D D D===L (5.2) 其中Dj (j =1,2,…,n )是将D 中的第j 列元素换成常数项所得的行列式,即111,111,11212,122,121,1,1.j j n j j nj n n j n n j nn a a b a a a a b a a D a a b a a -+-+-+=L L LL MM M M M L L 证 设x 1,x 2,…,xn 是方程组(51)的解,按行列式的性质,有11121121222212.j jn j j nj n n nj jnna a a x a a a a x a Dx a a a x a =LLL L M MM M LL再把行列式的第1列,…,第j-1列,第j+1列,…,第n 列分别乘以x 1,…,xj -1,xj +1,…,xn 加到第j 列上去,行列式的值不变,即11121112122221121.nj jn j nj j n j j nn n nj jnnj a a a x a a a a x a Dx a a a x a ====∑∑∑LLL L M M MMLL11121121222212.n n j n n n nna ab a a a b a D a a b a =L L L L M M M M LL因D ≠0,故j j D x D=(j =1,2,…,n )为方程组的唯一解.例1 求解线性方程组1234123412413421,21,2,1,x x x x x x x x x x x x x x -++=⎧⎪+-+=⎪⎨++=⎪+-=⎪⎩解111211121121023111010211111013D -----==----2312353521121510151310----=--=-==---111121121821011011D --==--,211121121912011111D -==--,3411121111111111215,3,11211102111111D D ---==-==-- 故1234849913,,,.1051010210x x x x --======-- 由此可见用克莱姆法则解方程组并不方便,因它需要计算很多行列式,故只适用于解未知量较少和某些特殊的方程组,但把方程组的解用一般公式表示出来,这在理论上是重要的.使用克莱姆法则必须注意:①未知量的个数与方程的个数要相等;②系数行列式不为零.对于不符合这两个条件的方程组,将在以后的一般线性方程组中讨论.常数项全为零的线性方程组111122121122221122000n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L (5.3) 称为齐次线性方程组.而方程组(5.1)称为非齐次线性方程组.显然x 1=x 2=…=xn =0是方程组(53)的解,称为零解,若方程组(53)除了零解外,还有x 1,x 2,…,xn 不全为零的解,称为非零解.由克莱姆法则,有以下定理.定理52如果齐次线性方程组(53)的系数行列式D ≠0,则齐次线性方程组(53)只有零解.定理52′如果齐次线性方程组(53)有非零解,则它的系数行列式必为零.定理52′说明系数行列式D =0是齐次线性方程组有非零解的必要条件,在后面还将证明这个条件也是充分的.例2 问λ取何值时,齐次线性方程组(5)2202(6)02(4)0x y z x yx z λλλ⎧⎪-++=⎪⎪+-=⎨⎪⎪+-=⎪⎩有非零解?解 齐次线性方程组有非零解,则其系数行列式D =0,52226024D λλλ-=--=(5-λ)(6-λ)(4-λ)-4(4-λ)-4(6-λ)=(5-λ)(2-λ)(8-λ),由D=0得: λ=2,λ=5,λ=8.第六节典型例题例1 证明:ax by ay bz az bxay bzaz bx ax by az bx ax by ay bz+++++++++33().xy z a b yz x zxy=+ 证明 利用性质5,把行列式拆成32个行列式的和,除两个外,其余均因有两行成比例而等于零,即左边3333().ax ay az by bz bx ay az ax bz bx byaz ax ay bx by bz xy z y z x a yz x b z x y z xy x y zxy z a b yz x zxy+=+=+ 例2计算行列式00000000000n D αβαβαβαβαβαβααβ+++=++L L LM M M MML L解按第1列展开,可得Dn 与其同类型的较低阶行列式的关系.1211200000()(1)0000()2,n n n n D D D D αβαβαββαβαβαβαββ+---+=++-++=+-L LMM M ML L即Dn -αDn -1=β(Dn -1-αDn -2), 或Dn -βDn -1=α(Dn -1-βDn -2). 由此递推下去,得Dn -αDn -1=β(Dn -1-αDn -2)=β·β(Dn -2-αDn -3)=…=βn -2(D2-αD1). 而2222(),D αβααβαβαβαββαβ+=+-=+++代入上式,得221.n nn n D D αβββ---==(1) 同理,可得1.nn n D D βα--=.(2)当α≠β时,由(1)式、(2)式解得11.n n n D αβαβ-+-=-当α=β时,由(1)式或(2)式递推下去,得(1).n n D n α=+例3计算n 阶行列式12311231123112311231(,1,,),n n n n n n n i i n n n nx a a a a a x a a a a a x a a D x a i n a a a x a a a a a x -----=≠=L L L L M M MM M L L解1211221100n n n nx a a a x x a D a x x a --=--L M O12112212122111()111011()11(1)()n n nni i i nk n k k k n nni i i nnki i k i k k a x a x a x a x a x a a a a x a x a x a x a a x a x a =====---=---+---=-=+--∏∑∏∑∏LM O LMO例4计算行列式2211112222222211112211.11n n n nn n n n n n n n nnnn n x x x x x x x x D x x x x x x x x --------=L L MM M M M L L解 只需在Dn 中加上最后一行和最后第二列,就变成n+1阶范德蒙行列式的转置行列式的转置行列式2211111122122222121112211111n n n n n n n n n n n n n n n n n nx x x x x x x x x x D x x x x x yy y y y ----+-----=L L MM M M M M L L于是有1111121112121()()()()()()()(1).()nT n n i i j i n i j n i j n i j n n nn n i j n i j D Dy x x x y x y x y x x x y x x x y x x x x x ++=≥≥≥≥-≥≥==--=----⎡⎤=-+++++--⎣⎦∏∏∏∏f f f L L L L若把Dn+1按最后一行展开得111010(1)().n n n n n n n n n n n D a y y D a a y D y a ++++-=+-++=+-++L L而1n y-的系数恰好是(-Dn).比较上式两边1n y-的系数,便得11()().nn i i j i n i j D x x x =≥≥=-∑∏f例5设1234555533,325422221146523A =求(1)313233;A A A ++(2)3435.A A + 解将A 中第三行的元素依次换成5,5,5,3,3.则第二行与第三行的对应元素相等,于是行列式的值等于0.按第三行展开,则有31323334355()3()0A A A A A ++++=(1)同理,将A 中第三行的元素换成第四行的对应元素,按第三行展开则有31323334352()0A A A A A ++++=(2)解(1),(2)联立方程组,得31323334350,0.A A A A A ++=+=第二章 矩阵第一节矩阵的概念引例1在平面解析几何中,当坐标轴逆时针旋转θ角时,新旧坐标之间存在如下的变换公式:x =x ′cos θ-y ′sin θ, y=x ′sin θ+y ′cos θ.显然,这种新旧坐标之间的关系完全可以由公式中的系数所构成的数表cos sin sin cos θθθθ-⎛⎫⎪⎝⎭确定.引例2线性方程组11112211211222211122,,,n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎪⎨⎪⎪+++=⎪⎩L L L L L L L (1.1) 其中i x (i =1,2,…,n )代表n 个未知量,m 是方程的个数,ij a (i =1,2,…,m;j =1,2,…,n )称为方程组的系数,bi (i =1,2,…,m )称为常数项.为了便于研究和求解线性方程组,我们把系数和常数项取出并按原来的位置排成下列数表:11121121222212n nm m mn m a a a b a a a b a a a b ⎛⎫⎪ ⎪⎪⎪⎝⎭L L M M M M L(1.2)这样的数表称为矩阵 定义11由m ×n 个数ij a (i=1,2,…,m;j=1,2,…,n)排成m 行n 列的111212122212n nm m mna a a a a a a a a LL M M M L称为m 行n 列的矩阵,简称m ×n 矩阵.为了表示它是一个整体,总是加一个括弧(中括弧或小括弧),并用大写黑体字母表示它,记作111212122212,n n m m mn a a a a a a a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭L L M M M L A (1.3)其中ij a 表示矩阵第i 行第j 列的元素.矩阵(13)也可简记为A =(ij a )m ×n或A =(ij a ),m ×n 矩阵A 也记为A m ×n .元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.本书中除特别声明外,都是指实矩阵.当m=n 时,A 称为n 阶方阵. 只有一行的矩阵A =(12n a a a L )称为行矩阵,为了避免元素间的混淆,行矩阵一般记作A =(12,,,n a a a L ).只有一列的矩阵12n a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M A称为列矩阵.两个矩阵若行数相等且列数相等,则称它们是同型的.若A =(ij a )m ×n 与B =(ij b )m ×n 同型,且它们的对应元素相等,即ij ij a b =(i=1,2,…,m;j=1,2,…,n),则称矩阵A 与B 相等,记为A=B .元素全为零的矩阵称为零矩阵,记为O .注意不同型的零矩阵是不相等的. 显然,当未知量12,,,n x x x L 的顺序排定后,线性方程组(11)与矩阵(12)是一一对应的,于是可以用矩阵来研究线性方程组.例1 设一组变量12,,,n x x x L 到另一组变量12,,m y y y L 的变换由m 个线性表达式给出:11111221221122221122,,,n n n nm m m mn n y a x a x a x y a x a x a x y a x a x a x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L L L L L (1.4) 其中常数ij a (i=1,2,…,m;j=1,2,…,n)为变换(14)的系数,这种从变量12,,,n x x x L 到变量12,,m y y y L 的变换称为线性变换.线性变换的系数构成m ×n 矩阵(13),称为线性变换(14)的系数矩阵.