2019届高考理科数学知识点题组训练题14
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。
《高考真题》专题14 等差数列-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)
【母题原题1】【2019年高考全国Ⅲ卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.【母题原题2】【2017年高考全国Ⅲ卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A .专题14 等差数列【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【命题意图】主要考查考生的数学运算能力和逻辑推理能力,以及考生对函数与方程思想的应用.要求: 1.熟练掌握等差的通项公式、前n 项和公式. 2.掌握与等差数列有关的数列的求和的常见方法. 3.了解等差数列与一次函数的关系.【命题规律】等差数列是高考的考查热点,主要考查等差数列的基本运算和性质,等差数列的通项公式和前n 项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题. 【答题模板】求数列的通项、求和问题时,第一步:根据题意求通项.注意等差数列通项形如关于n 的一次函数的形式. 第二步:利用函数性质研究数列的性质,例如周期、单调性等. 第三步:利用函嫩、数列的交汇性质来综合求解问题.第四步:查看关键点、易错点及解题规范,例如错位相减去的计算量较大,注意检验. 【知识总结】1.等差数列的常用性质(1)通项公式的推广:a n =a m +(n –m )d (n ,m ∈N *).(2)若{a n }是等差数列,且k+l=m+n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n ;反之,不一定成立. (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }(p ,q ∈N *)也是等差数列.(5)若{a n }是等差数列,则a k ,a k+m ,a k+2m ,…(k ,m ∈N *)组成公差为md 的等差数列. 2.与等差数列各项的和有关的性质(1)若S m =n ,S n =m ,则S m+n =–(m+n );若S m =S n ,则S m+n =0. (2)若{a n }是等差数列,则{n S n}也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12.(3)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m –S m ,S 3m –S 2m 成等差数列.(4)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶–S 奇=nd ,S S 奇偶=1nn a a +; ②若项数为2n –1,则S 偶=(n –1)a n ,S 奇=na n ,S 奇–S 偶=a n ,S S 奇偶=-1nn .(5)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为2-12-1n n S T =nna b . 【方法总结】 (一)等差数列1.等差数列的判定与证明方法有以下四种:(1)定义法:a n+1–a n =d (常数)(n ∈N *)或a n –a n –1=d (n ∈N *,n ≥2)⇔{a n }为等差数列. (2)等差中项法:2a n+1=a n +a n+2(n ∈N *)⇔{a n }为等差数列. (3)通项公式法:a n =an+b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列. (4)前n 项和公式法:S n =an 2+bn (a ,b 为常数)⇔{a n }为等差数列.若要判定一个数列不是等差数列,则只需找出三项a n ,a n+1,a n+2,使得这三项不满足2a n+1=a n +a n+2即可.判断一个数列是否为等差数列时,应该根据已知条件灵活选用不同的方法,一般优先考虑定义法,即先表示出a n +1–a n ,然后验证其是否为一个与n 无关的常数.也可根据已知条件求出一些项,根据求解过程寻找具体的解题思路.注意常数列{a n }的通项公式为a n =a (a 为常数),它是一个首项为a ,公差为0的等差数列.2.等差数列基本运算的常见类型及解题策略:(1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解,或利用等差中项间接求解. 3.求数列前n 项和的最值的方法:(1)通项法:①若a 1>0,d<0,则S n 必有最大值,其n 可用不等式组100n n a a +≥⎧⎨≤⎩,来确定;②若a 1<0,d>0,则S n 必有最小值,其n 可用不等式组100n n a a +≤⎧⎨≥⎩,来确定.(2)二次函数法:等差数列{a n }中,由于S n =na 1+–12n n ()d=2d n 2+(a 1–2d)n ,可用求函数最值的方法来求前n 项和的最值,这里应由n ∈N *及二次函数图象的对称性来确定n 的值. (3)不等式组法:借助S n 最大时,有–11n n nn S S S S +≥⎧⎨≥⎩,(n ≥2,n ∈N *),解此不等式组确定n 的范围,进而确定n 的值和对应S n 的值(即S n 的最值). (二)其他数列1.求数列前n 项和的常用方法 (1)分组求和法分组转化法求和的常见类型①若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.②通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论. (2)裂项相消法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求解:由∴ (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.{}n a d 111nk k k a a =+∑()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭相加2.数列与函数综合(1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(2)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常用解法有助于该类问题的解决. 3.数列与不等式综合与数列有关的不等式的命题常用的方法有:比较法(作差作商)、放缩法、利用函数的单调性、数学归纳法证明,其中利用不等式放缩证明是一个热点,常常出现在高考的压轴题中,是历年命题的热点.利用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩. 4.以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用函数的单调性求解; 5.以数列为背景的不等式证明问题,多与数列求和有关,有时利用放缩法证明.1.【广西桂林市、崇左市2019届高三下学期二模联考数学】在数列{}n a 中,35a =,()120n n a a n ++--=∈N ,若25n S =,则n =A .3B .4C .5D .6【答案】C【解析】因为()120n n a a n ++--=∈N ,所以1=2n n a a +-=d ,所以数列{}n a 是等差数列,121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………()()()12112n n n n S a a a a a a -=++++++……所以()11145 ,1,512252a a n n n na +=⎧⎪∴==⎨-+⋅=⎪⎩.故选C . 【名师点睛】本题主要考查等差数列性质的判定,考查等差数列的通项和前n 项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.【广西桂林市2019届高三4月综合能力检测(一模)数学】等差数列{}n a 中,27a =,623a =,则4a = A .11 B .13 C .15 D .17【答案】C【解析】等差数列{}n a 中,27a =,623a =,62423744,a a d d d =+⇒=+⇒= 根据等差数列的通项公式得到42215.a a d =+=故选C .【名师点睛】这个题目考查了等差数列的概念以及通项公式的应用属于基础题. 3.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】等差数列{}n a 中,若46131520a a a a +++=,则101215a a -的值是A .4B .5C .6D .8【答案】A【解析】∵()461315415220a a a a a a +++=+=,∴41510a a +=, ∴()1012101211555a a a a -=-()891011121215a a a a a a =++++- ()89101115a a a a =+++()41525a a =+4=.故选A . 【名师点睛】本题考查等差数列中下标和性质的应用,解题的关键是进行适当的变形,以得到能运用性质的形式.本题也可转化为等差数列的首项和公差后进行求解,属于基础题.4.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研考试数学】设n S 为等差数列{}n a 的前n 项和,若21016a a +=,714S =,则{}n a 的公差为A .1B .3C .6D .2【答案】B【解析】方法一:设等差数列{}n a 的公差为d , 因为1777()142a a S +==,得174a a +=①, 因为21016a a +=,所以11116a a +=②,②–①得,11712a a -=,即412d =,所以3d =,故选B .方法二:设等差数列{}n a 的公差为d ,因为21016a a +=,714S =,所以112101672114a d a d +=⎧⎨+=⎩,解得173a d =-⎧⎨=⎩,故选B .【名师点睛】本题主要考查了等差数列基本量求解,属于基础题.等差数列基本量求解的通法是方程组法,利用等差数列的通项公式、求和公式将条件转化为关于1a 和d 的方程组,进而求解;另外也可以运用性质法,即利用等差数列的相关性质公式以及通项公式、求和公式直接求出基本量.5.【四川省峨眉山市2019届高三高考适应性考试数学】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A .66 B .132 C .–66 D .–132【答案】D【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-, 又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D .【名师点睛】本题考查等差数列的性质及求和公式,考查方程思想,是基础题.6.【四川省百校2019年高三模拟冲刺卷数学】已知等差数列{}n a 的前n 项和为n S ,且728S =,则4a = A .4 B .7 C .8 D .14【答案】A 【解析】()177477282a a S a +===,故44a =,故选A .【名师点睛】本题考查等差数列求和及基本性质,熟记求和公式及性质,准确计算是关键,是基础题. 7.【四川省内江市2019届高三第三次模拟考试数学】已知等差数列{}n a 的前n 项和为n S ,且86a =,828S =,则其公差为A .47 B .57 C .47-D .57-【答案】B【解析】设等差数列{}n a 的公差为d ,由86a =,828S =,则1176878282a d a d +=⎧⎪⎨⨯+=⎪⎩,解得57d =,故选B .【名师点睛】本题主要考查了等差数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.8.【四川省雅安市2019届高三第三次诊断考试数学】已知等差数列{}n a ,12018a =-,其前n 项和为n S ,20192018120192018S S -=,则2019S = A .0 B .1 C .2018 D .2019【答案】A【解析】设等差数列{}n a 的公差为d ,则()112n n n S na d -=+, 所以2019110092019S a d =+,20181201720182S a d =+,代入20192018120192018S S -=,得2d =. 所以()20192019201820192018202S ⨯=⨯-+⨯=.故选A . 【名师点睛】本题主要考查了等差数列前n 项和公式,考查方程思想及计算能力,属于中档题.9.