山东省德州市第五中学2015-2016学年度上学期七年级第一章有理数1.5.3有效数字【数学】
2015-2016年七年级上数学第一章《有理数》单元测试卷(一)
2015-2016年七年级上数学第一章《有理数》单元测试卷(一)长底民中2015-2016学年《有理数》单元测试卷时间:120分 满分:120分班级_______姓名____________分数____________一、选择题(30分)1. 随着时间的变迁,罗平的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是—5℃,那么三溪今年气候的最大温差是( )℃ A.44 B.34 C.—44 D.—342. .│-3│的相反数是( )A 、3B 、-3C 、31D 、-313. 下列说法不正确...的是( ) A .0既不是正数,也不是负数 B .0的绝对值是0 C .一个有理数不是整数就是分数 D .1是绝对值最小的数 4. 在数-21, 0 , 4.5, |-9|, -6.79中,属于正数..的有( )个 A .2 B .3 C .4 D .5 5. 一个数的相反数是3,那么这个数是( ) A .3 B .-3 C .13 D .1-36. │a │= -a ,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数 7. 近似数2.7×310是精确到( ) A.十分位 B.个位 C.百位 D.千位8. 把数轴上表示数2的点移动3个单位后,表示的数为( ) A .5 B .1 C .5或1 D .5或-1 9. 大于-2.2的最小整数是( )A .-2B .-3C .-1D .0 10. 若x =4,且X+Y=0,那么Y 的值是( )A. 4B. -4C. ±4D. 无法确定 二、填空题(本题共30分)11.若上升15米记作+15米,则-8米表示 。
12.平方等于本身的数是 。
13.计算:=+⨯-5.24__________。
14.绝对值等于2的数是15.绝对值大于1而不大于3的整数是 。
16.最小的正整数是_____;最大的负整数是_____。
2015-2016学年人教版七年级数学上第一章有理数测试题及答案.docx
2015-2016 学年人教版七年级数学上第一章有理数测试题及答案沧州市献县郭庄中学 2015-2016 学年七年级数学上册第一章有理数测试题班级姓名分数一、选择题:每题 5 分,共 25 分1. 下列各组量中,互为相反意义的量是()A 、收入 200 元与赢利 200 元B 、上升 10 米与下降 7 米C 、“黑色”与“白色”D 、“你比我高 3cm ”与“我比你重 3kg ”2. 为迎接即将开幕的广州亚运会,亚组委共投入了 2 198 000 000 元人民币建造 各项体育设施,用科学记数法表示该数据是( )A0.21981010 元 B 2198 106 元 C 2.19810 9 元 D2.198 1010 元3. 下列计算中,错误的是()。
A 、62361 2 13、1001000B 、 () C 、 ( 4)( 1)64 D ( 1)4 164. 对于近似数0.1830,下列说法正确的是( )A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分D 、位有五个有效数字,精确到万分 5. 下列说法中正确的是 ( ) A .a 一定是负数Ba 一定是负数Ca 一定不是负数Da 2 一定是负数二、填空题:(每题 5 分,共 25 分)6. 若 0<a <1, 则 a , a 2, 1的大小关系是a7. 若 aa 那么 2a8. 如图,点 A , B 在数轴上对应的实数分别为 m ,n , A Bm 0nx则 A , B 间的距离是 .(用含 m , n 的式子表示)9. 如果 xy0 且 x 2= 4, y 2 =9,那么 x +y =10、正整数按下图的规律排列.请写出第6 行,第 5 列的数字.第一列第二列 第三列第四列第五列第一行 1 2 5 10 17 ,第二行 4 3 6 11 18 , 第三行 9 8 7 12 19 , 第四行 16 15 14 13 20 , 第五行 2524232221,,,三、解答题:每题 6 分,共 24 分11. ① ( -5) ×6+ ( - 125) ÷( - 5)1112② 3 2+( -2 ) -( -3 ) + 232135213③(3-4-8+24 ) ×48④- 18÷ ( -3) +5×( -2 )-( -15)÷5四、解答题:12.( 本小题 6 分) 把下列各数分别填入相应的集合里 .4224,, 0,, 3.14, 2006, 5 , 1.8837(1)正数集合:{, };(2)负数集合:{, };(3)整数集合:{, };(4)分数集合:{, }13. ( 本小题 6 分 ) 某地探空气球的气象观测资料表明,高度每增加 1 千米,气温大约降低 6℃.