例 2 将某种物资从m 个产地 12,,,m A A A L 运往n 个销地12,,,.n B B B L 用aij 表示由产地 i A (i=1,2,…,m)运往销地 j B (j=1,2,…,n)的物资数量,则调运方案可用矩阵(13)表示.下面介绍几个重要的n 阶方阵.例3由n 个变量12,,,n x x x L 到n 个变量12,,n y y y L 的线性变换1122,,,n n y x y x y x =⎧⎪=⎪⎨⎪⎪=⎩L L 称为恒等变换,它的系数矩阵100010001⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L L M M M LE 称为n 阶单位矩阵,简称单位阵.n 阶单位矩阵的特点是:从左上角到右下角的直线(称为主对角线)上的元素都是1,其他元素都为零.也就是E=(δij ),其中δij =1,当i=j 时,0, 当i ≠j 时.例4线性变换111222,,,n n n y x y x y x λλλ=⎧⎪=⎪⎨⎪⎪=⎩L L 对应的系数矩阵1200000n λλλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L LM M M LA 称为对角阵.对角阵的特点是:不在主对角线上的元素都为零.当λ1=λ2=…=λn 时,称此矩阵为数量矩阵.11121222000n n nn a a a a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭L L M M M L A称为上三角阵.上三角阵的特点是:主对角线以下的元素全为零,即当i >j 时,ij a =0.类似地,方阵11212212000n n nn a a a a a a ⎛⎫⎪ ⎪ ⎪⎪⎝⎭L L M M M L称为下三角阵.第二节矩阵的运算一、 矩阵的加法定义2.1设有两个m ×n 矩阵: A =(ij a )m ×n ,B =(ij b )m ×n ,那么矩阵()()ij m n ij ij m n c a b ⨯⨯==+C111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎛⎫⎪+++ ⎪= ⎪⎪+++⎝⎭L L M M M L 称为矩阵A 与B 的和,记为C =A+B. 注意: 只有同型矩阵才能进行加法运算.设A ,B ,C ,O 均为m ×n 矩阵,容易证明矩阵加法满足下列运算规律: (i) 交换律A+B =B+A ; (ii) 结合律(A+B)+C=A+(B+C); (iii) A+O=A. 设矩阵A =(ij a )m ×n ,记-A =(-ij a )m ×n ,称为A 的负矩阵,显然有 A+(-A)=O, 由此定义矩阵的减法为A-B=A+(-B).二、 数与矩阵的乘法 定义22设λ是常数,A =(ij a )m ×n ,则矩阵111212122212()n n ij m nm m mn a a a a a a a a a a λλλλλλλλλλλλ⨯⎛⎫⎪ ⎪===⎪⎪⎝⎭L L M M M LA A称为数λ与矩阵A 的乘积.设A ,B 为m ×n 矩阵,λ,μ为数,由定义可以证明数与矩阵的乘法满足下列运算规律: (i) (λμ)A=λ(μA)=μ(λA); (ii) (λ+μ)A=λA+μA;(iii) λ(A+B)=λA+λB;(iv) 1·A=A,(-1)A=-A. 三、 矩阵与矩阵相乘定义2.3设矩阵 (),(),ij m s ij s n A a B b ⨯⨯== 则m ×n 矩阵(),ij m n C c ⨯=其中11221sij i j i j is sj ik kj k c a b a b a b a b ==+++=∑L称为矩阵A 与B 的乘积,记为C=AB.由定义可以看出:C=AB 中第i 行第j 列的元素ij c 等于A 的第i 行与B 的第j 列的元素的乘积之和.必须注意:只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.其行数与列数之间的关系可简记为 (m ×s )(s ×n )=(m ×n ) 例1 设矩阵41103,11,21020⎛⎫⎛⎫ ⎪==- ⎪ ⎪⎝⎭ ⎪⎝⎭A B 求乘积AB .解 因为A 是2×3矩阵,B 是3×2矩阵,A 的列数等于B 的行数,所以矩阵A 与B 可以相乘,AB=C 是2×2矩阵.由定义2.3有41103112102014(1)032110130241(1)022********.73⎛⎫⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ⎪⎝⎭⨯+-⨯+⨯⨯+⨯+⨯⎛⎫= ⎪⨯+⨯-+⨯⨯+⨯+⨯⎝⎭⎛⎫= ⎪⎝⎭AB 例3 设1111,,1111⎛⎫⎛⎫==⎪ ⎪---⎝⎭⎝⎭A B求AB 与BA . 解 111100,111100⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭AB111122.111122-⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭BA一般地AB ≠BA .乘积AB 有意义时,BA 不一定有意义,即使BA 有意义,由例2,AB ≠BA .由此可知,在矩阵乘法中必须注意矩阵相乘的顺序.AB 通常说成“A 左乘B ”,BA 称“A 右乘B ”.因此,矩阵乘法不满足交换律,即在一般情况下,AB ≠BA .对于两个n 阶方阵A ,B ,若AB =BA ,则称A 与B 是可交换的.由例2还可看出:当A ,B 都不是零矩阵时,但AB =O ,这是矩阵乘法与数的乘法又一不同之处.特别注意:若AB =O ,不能推出A=O 或B=O 的结论;若AB=AC ,A ≠O 也不能推出B=C 的结论.可以证明,矩阵乘法满足以下运算规律,其中所涉及的运算均假定是可行的. (i) (AB)C=A(BC)(结合律); (ii) A(B+C)=AB+AC(分配律); (B+C)A=BA+CA; (ii) λ(AB)=(λA)B=A(λB)(其中λ为数). 以上性质可以根据矩阵运算的定义得到证明. 用矩阵乘法的定义,线性变换(1.4)可表示为y=A x,其中A 为矩阵(1.3),1122,.n n x y x y x y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M例3 设有两个线性变换111112222112223311322,,,y a x a x y a x a x y a x a x =+⎧⎪=+⎨⎪=+⎩ (2.1) 与11111221332211222233x b t b t b t x b t b t b t =++⎧⎨=++⎩(2.2) 试用矩阵表示从变量t 1,t 2,t 3到变量y 1,y 2,y 3的变换[这个变换称为线性变换(21)和(22)的乘积]. 解 记111211121321222122233132,,a a b b b a a b b b a a ⎛⎫⎛⎫⎪== ⎪ ⎪⎝⎭⎪⎝⎭A B 11122233,,,y t x x y y t t x y t ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭则线性变换(2.1)和(2.2)可分别表示为:y =Ax , x =Bt,所以 y =Ax =A(Bt )=(AB)t .以上说明,线性变换的乘积仍为线性变换,它对应的矩阵为两线性变换对应的矩阵的乘积.在线性方程组(11)中,记111212122212,n n m m mn a a a a a a a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L A 1122,,n m x b x b x b x b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M 利用矩阵乘法的定义,则该线性方程组可记为Ax=b,上式称为矩阵方程.特别地,对于单位矩阵,容易验证EmAm ×n=Am ×n, Am ×nEn=Am ×n, 简记为 EA=A, AE=A . 有了矩阵的乘法,就可定义n 阶方阵的幂.设A 是n 阶方阵,定义 k =L 14243A AA A (k 为非负整数),k 个 我们有 ,().klk lk l kl +==A A AA A 其中k,l 为非负整数,但一般地().k k k ≠AB A B例4求证cos sin cos sin .sin cos sin cos nn n n n θθθθθθθθ--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭证 用数学归纳法证明.当n=1时,等式显然成立.假设当n=k 时等式成立,即cos sin cos sin .sin cos sin cos kk k k k θθθθθθθθ--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭要证当n=k+1时成立,此时1cos sin cos sin cos sin sin cos sin cos sin cos cos sin cos sin sin cos sin cos cos cos sin sin cos sin sin cos sin cos cos sin sin sin cos k kk k k k k k k k k k k k θθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθ+---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭---=+-+cos cos(1)sin(1).sin(1)cos(1)k k k k θθθθθ⎛⎫ ⎪⎝⎭+-+⎛⎫=⎪++⎝⎭所以当n=k+1时结论成立.因此对一切自然数n 都有cos sin cos sin .sin cos sin cos nn n n n θθθθθθθθ--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭四、 矩阵的转置定义2.4 将m ×n 矩阵A =( ij a )m ×n 的行和列依次互换位置,得到一个n ×m 矩阵称为A 的转置,记为A T(或A ′). 例如矩阵120311⎛⎫= ⎪-⎝⎭A的转置矩阵为1321.01T ⎛⎫ ⎪= ⎪ ⎪-⎝⎭A矩阵的转置也可看做是一种运算,满足下列规律:(i) (A T)T=A; (ii) (A+B)T=A T+B T; (iii) (λA)T=λA T(λ为数); (iv) (AB)T=B TA T.性质(i)~性质(iii)可直接按定义验证,下面只证明(iv).证设A =( ij a )m ×n , B =(ij a )n ×p , AB =(ij c )m ×p.(AB)T中第i 行第j 列的元素即AB 中第j 行第i 列的元素,由乘法定义,即为1njk kik ab =∑ (j=1,2,…,m; i=1,2,…,p).而 T B 的第i 行为(b1i ,…,bni),TA 的第j 列为(aj 1,aj 2,…,ajn )T,因此T TB A 的第i 行第j 列的元素为 ,表明()TA B 与T TA B 对应元素相等.且()TA B 是p ×m 矩阵,也是p ×m 的矩阵,所以()T T T=A B A B性质(ii)、性质(iv )还可推广到一般情形:1212(),T T T Tn n +++=+++A A A A A A L L1211(),T T T T n n n -=A A A A A A L L定义2.5 设A 为n 阶方阵,如果满足TA =A ,即ij ji a a =-(i,j=1,2,…,n),那么A 称为对称阵,其特点是它的元素以主对角线为对称轴对应相等.例如213114340⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A即为对称阵.定义26若n 阶方阵满足 TA =-A ,即ij ji a a =- (i,j=1,2,…,n),则称A 为反对称阵.据此定义,应有ii ii a a =- (i=1,2,…,n),即0ii a = ,表明主对角线上的元素全为零.例如。