【重庆市南开中学2019届高三第三次教学质量检测考试数学】等差数列{}n a 的前7项和为28,108a =,则7a = A .6B .7【答案】A【解析】由题得11717672822,2,,26623398a d a d a a d ⨯⎧+⨯=⎪∴==∴=+⨯=⎨⎪+=⎩.故选A . 【名师点睛】本题主要考查等差数列的通项的基本量的计算,考查等差数列的前n 项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.【贵州省贵阳市2019届高三2月适应性考试(一)数学】已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=–8,则公差d = A .6 B .6- C .2- D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=–8,∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6,∴a 5=–2,a 6=4,∴d =a 6–a 5=6,故选A . 【名师点睛】本题考查等差数列的通项公式,考查方程的构造及解法,是基础的计算题. 11.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】在等差数列{}n a 中,若35791155a a a a a ++++=,33S =,则5a 等于A .9B .7C .6D .5【答案】B【解析】因为35791155a a a a a ++++=,所以5a 7=55,所以711a =, 因为33S =,所以21a =,所以公差7225a a d -==,所以5237a a d =+=.故选B . 【名师点睛】本题考查等差数列的第5项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.12.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】在等差数列{}n a 中,若357911355,3a a a a a s ++++==,则5a 等于A .5B .6【答案】C【解析】在等差数列{}n a 中,因为35791155a a a a a ++++=,所以7755511a a =⇒=, 又33S =,123223331a a a a a ∴++=⇒=⇒=,又因为7252a a d d =+⇒=,5237a a d ∴=+=,故选C .【名师点睛】本题考查了等差数列的性质.13.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】在数列{}n a 中,已知121n n n n a a a a +++-=-,10101a =,则该数列前2019项的和2019S =A .2019B .2020C .4038D .4040【答案】A 【解析】121n n n n a a a a +++-=-,122n n n a a a ++∴=+,{}n a ∴为等差数列,10101a =,()1201910102019201920192201922a a a S +⨯∴===.【名师点睛】本题考查等差中项,等差数列的基本性质,属于简单题.14.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】在等差数列{}n a 中,已知10101a =,则该数列前2019项的和2019S = A .2018 B .2019 C .4036 D .4038【答案】B【解析】由题得2019S =1201910102019)201920192a a a +==(.故选B . 【名师点睛】本题主要考查等差数列的前n 项和,考查等差中项的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.【贵州省2019年普通高等学校招生适应性考试数学】等差数列{}n a 中,2a 与4a 是方程2430x x -+=的两根,则12345a a a a a ++++=A .6B .8C .10D .12【答案】C【解析】∵2a 与4a 是方程2430x x -+=的两根,∴2a +4a =4=1a +532a a =, 则1234510a a a a a ++++=.故选C .【名师点睛】本题考查了等差数列的性质、一元二次方程的根与系数的关系,属于基础题. 16.【贵州省遵义市绥阳中学2019届高三模拟卷(二)数学】若等差数列{}n a 的前n 项和为258,2,8n S a a S +=-=,则n S =A .22n n -B .27n n -C .251n n ++D .27n n -+【答案】B【解析】令()11n a a n d =+-,则1114287882a d a d a d +++=-⎧⎪⎨⨯+=⎪⎩162a d =-⎧⇒⎨=⎩ 所以()216272n n n S n n n ⨯-=-⨯+⨯=-,故选B . 【名师点睛】本题考查等差数列基本量的计算,关键在于能够将已知条件转化为关于基本量的方程,属于基础题.17.【贵州省遵义市绥阳中学2019届高三模拟卷(一)数学】已知等差数列{}n a 的前n 项和分别为n S ,912162a a =+,24a =,若数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和为1011,则k =A .11B .10C .9D .8【答案】B【解析】设等差数列{}n a 的公差为d ,则()11118116,24,a d a d a d ⎧+=++⎪⎨⎪+=⎩解得12a d ==.()21222n n n S n n n-∴=+⨯=+,()111111nS n n n n ∴==-++, 1211111111110112231111k S S S k k k ⎛⎫⎛⎫⎛⎫∴+++=-+-++-=-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,10k =.故选B . 【名师点睛】本题考查等差数列的通项公式与前n 项和公式,考查裂项相消法,考查计算能力与推理能力,属于中档题.18.【云南省昆明市2019届高三高考模拟(第四次统测)数学】已知等差数列{}n a 的前n 项和为n S ,721S =,则4a = A .0 B .2 C .3 D .6【答案】C【解析】因为{}n a 是等差数列,所以1717744217)2(6263S a a a a a a ++=⇒=⇒=⇒==,故本题选C .【名师点睛】本题考查了等差数列前n 项和公式和等差数列的性质.考查了运算能力. 19.【云南省保山市2019年普通高中毕业生市级统一检测数学】已知等差数列{}n a 满足711a =,2810a a +=,则11=SA .176B .88C .44D .22【答案】B【解析】因为数列{}n a 是等差数列,由2810a a +=,得55a =,又711a =, 则()()111571*********a a a a S ++===,故选B .【名师点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.20.【西藏拉萨市2019届高三第三次模拟考试数学】记n S 为等差数列{}n a 的前n 项和,若11a =,34222S a S =+,则8a =A .8B .9C .16D .15【答案】D【解析】由题意,因为11a =,34222S a S =+, 即111322(3)2(3)22a d a d a d ⨯⨯+=+++,解得2d =, 所以81717215a a d =+=+⨯=,故选D .【名师点睛】本题主要考查了等差数列的通项公式,以及前n 项和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.21.【西藏拉萨市2019届高三下学期第二次模拟考试数学】已知等差数列{}n a 的前n 项和2n S n bn c =++,等比数列{}n b 的前n 项和3nn T d =+,则向量(,)c d =a 的模为A .1 BCD .无法确定【答案】A【解析】等差数列{}n a 前n 项和()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,即常数项为0的二次式, 而根据已知2n S n bn c =++,故可得0c =,等比数列{}n b 的前n 项()1111111n n n b q b bT q qq q-==----, 而根据已知3nn T d =+,可得11111b d q b q⎧=⎪-⎪⎨⎪-=⎪-⎩,即1d =-,因此向量()0,1=-a ,则1=a ,故选A .【名师点睛】本题考查等差数列和等比数列求和公式的性质,属于中档题.22.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】在等差数列{}n a 中,1516a a +=,则5S = A .80 B .40 C .31 D .31-【答案】B【解析】在等差数列{}n a 中,1516a a +=,()51555164022S a a ∴=+=⨯=,故选B . 【名师点睛】本题考查等差数列的前n 项和的求法,是基础题,解题时要注意等差数列的性质的合理运用.23.【西藏拉萨市2019届高三下学期第二次模拟考试数学】等差数列{}n a 的前n 项和为n S ,且859a a -=,8566S S -=,则33a =A .82B .97C .100D .115【答案】C【解析】因为等差数列{}n a 的前n 项和为n S ,且859a a -=,所以39d =,解得3d =, 又由8566S S -=,所以11875483536622a a ⨯⨯+⨯--⨯=,解得14a =, 所以331324323100a a d =+=+⨯=,故选C .【名师点睛】本题主要考查了等差数列的通项公式,以及等差数列的求和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.24.【四川省凉山州2019届高中毕业班第二次诊断性检测数学】已知等差数列{}n a 的前n 项和为n S ,116m S -=,25m S =,11a =(2m ≥,且m ∈N ),则m 的值是A .4B .5C .6D .7【答案】B【解析】∵等差数列{}n a 的前n 项和为n S ,116m S -=,25m S =, ∴19m m m a S S -=-=,又25m S =,11a =,∴()15252m m a a m S m +===,∴5m =,故选B .【名师点睛】本题考查等差数列前n 项和公式,考查前n 项和与通项的关系,考查计算能力.25.【四川省内江市2019届高三第一次模拟考试数学】记n S 为等差数列{}n a 的前n 项和,若33a =,621S =,则数列{}n a 的公差为 A .1 B .–1 C .2 D .–2【答案】A【解析】∵S n 为等差数列{a n }的前n 项和,a 3=3,S 6=21,∴316123656212a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,解得a 1=1,d =1.∴数列{a n }的公差为1.故选A . 【名师点睛】本题考查数列的公差的求法,考查等差数列的前n 项和公式等基础知识,考查运算求解能力,是基础题.26.【四川省成都市2019届高三毕业班第一次诊断性检测数学】设n S 为等差数列的前n 项和,且3652a a a +=+,则7S =A .28B .14C .7D .2【答案】B【解析】因为563542a a a a a +=+=+,所以42a =,177477142a a S a +=⨯==,故选B . 【名师点睛】本题主要考查等差数列的性质、等差数列的前n 项和公式,属于中档题.求解等差数列有关问题时,要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.27.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知等差数列{}n a 的前n 项和为n S ,若57a =,则9S =__________. 【答案】63【解析】因为57a =,所以()199599632a a S a +===.故答案为:63. 【名师点睛】本题主要考查等差数列的前n 项和,以及等差数列的性质,熟记公式即可,属于基础题型. 28.【广西南宁市2019届高三毕业班第一次适应性测试数学】已知数列{}n a 的前n 项和为n S ,若211n n n n a a a a +++-=-,12a =,38a =,则4S =__________.【答案】26【解析】因为211n n n n a a a a +++-=-,所以数列{}n a 为等差数列,设公差为d ,则8232d -==,所以443423262S ⨯=⨯+⨯=.故答案为:26. 【名师点睛】本题主要考查了等差数列的定义及求和公式的应用,属于基础题.29.【四川省南充市高三2019届第二次高考适应性考试高三数学】设等差数列{}n a 满足:127a a +=,136a a -=-,则5a =__________.【答案】14【解析】∵等差数列{a n }满足:a 1+a 2=7,a 1–a 3=–6.∴1111726a a d a a d ++=⎧⎨--=-⎩,解得a 1=2,d =3,∴5a =a 1+4d =2+4×3=14.故答案为:14. 【名师点睛】本题考查等差数列的通项公式,考查等差数列的性质等基础知识,属于基础题. 30.【四川省内江、眉山等六市2019届高三第二次诊断性考试数学】中国古代数学专家(九章算术)中有这样一题:今有男子善走,日增等里,九日走1260里,第一日,第四日,第七日所走之和为390里,则该男子的第三日走的里数为__________. 【答案】120【解析】由题意,男子每天走的里数符合等差数列,设这个等差数列为{}n a ,其公差为d ,前n 项和为n S .根据题意可知,91471260,390S a a a =++=,法一:()199********,1402a a S a a +===∴=,147443390,130a a a a a ++==∴=, 5410d a a ∴=-=,34120a a d ∴=-=.故答案为:120.法二:91471260390S a a a =⎧⎨++=⎩,11119891260236390a d a a d a d ⨯⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩, 所以312120a a d =+=.故答案为:120.【名师点睛】本题考查文字描述转化数学语言的能力,等差数列求和和通项以及基本性质,属于简单题.。