若该地地面温度为 21℃,高空某处温度为- 39℃,求此处的高度是多少千米?14.( 本小题 6 分 ) 已知在纸面上有一数轴(如图),折叠纸面 .0 1(1)若 1 表示的点与- 1 表示的点重合,则- 2表示的点与数表示的点重合;(2)若- 1 表示的点与 3 表示的点重合,则5 表示的点与数表示的点重合;15.( 本小题 8 分 ) 某班抽查了 10 名同学的期末成绩,以 80 分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+ 8,- 3,+ 12,- 7,- 10,-3,- 8,+ 1,0,+ 10.(1)这 10 名同学中最高分是多少 ?最低分是多少 ?(2)10 名同学中,低于80 分的所占的百分比是多少?(3)10 名同学的平均成绩是多少?参考答案1.B 2.C 3.D 4.C 5.C6.21 7. ≤8.n-m 9.±1 10.32aaa④311①- 5② 6③ 12812①22,2006, 1.88② 4,4 , 3.14, ( 5)73③ 4,0,2006,( 5)④4 ,22 , 3.14, 1.883 713.10 千米14. ①2②-315. ①最高分: 92 分;最低分 70 分.②低于 80 分的学生有 5 人。
山东省德州市庆云县第五中学15—16学年七年级12月月考数学试题(附答案) (2)
七年级上册数学月考测试卷班别: 姓名: 评价:一. 选择题:1.数轴上一点从原点正方向移动3个单位,再向负方向移动5个单位,此时这点表示的数为 ( )A. 8B. -2C. -5D. 22. 右图由几个相同的小正方体搭成一个几何体,它的俯视图是 ( )ABC D3. 2008年5月12日四川汶川发生里氏8.0级大地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾,截至6月4日12时,全国共接收捐款约为43681000000元。
这笔款额用科学技术法表示(保留三个有效数字)正确的是 ( )A. 0.437×1011B. 4.40×1010C.4.37×1010D.43.7×1094.探索规律: 观察下面的一列单项式:x -、22x 、34x -、48x 、516x -、…,根据其中的规律得出的第10个单项式是( )A .10512x -B .10512xC .101024xD .101024x- 5.如图所示的图形绕虚线旋转一周,可以得到的几何体是( )A B C D 6.用边长为1的正方形覆盖3×3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是 ( )A. 2B. 4C.7.将一直角三角板与两边平行的纸条如图所放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=900;(4)∠4+∠5=1800。
其中正确的个数是 ( )A. 1B. 2C. 3D. 4二.填空题:8.如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是 ___________________。
9.某校初一年级在下午3:00开展“阳光体育”活动,下午3:00这一时刻,时钟上分针与时针所夹的角等于____________度。
10. 平面内有n 条直线两两相交最多有 ______个交点。
11.如果a 是负数,那么a -,a 2,a a + ,aa 这四个数中,负数出现的频率为_______。
七年级数学上册第一章有理数1.5.2科学计数法(图文详解)
人=_1_0_0_, 103 =__1__0_0_0_, 104 =_1_0__0_0_0_,
【解析】选C.4.6×108 的原数应有8+1=9位整数,所
以4.6×108 =460 000 000.
人教版七年级数学上册第一章有理数
4.(成都中考)上海“世博会”吸引了来自全球众多国家数
以千万的人前来参观.据统计,2010年5月某日参观世博
园的人数约为256 000,这一人数用科学记数法表示为
人教版七年级数学上册第一章有理数
3.(丹东中考)在“2008北京”奥运会国家体育场的“鸟
巢”钢结构工程施工建设中,首次使用了我国科研人员 自主研制的强度为4.6×108 帕的钢材,那么它的原数为
()
(A)4 600 000
(B)46 000 000
(C)460 000 000
(D)4 600 000 000
(
)
(A)2.56×105
(B)25.6×105
(C)2.56×104
(D)25.6×104
【解析】选A.256 000的整数位数有6位,所以在用科学
记数法表示时应为10的6-1=5次方.所以256 000=2.56×
105,同时要注意1≤ a <10.