线性代数(复旦大学出版社周勇)课后习题答案(三)

线性代数(复旦大学出版社周勇)课后习题答案(三)

线性代数(复旦大学出版社周勇)课后习题答案(三)第三章课后答案1、略2、略3、略4、)1,0,1()1,1,0()0,1,1(21-=-=-αα)2,1,0()0,4,3()1,1,0(2)0,1,1(323321=-+=-+ααα5、)523(61)(5)(2)(3321321αααααααααα-+=→+=++-6、设存在一组数r k k k ,,,21 使得)()()()(02212121212112211=++++++++=+++++++==+++r r r r r r r r k k k k k k k k k k k k αααααααααβββ因r ααα ,,21线性无关,有==++=+++000221r r r k k k k k k 即021====r k k k ,所以r βββ ,,21线性无关。

7、设存在一组数4321,,,k k k k 使得044332211=+++ββββk k k k 有0)()()()(443332221141=+++++++ααααk k k k k k k k 因000000004332214=k k k k k k k k ,且不全为0,所以4321,,,ββββ线性相关。

8、讨论向量组相关性。

(本题的特点是向量组的个数等于向量的维数,其判断法是求向量组成的行列式值是否为0)(1)0520520111631520111321===ααα,相关(2)02100020011321≠==ααα,无关9、由向量组组成的行列式为 12021011131321111321-==t t ααα (1)如果,5,41=→=-t t 行列式等于0,向量组线性相关,(2)如果,5,41≠→≠-t t 行列式不等于0,向量组线性无关,(3)当5=t 时,向量组相关,设22113αααk k +=即=-=??+????? ??=????? ??213211115312121k k k k10、用矩阵的秩判别向量组的相关性(方法是求由向量组构成的矩阵的秩r 与向量组个数关系)(1)()---→??????? ??----??→---==--015026014010515626414010412420311113213321c c c c A ααα所以 2)(=A R ,相关。

线性代数课后习题答案第1――5章习题详解(优选.)

线性代数课后习题答案第1――5章习题详解(优选.)

xx .. ..第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4xx .. .. (4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b axx .. ..(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++xx .. ..=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=xx .. ..同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n nn n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解xx .. ..(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得xx .. ..nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a Dxx .. ..即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221xx .. ..nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=xx .. ..112035122412111512-----=D 811507312032701151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=xx .. ..51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.xx .. ..10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.xx .. ..第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.xx .. ..解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.xx .. ..(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x xxx .. ..322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.xx .. ..6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k .解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察xx .. ..⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:xx .. ..⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;xx .. ..解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知xx .. ..⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121xx .. ..⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为xx .. ..⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,xx .. ..或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.xx .. ..解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;xx .. ..若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1xx .. ..=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,xx .. ..而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .xx .. ..26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠.xx .. ..28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C , 所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.xx .. ..(2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.xx .. ..解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201xx .. ..33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数-(周勇)文档