2019年高考真题和模拟题分项汇编数学(理):专题01 集合与常用逻辑用语(含解析)
专题01 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断. 9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想. 10.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可. 由题意知,{1,6}AB =.【名师点睛】本题主要考查交集的运算,属于基础题.11.【辽宁省沈阳市2019届高三教学质量监测(三)数学】已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为 A .1 B .5 C .6D .无数个【答案】C【解析】由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =, 所以A 中元素的个数为6. 故选C.【名师点睛】本题主要考查集合的表示和化简,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】命题“2000,10x x x ∃∈++<R ”的否定为A .2000,10x x x ∃∈++≥RB .2000,10x x x ∃∈++≤RC .2000,10x x x ∀∈++≥R D .2000,10x x x ∀∉++≥R【答案】C【解析】由题意得原命题的否定为2000,10x x x ∀∈++≥R .故选C.【名师点睛】本题考查含有一个量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题. 13.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知集合{|1}A x x =<,{|31}x B x =<,则A .{}1AB x x => B .A B =RC .{|0}AB x x =<D .AB =∅【答案】C【解析】集合{|31}x B x =<,即{}0B x x =<, 而{|1}A x x =<, 所以{}1A B x x =<,{}0A B x x =<.故选C.【名师点睛】本题考查集合的交集、并集运算,属于简单题.14.【北京市通州区2019届高三三模数学】已知集合{}0,1,2P =,{|2}Q x x =<,则PQ =A .{}0B .{0,1}C .{}1,2D .{0,2}【答案】B【解析】因为集合{0,1,2}P =,{|2}Q x x =<,所以{0,1}P Q =.故选B.【名师点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.15.【北京市昌平区2019届高三5月综合练习(二模)数学】已知全集U =R ,集合2{|1}A x x =≤,则U A =ðA .(,1)(1,)-∞-+∞B .(,1][1,)-∞-+∞C .(1,1)-D .[1,1]-【答案】A【解析】因为2{|1}A x x =≤={|11}x x -≤≤, 所以U A =ð{|1x x <-或1}x >, 表示为区间形式即(,1)(1,)-∞-+∞.故选A.【名师点睛】本题主要考查集合的表示方法,补集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.16.【福建省龙岩市(漳州市)2019届高三5月月考数学】已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =A .[0,)+∞B .[1,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .30,2⎡⎫⎪⎢⎣⎭【答案】B【解析】因为{|230}B x x =->=}23|{>x x ,}1|{≥=x x A , 所以A B =[1,)+∞.故选B.【名师点睛】本题考查并集其运算,考查了不等式的解法,是基础题.17.【陕西省2019年高三第三次教学质量检测】设集合{|12,}A x x x =-≤≤∈N ,集合{2,3}B =,则B A 等于A .{1,0,1,2,3}-B .{0,1,2,3}C .}3,2,1{D .{2}【答案】B【解析】因为集合{|12,}{0,1,2}A x x x =-≤≤∈=N ,{2,3}B =, 所以0,1,3}2,{AB =.故选B .【名师点睛】本题主要考查了集合的表示方法,以及集合的并集运算,其中正确求解集合A ,熟练应用集合并集的运算是解答的关键,着重考查了运算与求解能力,属于基础题.18.【湖北省安陆一中2019年5月高二摸底调考数学】已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a =A .0B .0或1C .2D .0或1或2【答案】B【解析】由B A ⊆,可知{0,2}B =或{1,2}B =, 所以0a =或1. 故选B.【名师点睛】本小题主要考查子集的概念,考查集合中元素的互异性,属于基础题. 19.【天津市第一中学2019届高三下学期第五次月考数学】设x ∈R ,则“31x <”是“1122x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由31x <可得1x <,由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B .【名师点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.20.【福建省龙岩市(漳州市)2019届高三5月月考数学】若1a >,则“y x a a >”是“log log a a x y >”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由a >1,得y x a a >等价为x >y ;log log a a x y >等价为x >y >0,故“y x a a >”是“log log a a x y >”的必要不充分条件. 故选A.【名师点睛】本题主要考查充分条件和必要条件的判断,指数函数和对数函数的单调性,掌握充分条件和必要条件的定义是解决本题的关键.21.【河南省郑州市2019届高三第三次质量检测数学】“02m <<”是“方程2212x y m m+=-表示椭圆”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】方程2212x ym m +=-表示椭圆,即020022m m m m m>⎧⎪->⇒<<⎨⎪≠-⎩且1m ≠,所以“02m <<”是“方程2212x y m m+=-表示椭圆”的必要不充分条件.故选C.【名师点睛】本题考查了椭圆的概念,充分条件和必要条件的判断,容易遗漏椭圆中2m m ≠-,属于基础题. 22.【四川省宜宾市2019届高三第三次诊断性考试数学】设 是空间两条直线,则“ 不平行”是“ 是异面直线”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由 是异面直线⇒ 不平行.反之,若直线 不平行,也可能相交,不一定是异面直线. 所以“ 不平行”是“ 是异面直线”的必要不充分条件. 故选B .【名师点睛】本题考查了异面直线的性质、充分必要条件的判定方法,属于基础题.23.【北京市人大附中2019年高考信息卷(三)】设a ,b 为非零向量,则“a ∥b ”是“a 与b 方向相同”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为a ,b 为非零向量,所以a ∥b 时,a 与b 方向相同或相反, 因此“a ∥b ”是“a 与b 方向相同”的必要而不充分条件. 故选B .【名师点睛】本题考查充要条件和必要条件的判断,属基础题.24.【江西省名校(临川一中、南昌二中)2019届高三5月联合考试数学】已知集合{}2230,A x x x =+-≤{}2B =<,则A B =A .{}31x x -≤≤ B .{}01x x ≤≤ C .{}31x x -≤< D .{}10x x -≤≤【答案】B【解析】因为{}{}31,04A x x B x x =-≤≤=≤<, 所以A B ={}01x x ≤≤.故选B.【名师点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知集合{|A x y ==,2{|log 1}B x x =≤,则A B =A .1{|}3x x ≤≤-B .{|01}x x <≤C .{|32}-≤≤x xD .{|2}x x ≤【答案】B【解析】由二次根式有意义的条件,可得(1)(3)0x x -+≥, 解得31x -≤≤,所以{|A x y ={|31}x x =-≤≤. 由对数函数的性质可得22log log 2x ≤, 解得02x <≤,所以2{|log 1}B x x =≤{|02}x x =<≤, 所以AB ={|01}x x <≤.故选B .【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合A 且属于集合B 的元素的集合.26.【山东省烟台市2019届高三5月适应性练习(二)数学】设集合{|A x y ==,{|2,x B y y ==3}x ≤,则集合()A B =R I ð A .}3|{<x xB .{|3}x x ≤C .{|03}x x <<D .{|03}x x <≤【答案】C【解析】因为{}{|3A x y x x ===≥,所以{}3A x x =<R ð,又{}{}|2,3|08xB y y x y y ==≤=<≤,所以(){}03A B x x =<<R ð.故选C .【名师点睛】本题考查了集合的交集运算、补集运算,正确求出函数3-=x y 的定义域,函数2,3x y x =≤的值域是解题的关键.27.【辽宁省沈阳市2019届高三教学质量监测(三)】“k =是“直线:(2)l y k x =+与圆221x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】因为直线:(2)l y k x =+与圆221x y +=相切,1,=则3k =±.所以“3k =”是“直线:(2)l y k x =+与圆221x y +=相切”的充分不必要条件. 故选A.【名师点睛】本题主要考查直线和圆的位置关系和充分不必要条件的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.28.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知等差数列{}n a 的首项为1a ,公差0d ≠,则“139,,a a a 成等比数列” 是“1a d =”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】若139,,a a a 成等比数列,则2319a a a =, 即2111(2)(8)a d a a d +=+,变形可得1a d =,则“139,,a a a 成等比数列”是“1a d =”的充分条件;若1a d =,则3123a a d d =+=,9189a a d d =+=,则有2319a a a =,则“139,,a a a 成等比数列”是“1a d =”的必要条件. 综合可得:“139,,a a a 成等比数列”是“1a d =”的充要条件. 故选C .【名师点睛】本题考查等差数列的通项公式、等比数列的性质,充分必要条件的定义与判断,属于基础题. 29.【江西省新八校2019届高三第二次联考数学】若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________. 【答案】(3,)+∞【解析】因为“3x >”是“x m >”的必要不充分条件,所以(),m +∞是()3,+∞的真子集,所以3m >,故答案为(3,)+∞.【名师点睛】本题考查根据必要不充分条件求参数的值,由题意得到(),m +∞是()3,+∞的真子集是解答的关键,属于基础题.30.【甘肃省酒泉市敦煌中学2019届高三一诊数学】设集合 则=__________.【答案】【解析】求解绝对值不等式 可得 ,求解函数 的值域可得 ,由交集的定义可知: .故答案为 .【名师点睛】本题主要考查绝对值不等式的解法,函数的值域,交集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.31.【河北省衡水市2019届高三下学期第三次质量检测数学】设 为两个不同平面,直线 ,则“ ”是“ ”的__________条件.【答案】充分不必要【解析】根据题意,α,β表示两个不同的平面,直线m α⊂,当α∥β时,根据面面平行的性质定理可知,α中任何一条直线都平行于另一个平面,得 ,所以α∥β ⇒ ; 当 且m α⊂时,α∥β或α与β相交,所以“ ”是“ ”的充分不必要条件.故答案为充分不必要.【名师点睛】本题主要考查了面面平行的性质定理,面面的位置关系,充分条件和必要条件定义的理解,属于基础题.32.【安徽省江淮十校2019届高三第三次联考数学】若命题“ , ”的否定是假命题,则实数 的取值范围是__________.【答案】【解析】因为命题的否定是假命题,所以原命题为真命题,即不等式 对 恒成立,又 在 上为增函数,所以,即.故实数的取值范围是:.【名师点睛】本题考查命题否定的真假以及不等式恒成立问题,考查基本分析能力和转化求解能力,属中档题.。