人教版七年级数学上册第一章有理数
5.(南安中考)温家宝总理在2010年3月5日的十一届
_____2_×__1_0_12___ 千瓦时.
人教版七年级数学上册第一章有理数
2.下面信息中的大数已经用科学记数法表示了,你知道原数 是谁吗? (1)一口痰大约含有细菌1.3×108个;___1_3_0__0_0_0__0_0_0_个 (2)温岭市去年总共缺水6.2×106吨; __6__2_0_0__0_0_0__吨 (3)据中国电监会统计,我国今年预计将缺电6×1010千瓦时; ___6_0__0_0_0__0_0_0__0_0_0___千瓦时 (4) -2.4×104=____-_2_4__0_0_0______.
山东省德州市第五中学2015-2016学年七年级9月月考数学试题解析(解析版)
(时间120分钟总分120分)一.选择题1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 4【答案】B.【解析】试题分析:因为分数与整数统称为有理数,故①正确;有理数包括正有理数、0、负有理数,故②错误;整数包括正整数、0、负整数,故③错误;分数包括正分数、负分数,故④正确;故说法正确的有两个;故选B.考点:有理数的分类.2.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a【答案】C.【解析】试题分析:因为表示数a的点在表示数b的点的左边,所以a<b,又a<0,b>0,|a|<|b|,所以-b<a<-a<b;故选C.考点:1.有理数的比较;2.数形结合.3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④ 【答案】A.考点:1.绝对值;2.相反数;3.数轴;4.有理数的比较. 4.下列运算正确的是 ( )A 1)7275(7275-=+-=+- B -7-2×5=-9×5=-45 C 3÷3135445=÷=⨯ D -(-3)2=-9【答案】D. 【解析】 试题分析:A 、-7275+=-(7275-)=-73,故错误; B 、-7-2×5=-7-10=-17,故错误;C 、 3÷5445⨯=3×54×54=2548,故错误;D 、-(-3)2=-9,正确; 故选D.考点:有理数的混合运算. 5.若a+b <0,ab <0,则 ( )A a >0,b >0B a <0,b <0C a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 【答案】D. 【解析】试题分析:由ab <0,可知a 、b 异号,又由a+b <0,可知负数的绝对值大于正数的绝对值, 故选D.考点:1.有理数的加法法则;2.有理数的乘法法则.6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg , (25 ±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A 0.8kgB 0.6kgC 0.5kgD 0.4kg 【答案】B. 【解析】试题分析:(25±0.3)kg 的最高25.3kg ,最低24.7kg ,25.3-24.7=0.6,所以从中任意拿出两袋,它们的质量最多相差0.6kg ; 故选B.考点:1.正数与负数的意义;2.有理数的加减法.7. 小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出12.5元,取出2元,这时银行现款增加了( )A 、12.25元B 、-12.25元C 、10元D 、-12元 【答案】C. 【解析】试题分析:-9.5+5-8+12+25-12.5-2=10, 故选C.考点:有理数的加减法.8. 绝对值不大于11.1的整数有( )A 、11个B 、12个C 、22个D 、23个 【答案】D . 【解析】试题分析:绝对值不大于11.1的整数有±11、±10、±9、±8、±7、±6、±5、±4、±3、±2、±1、0共23个; 故选D.考点:1.绝对值;2.整数.9. 下列说法中,错误的有( ) ①742是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
山东省德州市第五中学
山东省德州市第五中学
佚名
【期刊名称】《考试:高考文科版》
【年(卷),期】2015(0)9
【摘要】德州五中始建于1972年,是德城区初中学段首所省级规范化学校。
现有66个教学班,4900多名学生,拥有一流的办学条件和师资队伍。