线性代数-(周勇)文档

线性代数第一章行列式第一节二阶与三阶行列式一、 二元线性方程组与二阶行列式 对于二元线性方程组 1111221a x a x b +=2112222a x a x b += (1.1)使用加减消元法,当112212210a a a a -≠时,方程组(1.1)有解为,122212211121121112122111221221,b a b a b a b ax x a a a a a a a a --==-- . (1.2)(1.2)式中的分子、分母都是4个数分两对相乘再相减而得.其中分母11221221a a a a -是由方程组(1.1)的4个系数确定的,把这4个数按它们在方程组(1.1)中的位置,排成两行两列(横排称行、竖排称列)的数表11122122a a a a (1.3) 表达式11221221a a a a -称为数表(1.3)所确定的行列式,记作11122122a a a a , (1.4)数ij a (i=1,2; j=1,2)称为行列式(1.4)的元素.元素ij a 的第一个下标i 称为行标,表明该元素位于第i 行,第二个下标j 称为列标,表明该元素位于第j 列.上述二阶行列式的定义可用对角线法则记忆.如图1-1所示,即实线连接的两个元素(主对角线)的乘积减去虚线连接的两个元素(次对角线)的乘积.图 1-1例13221-=3×1-(-2)×2=7.二、 三阶行列式三、 定义1.1设有9个数排成3行3列的数表111213212223313233a a a a a a a a a (1.5)用记号111213 212223313233a a aa a aa a a表示代数和112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a++---上式称为数表(1.5)所确定的三阶行列式,即D=111213212223313233a a aa a aa a a=112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a++---(1.6)三阶行列式表示的代数和,也可以由下面的对角线法则来记忆,如图1-2所示,其中各实线连接的3个元素的乘积是代数和中的正项,各虚线连接的3个元素的乘积是代数和中的负项.图1-2例2 计算三阶行列式D=123221345----解由对角线法则D=1×(-2)×(-5)+2×(-1)×(-3)+3×4×2-3×(-2)×(-3)-2×2×(-5)-1×4×(-1)=46.例31010411aa>0的充分必要条件是什么?解由对角线法则1010411aa=21a-21a ->0当且仅当|a |>1,因此可得:1010411a a >0 的充分必要条件是|a |>1.第二节 n 阶行列式的定义一、 全排列及其逆序数把n 个不同元素按某种次序排成一列,称为n 个元素的全排列.n 个元素的全排列的总个数,一般用Pn 表示,且Pn =n !.对于n 个不同元素,先规定各元素间有一个标准次序(如n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说它们构成了一个逆序.一个排列中所有逆序的总和,称为该排列的逆序数,排列 12n i i i L 的逆序数记作τ(12n i i i L ).例如,对排列32514而言,4与5就构成了一个逆序,1与3,2,5也分别构成一个逆序,3与2也构成一个逆序,所以τ(32514)=5.逆序数的计算法:不失一般性,不妨设n 个元素为1至n 这n 个自然数,并规定由小到大为标准次序,设12n i i i L 为这n 个自然数的一个排列,自右至左先计算排在最后一位数字n i 的逆序数,等于排在n i 前面且比n i 大的数字的个数,再计算12n i i -L 的逆序数,然后把所有数字的逆序数加起来,就是该排列的逆序数.例1计算τ[1 3 5…(2n -1)2 4 6…(2n )].解 从排列1 3 5…(2n -1)2 4 6…(2n )看,前n 个数1 3 5…(2n -1)之间没有逆序,后n 个数2 4…(2n )之间也没有逆序,只有前后n 个数之间才构成逆序.2n 最大且排在最后,逆序数为0,2n-2的前面有2n-1比它大,故逆序数为1,2n-4的前面有2n-1、2n-3比它大,故逆序数为2,………………2前面有n-1个数比它大,故逆序数为n-1,因此有τ[1 3 5…(2n -1)2 4 6…(2n )]=0+1+…+(n -1)=(1)2n n -. 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列. 二、 对换在排列中,将任意两个元素对调,其余元素保持不动,这种作出新排列的方法叫做对换.将相邻两个元素对换,叫做相邻对换.定理2.1 一个排列中的任意两个元素对换,排列改变奇偶性.证 先证相邻对换的情形.设排列为1212,m n a a a abb b b K L 对换a 与b ,变为1212,m n a a a abb b b K L 显然这时排列中除a,b 两数的顺序改变外,其他任意两数和任意一个数与a 或b 之间的顺序都没有变.当a >b 时,经对换后,a 的逆序数不变,b 的逆序数减少1;当a <b 时,对换后,a 的逆序数增加1,b 的逆序数不变,所以新排列与原排列奇偶性不同.再证一般对换的情形.设排列为121212,m n p a a a abb b b c c c K L L ,对换a 与b ,变为121212,m n p a a a abb b b c c c K L L .可以把它看做将原排列作n 次相邻对换变成121212,m n p a a a abb b b c c c K L L ,再作n+1次相邻对换变成121212,m n p a a a abb b b c c c K L L .因此经过2n+1次相邻对换,排列变为121212,m n p a a a abb b b c c c K L L .所以这两个排列的奇偶性不同. 三、 n 阶行列式的定义为了给出n 阶行列式的定义,我们先研究三阶行列式的定义,三阶行列式的定义为111213212223313233a a a a a a a a a =112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a ++--- 由定义可看出:(1) 上式右边的每一项都是3个元素的乘积,这3个元素位于不同的行、不同的列;且每一项3个元素的第1个下标(行标)依次为123,排成了标准次序,第2个下标(列标)排成了123p p p ,它是1,2,3这3个数的某一个排列,对应上式右端的6项,恰好等于这3个数排列的种数.因此除了正负号外,右端的每一项都可以写成下列形式:112233,p p p a a a ,其中123p p p 是1,2,3的某一个排列,其项数等于P3=3!.(2) 项的正、负号与列标排列的逆序数有关.易验证上式右端带正号的项的列下标的排列都是偶排列,带负号的项的列下标的排列都是奇排列.因此各项所带符号由该项列下标的排列的奇偶性所决定,从而各项可表示为123123()123(1),p p p p p p a a a τ-综合(1)、(2)得:三阶行列式可以写成132123111213()212223123313233(1),p p p p p p a a a a a a a a a a a a τ=-∑其中 123()p p p τ为排列123p p p 的逆序数.∑表示对1,2,3这3个数的所有全排列123p p p 求和.由此,我们引入n 阶行列式的定义.定义21设有2n 个数,排成n 行n 列的数表111212122212n n n n nna a a a a a a a a L L M MMM L作出表中位于不同行不同列的n 个数的乘积2112,n p p np a a a L 并冠以符号(-1)τ(12,,,,n p p p L ),即得1212()12(1)n n p p p p p np a a a τ-L L (21)的项,由于12,,,,n p p p L 为自然数1,2,…,n 的一个排列,这样的排列共有n!个,因而形如(21)式的项共有n!项,所有这n!项的代数和1212()12(1).n n p p p p p n p a a a τ-∑L L 称为n 阶行列式,记为D=111212122212n n n n nna a a a a a a a a L L MMMM L简记为det(aij),其中数aij 称为行列式det(aij)的元素,即111212122212n n n n nna a a a a a a a a L L MMMM L=1212()12(1).n n p p p p p n p a a a τ-∑L L (2.2)按此定义的二阶、三阶行列式,与用对角线法则定义的二阶、三阶行列式是一致的.特别当n=1时,一阶行列式|a |=a ,注意与绝对值记号的区别.例2 按行列式的定义计算下三角形行列式:D=11212212,n n nna a a a a a M M O L其中未写出的元素全为零(以后均如此).解 由定义,n 阶行列式中共有n!项,其一般项为1212(1),n p p n p a a a τ-L其中τ=τ(12,,,n p p p L ).现第1行除11a 外其余元素全为零,故只有一个元素11a ,在第2行中除了2122,a a 外全是零,故应在2122,a a 中取一个,且只能取一个,因为22a 是第1行第1列的元素,11p =,故 2,,n p p L 不能再取1,所以22p =,即第2行取22a ,依此类推,第n 行只能取n p n =,即取元素nn a ,从而有D=11212212n n nna a a a a a M M O L=1122,nn a a a L即D 等于主对角线上元素的乘积. 同理可得上三角行列式111212221122.n n nn nna a a a a a a a a =L LL OM作为三角形式特例的对角行列式(除对角线上的元素外,其他元素都为0,在行列式中未写出来),11221122.nn nna a a a a a =L O例3证明1(1)2,121211(1),1.nn n n n n n a a a a n a a --=--L N证由行列式的定义12,11211(1),1.nn n n n a a a a n a a τ-=--L N其中τ=τ[n (n-1)…1]为排列n (n-1)…1的逆序数,又τ[n (n-1)…1]=(n-1)+(n-2)+…+1=(1),2n n-,所以结论得以证明. 四、 n 阶行列式定义的其他形式利用定理2.1,我们来讨论行列式定义的其他表示法. 对于行列式的任一项1212()12(1),n i j n p p p p p ip jp np a a a a a τ-L L L L其中1…i …j …n 为自然排列,对换 i ip a 与jpj a 成121()1(1),n i j n p p p p ip jp np a a a a τ-L L L L这时,这一项的值不变,而行标排列与列标排列同时作了一次相应的对换.设新的行标排列1…j …i …n 的逆序数为τ1,则τ1为奇数;设新的列标排列12,,,,n p p p L 的逆序数为τ2,则122()(1)(1),n p p p ττ-=--L ,故1212()(1)(1),n p p p τττ+-=-L于是121211()11(1)(1)n i j n i j n p p p p ip jp np p ip jp np a a a a a a a a τττ+-=-L L L L L L L这就说明,对换乘积中两元素的次序,从而行标排列与列标排列同时作了一次对换,因此行标排列与列标排列的逆序数之和并不改变奇偶性.经过一次对换如此,经过多次对换亦如此.于是经过若干次对换,使列标排列[逆序数τ=τ(12,,,,n p p p L )]变为自然排列(逆序数为0);行标排列则相应地从自然排列变为某个新的排列,设此新排列为12,,,,n q q q L 则有1212()12(1),n n q q q q q q n a a a τ-L L又若 i p j =则 j q i =(即 i jip ij q j a a a ==),可见排列12,,,,n q q q L 由排列12,,,,n p p p L 所唯一确定.由此可得n 阶行列式的定义如下: 定理22n 阶行列式也可定义为1212()12(1).n n p p p p p n p D a a a τ=-∑L L (2.3)证 按行列式定义有1212()12(1).n n p p p p p n p D a a a τ=-∑L L记 1212()112(1),n n q q q q q q n D a a a τ=-∑L L 按上面的讨论可知:对于D 中任一项1212()12(1),n n q q q q q q n a a a τ-L L 总有D 1中唯一的一项1212()12(1),n n q q q q q q n a a a τ-L L 与之对应并相等;反之,对于D 1中的任一项1212()12(1),n n q q q q q q n a a a τ-L L 同理总有D 中唯一一项1212()12(1),n n q q q q q q n a a a τ-L L 与之对应并相等,所以D =D1.更一般的有n 阶行列式的定义如下: 定理2 3 n 阶行列式可定义为121122(1),n n p q p q p q D a a a ττ+=-∑L (2.4)其中112212(),().n n p p p q q q ττττ==L L第三节 行列式的性质记 D=111212122212n n n n nn a a a a a a a a a L L MMMM L将其中的行与列互换,即把行列式中的各行换成相应的列,得到行列式1121112222121n n nnna a a a a a a a a L L M MM M L上式称为行列式D 的转置行列式,记作 T D (或记为D ′). 