2019年全国理科数学高考真题及参考答案合集整理(5套)
2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3-5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A.{}2B.{}2,3C.{}1,2,3-D.{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩则目标函数4z x y =-+的最大值为A.2B.3C.5D.63.设x R ∈,则“250x x -<”是“|1|1x -<”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4.阅读右边的程序框图,运行相应的程序,输出S 的值为 A.5 B.8 C.24 D.295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 2 3 C.2 56.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A.a c b <<B.a b c <<C.b c a <<D.c a b << 7.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫=⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A.2-B. D.28.已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为A.[]0,1B.[]0,2C.[]0,eD.[]1,e第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2019年高考试题汇编理科数学---数列.doc
解答:1 3设等比数列公比为q3、25••(明)a 〔q.Q 121一 S 53(1) 证明: a n b n 是等比数列, a n b n 是等差数列; (2) 求a n 和b n 的通项公式.答案: (1) 见解析(D、,1、n 1 K ,1、n 1 (2) a n (二)n b n H) n 匚. 2222解析:(2019全国1 理)9.记S n 为等差数列a n 的前n 项和.已知S 4A. a n 2nB.a n 3n 102C.& 2n 8nD.S n1n 22n答案: A 解析: 依题意有 S 4 4耳a i6d 0a 1 ,可得4d 5d(2019全国1 理)14.记S n 为等比数列 答案: S 5121 3 a n 2na n 的前 n 项和,4n .2a 4则S 52a 4 a 6-a 〔2019全国2理)19.已知数列 a n 和b n满足a 13a nb n 4 , 4b n1 3b n a n 4.⑴将 4a n 1 3a n b n 4, 4b n 1 3b n a n4 相加可得 4a n 1 4b n 1 3a n 3b n a n b n ,1 .整理可碍 a n1 b n 1 -(a nb n),又 a 1 b 1.. 1 ,,1 ,故a nb n 是首项为1 ,公比为一的等比数列将4色13a n b n 4, 4b n 1 3b n a ”4作差可得4a n14b n1 3a n 3b n a n b n 8,整理可得a n 1 b n 1 a n b n 2,又a〔b〔1,故a”b n是首项为1,公差为2的等差数列(2)由a n b n是首项为1,公比为;的等比数列可得a n b n (^ 1①;由a n b n 是首项为1,公差为2的等差数列可得a n b n 2n 1②; ①②相加化简得a n(1)n n 1,①②相减化简得22(2019全国3理)5.已知各项均为正数的等比数列a rA. 16B. 8C. 4D. 2答案:C解答:设该等比数列的首项 %,公比q,由已知得,a 〔q 4 因为a 0且q 0,贝U 可解得q 2,又因为a ( 即可解得a 11,则a 3 qq 24.的前4项和为15,且a 53a 34a 1,则a 3()3a 〔q 2 4司, ~ ~2 ~3 q q q ) 15,Sn (2019全国3理)14.记S n 为等差数列 a n 的前n 项和,若a 0, a 93a 1,则 *.S 5答案:4解析:d , a 2 3a 1, . . a 1 d 3a ,故 d 2a 1 a 1 0,d 0 ,10 a 〔 a 〔0.So2 2 2a 1 9d 2 10d 』4.&5 a 〔 &2a 1 4d 5d2(2019北京理)10.设等差数列{a n }的前n 项和为S n ,若a 2=-3 ,S 5=-10,则a 5=,S n 的最小值为【答案】 (1). 0. (2). -10.【解析】 【分析】首先确定公差,然后由通项公式可得 a 5的值,进一步研究数列中正项 ?负项的变化规律,得到和的最小值【详解】等差数列 a n中,&5a 3 10,得a 3 2息 3,公差d a 3 a ? 1, a 5 a 3 2d 0,由等差数列 a n的性质得n 5时,a n0, n 6时,a n大于0,所以S n的最小值为S 4或S 5,即为10.【点睛】本题考查等差数列的通项公式 ?求和公式?等差数列的性质,难度不大,注重重要知识?基础知识?基本运算1 n 1a设该等差数列的公差为能力的考查.(2019北京理)20.已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<…〈希),若a h第a im , 则称新数列a.,礼,,礼为{a n}的长度为m的递增子列.规定:数列(a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1, 8, 3, 7, 5, 6, 9的一个长度为4的递增子列;(n)已知数列(a n}的长度为p的递增子列的末项的最小值为a m。
2019年高三数学(理科)试卷及答案(含解析)
2019年高三数学(理科)试卷及答案(WORD版本试卷+名师解析答案,建议下载练习)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为,集合,,则()A. B.C. D.【答案】B【解析】【分析】先化简B,再根据补集、交集的定义即可求出.【详解】∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1}.故选:B.【点睛】本题考查了集合的化简与运算问题,是基础题目.2.下面是关于复数的四个命题:;;的虚部为2;的共轭复数为.其中真命题为()A. B. C. D.【答案】A【解析】【分析】先将复数化简运算,可得|z|及和共轭复数,再依次判断命题的真假.【详解】复数z2+2i.可得|z|=2,所以p1:|z|=2;不正确;z2=(2+2i)2=8i,所以p2:z2=8i;正确;z=2+2i.z的虚部为2;可得p3:z的虚部为2;正确;z=2+2i的共轭复数为:2﹣2i;所以p4:z的共轭复数为﹣2﹣2i不正确;故选:A.【点睛】本题考查复数的运算法则以及命题的真假的判断与应用,是对基本知识的考查.3.已知某产品连续4个月的广告费(千元)与销售额(万元)()满足,,若广告费用和销售额之间具有线性相关关系,且回归直线方程为,,那么广告费用为5千元时,可预测的销售额为()万元A. 3B. 3.15C. 3.5D. 3.75【答案】D【解析】【分析】求出样本中心点代入回归直线方程,可得a,再将x=6代入,即可得出结论.【详解】由题意,,,代入0.6x+a,可得3=0.6×3.75+a,所以a=0.75,所以0.6x+0.75,所以x=5时,0.6×5+0.75=3.75,故选:D.【点睛】本题考查线性回归方程,考查学生的计算能力,利用回归方程恒过样本中心点是关键.4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.5.已知定义在的奇函数满足,当时,,则()A. B. 1 C. 0 D. -1【答案】D【解析】【分析】根据题意,分析可得f(x+4)=﹣f(x+2)=f(x),即函数是周期为4的周期函数,可得f(2019)=f(﹣1+2020)=f(﹣1),结合函数的奇偶性与解析式分析可得答案.【详解】根据题意,函数f(x)满足f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),即函数是周期为4的周期函数,则f(2019)=f(﹣1+2020)=f(﹣1),又由函数为奇函数,则f(﹣1)=﹣f(1)=﹣(1)2=﹣1;则f(2019)=﹣1;故选:D.【点睛】本题考查函数的奇偶性与周期性的应用,注意分析函数的周期.6.设且,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要【答案】D【解析】【分析】由题意看命题“ab>1”与“”能否互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【详解】若“ab>1”当a=﹣2,b=﹣1时,不能得到“”,若“”,例如当a=1,b=﹣1时,不能得到“ab>1“,故“ab>1”是“”的既不充分也不必要条件,故选:D.【点睛】本小题主要考查了充分必要条件,考查了对不等关系的分析,属于基础题.7.设,,,若,则与的夹角为()A. B. C. D.【答案】A【解析】【分析】由向量的坐标运算得:(0,),由数量积表示两个向量的夹角得:cosθ,可得结果.【详解】由(1,),(1,0),.则(1+k,),由,则0,即k+1=0,即k=﹣1,即(0,),设与的夹角为θ,则cosθ,又θ∈[0,π],所以,故选:A.【点睛】本题考查了数量积表示两个向量的夹角、及向量的坐标运算,属于简单题8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.9.如图所示,正方形的四个顶点,,,,及抛物线和,若将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是()A. B. C. D.【答案】B【解析】【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论.【详解】∵A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1),∴正方体的ABCD的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积:S=2[1﹣]dx=2(x3)2[(1)﹣0]=2,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故选:B.【点睛】本题主要考查几何槪型的概率的计算,利用积分求出阴影部分的面积是解决本题的关键.10.如果是抛物线上的点,它们的横坐标,是抛物线的焦点,若,则()A. 2028B. 2038C. 4046D. 4056【答案】B【解析】【分析】由抛物线性质得|P n F|x n+1,由此能求出结果.【详解】∵P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F是抛物线C的焦点,,∴=(x1+1)+(x2+1)+…+(x2018+1)=x1+x2+…+x2018+2018=2018+20=2038.故选:B.