学校以"追求卓越"为核心理念,不断汲取先进的教育理念和文化思想,创造出了适合不同潜质学生全面发展的培养模式,创办适合学生发展的教育,培养身心健康的全方位人才。
一路走来,德州五中已经取得累累硕果,成为德城教育的一颗璀璨明珠。
【总页数】1页(P98-98)
【关键词】规范化学校;山东省德州市;教育理念;德城区;优秀家长学校;绿色学校;篮球赛事;田径运动会;校领导班子
【正文语种】中文
【中图分类】G639.28
【相关文献】
1.让男生宿舍管理不再“难”——山东省德州市武城县第五中学巧用“流程”解难题 [J], 李金虎;
2.让男生宿舍管理不再"难"r——山东省德州市武城县第五中学巧用"流程"解难题[J], 李金虎
3.山东省德州市陵城区第一中学红/枫/文/学/社 [J],
4.用生命教学的“铁人”教师——记山东省德州市庆云县徐园子乡初级中学教师武
金兰 [J], 王凡存
5.师生共同发展全面快乐育人——山东省德州市陵城区第五中学简介 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
七年级上册数学 第一章 有理数 1.5.2科学记数法【新人教版】
1.5.2 科学记数法随堂检测1、 用科学记数法表示下列各数:(1)1万= ; 1亿= ;(2)80000000= ; 76500000-= .2、下列用科学记数法写出的数,原来分别是什么数?8561005.7,102.3,101⨯-⨯⨯3、月球轨道呈椭圆形,近地点平均距离为363300千米,远地点平均距离为405500千米 , 用科学记数法表示 : 近地点平均距离为 ,远地点平均距离为__________.4、3)5(-×40000用科学记数法表示为( )A.125×105B.-125×105C.-500×105D.-5×106 典例分析用科学记数法表示56420000万.分析:需要注意以下两点:①在一些数据中会出现“万、亿”需引起重视;②科学记数法有其表示的标准形式:na 10⨯,其中101 a ≤,n 为正整数。
解:56420000万=564200000000=1110642.5⨯课下作业拓展提高1、(2009年,重庆)据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元,那么7840000万元用科学积记数法表示为 万元.2、(2009年,山东)2009年4月16日,国家统计局发布:一季度,城镇居民人均可支配收入为4834元,与去年同时期相比增长10.2%.4834用科学记数法表示为 .3、(2009年,成都)改革开放30年以来,成都的城市化推进一直保持快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已经达到4410000人,这这个常住人口数有如下几种表示方法:①51041.4⨯人;②61041.4⨯人;③5101.44⨯人。
其中用科学记数法表示正确的序号为 .4、(2009年,山西)山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为 .5、(2009年,广东)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A 、101026.7⨯元B 、9106.72⨯元C 、1110726.0⨯元D 、111026.7⨯元6、(2009年,宜宾)2008年我国的国民生产总值约为130800亿元,那么130800用科学记数法表示正确的是( )A 、210308.1⨯B 、41008.13⨯C 、410308.1⨯D 、510308.1⨯7、地球绕太阳转动每小时经过的路程约为 1.1×105km ,声音在空气中每小时传播1.2×103km ,地球绕太阳转动的速度与声音传播的速度哪个快?体验中招1、温家宝总理在2009年政府工作报告中提出,今后三年内各级政府拟投入医疗卫生领域的资金将达到8500亿元人民币,用科学记数法表示“8500亿为( )A 、101085⨯B 、10105.8⨯C 、11105.8⨯D 、121085.0⨯2、(2009年,宁波)据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》预计到2012年,宁波市接待游客容量将达到4640万人次。
山东省德州市第五中学上学期七年级第一章有理数1.2.4绝对值【数学】
课题:第一章§1.2.4绝对值学习目标:理解一个数的绝对值的意义;会求一个数的绝对值;通过绝对值和数轴的联系,加深对数轴作用的认识。