性质1 D =T D .证 记D =det(aij)的转置行列式T D =11121212222n n nn nnb b b b b b b b b L L M MM M L则bij=aji(i,j=1,2,…,n),按行列式的定义12121212()()1212(1)(1).n n n n p p p p p p T p p n p p p p n D b b b aaa ττ=-=-∑∑L L L L由定理2.2知TD =D.此性质表明,在行列式中行与列有相同的地位,凡是有关行的性质对列同样成立,反之亦然. 性质2交换行列式的两行(或两列),行列式改变符号. 证 设行列式D1=11121212222n n nn nnb b b b b b b b b L L M MM M L是由行列式D=det(aij)交换第i 和第j 两行得到的,当k ≠i,j 时,bkp=akp;当k=i 或j 时,bip=ajp,bjp=aip.于是11111111()11()1()1()1(1)(1)(1)(1).i j n i j n i j n i j n i j n j i nj i n j i n p p p p p i p j p n p p p p p p i p j p n p p p p p p i p j p n p p p p p p i p j p n p D b b b b a a a a a a a a a a a a D ττττ=-=-=-=-=-∑∑∑∑L L L L L L L L L L L L L L L L L L L L L L L L推论1 如果行列式有两行(或两列)完全相同,则此行列式等于零. 证 把这两行互换,有D =-D,故D=0.性质3 行列式中某一行(或列)的各元素有公因子,则可提到行列式符号的外面,即111211112112121212n n i i m i i m n n nn n n nna a a a a a ka ka ka k a a a a a a a a a =L L M M M M M M M M L L M M M M M M M M L L推论2行列式的某一行(或列)所有元素都乘以同一个数k ,等于用数k 乘此行列式. 推论3行列式的某一行(或列)的元素全为零时,行列式的值等于零. 性质4若行列式中有两行(列)的元素对应成比例,则此行列式等于零. 性质5若行列式的某一行(列)的元素都是两数之和,如1112111212222212()(),()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+L L L L M M M L M L L则D 等于下列两个行列式之和,即1112111112112122222122221212.i n i ni n i n n n ni nnn n ninna a a a a a a a a a a a a a a a D a a a a a a a a ''=+'L L L L LL L L M M M L M M M M L M LLLL证 在行列式的定义中,各项都有第i 列的一个元素()ki kia a '+,从而每一项均可拆成两项之和.性质6把行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上去,行列式的值不变.例如把行列式的第j 列乘以常数k 后加到第i 列的对应元素上,有11111111111212222112221211()().()iii i j ii i j n i j j nn n njnnn i nj njnna a a a a a ka a a a a a a a a ka a a a a a a a a ka a a ++=+L LLL L LL L L LLLM M M M M M M M LLLLLL以上没有给出证明的性质,读者可根据行列式的定义证明.利用这些性质可简化行列式的计算,为了表达简便起见,以ri 表示第i 行,ci 表示第i 列,交换i ,j 两行(列)记为ri rj (ci cj ),第i 行(列)乘以数k 记为kri(kci ),第j 行(列)的元素乘以k 加到第i 行(列)上记为ri+krj(ci+kcj ),第i 行(列)提取公因式记为ri ÷k (ci ÷k ).利用行列式的性质将行列式化为上三角行列式,从而算出行列式的值.例1计算行列式25123714.59274612D ---=--解152215221734021629570113164201201522021601130120152215220113011300300030033000311(3)39D -----=-=-----=----==--=⨯⨯-⨯=-例2计算n 阶行列式.a b b b b a b b D b b a b b b b a=L L LM M M M L解 注意到行列式的各行(列)对应元素相加之和相等这一特点,把第2列至第n 列的元素加到第1列对应元素上去,得(1)(1)(1)a n b b b a n b a b D a n b b a +-+-=+-L LM M ML[]11(1).1b b a b a n b b a =+-LL M M ML[]100(1).b b a b a n b a b-=+--L LM M M L[]1(1).()n a n b a b -=+--例3计算行列式.2324323631063a b c d aa ba b ca b c d D a a b a b ca b c da ab a bc a b c d++++++=++++++++++++解从第4行开始,后行减前行,得0.02320363a b c d aa ba b cD a a b a b c a a b a b c+++=++++++0.0020063a b c d a a ba b c a a b a a b c +++=+++4000200a b c d a a b a b ca a ab a+++==+ 可见,计算高阶行列式时利用性质将其化为上三角行列式,既简便又程序化. 例4设111111111111,k k kk k n n nkn nna a a a D c cb bc c b b =L M M L L L M M M M LL11111det(),k ij k kk a a D a a a =LMM L 11121det(),n ij n nnb b D b b b =LMM L证明:12.D D D =证 对1D 作运算i j r kr +,把1D 化为下三角行列式,设为111111;kk k kkP D p p P P ==M OL L对2D 作运算i j c kc +,把2D 化为下三角行列式,设为11211221.nn n nnq D q q q q q ==M OL L于是,对D 的前k 行作运算i j r kr +,再对后n 列作运算i j c kc +,把D 化为1111111121111111k kk kk nn k n nkn nnp p p D p p q q D D c c q c c q q ===M O L L L LM M M O LL第四节行列式按一行(列)展开将高阶行列式化为低阶行列式是计算行列式的又一途径,为此先引进余子式和代数余子式的概念.在n 阶行列式中,划去元素aij 所在的行和列,余下的n-1阶行列式(依原来的排法),称为元素aij 的余子式,记为Mij.余子式前面冠以符号(-1)i+j ,称为元素aij 的代数余子式,记为Aij =(-1)i+j Mij.例如四阶行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a中元素23a 的余子式和代数余子式分别为11121423313234414244;a a a M a a a a a a =23232323(1)A M M +=-=-引理一个n 阶行列式D ,如果第i 行所有元素除ij a 外全为零,则行列式.ij ij D a A =证 先证ij a 位于第1行第1列的情形,此时11212221200,n n n nna a a a D a a a =L L M M M L这时第三节例4中当k=1时的特殊情形,按第三节例4的结论有11111111D a M a A ==.再证一般情形,此时1111100.j n ij n nj nna a a a D a a a =L L M M M LL M M M LL我们将D 作如下的调换:把D 的第i 行依次与第i-1行,第i-2行,…,第1行对调,这样数ij a 就调到了第1行第j 列的位置,调换次数为i-1次;再把第j 列依次与第j-1列,第j-2列,…,第1列对调,数ij a 就调到了第1行第1列的位置,调换次数为j-1,总共经过(i-1)+(j-1)次对调,将数ij a 调到第1行第1列的位置,第一行其他元素为零,所得的行列式记为D 1,则,而ij a 在D 1中的余子式仍然是ij a 在D 中的余子式Mij ,利用前面的结果,有1ij ij D a M =于是 1(1)(1)i j i j ij ij ij ij D D a M a A ++=-=-=定理4.1行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 D=ai 1Ai 1+ai2Ai2+…+ainAin(i=1,2,…,n), 或D=a 1jA 1j +a2jA2j +…+anjAnj(j=1,2,…,n). 证1112112120000000n i i in n n nna a a D a a a a a a =++++++++++L M MML L LL M M M L11121111211112112121212000000,n n n i i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++L L L M M M M M M M M M L L L L M M M M M M M M M LLL根据引理有D=ai1Ai1+ai2Ai2+…+ainAin =∑nk=1aikAik(k=1,2,…,n). 类似地,我们可得到列的结论,即D=a1jA1j +a2jA2j +…+anjAnj =∑nk=1akjAkj(j=1,2,…,n).这个定理称为行列式按行(列)展开法则,利用这一法则并结合行列式的性质,可将行列式降阶,从而达到简化计算的目的.例1再解第三节中例1.解 2512001037141216592711234612211D -----==---1311126300(1)11311321021013(1)(3)10++--=-=--=-⨯--=-3×(-1)×(-1)×3=-9. 例2计算行列式11211nnn nna b a b D c d c d =ON NO解 按第1行展开有111121111000000n n n nn n na b a b D a c d c d d ----=ONMM NO M L11111211110(1)00000n n nn n n na b a b b c d c d c --+--+⨯-ONM M NOM L2(1)2(1)2(1)(),n n n n n n n n n n n a d D b c D a d b c D ---=-=-,以此作递推公式,得22(1)11112(2)111111222211111111111()()()()()()()()()(),n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n ni i i i i D a d b c D a d b c a d b c D a b a d b c a d b c a d b c c d a d b c a d b c a d b c a d b c --------------==-=--==---=---=-L LL L C其中记号“∏”表示所有同类型因子的连乘积. 例3 证明范德蒙(Vandermonde)行列式1222212111112111()nn n i j n i j n n n nx x x D x x x x x x x x ≥≥---==-∏f L L L M M M L(4.1)证 用数学归纳法证明.当n=2时,211211()ij n i j D x x x x ≥≥==-∏f (4.1)式成立.假设(4.1)式对n-1阶范德蒙行列式成立,要证(4.1)式对n 阶范德蒙行列式成立.为此,将Dn 降阶,从第n 行开始,后一行减前一行的 1x 倍得2131122133112222213311111100()()()0()()()n n n n n n n n n x x x x x x D x x x x x x x x x x x x x x x x x x ------=------L L LM M MM L按第1列展开,并提取每一列的公因子,有232131122223111()()()n n n n n n n x x x D x x x x x x x x x ---=---LL M M M L上式右端行列式是n-1阶范德蒙行列式,由归纳假设它等于∏n ≥i >j ≥2(xi -xj ),故2131121()()()()().n n i j n i j i j n i j D x x x x x x x x x x ≥≥≥≥=----=-∏∏f f L显然,范德蒙行列式不为零的充要条件是x 1,x 2,…,xn 互不相等. 由定理4.1还可以得到下述推论.推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即ai 1Aj 1+ai 2Aj 2+…+ainAjn=0,i ≠j , 或a1iA1j+a2iA2j +…+aniAnj=0,i ≠j . 