【点睛】本题考查抛物线中一组焦半径和的求法,是中档题,解题时要认真审题,注意抛物线的性质的合理运用.11.已知函数,记,若存在3个零点,则实数的取值范围是()A. B.C. D.【答案】C【解析】【分析】由g(x)=0得f(x)=e x+a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.【详解】由g(x)=0得f(x)=e x+a,作出函数f(x)和y=e x+a的图象如图:当直线y=e x+a过A点时,截距a=,此时两个函数的图象有2个交点,将直线y=e x+a向上平移到过B(1,0)时,截距a=-e,两个函数的图象有2个交点,在平移过程中直线y=e x+a与函数f(x)图像有三个交点,即函数g(x)存在3个零点,故实数a的取值范围是,故选:C.【点睛】本题主要考查分段函数的应用,考查了函数零点问题,利用函数与零点之间的关系转化为两个函数的图象的交点问题是解决本题的关键,属于中档题.12.设是双曲线的左右焦点,是坐标原点,过的一条直线与双曲线和轴分别交于两点,若,,则双曲线的离心率为()A. B. C. D.【答案】D【解析】【分析】由条件得到=,连接A,在三角形中,由余弦定理可得A,再由双曲线定义A=2a,可得.【详解】∵,得到|,∴=,又,连接A,,在三角形中,由余弦定理可得A,又由双曲线定义A=2a,可得,∴=,故选D.【点睛】本题考查了双曲线的定义的应用及离心率的求法,综合考查了三角形中余弦定理的应用,属于中档题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若满足约束条件,则的最大值为____.【答案】5【解析】【分析】画出约束条件的可行域,利用目标函数的几何意义,转化求解目标函数的最值即可.【详解】x,y满足约束条件的可行域如图:由解得A(1,2).由可行域可知:目标函数经过可行域A时,z=x+2y取得最大值:5.故答案为:5.【点睛】本题考查线性规划的简单应用,目标函数的几何意义是解题的关键,考查计算能力.14.设,则的值为__________.【答案】1【解析】【分析】分别令x=0和x=-1,即可得到所求.【详解】由条件,令x=0,则有=0,再令x=-1,则有-1=,∴,故答案为1.【点睛】本题考查二项式定理的系数问题,利用赋值法是解决问题的关键,属于中档题. 15.在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】【解析】因为在圆上,所以圆心与切点的连线与切线垂直,又知与直线与直线垂直,所以圆心与切点的连线与直线斜率相等,,所以,故填:.16.已知函数,过点作与轴平行的直线交函数的图像于点,过点作图像的切线交轴于点,则面积的最小值为____.【答案】【解析】【分析】求出f(x)的导数,令x=a,求得P的坐标,可得切线的斜率,运用点斜式方程可得切线的方程,令y=0,可得B的坐标,再由三角形的面积公式可得△ABP面积S,求出导数,利用导数求最值,即可得到所求值.【详解】函数f(x)=的导数为f′(x),由题意可令x=a,解得y,可得P(a,),即有切线的斜率为k,切线的方程为y﹣(x),令y=0,可得x=a﹣1,即B(a﹣1,0),在直角三角形P AB中,|AB|=1,|AP|,则△ABP面积为S(a)|AB|•|AP|•,a>0,导数S′(a)•,当a>1时,S′>0,S(a)递增;当0<a<1时,S′<0,S(a)递减.即有a=1处S取得极小值,且为最小值e.故答案为:e.【点睛】本题考查导数的运用:求切线的方程和单调区间、极值和最值,注意运用直线方程和构造函数法,考查运算能力,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数的最小正周期为,将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像.(1)求函数的单调递增区间;(2)在锐角中,角的对边分别为,若,,求面积的最大值.【答案】(1)(2)【解析】【分析】(1)利用三角恒等变换化简函数f(x)的解析式,再根据正弦函数的单调求得函数f(x)的单调递增区间.(2)先利用函数y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,在锐角△ABC中,由g()=0,求得A的值,再利用余弦定理、基本不等式,求得bc的最大值,可得△ABC 面积的最大值.【详解】(1)由题得:函数==,由它的最小正周期为,得,∴由,得故函数的单调递增区间是(2)将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像,在锐角中,角的对边分别为,若,可得,∴.因为,由余弦定理,得,∴,∴,当且仅当时取得等号.∴面积,故面积的最大值为【点睛】本题主要考查三角恒等变换,函数y=A sin(ωx+φ)的图象变换规律,正弦函数的单调性,余弦定理、基本不等式的应用,属于中档题.18.设是等差数列,前项和为,是等比数列,已知,,,.(1)求数列和数列的通项公式;(2)设,记,求.【答案】(1),;(2)【解析】【分析】(1)设数列的公差为等比数列{b n}的公比为q,由已知列式求得d,q及首项,则可求数列和{b n}的通项公式;(2)由(1)知,,利用错位相减直接求和.【详解】(1)设数列的公差为,等比数列的公比为由已知得:,即,又,所以,所以由于,,所以,即(不符合题意,舍去)所以,所以和的通项公式分别为,.(2)由(1)知,,。
2019届高考数学一轮复习第三章导数及其应用考点规范练14导数的概念及运算文新人教B版
考点规范练14 导数的概念及运算基础巩固1.已知函数f (x )=√x 3+1,则lim Δx →0f (1-Δx )-f (1)Δx 的值为 ()A.-13 B.13 C.23D.02.已知曲线y=ln x 的切线过原点,则此切线的斜率为() A.e B.-e C.1eD.-1e3.已知奇函数y=f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则切点横坐标为1的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=04.(2017江西上饶模拟)若点P 是曲线y=x 2-ln x 上任意一点,则点P 到直线y=x-2的距离的最小值为() A.1 B.√2 C.√22D.√35.曲线f (x )=x 3-x+3在点P 处的切线平行于直线y=2x-1,则点P 的坐标为() A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)6.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点A (1,2),则a b等于() A.-8B.-6C.-1D.57.若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是() A.y=sin x B.y=ln x C.y=e xD.y=x 38.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+154x-9都相切,则a 等于() A.-1或-2564B.-1或214C.-74或-2564D.-74或79.(2017吉林长春二模)若函数f (x )=lnx x,则f'(2)=.10.(2017山西太原模拟)函数f (x )=x e x的图象在点(1,f (1))处的切线方程是. 11.曲线y=log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于. 12.若函数f (x )=12x 2-ax+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是.能力提升13.函数y=f (x ),y=g (x )的导函数的图象如图所示,则y=f (x ),y=g (x )的图象可能是()14.(2017广州深圳调研)如图,y=f (x )是可导函数,直线l :y=kx+2是曲线y=f (x )在x=3处的切线,令g (x )=xf (x ),g'(x )是g (x )的导函数,则g'(3)=()A.-1B.0C.2D.415.设直线l 1,l 2分别是函数f (x )={-lnx ,0<x <1,lnx ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是() A.(0,1) B.(0,2) C.(0,+∞)D.(1,+∞)16.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=e x+x 2+1,则函数h (x )=2f (x )-g (x )在点(0,h (0))处的切线方程是.高考预测17.若函数f (x )=ln x-f'(1)x 2+5x-4,则f'(12)=.参考答案考点规范练14 导数的概念及运算1.A 解析limΔx →0f (1-Δx )-f (1)Δx =-lim Δx →0f (1-Δx )-f (1)-Δx=-f'(1)=-(13×1-23)=-13.2.C 解析由题意可得y=ln x 的定义域为(0,+∞),且y'=1x.设切点为(x 0,ln x 0),则切线方程为y-ln x 0=1x 0(x-x 0).因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e,故此切线的斜率为1e.3.B 解析由函数y=f (x )为奇函数,可得f (x )在[0,+∞)内的解析式为f (x )=-x 2+x ,故切点为(1,0).因为y'=-2x+1,所以y'|x=1=-1, 故切线方程为y=-(x-1),即x+y-1=0.4.B 解析因为定义域为(0,+∞),所以y'=2x-1x ,令2x-1x=1,解得x=1,则曲线在点P (1,1)处的切线方程为x-y=0,所以两平行线间的距离为d=√2=√2.故所求的最小值为√2.5.C 解析∵f (x )=x 3-x+3,∴f'(x )=3x 2-1.设点P (x ,y ),则f'(x )=2,即3x 2-1=2,解得x=1或x=-1, 故P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y=2x-1上,符合题意.故选C . 6.A 解析由题意得y=kx+1过点A (1,2),故2=k+1,即k=1.∵y'=3x 2+a ,且直线y=kx+1与曲线y=x 3+ax+b 相切于点A (1,2),∴k=3+a ,即1=3+a ,∴a=-2.将点A (1,2)代入曲线方程y=x 3+ax+b ,可解得b=3, 即a b=(-2)3=-8.故选A .7.A 解析设曲线上两点P (x 1,y 1),Q (x 2,y 2),则由导数几何意义可知,两条切线的斜率分别为k 1=f'(x 1),k 2=f'(x 2). 若函数具有T 性质,则k 1·k 2=f'(x 1)·f'(x 2)=-1.A 项,f'(x )=cos x ,显然k 1·k 2=cos x 1·cos x 2=-1有无数组解,所以该函数具有性质T;B 项,f'(x )=1x(x>0),显然k 1·k 2=1x 1·1x 2=-1无解,故该函数不具有性质T;C 项,f'(x )=e x>0,显然k 1·k 2=e x 1·e x 2=-1无解,故该函数不具有性质T;D 项,f'(x )=3x 2≥0,显然k 1·k 2=3x 12×3x 22=-1无解,故该函数不具有性质T .综上,选A .8.A 解析因为y=x 3,所以y'=3x 2.设过点(1,0)的直线与y=x 3相切于点(x 0,x 03),则在该点处的切线斜率为k=3x 02,所以切线方程为y-x 03=3x 02(x-x 0),即y=3x 02x-2x 03.又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y=0与y=ax 2+154x-9相切,可得a=-2564; 当x 0=32时,由y=274x-274与y=ax 2+154x-9相切,可得a=-1. 9.1-ln24解析由f'(x )=1-lnxx 2,得f'(2)=1-ln24. 10.y=2e x-e 解析∵f (x )=x e x,∴f (1)=e,f'(x )=e x+x e x,∴f'(1)=2e,∴f (x )的图象在点(1,f (1))处的切线方程为y-e =2e(x-1),即y=2e x-e .11.12log 2e 解析∵y'=1xln2,∴k=1ln2, ∴切线方程为y=1ln2(x-1),∴所围三角形的面积为S=12×1×1ln2=12ln2=12log 2e .12.[2,+∞)解析∵f (x )=12x 2-ax+ln x ,∴f'(x )=x-a+1x .∵f (x )存在垂直于y 轴的切线, ∴f'(x )存在零点,∴x+1x -a=0有解, ∴a=x+1x ≥2(x>0).13.D 解析由y=f'(x )的图象知y=f'(x )在(0,+∞)内单调递减,说明函数y=f (x )的切线的斜率在(0,+∞)内也单调递减,故可排除A,C .又由图象知y=f'(x )与y=g'(x )的图象在x=x 0处相交,说明y=f (x )与y=g (x )的图象在x=x 0处的切线的斜率相同,故可排除B .