重点:理解绝对值的意义并会灵活应用。
难点:借助数轴理解绝对值的意义。
预习导学:-3的相反数是3,0的相反数是0;在数轴上到原点距离等于3的点有两个,分别是3和-3。
学习导入:阅读教材11页1.2.4绝对值第一自然段深入探究:奥运足球比赛时,对所用足球的质量有严格的规定,下面是6个足球的质量检测结果(用正数记超过规定的质量,用负数记不足规定的质量,位:克):-25,+10,-20,+30,+15,-40。
请指出那个足球的质量好一些?㈠绝对值的概念:一般地,叫做数a的绝对值,记作|a|,如|3|= ,|-3|= 。
㈡绝对值的求法:(1)根据绝对值的概念,在数轴上找到表示这个数a的点,这个点与原点的距离就是这个数a的绝对值。
(2)①一个正数在数轴上对应的点与原点的距离恰好等于这个数本身,所以一个正数的绝对值是,如|5|= ,即当a是正数时,|a|= 。
②一个负数在数轴上对应的点与原点的距离恰好等于这个数的相反数,所以一个负数的绝对值是,如|-5|= ,即当a是负数时,|a|= 。
③表示0的点就是原点,原点与原点的距离是0,所以|0|= 。
★ 方法归纳:|a|=⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a ,在求一个数a 的绝对值时要注意:要先判断这个数a 是正数、负数、还是0;再由绝对值的意义求出这个数的绝对值。
例1. 求下列各数的绝对值:-21,4,0,-3,-431解法1:画出数轴,将-21,4,0,-3,-431在数轴上标出。
从图中可以看出|-21|=21,|4|=4,|0|=0,|-3|=3,|-431|=431 解法2:|-21|=―(-21)=21,|4|=4,|0|=0,|-3|=-(-3)=3, |-431|=-(-431)=431 课堂小结:一、 绝对值的意义:1. 绝对值的几何意义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
山东省德州市第五中学上学期七年级第一章有理数1.4.2有理数的除法【数学】
1.4.2 有理数的除法学习目标:1、理解有理数除法的法则,会进行有理数的除法运算,会求有理数的倒数.2、经历利用已有知识解决新问题的探索过程重 点:准确运用有理数除法运算法则,能把乘除混和运算统一成乘法运算 难 点:如何把实际问题转化为有理数的除法运算一、学习过程:1. 计算:①(-6)×(-9)②1125×(-0.8)2、若|a|=1,|b|=4,且ab<0则a+b=______.3、举例说明如何理解除法是乘法的逆运算的?自主学习:阅读P34你认为如何进行除法运算,其步骤是什么?合作交流①学生展示自己的认识结论.②讨论补充得出法则两个有理数相除同号得正,异号得负.并把绝对值相除.▲注意:0除以任何非0数都得0.,0不能做除数归纳总结1. 法则_________________________________________________2. 判断:0除以任何数都得0( )3. 讨论P36练习(上边)并做在练习本上4. 得出:乘除法的转化关系:a ÷b=a ×(b 1) 例题解析1、填空:①(-15)÷ (-3)=15×(-31)=____________ ②(-12)÷ (-41)=-12×(-4)=________________ ③(-0.75)÷(0.25)=- 43÷41=________________ ④(-12)÷(-21)÷(-100)=-12×_______÷(-100) =______ ÷(-100) =_____ ×___=____________2、(-201)÷(-52+103-41)▲3、判断下面的计算是否正确 -27÷3×31=-27÷1=-27 ( ) 二、当堂训练1、0.875÷(-81)2、(-65)÷(-56)3、-53×(-321)÷(-141)÷34、-8÷(-4)×154 5、3.5÷(-47)×(-21)×2926、(-43)×(-121)÷(-241)三、课下训练 1、等式{(-7.3)-?}÷(-571)=0中(?)表示的数为___. 2、a 的相反数为132,b 的倒数为-221 求代数式(a+3b) ÷(a-2b)的值3、-(31)×-(21)÷(-261)4、请认真观察下列一组数据-3、-6、-12、-24、___、-96.......你发现了什么规律?