证 作行列式(i ≠j)11121121212n i i in i i in n n nna a a a a a a a a a a a L M M M L M M M L M M L则其第j 行与行列式D 的第j 行不相同外,其余各行均与行列式D 的对应行相同.但因该行列式第i 行与第j 行相同,故行列式为零.将其按第j 行展开,便得ai 1Aj 1+ai 2Aj 2+…+ainAjn=0.同理可证a1iA1j+a2iA2j +…+aniAnj=0. 将定理4.1与推论综合起来得 ∑nk=1aikAjk =D,i =j, 0,i ≠j, 或∑nk=1akiAkj =D,i =j, 0,i ≠j.下面介绍更一般的拉普拉斯(Laplace)展开定理. 先推广余子式的概念.定义4.1在一个n 阶行列式D 中,任意取定k 行k 列(k ≤n),位于这些行与列的交点处的k 2个元素,按原来的顺序构成的k 阶行列式M ,称为行列式D 的一个k 阶子式;而在D 中划去这k 行k 列后余下的元素,按原来的顺序构成的n-k 阶行列式N ,称为k 阶子式M 的余子式.若k 阶子式M 在D 中所在的行、列指标分别为i 1,i 2,…,ik 及j 1,j 2,…,jk ,则(-1)(i 1+i 2+…+ik )+(j 1+j 2+…+jk )N 称为k 阶子式M 的代数余子式.如在五阶行列式111213141521222324255152535455a a a a a a a a a a a a a a a M M M M M中选定第2、第5行,第1、第4列,则二阶子式21245154a a M a a的余子式121315323335424345a a a N a a a a a a = 而代数余子式为2514(1).N N +++-=*定理4.2(拉普拉斯定理)设在行列式D 中任意选定k(1≤k ≤n-1)行(或列),则行列式D 等于由这k 行(列)元素组成的一切k 阶子式与它们对应的代数余子式的乘积之和.(不证)例4 用拉普拉斯定理计算行列式12140121.10130131D -=解 若取第1、第2行,则由这两行组成的一切二阶子式共有 246C =个123456121114,,,010201212414,,.121121M M M M M M ===-===--其对应的代数余子式为123456130301,,,311113131110,,.010301A A A A A A ==-===-=则由拉普拉斯定理得D=M1A1+M2A2+…+M6A6=(-1)×(-8)-2×(-3)+1×(-1)+5×1-6×3+(-7)×1 =-7.注 当取定一行(列)即k=1时,就是按一行(列)展开.从以上计算看到,采用拉普拉斯定理计算行列式一般并不简便,其主要是在理论上的应用.第五节克莱姆法则含有n 个未知数x 1,x 2,…,xn 的n 个线性方程的方程组 a 11x 1+a 12x 2+…+a 1nxn=b 1, a21x 1+a22x 2+…+a2nxn=b2, ……………………an1x 1+an 2x 2+…+annxn=bn(5.1)有与二、三元线性方程组类似的结论,它的解可以用n 阶行列式表示,即为下述的克莱姆(Cramer)法则.定理5.1(克莱姆法则)若方程组(5.1)的系数行列式1121121222120,n n n n nna a a a a a D a a a =≠L L M MM M L则方程组有唯一解,且可表示为1212,,,,n n D D Dx x x D D D===L (5.2) 其中Dj (j =1,2,…,n )是将D 中的第j 列元素换成常数项所得的行列式,即111,111,11212,122,121,1,1.j j n j j nj n n j n n j nn a a b a a a a b a a D a a b a a -+-+-+=L L LL MM M M M L L 证 设x 1,x 2,…,xn 是方程组(51)的解,按行列式的性质,有11121121222212.j jn j j nj n n nj jnna a a x a a a a x a Dx a a a x a =LLL L M MM M LL再把行列式的第1列,…,第j-1列,第j+1列,…,第n 列分别乘以x 1,…,xj -1,xj +1,…,xn 加到第j 列上去,行列式的值不变,即11121112122221121.nj jn j nj j n j j nn n nj jnnj a a a x a a a a x a Dx a a a x a ====∑∑∑LLL L M M MMLL11121121222212.n n j n n n nna ab a a a b a D a a b a =L L L L M M M M LL因D ≠0,故j j D x D=(j =1,2,…,n )为方程组的唯一解.例1 求解线性方程组1234123412413421,21,2,1,x x x x x x x x x x x x x x -++=⎧⎪+-+=⎪⎨++=⎪+-=⎪⎩解111211121121023111010211111013D -----==----2312353521121510151310----=--=-==---111121121821011011D --==--,211121121912011111D -==--,3411121111111111215,3,11211102111111D D ---==-==-- 故1234849913,,,.1051010210x x x x --======-- 由此可见用克莱姆法则解方程组并不方便,因它需要计算很多行列式,故只适用于解未知量较少和某些特殊的方程组,但把方程组的解用一般公式表示出来,这在理论上是重要的.使用克莱姆法则必须注意:①未知量的个数与方程的个数要相等;②系数行列式不为零.对于不符合这两个条件的方程组,将在以后的一般线性方程组中讨论.常数项全为零的线性方程组111122121122221122000n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L (5.3) 称为齐次线性方程组.而方程组(5.1)称为非齐次线性方程组.显然x 1=x 2=…=xn =0是方程组(53)的解,称为零解,若方程组(53)除了零解外,还有x 1,x 2,…,xn 不全为零的解,称为非零解.由克莱姆法则,有以下定理.定理52如果齐次线性方程组(53)的系数行列式D ≠0,则齐次线性方程组(53)只有零解.定理52′如果齐次线性方程组(53)有非零解,则它的系数行列式必为零.定理52′说明系数行列式D =0是齐次线性方程组有非零解的必要条件,在后面还将证明这个条件也是充分的.例2 问λ取何值时,齐次线性方程组(5)2202(6)02(4)0x y z x yx z λλλ⎧⎪-++=⎪⎪+-=⎨⎪⎪+-=⎪⎩有非零解?解 齐次线性方程组有非零解,则其系数行列式D =0,52226024D λλλ-=--=(5-λ)(6-λ)(4-λ)-4(4-λ)-4(6-λ)=(5-λ)(2-λ)(8-λ),由D=0得: λ=2,λ=5,λ=8.第六节典型例题例1 证明:ax by ay bz az bxay bzaz bx ax by az bx ax by ay bz+++++++++33().xy z a b yz x zxy=+ 证明 利用性质5,把行列式拆成32个行列式的和,除两个外,其余均因有两行成比例而等于零,即左边3333().ax ay az by bz bx ay az ax bz bx byaz ax ay bx by bz xy z y z x a yz x b z x y z xy x y zxy z a b yz x zxy+=+=+ 例2计算行列式00000000000n D αβαβαβαβαβαβααβ+++=++L L LM M M MML L解按第1列展开,可得Dn 与其同类型的较低阶行列式的关系.1211200000()(1)0000()2,n n n n D D D D αβαβαββαβαβαβαββ+---+=++-++=+-L LMM M ML L即Dn -αDn -1=β(Dn -1-αDn -2), 或Dn -βDn -1=α(Dn -1-βDn -2). 由此递推下去,得Dn -αDn -1=β(Dn -1-αDn -2)=β·β(Dn -2-αDn -3)=…=βn -2(D2-αD1). 而2222(),D αβααβαβαβαββαβ+=+-=+++代入上式,得221.n nn n D D αβββ---==(1) 同理,可得1.nn n D D βα--=.(2)当α≠β时,由(1)式、(2)式解得11.n n n D αβαβ-+-=-当α=β时,由(1)式或(2)式递推下去,得(1).n n D n α=+例3计算n 阶行列式12311231123112311231(,1,,),n n n n n n n i i n n n nx a a a a a x a a a a a x a a D x a i n a a a x a a a a a x -----=≠=L L L L M M MM M L L解1211221100n n n nx a a a x x a D a x x a --=--L M O12112212122111()111011()11(1)()n n nni i i nk n k k k n nni i i nnki i k i k k a x a x a x a x a x a a a a x a x a x a x a a x a x a =====---=---+---=-=+--∏∑∏∑∏LM O LMO例4计算行列式2211112222222211112211.11n n n nn n n n n n n n nnnn n x x x x x x x x D x x x x x x x x --------=L L MM M M M L L解 只需在Dn 中加上最后一行和最后第二列,就变成n+1阶范德蒙行列式的转置行列式的转置行列式2211111122122222121112211111n n n n n n n n n n n n n n n n n nx x x x x x x x x x D x x x x x yy y y y ----+-----=L L MM M M M M L L于是有1111121112121()()()()()()()(1).()nT n n i i j i n i j n i j n i j n n nn n i j n i j D Dy x x x y x y x y x x x y x x x y x x x x x ++=≥≥≥≥-≥≥==--=----⎡⎤=-+++++--⎣⎦∏∏∏∏f f f L L L L若把Dn+1按最后一行展开得111010(1)().n n n n n n n n n n n D a y y D a a y D y a ++++-=+-++=+-++L L而1n y-的系数恰好是(-Dn).比较上式两边1n y-的系数,便得11()().nn i i j i n i j D x x x =≥≥=-∑∏f例5设1234555533,325422221146523A =求(1)313233;A A A ++(2)3435.A A + 解将A 中第三行的元素依次换成5,5,5,3,3.则第二行与第三行的对应元素相等,于是行列式的值等于0.按第三行展开,则有31323334355()3()0A A A A A ++++=(1)同理,将A 中第三行的元素换成第四行的对应元素,按第三行展开则有31323334352()0A A A A A ++++=(2)解(1),(2)联立方程组,得31323334350,0.A A A A A ++=+=第二章 矩阵第一节矩阵的概念引例1在平面解析几何中,当坐标轴逆时针旋转θ角时,新旧坐标之间存在如下的变换公式:x =x ′cos θ-y ′sin θ, y=x ′sin θ+y ′cos θ.显然,这种新旧坐标之间的关系完全可以由公式中的系数所构成的数表cos sin sin cos θθθθ-⎛⎫⎪⎝⎭确定.引例2线性方程组11112211211222211122,,,n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎪⎨⎪⎪+++=⎪⎩L L L L L L L (1.1) 其中i x (i =1,2,…,n )代表n 个未知量,m 是方程的个数,ij a (i =1,2,…,m;j =1,2,…,n )称为方程组的系数,bi (i =1,2,…,m )称为常数项.为了便于研究和求解线性方程组,我们把系数和常数项取出并按原来的位置排成下列数表:11121121222212n nm m mn m a a a b a a a b a a a b ⎛⎫⎪ ⎪⎪⎪⎝⎭L L M M M M L(1.2)这样的数表称为矩阵 定义11由m ×n 个数ij a (i=1,2,…,m;j=1,2,…,n)排成m 行n 列的111212122212n nm m mna a a a a a a a a LL M M M L称为m 行n 列的矩阵,简称m ×n 矩阵.为了表示它是一个整体,总是加一个括弧(中括弧或小括弧),并用大写黑体字母表示它,记作111212122212,n n m m mn a a a a a a a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭L L M M M L A (1.3)其中ij a 表示矩阵第i 行第j 列的元素.矩阵(13)也可简记为A =(ij a )m ×n或A =(ij a ),m ×n 矩阵A 也记为A m ×n .元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.本书中除特别声明外,都是指实矩阵.当m=n 时,A 称为n 阶方阵. 