故选D . 14.B 解析由题图可知曲线y=f (x )在x=3处的切线斜率等于-13,即f'(3)=-13.又g (x )=xf (x ),g'(x )=f (x )+xf'(x ),g'(3)=f (3)+3f'(3).由题图可知f (3)=1,所以g'(3)=1+3×(-13)=0. 15.A 解析由题意得P 1,P 2分别位于两段函数的图象上.设P 1(x 1,ln x 1),P 2(x 2,-ln x 2)(不妨设x 1>1,0<x 2<1),则由导数的几何意义易得切线l 1,l 2的斜率分别为k 1=1x 1,k 2=-1x 2.由已知得k 1k 2=-1,所以x 1x 2=1.所以x 2=1x 1.所以切线l 1的方程为y-ln x 1=1x 1(x-x 1),切线l 2的方程为y+ln x 2=-1x 2(x-x 2), 即y-ln x 1=-x 1(x -1x 1). 分别令x=0得A (0,-1+ln x 1),B (0,1+ln x 1). 又l 1与l 2的交点为P (2x11+x 12,lnx 1+1-x 121+x 12). ∵x 1>1,∴S △PAB =12|y A -y B |·|x P |=2x 11+x 12<1+x 121+x 12=1. ∴0<S △PAB <1,故选A .16.x-y+4=0解析∵f (x )-g (x )=e x+x 2+1,且f (x )是偶函数,g (x )是奇函数,∴f (-x )-g (-x )=f (x )+g (x )=e -x +x 2+1.∴f (x )=e x +e -x +2x 2+22,g (x )=e -x -e x2.∴h (x )=2f (x )-g (x )=e x +e -x +2x 2+2-e -x -e x2=32e x +12e -x +2x 2+2.∴h'(x )=32e x -12e -x +4x ,即h'(0)=32−12=1.又h(0)=4,∴切线方程为x-y+4=0.-2f'(1)x+5,17.5解析∵f'(x)=1x∴f'(1)=1-2f'(1)+5,解得f'(1)=2,)=2-2+5=5.∴f'(12。
19年高考真题和模拟题分类汇编—理科数学9:不等式、推理与证明
2019年高考数学理科真题和模拟题分类汇编:不等式、推理与证明1.【19年高考天津卷 2】设变量,x y 满足约束条件202011x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩,则目标函数4z x y =-+的最大值是( ) (A )2 (B )3 (C )5 (D )62.【19年高考天津卷 3】设x R ∈,则“250x x -<”是“|1|1x -<”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 3.【19年高考浙江卷 3】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( ) (A )1- (B )1 (C )10 (D )124.【19年高考全国II 卷 4】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行。
2L 点是平衡点,位于地月连线的延长线上。
设地球质量为1M ,月球质量为2M ,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:()()121223M M M R r r R R r +=++。
设r R α=,由于α的值很小,因此在近似计算中()345323331ααααα++≈+,则r 的近似值为( ) (A(B(C(D5.【19年高考北京卷 5】若,x y 满足|1|x y ≤-,且1y ≥-,则3x y +的最大值为( )(A )7- (B )1 (C )5 (D )76.【19年高考浙江卷 5】若0a >,0b >,则“4a b +≤”是“4ab ≤”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.【19年高考全国II 卷 6】若a b >中,则( )(A )()ln 0a b -> (B )33a b < (C )330a b -> (D )||||a b >8.【19年高考北京卷 6】在天文学中,天体的明暗程度可以用星等或亮度来描述。
专题 三角函数 同角三角函数的基本关系-2019年高考理科数学考点讲解与仿真测试含答案
同角三角函数的基本关系【考点讲解】一、具本目标:(1)理解同角三角函数的基本关系式,会用同角三角函数之间的关系解决相关的问题. (2)高考解读:高考对同角三角函数基本关系式的考查主要是小题为主,或都与诱导公式及其它知识相结合,试题难度不大.但在高考中属于一个分点,同角的三个函数值中知一求二,易错点是忽略角的范围.导致整个题出错误.二、知识概述:1.知识要点:(1) (2)2.解题技巧: (1)已知三者中的一个求另外两个:利用平方关系和商数关系构造方程组求解;(2)已知αtan 的值,求关于αsin 与αcos 的齐n 次分式的值:分子、分母同除以αncos ,转化为关于αtan 的式子求解; (3)1的代换问题:含有α2sin ,α2cos ,及αsin αcos 的整式求值问题,可将所求式子的分母看作“1”,利用代换后转化为“切”,然后求解;(4)对于αsin +αcos ,αsin αcos ,αsin -αcos 这三个式子,已知其中一个式子的值,可求其余两个式子的值,转化的公式为.【真题分析】1.【2018届黑龙江省齐齐哈尔八中8月月考】已知,2παπ⎛⎫∈⎪⎝⎭且,则tan α=( )A. 34-B. 43 C . 34 D. 43-因为53sin =α并且,2παπ⎛⎫∈ ⎪⎝⎭,所以,=34-.【答案】A2.【2017宁夏育才中学月考】如图是由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的内角为θ,大正方形的面积是1,则的值是()【答案】D3.【2016高考新课标3理数】若3tan4α=,则()(A)6425(B)4825(C) 1 (D)1625【解析】本题的考点是同角三角函数间的基本关系与倍角公式.法一:由3tan4α=,得或,所以,故选A.【答案】A法二:由可得将上面的式子分子分母同除以α2cos 后,化简后得2564.【答案】A【变式】(1)【2017山西孝义二模】已知tan 2θ=,则( )A .43-B .54 C.34- D .45【答案】D(2)【2018届贵州省贵阳市8月摸底】已知,则tan α=__________.【解析】【答案】-34.【2017浙江省嘉兴市质检】若,[0,π]θ∈,则tan θ=( )A .12-B .12C .2-D .2由.由,得到.又由于,得到, ,.【答案】C【变式】若α为第三象限,则的值为()A.3B.3-C.1D.1-【解析】因为α为第三象限,所以.因此,故选择B.【答案】B5.【2017安徽马鞍山二模】已知,则()C. 12D. 23m【解析】由可得,,故选D. 【答案】D【变式】已知sin α=2sin β,tan α=3tan β,则cos α=________.6.,那么tan100︒=( )A.k B . -k C. D 【易错分析】(1)k 值的正负;(2)tan100表达式符号易错.【解析】,,而,所以,所以选B.【答案】B 3.若的值是( )A. 0B. 1C. -1D.【解析】由题意可得,将两式相乘得到:,因为0sin ≠θ,所以1=ab .【答案】B.4.已知αtan 与αcot 是方程的两根,则=αsin .【答案】22±5.若tan 2α=,则= .【解析】法一:得,,故答案为89. 法二:【答案】89 6.已知,则=x tan .【答案】41-或1。
2019年高考全国各地数学理科真题分类汇编18个专题(解析版)
2019年高考全国各地数学理科真题分类汇编(解析版)专题一集合-------------------------------------------------------------- 2 专题二函数-------------------------------------------------------------- 3 专题三三角函数 ------------------------------------------------------ 16 专题四解三角形 ------------------------------------------------------ 26 专题五平面向量 ------------------------------------------------------ 29 专题六数列------------------------------------------------------------ 34 专题七不等式--------------------------------------------------------- 46 专题八复数------------------------------------------------------------ 48 专题九导数及其应用 ------------------------------------------------ 50 专题十算法初步 ------------------------------------------------------ 62 专题十一常用逻辑用语 --------------------------------------------- 65 专题十二概率统计 --------------------------------------------------- 67 专题十三空间向量、空间几何体、立体几何-------------------- 75 专题十四平面几何初步 -------------------------------------------- 95 专题十五圆锥曲线与方程 ----------------------------------------- 99 专题十六计数原理------------------------------------------------- 118 专题十七不等式选讲 ---------------------------------------------- 120 专题十八坐标系与参数方程--------------------------------------- 123专题一 集合(2019·全国Ⅰ理科)1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅱ理科)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅲ理科)已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A【分析】先求出集合B 再求出交集.【详解】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 【点睛】本题考查了集合交集的求法,是基础题. (2019·天津理科)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A CB =( )A. {}2B. {}2,3C. {}1,2,3-D. {}1,2,3,4【答案】D【分析】先求A B ⋂,再求()A C B 。
2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)
题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。
2019年全国Ⅰ卷高考理科数学试题及答案详细解析
17. 的内角A,B,C的对边分别为a,b,c,设 .
(1)求A;
(2)若 ,求sinC.
解:(1)
即:
由正弦定理可得:
(2) ,由正弦定理得:
又 ,
整理可得:
解得: 或
因为 所以 ,故 .
(2)法二: ,由正弦定理得:
又 ,
整理可得: ,即
或
且
考点:正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.
解:
由 知 是 的中点, ,又 是 的中点,所以 为中位线且 ,所以 ,因此 ,又根据两渐近线对称, ,所以 , .
考点: ,双曲线及其渐近线的对称性.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
A. B.
C. D.
解:由 ,得 是奇函数,其图象关于原点对称.又 .故选D.
考点:本题考查函数的性质与图象,利用函数奇偶性和特殊点即可解决这类问题.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
2019年普通高等学校招生全国统一考试
理科数学
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 ,则 =
A. B. C. D.
解: , .故选C.
考点:一元二次不等式解法,集合的交集.