只有一行的矩阵A =(12n a a a L )称为行矩阵,为了避免元素间的混淆,行矩阵一般记作A =(12,,,n a a a L ).只有一列的矩阵12n a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M A称为列矩阵.两个矩阵若行数相等且列数相等,则称它们是同型的.若A =(ij a )m ×n 与B =(ij b )m ×n 同型,且它们的对应元素相等,即ij ij a b =(i=1,2,…,m;j=1,2,…,n),则称矩阵A 与B 相等,记为A=B .元素全为零的矩阵称为零矩阵,记为O .注意不同型的零矩阵是不相等的. 显然,当未知量12,,,n x x x L 的顺序排定后,线性方程组(11)与矩阵(12)是一一对应的,于是可以用矩阵来研究线性方程组.例1 设一组变量12,,,n x x x L 到另一组变量12,,m y y y L 的变换由m 个线性表达式给出:11111221221122221122,,,n n n nm m m mn n y a x a x a x y a x a x a x y a x a x a x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L L L L L (1.4) 其中常数ij a (i=1,2,…,m;j=1,2,…,n)为变换(14)的系数,这种从变量12,,,n x x x L 到变量12,,m y y y L 的变换称为线性变换.线性变换的系数构成m ×n 矩阵(13),称为线性变换(14)的系数矩阵.例 2 将某种物资从m 个产地 12,,,m A A A L 运往n 个销地12,,,.n B B B L 用aij 表示由产地 i A (i=1,2,…,m)运往销地 j B (j=1,2,…,n)的物资数量,则调运方案可用矩阵(13)表示.下面介绍几个重要的n 阶方阵.例3由n 个变量12,,,n x x x L 到n 个变量12,,n y y y L 的线性变换1122,,,n n y x y x y x =⎧⎪=⎪⎨⎪⎪=⎩L L 称为恒等变换,它的系数矩阵100010001⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L L M M M LE 称为n 阶单位矩阵,简称单位阵.n 阶单位矩阵的特点是:从左上角到右下角的直线(称为主对角线)上的元素都是1,其他元素都为零.也就是E=(δij ),其中δij =1,当i=j 时,0, 当i ≠j 时.例4线性变换111222,,,n n n y x y x y x λλλ=⎧⎪=⎪⎨⎪⎪=⎩L L 对应的系数矩阵1200000n λλλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L LM M M LA 称为对角阵.对角阵的特点是:不在主对角线上的元素都为零.当λ1=λ2=…=λn 时,称此矩阵为数量矩阵.11121222000n n nn a a a a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭L L M M M L A称为上三角阵.上三角阵的特点是:主对角线以下的元素全为零,即当i >j 时,ij a =0.类似地,方阵11212212000n n nn a a a a a a ⎛⎫⎪ ⎪ ⎪⎪⎝⎭L L M M M L称为下三角阵.第二节矩阵的运算一、 矩阵的加法定义2.1设有两个m ×n 矩阵: A =(ij a )m ×n ,B =(ij b )m ×n ,那么矩阵()()ij m n ij ij m n c a b ⨯⨯==+C111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎛⎫⎪+++ ⎪= ⎪⎪+++⎝⎭L L M M M L 称为矩阵A 与B 的和,记为C =A+B. 注意: 只有同型矩阵才能进行加法运算.设A ,B ,C ,O 均为m ×n 矩阵,容易证明矩阵加法满足下列运算规律: (i) 交换律A+B =B+A ; (ii) 结合律(A+B)+C=A+(B+C); (iii) A+O=A. 设矩阵A =(ij a )m ×n ,记-A =(-ij a )m ×n ,称为A 的负矩阵,显然有 A+(-A)=O, 由此定义矩阵的减法为A-B=A+(-B).二、 数与矩阵的乘法 定义22设λ是常数,A =(ij a )m ×n ,则矩阵111212122212()n n ij m nm m mn a a a a a a a a a a λλλλλλλλλλλλ⨯⎛⎫⎪ ⎪===⎪⎪⎝⎭L L M M M LA A称为数λ与矩阵A 的乘积.设A ,B 为m ×n 矩阵,λ,μ为数,由定义可以证明数与矩阵的乘法满足下列运算规律: (i) (λμ)A=λ(μA)=μ(λA); (ii) (λ+μ)A=λA+μA;(iii) λ(A+B)=λA+λB;(iv) 1·A=A,(-1)A=-A. 三、 矩阵与矩阵相乘定义2.3设矩阵 (),(),ij m s ij s n A a B b ⨯⨯== 则m ×n 矩阵(),ij m n C c ⨯=其中11221sij i j i j is sj ik kj k c a b a b a b a b ==+++=∑L称为矩阵A 与B 的乘积,记为C=AB.由定义可以看出:C=AB 中第i 行第j 列的元素ij c 等于A 的第i 行与B 的第j 列的元素的乘积之和.必须注意:只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.其行数与列数之间的关系可简记为 (m ×s )(s ×n )=(m ×n ) 例1 设矩阵41103,11,21020⎛⎫⎛⎫ ⎪==- ⎪ ⎪⎝⎭ ⎪⎝⎭A B 求乘积AB .解 因为A 是2×3矩阵,B 是3×2矩阵,A 的列数等于B 的行数,所以矩阵A 与B 可以相乘,AB=C 是2×2矩阵.由定义2.3有41103112102014(1)032110130241(1)022********.73⎛⎫⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ⎪⎝⎭⨯+-⨯+⨯⨯+⨯+⨯⎛⎫= ⎪⨯+⨯-+⨯⨯+⨯+⨯⎝⎭⎛⎫= ⎪⎝⎭AB 例3 设1111,,1111⎛⎫⎛⎫==⎪ ⎪---⎝⎭⎝⎭A B求AB 与BA . 解 111100,111100⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭AB111122.111122-⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭BA一般地AB ≠BA .乘积AB 有意义时,BA 不一定有意义,即使BA 有意义,由例2,AB ≠BA .由此可知,在矩阵乘法中必须注意矩阵相乘的顺序.AB 通常说成“A 左乘B ”,BA 称“A 右乘B ”.因此,矩阵乘法不满足交换律,即在一般情况下,AB ≠BA .对于两个n 阶方阵A ,B ,若AB =BA ,则称A 与B 是可交换的.由例2还可看出:当A ,B 都不是零矩阵时,但AB =O ,这是矩阵乘法与数的乘法又一不同之处.特别注意:若AB =O ,不能推出A=O 或B=O 的结论;若AB=AC ,A ≠O 也不能推出B=C 的结论.可以证明,矩阵乘法满足以下运算规律,其中所涉及的运算均假定是可行的. (i) (AB)C=A(BC)(结合律); (ii) A(B+C)=AB+AC(分配律); (B+C)A=BA+CA; (ii) λ(AB)=(λA)B=A(λB)(其中λ为数). 以上性质可以根据矩阵运算的定义得到证明. 用矩阵乘法的定义,线性变换(1.4)可表示为y=A x,其中A 为矩阵(1.3),1122,.n n x y x y x y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M例3 设有两个线性变换111112222112223311322,,,y a x a x y a x a x y a x a x =+⎧⎪=+⎨⎪=+⎩ (2.1) 与11111221332211222233x b t b t b t x b t b t b t =++⎧⎨=++⎩(2.2) 试用矩阵表示从变量t 1,t 2,t 3到变量y 1,y 2,y 3的变换[这个变换称为线性变换(21)和(22)的乘积]. 解 记111211121321222122233132,,a a b b b a a b b b a a ⎛⎫⎛⎫⎪== ⎪ ⎪⎝⎭⎪⎝⎭A B 11122233,,,y t x x y y t t x y t ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭则线性变换(2.1)和(2.2)可分别表示为:y =Ax , x =Bt,所以 y =Ax =A(Bt )=(AB)t .以上说明,线性变换的乘积仍为线性变换,它对应的矩阵为两线性变换对应的矩阵的乘积.在线性方程组(11)中,记111212122212,n n m m mn a a a a a a a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L A 1122,,n m x b x b x b x b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M 利用矩阵乘法的定义,则该线性方程组可记为Ax=b,上式称为矩阵方程.特别地,对于单位矩阵,容易验证EmAm ×n=Am ×n, Am ×nEn=Am ×n, 简记为 EA=A, AE=A . 有了矩阵的乘法,就可定义n 阶方阵的幂.设A 是n 阶方阵,定义 k =L 14243A AA A (k 为非负整数),k 个 我们有 ,().klk lk l kl +==A A AA A 其中k,l 为非负整数,但一般地().k k k ≠AB A B例4求证cos sin cos sin .sin cos sin cos nn n n n θθθθθθθθ--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭证 用数学归纳法证明.当n=1时,等式显然成立.假设当n=k 时等式成立,即cos sin cos sin .sin cos sin cos kk k k k θθθθθθθθ--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭要证当n=k+1时成立,此时1cos sin cos sin cos sin sin cos sin cos sin cos cos sin cos sin sin cos sin cos cos cos sin sin cos sin sin cos sin cos cos sin sin sin cos k kk k k k k k k k k k k k θθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθ+---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭---=+-+cos cos(1)sin(1).sin(1)cos(1)k k k k θθθθθ⎛⎫ ⎪⎝⎭+-+⎛⎫=⎪++⎝⎭所以当n=k+1时结论成立.因此对一切自然数n 都有cos sin cos sin .sin cos sin cos nn n n n θθθθθθθθ--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭四、 矩阵的转置定义2.4 将m ×n 矩阵A =( ij a )m ×n 的行和列依次互换位置,得到一个n ×m 矩阵称为A 的转置,记为A T(或A ′). 例如矩阵120311⎛⎫= ⎪-⎝⎭A的转置矩阵为1321.01T ⎛⎫ ⎪= ⎪ ⎪-⎝⎭A矩阵的转置也可看做是一种运算,满足下列规律:(i) (A T)T=A; (ii) (A+B)T=A T+B T; (iii) (λA)T=λA T(λ为数); (iv) (AB)T=B TA T.性质(i)~性质(iii)可直接按定义验证,下面只证明(iv).证设A =( ij a )m ×n , B =(ij a )n ×p , AB =(ij c )m ×p.(AB)T中第i 行第j 列的元素即AB 中第j 行第i 列的元素,由乘法定义,即为1njk kik ab =∑ (j=1,2,…,m; i=1,2,…,p).而 T B 的第i 行为(b1i ,…,bni),TA 的第j 列为(aj 1,aj 2,…,ajn )T,因此T TB A 的第i 行第j 列的元素为 ,表明()TA B 与T TA B 对应元素相等.且()TA B 是p ×m 矩阵,也是p ×m 的矩阵,所以()T T T=A B A B性质(ii)、性质(iv )还可推广到一般情形:1212(),T T T Tn n +++=+++A A A A A A L L1211(),T T T T n n n -=A A A A A A L L定义2.5 设A 为n 阶方阵,如果满足TA =A ,即ij ji a a =-(i,j=1,2,…,n),那么A 称为对称阵,其特点是它的元素以主对角线为对称轴对应相等.例如213114340⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A即为对称阵.定义26若n 阶方阵满足 TA =-A ,即ij ji a a =- (i,j=1,2,…,n),则称A 为反对称阵.据此定义,应有ii ii a a =- (i=1,2,…,n),即0ii a = ,表明主对角线上的元素全为零.例如。