2019届高考理科数学知识点题
题组层级快练(十二)1.函数y =x|x|的图像经描点确定后的形状大致是( )答案 D2.函数y =1-1x -1的图像是( )答案 B解析 方法一:y =1-1x -1的图像可以看成由y =-1x 的图像向右平移1个单位,再向上平移1个单位而得到的. 方法二:由于x ≠1,故排除C ,D.又函数在(-∞,1)及(1,+∞)上均为增函数,排除A ,所以选B. 3.(2018·陕西宝鸡质检)函数f(x)=lnx -12x 2的图像大致是( )答案 B解析 ∵f ′(x)=1x -x =0在(0,+∞)上的解为x =1,且在x ∈(0,1)时,f ′(x)>0,函数单调递增;故x ∈(1,+∞)时,f ′(x)<0,函数单调递减. 故x =1为极大值点,f(1)=-12<0,故选B.4.为了得到函数y =lg x +310的图像,只需把函数y =lgx 的图像上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 答案 C解析 ∵y =lg x +310=lg(x +3)-1.∴选C.5.设a <b ,函数y =(x -a)2(x -b)的图像可能是( )答案 C解析 由解析式可知,当x >b 时,f(x)>0,由此可以排除A ,B 选项.又当x ≤b 时,f(x)≤0,从而可以排除D.故选择C.6.(2018·《高考调研》原创题)已知函数y =f(x)(x ∈R )的图像如图所示,给出下列四个命题:p 1:函数y =f(x)满足f(-x)=-f(x); p 2:函数y =f(x)满足f(x +2)=f(-x);p 3:函数y =f(x)满足f(x)=f(-x); p 4:函数y =f(x)满足f(x +2)=f(x),其中的真命题是( )A .p 1,p 3B .p 2,p 4C .p 1,p 2D .p 3,p 4答案 C解析 从函数图像上可以看出函数的图像关于原点对称,所以是奇函数,函数y =f(x)满足f(-x)=-f(x),p 1为真命题,p 3为假命题;从函数图像上可以看出函数的周期为4,由p 2:f(x +2)=f(-x)=-f(x),即f(x +4)=f(x),知函数的周期为4,所以p 2为真命题,p 4为假命题,选择C.7.函数y =⎩⎪⎨⎪⎧x 2,x<0,2x -1,x ≥0的图像大致是( )答案 B解析 当x<0时,函数的图像是抛物线y =x 2(x<0)的图像;当x ≥0时,函数的图像是指数函数y =2x (x ≥0)的图像向下平移一个单位所得的图像,所以选B.8.(2018·山东日照一模)现有四个函数①y =x·sinx ,②y =x·cosx ,③y =x·|cosx|,④y =x·2x 的部分图像如下,但顺序被打乱,则按照图像从左到右的顺序,对应的函数序号正确的一组是( )A .①④②③B .①④③②C .④①②③D .③④②①答案 A解析 ①y =x·sinx 在定义域上是偶函数,其图像关于y 轴对称;②y =x·cosx 在定义域上是奇函数,其图像关于原点对称;③y =x·|cosx|在定义域上是奇函数,其图像关于原点对称,且当x>0时,其函数值y ≥0;④y =x·2x 在定义域上为非奇非偶函数,且当x>0时,其函数值y>0,且当x<0时,其函数值y<0.故选A.9.(2018·北京海淀一模)下列函数f(x)图像中,满足f(14)>f(3)>f(2)的只可能是( )答案 D解析 因为f(14)>f(3)>f(2),所以函数f(x)有增有减,不选A ,B.又C 中,f(14)<f(0)=1,f(3)>f(0),即f(14)<f(3),所以不选C ,选D. 10.函数y =2x -x 2的图像大致是( )答案 A解析 易探索知x =2和4是函数的两个零点,故排除B ,C ;再结合y =2x 与y =x 2的变化趋势,可知当x →-∞时,0<2x <1,而x 2→+∞,因此2x -x 2→-∞,故排除D ,选A. 11.函数f(x)=4x -12x 的图像关于( ) A .原点对称 B .直线y =x 对称 C .直线y =-x 对称 D .y 轴对称答案 A解析 由题意可知,函数f(x)的定义域为R ,且f(x)=4x -12x =2x -2-x,f(-x)=2-x -2x =-f(x),所以函数f(x)为奇函数,故选A.12.(2018·福建)若函数y =log a x(a >0,且a ≠1)的图像如图所示,则下列函数图像正确的是( )答案 B解析因为函数y=log a x过点(3,1),所以1=log a3,解得a=3,所以y=3-x不可能过点(1,3),排除A;y=(-x)3=-x3不可能过点(1,1),排除C;y=log3(-x)不可能过点(-3,-1),排除D.故选B. 13.已知函数f(x)的定义域为[a,b],函数y=f(x)的图像如下图所示,则函数f(|x|)的图像大致是()答案 B14.设函数f(x),g(x)的定义域分别为F,G,且F G.若对任意的x∈F,都有g(x)=f(x),则称g(x)为f(x)在G上的一个“延拓函数”.已知函数f(x)=(12)x(x ≤0),若g(x)为f(x)在R 上的一个延拓函数,且g(x)是偶函数,则函数g(x)的解析式为________. 答案 g(x)=2|x|解析 画出函数f(x)=(12)x(x ≤0)的图像关于y 轴对称的这部分图像,即可得到偶函数g(x)的图像,由图可知:函数g(x)的解析式为g(x)=2|x|.15.若关于x 的方程|x|=a -x 只有一个解,则实数a 的取值范围是________. 答案 (0,+∞)解析 在同一直角坐标系中,画出函数y =|x|和函数y =-x +a 的图像,即可知当a>0时,两函数有且只有一个交点,即|x|=a -x 只有一个解.16.(2018·安徽文)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a|-1的图像只有一个交点,则a 的值为________. 答案 -12解析 函数y =|x -a|-1的大致图像如图所示,∴若直线y =2a 与函数y =|x -a|-1的图像只有一个交点,只需2a =-1,可得a =-12.17.已知函数f(x)=|x 2-4x +3|.(1)求函数f(x)的单调区间,并指出其增减性;(2)若关于x 的方程f(x)-a =x 至少有三个不相等的实数根,求实数a 的取值范围.答案 (1)增区间[1,2],[3,+∞) 减区间(-∞,1],[2,3] (2)[-1,-34] 解析f(x)=⎩⎨⎧(x -2)2-1,x ∈(-∞,1]∪[3,+∞),-(x -2)2+1,x ∈(1,3).作出图像如图所示.(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3].(2)原方程变形为|x 2-4x +3|=x +a ,于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图像.如图. 则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎨⎧y =x +a ,y =-x 2+4x -3⇒x 2-3x +a +3=0. 由Δ=9-4(3+a)=0,得a =-34.由图像知当a ∈[-1,-34]时方程至少有三个不等实根.1.函数y =lg|x|x 的图像大致是( )答案 D2.设a>1,对于实数x ,y 满足:|x|-log a 1y =0,则y 关于x 的函数图像是( )答案 B解析由题意知1y =a |x|,∴y =⎩⎪⎨⎪⎧(1a )x ,x ≥0,(1a )-x ,x<0.∵a>1,∴函数在[0,+∞)上是减函数,经过点(0,1),且函数为偶函数.故图像关于y 轴对称.故选B. 3.函数y =lnxx 的图像大致是( )答案 A解析函数y=lnxx的定义域为(0,+∞),令y=0,得x=1.所以函数y=lnxx只有一个零点.当0<x<1时,lnx<0,所以y=lnxx<0;当x>1时,lnx>0,所以y=lnx x>0.结合图中四个选项,可知应选A.4.(2018·荆州质检)若函数y=f(x)的曲线如图所示,则方程y=f(2-x)的曲线是()答案 C解析先关于y轴对称,得到y=f(-x)的图像,再向右平移两个单位,即可得到y=f(-(x-2))=f(2-x)的图像.所以答案为C.注意,左右平移是针对字母x变化,上下平移是针对整个式子变化.5.当0<a<1时,在同一坐标系中,函数y=a-x与y=log a x的图像是( )答案 C解析 当0<a<1时,y =a -x 为增函数且过点(0,1),y =log a x 为减函数且过点(1,0),故应选C.6.(2018·东北三校联考)下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是( ) A .(-∞,1] B .[-1,43] C .[0,32) D .[1,2)答案 D解析 方法一:当2-x ≥1,即x ≤1时,f(x)=|ln(2-x)|=ln(2-x),此时函数f(x)在(-∞,1]上单调递减.当0<2-x ≤1,即1≤x<2时,f(x)=|ln(2-x)|=-ln(2-x),此时函数f(x)在[1,2)上单调递增,故选D.方法二:f(x)=|ln(2-x)|的图像如图所示.由图像可得,函数f(x)的区间[1,2)上为增函数,故选D.7.(2018·华东师大附中调研)若函数y=f(x)的图像上的任意一点P的坐标(x,y)满足条件|x|≥|y|,则称函数f(x)具有性质S,那么下列函数中具有性质S的是()A.f(x)=e x-1 B.f(x)=ln(x+1)C.f(x)=sinx D.f(x)=tanx答案 C解析不等式|x|≥|y|表示的平面区域如图所示,函数f(x)具有性质S,则函数图像必须完全分布在阴影区域①和②部分,f(x)=e x-1的图像分布在区域①和③内,f(x)=ln(x+1)的图像分布在区域②和④内,f(x)=sinx的图像分布在区域①和②内,f(x)=tanx在每个区域都有图像,故选C.8.函数y=5x与函数y=-15x的图像关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称答案 C9.若log a2<0(a>0,且a≠1),则函数f(x)=log a(x+1)的图像大致是()答案 B10.(2018·石家庄二中月考)函数y =e lnx -|x -1|的图像大致是( )答案 D11.函数y =x2-2sinx 的图像大致是( )答案 C解析 易知函数y =x2-2sinx 为奇函数,排除A ;当x →+∞时,y →+∞,排除D ;令y ′=12-2cosx =0,得cosx =14,可知y ′有无穷多个零点,即f(x)有无穷多个极值点,排除B ,选C.12.(2018·山东)函数y =cos6x2x -2-x的图像大致为( )答案 D解析 令f(x)=cos6x2x -2-x ,则f(x)的定义域为(-∞,0)∪(0,+∞),而f(-x)=cos (-6x )2-x -2x =-f(x),所以f(x)为奇函数,故排除A 项.又因为当x ∈(0,16)时,cos6x>0,2x -2-x >0,即f(x)>0,故排除B 项,而f(x)=0有无数个根,所以排除C 项,D 项正确.13.(2018·新课标全国Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f(x),则f(x)的图像大致为( )答案 B解析 由题意可得f(π2)=22,f(π4)=5+1⇒f(π2)<f(π4),由此可排除C ,D 项,当3π4≤x ≤π时f(x)=-tanx +tan 2x +4,可知x ∈[3π4,π]时图像不是线段,可排除A 项,故选B 项.14.(2018·天津)已知函数y =|x 2-1|x -1的图像与函数y =kx -2的图像恰有两个交点,则实数k 的取值范围是__________. 答案 (0,1)∪(1,4)解析y =⎩⎨⎧x +1,x ≤-1或x>1,-x -1,-1<x<1,函数y =kx -2恒过定点M(0,-2),k MA =0,k MB =4.当k =1时,直线y =kx -2在x>1时与直线y =x +1平行,此时有一个公共点,∴k∈(0,1)∪(1,4),两函数图像恰有两个交点.。
2019年海南省高考理科数学试卷及答案解析【word版】