线代习题一答案周勇朱砾版新版

线代习题一答案周勇朱砾版新版

《线性代数》(周勇)习题详解习题一1、(1)22115212;1=×-=×--=()(2)()222211311211(1)x x x x x x x x x x -+=--=-++-+; (3)2222a a b ab ba b -=; (4)1113141151481391181354915895=××+××+××-××-××-××=(5)0 a 0b 0 c0 d 0=0×0×0+a ×c ×0+b ×d ×0-0×0×0-a ×b ×0-c ×d ×0=0(6) 1 2 33 1 22 3 1=1×1×1+2×2×2+3×3×3-3×2×1-2×3×1-2×3×1=182、解:(1)对排列34215而言,3与2,1分列构成一个逆序,4与2,1也分别构成一个逆序,2与1也构成一个逆序,所以342155τ=(). (2)对排列4312而言,4与3,1,2分别构成一个逆序,3与1,2也分别构成一个逆序,所以43125τ=().(3)对排列n (n-1)…2 1而言n 与n-1,n-2,…,2,1均构成一个逆序,其逆序数为n-1;n-1与n-2,n-3,…,2,1也分别构成一个逆序,其逆序数为n-2;依次类推,2与1也构成一个逆序,因此有 (1)12112212n n n n n n τ--…×=-+-+…++=[()]()()(4)对排列 1 3…(2n-1)(2n )…4 2而言,3与2构成一个逆序,其逆序数为1;5与4,2分别构成一个逆序,其逆序数为2;…;2n-1分别于2n-2,2n-4,…,4,2分别构成一个逆序,其逆序数为n-1;2n-2分别于2n-4,…,4,2构成一个逆序,其逆序数为n-2;依次类推,4与2也构成一个逆序,其逆序数为1,因此有:1 3212 4 21211211n n n n n n n τ-…=++…+-+-+-+…+=-[()()]()()()()3、解:在四阶行列式中,含因子11a 23a 的项只有两类,分别为11a 23a 32a 44a 和11a 23a 34a 42a ,下面分别判断这两项的符号,因行标排列已经是自然排列,故只需计算排列的逆序数,因为[(1324)=1,[(,1342)=2,所以含有11a 23a 的项分别为-11a 23a 32a 44a 和11a 23a 34a 42a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数课后习题答案周勇
线性代数课后习题答案周勇
线性代数是一门重要的数学学科,它在各个领域都有广泛的应用。

学习线性代数需要理解和掌握其中的概念和方法,而练习习题则是巩固知识和提高能力的重要途径。

本文将为大家提供一些线性代数课后习题的答案,希望能够帮助大家更好地学习和理解这门学科。

1. 矩阵的秩和零空间
题目:给定矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的秩和零空间。

解答:首先,我们可以通过高斯消元法将矩阵A化为行阶梯形式。

经过计算得到:
[1 2 3; 0 -3 -6; 0 0 0]
从中可以看出,矩阵A的主元列为{1, 2},因此矩阵A的秩为2。

接下来,我们需要求解矩阵A的零空间。

由于矩阵A的秩为2,所以矩阵A的零空间的维数为3-2=1。

我们可以通过求解齐次线性方程组Ax=0来找到矩阵A的零空间。

将矩阵A化为增广矩阵形式:
[1 2 3 0; 4 5 6 0; 7 8 9 0]
经过高斯消元法的计算,得到矩阵的行阶梯形式为:
[1 2 3 0; 0 -3 -6 0; 0 0 0 0]
从中可以看出,矩阵A的自由变量为x3,所以矩阵A的零空间可以表示为:x = [-2x3; x3; 1]
2. 特征值和特征向量
题目:给定矩阵B = [2 1; 1 2],求矩阵B的特征值和特征向量。

解答:首先,我们需要求解矩阵B的特征值。

通过求解特征方程det(B-λI)=0,
可以得到特征值的表达式:
(2-λ)(2-λ) - 1*1 = 0
化简得到特征值的方程为(2-λ)² - 1 = 0,解这个方程可以得到两个特征值λ1=1
和λ2=3。

接下来,我们需要求解矩阵B的特征向量。

将特征值代入特征方程(B-λI)x=0中,可以得到特征向量的表达式。

对于特征值λ1=1,我们有:
[1-1 1; 1-1 1]x = 0
化简得到方程[-1 1; 0 0]x = 0,解这个方程可以得到特征向量x1=[1; 1]。

对于特征值λ2=3,我们有:
[2-3 1; 1-3 1]x = 0
化简得到方程[-1 1; -2 2]x = 0,解这个方程可以得到特征向量x2=[1; -1]。

综上所述,矩阵B的特征值为λ1=1和λ2=3,对应的特征向量分别为x1=[1; 1]
和x2=[1; -1]。

通过以上两个例题,我们可以看到线性代数课后习题的答案并不是简单的计算
结果,而是需要运用相关的知识和方法进行推导和求解。

通过练习习题,我们
可以加深对线性代数的理解,提高解决实际问题的能力。

希望以上答案能够帮
助大家更好地掌握线性代数的知识。

相关文档
最新文档