2019年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}0,1,2M =,{}2=320N x x x -+≤,则MN =(A) {}1 (B) {}2 (C) {}0,1(D) {}1,2解析:∵{}{}2=32012N x x x x x -+≤=≤≤,∴MN ={}1,2答案:D(2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =(A) 5-(B) 5(C) 4i -+(D) 4i --解析:∵12i z =+,∴22i z =-+,∴2212(2i)(2i)i 25z z =+-+=-=-答案:A(3)设向量a ,b 满足+=a b -=a b =⋅a b(A) 1(B) 2(C) 3(D) 5解析:∵+=a b -=a b 2()10+=a b ……①,2()6-=a b ……②. 由①-②得:1=⋅a b答案:A(4)钝角三角形ABC 的面积是12,1AB =,BC =AC =(A) 5(C) 2 (D) 1解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin B = 即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:AC答案:B(5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 (A) 0.8 (B) 0.75 (C) 0.6 (D) 0.45解析:此题为条件概率,所以0.60.80.75P == 答案:A(6)如图,格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件有一个底 面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则 切削掉部分的体积与原来毛坯体积的比值为(A) 1727 (B) 59(C)1027(D)13解析:原来毛坯体积为:223654(cm )ππ⋅⋅=,由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:222243234(cm )πππ⋅⋅+⋅⋅=,则切削掉部分的体积为2543420(cm )πππ-=,所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ= 答案:C(7)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S = (A) 4 (B) 5 (C) 6 (D) 7 解析:输入的x ,t 均为2.12≤是,1221M =⋅=,235S =+=,112k =+=;22≤是,2222M =⋅=257S =+=,213k =+=,32≤否,输出7S = 答案:D(8)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = (A) 0(B) 1(C) 2解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a = 答案:D(9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为(A) 10(B) 8(C) 3(D) 2解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩表示的平面区域如图阴影部分:做出目标函数0l :2y x =,∵2y x z =-,∴当2y x z =-的截距 最小时,z 有最大值。
2019年理科数学高考常考题942
2019年理科数学高考常考题单选题(共5道)1、,分别从集合和中随机取一个数和,确定平面上的一个点,记“点落在直线上”为事件,若事件的概率最大,则的可能值为()A3B4C2和5D3和42、若则的大小关系为()ABCD3、都是锐角,,则()ABC或D4、的图象向右平移m(m>0)个单位,设所得图象的解析式,则当是偶函数时,m的值可以是()ABCD5、满足,则实数等于()AB或CD简答题(共5道)6、乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,乙被划分为两个不相交的区域.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在上的概率为,在上的概率为.假设共有两次来球且落在上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和的分布列与数学期望.7、已知函数,(Ⅰ)求函数的最大值和最小正周期;(Ⅱ)设的内角的对边分别且,,若,求的值。
8、中,且,n.(1)求数列的通项公式。
(2)设9、已知点,、、是平面直角坐标系上的三点,且、、成等差数列,公差为,。
(1)若坐标为,,点在直线上时,求点的坐标;(2)已知圆的方程是,过点的直线交圆于两点,是圆上另外一点,求实数的取值范围;(3)若、、都在抛物线上,点的横坐标为,求证:线段的垂直平分线与轴的交点为一定点,并求该定点的坐标。
10、设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域,集合C为不等式(ax-)(x+4)≤0的解集,(1)求A∩B;(2)若,求a的取值范围。
书面表达(共5道)11、阅读下面的材料,根据要求写一篇不少于800字的文章。
一家人晚饭后边看电视边聊节目。
爷爷说:“还是京剧好啊。
一招一式、一颦一蹙都是真功夫,都是美呀!祖宗留下的东西就是好哇!”孙子听了,抢着说:“爷爷,流行音乐也挺好的,不管是中国的还是外国的。
2019年理科数学常考题1462
2019年理科数学常考题单选题(共5道)1、已知,若,则y=,y=在同一坐标系内的大致图象是()ABCD2、已知,若,则y=,y=在同一坐标系内的大致图象是()ABCD3、已知函数F(x)=ex满足F(x)=g(x)+h(x),且g(x)和h(x)分别是R上的偶函数和奇函数,若?x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,则实数a的取值范围是()ABCD4、在复平面上对应的点到原点的距离为()A1B2C4D5、某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A100B200C300D400多选题(共5道)6、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)7、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)8、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)9、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)10、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)简答题(共5道)11、已知正项数列{}的前n项和为,对∈N﹡有=。
(1)求数列{}的通项公式;。
(2)令,设{}的前n项和为,求T1,T2,T3,…,T100中有理数的个数。
12、已知正项数列{}的前n项和为,对∈N﹡有=。
(1)求数列{}的通项公式;。
(2)令,设{}的前n项和为,求T1,T2,T3,…,T100中有理数的个数。
13、在中,角的对边分别为,,,且。
(1)求角的大小;(2)当取最大值时,求角的大小14、某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元,根据历史资料,得到开学季市场需求量的频率分布直方图,如下图所示,该同学为这个开学季购进了160盒该产品,以X(单位:盒,100≤X≤200)表示这个丌学季内的市场需求量,Y(单位:元)表示这个开学季内经销该产品的利润。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题组层级快练(十)
1.(2018·四川内江一模)lg 5
1 000-823
=( ) A.23
5 B .-175 C .-185 D .4
答案 B
解析 lg 51 000-823=lg 5
103-823=lg1035-(23)23=35-4=-175.
2.log 89
log 23的值为( )
A .1
B .-1 C.23 D.3
2
答案 C
3.(2018·辽宁)已知a =2-13,b =log 213,c =log 12
1
3,则( )
A .a>b>c
B .a>c>b
C .c>a>b
D .c>b>a
答案 C
解析 0<a =2-13=1213<1,b =log 213<0,c =log 121
3=log 23>1.
∴c>a>b.
4.(2018·天津理)函数f(x)=log 12
(x 2-4)的单调递增区间为( )
A .(0,+∞)
B .(-∞,0)
C .(2,+∞)
D .(-∞,-2)
答案 D
解析 函数y =f(x)的定义域为(-∞,-2)∪(2,+∞),因为函数y =f(x)是由y =log 12
t 与t =g(x)=x 2-4复合而成,又y =log 12
t 在(0,+
∞)上单调递减,g(x)在(-∞,-2)上单调递减,所以函数y =f(x)在(-∞,-2)上单调递增.选D. 5.函数y =ln 1|2x -3|
的图像为( )
答案 A
解析 易知2x -3≠0,即x ≠32,排除C ,D 项.当x>3
2时,函数为减函数,当x<3
2时,函数为增函数,所以选A.
6.若0<a<1,则在区间(0,1)上函数f(x)=log a (x +1)是( ) A .增函数且f(x)>0 B .增函数且f(x)<0 C .减函数且f(x)>0 D .减函数且f(x)<0
答案 D
解析 ∵0<a<1时,y =log a u 为减函数,又u =x +1为增函数,∴f(x)为减函数;又0<x<1时,x +1>1,又0<a<1,∴f(x)<0.选D. 7.若函数y =log a (x 2-ax +2)在区间(-∞,1]上为减函数,则a 的取值范围是( ) A .(0,1) B .[2,+∞) C .[2,3) D .(1,3)
答案 C
解析 当0<a<1时,由复合函数与对数函数的性质知,不合题意;当
a>1时,要满足⎩⎨⎧12-a +2>0,
a 2≥1,
解得2≤a<3.
8.下列四个数中最大的是( ) A .(ln2)2 B .ln(ln2) C .ln 2 D .ln2
答案 D
解析 0<ln2<1,0<(ln2)2<ln2<1,ln(ln2)<0, ln 2=1
2ln2<ln2.
9.(2018·新课标全国Ⅱ理)设a =log 36,b =log 510,c =log 714,则( ) A .c>b>a B .b>c>a C .a>c>b D .a>b>c
答案 D
解析 a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,则只要比较log 32,log 52,log 72的大小即可,在同一坐标系中作出函数y =log 3x ,y =log 5x ,y =log 7x 的图像,由三个图像的相对位置关系,可知a>b>c ,故选D.
10.(log 32+log 92)·(log 43+log 83)=________. 答案 54
解析 原式=log 3232
·log 2356
=32×56=5
4.
11.(2018·浙江理)若a =log 43,则2a +2-a =________. 答案 433
解析 原式=2log 43+2-log 43=3+
13
=433.
12.(2018·北京)2-3
,31,log 25三个数中最大的数是________. 答案 log 25
解析 因为2-3
=123=18,31
2=3≈1.732,而log 24<log 25,即log 25>2,
所以三个数中最大的数是log 25.
13.若log a (x +1)>log a (x -1),则x ∈________,a ∈________. 答案 (1,+∞) (1,+∞)
14.(1)若log a 3<log a π,则实数a 的取值范围是________. (2)若log 3a<log πa ,则实数a 的取值范围是________. 答案 (1)a>1 (2)0<a<1
15.(2018·保定检测)已知函数f(x)=lgx ,若f(ab)=1,则f(a 2)+f(b 2)=________. 答案 2
解析 由f(ab)=1,得ab =10.于是f(a 2)+f(b 2)=lga 2+lgb 2=2(lg|a|+lg|b|)=2lg|ab|=2lg10=2.
16.(2018·广东江门高中调研)已知三个实数a =31
2
,b =(12)3,c =log 312,
它们之间的大小关系是________. 答案 a>b>c
解析 ∵c =log 312<0,a =312>1,0<b =(12)3<1,∴a>b>c.
17.(2018·浙江金华中学月考)已知f(x)=log 2(x -2),若实数m ,n 满足f(m)+f(2n)=3,则m +n 的最小值为________. 答案 7
解析 由已知得log 2(m -2)+log 2(2n -2)=3, 即log 2[(m -2)(2n -2)]=3,
因此⎩⎪⎨⎪⎧m>2,n>1,(m -2)(2n -2)=8,于是n =4m -2
+1.
所以m +n =m +
4m -2+1=m -2+4
m -2
+3≥2(m -2)·
4
m -2
+3=7.当且仅当m -2=4
m -2,即m =4时等号成立,此时m +n 取
得最小值7.
18.设函数f(x)=|lgx|,
(1)若0<a<b 且f(a)=f(b).证明:a·b =1; (2)若0<a <b 且f(a)>f(b).证明:ab <1. 答案 略
解析 (1)由|lga|=|lgb|,得-lga =lgb.∴ab =1. (2)由题设f(a)>f(b),即|lga|>|lgb|.
上式等价于(lga)2>(lgb)2,即(lga +lgb)(lga -lgb)>0,lg(ab)lg a
b >0,由已知b >a >0,得0<a
b <1. ∴lg a
b <0,故lg(ab)<0.∴ab <1.
1.(2018·四川泸州一诊)2lg2-lg 1
25的值为( ) A .1 B .2 C .3 D .4
答案 B
解析 2lg2-lg 125=lg(22
÷125)=lg100=2,故选B.
2.(2018·陕西宝鸡中学期中)设a =20.1
,b =ln 52,c =log 39
10,则a ,b ,
c 的大小关系是( ) A .b>c>a B .a>c>b C .b>a>c D .a>b>c
答案 D
解析 ∵a =20.1>20=1;b =ln 52<lne =1,∴0<b<1;c =log 39
10<log 31=0,∴a>b>c ,故选D.
3.(2018·衡水调研卷)已知lgx =3lgn +lgm ,则x =________. 答案 mn 3
解析 ∵lgx =3lgn +lgm =lgn 3+lgm =lg(mn 3),∴x =mn 3.。