在横线上填上适当的数5、|-1.3|+0÷(5.7×|-54|+45)6、-2.25÷181÷(-8) 7、 -81÷241-94÷(-16)8、-143÷(-121)-(43+21)÷(-45)四、中考真题1、(05.南京)若a 与-2互为倒数.则a 是_____.A 、-2B 、-21 C 、21 D 、2 2、(05 天津)已知|x|=4 |y|=(-201)÷{-(52)+(103)-(41)},且xy<0, 求y x 的值.3、已知:a=3,b=-2,c=5,求:a cb +-的值.4、如果a 与2b 互为倒数,-c 与2d 互为相反数,|x|=3,求2ab-2c+d+3x 的值.五、小结1、有理数除法的运算法则___________________________________.2、有理数的加减乘除运算的顺序是先算乘除再算加减.3、有理数的乘除混合运算的顺序:按照自左而右的顺序运算.。
山东省德州市第五中学上学期七年级第一章有理数测试题【数学】
一、选择题(每小题2分,共16分)1、-3的相反数是( )A 、-3B 、3C 、 31- D 、23 2、下列说法,不正确的是( )A 、0是自然数B 、0是正数C 、0是整数D 、0是有理数3、最大的负整数是( )A 、-1000B 、-1C 、0D 、不存在4、两数之和为负,积为正,则这两个数应是( )A 、同为负数B 、同为正数C 、一正一负D 、有一个是05、如果一个数的相反数比它本身大,那么这个数为( )A 、正数B 、负数C 、整数D 、不等于零的有理数6、绝对值小于3.5的整数有( )A 、8个B 、7个C 、6个D 、5个7、2003年5月19日,国家邮政局特别发行“万众一心,抗击‘非典’”,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票发行量为12500000枚,用科学记数法表示正确的是( )A 、1.25×105枚B 、1.25×106枚 C 、1.25×107枚 D 、1.25×108枚 8、数轴上的点A 、B 、C 、D 分别表示数a 、b 、c 、d ,已知A 在B 的右侧,C 在B 的左侧,D 在B 、C 之间,则下列式子成立的是( )A 、a <b <c <dB 、b <c <d <aC 、c <d <a <bD 、c <d <b <a二、填空(每空2分,共26分)1、211-的倒数是 相反数是 绝对值是2、某人向东走了5米,又回头向西走了6米,此时离原地 米。
3、3.14万精确到 位,6.7×105有 个有效数字。
4、 的相反数是它本身 的倒数是它本身 的绝对值是它本身。
5、图形 表示运算 a-b+c , 图形 x+n-y-m ,则 × =6、数轴上和原点的距离等于213的点表示的有理数是 。
7、a 、b 互为相反数,c 、d 互为倒数,则cd b a 3)(51-+= 。
8、〇中填入最小的正整数,△中填入最小的非负数,□中填入大于-5且小于3的整数的个数,并将计算结果填在下边的横线上。
山东省德州市第五中学七年级数学上学期期末考试试题
山东省德州市第五中学2015-2016学年七年级数学上学期期末考试试题一.选择题1、下列说法中正确的个数为()①在同一平面内不相交的两条直线叫做平行线②平面内经过一点有且只有一条直线与已知直线垂直③经过一点有且只有一条直线与已知直线平行④平行同一直线的两直线平行A.1个B.2个C.3个D.4个2、下列方程是一元一方程的是()A. 522=+xB. xx24213=+-C. 032=+yy D. 29=-yx3、在下面方程中变形正确的为()()02,0631=+=+xx变形为()24,3572-=-=+xxx变形为()152,3523==xx变形为()-2x,244=-=变形为xA.()()31 B.()()()321 C.()()43 D.()()()4214. 已知关于x的方程432x m-=的解是x m=,则m的值是()A.2 B.-2 C.72D.72-5、给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,12x+,4a都是整式;④x2-xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①② B.②③ C.③④ D.①④6、下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短。
其中正确的是()A.1个 B.2个 C.3个 D.4个7、若1||225(1)34mx y m y-+-是三次三项式,则m等于()A.±1 B.1 C.-1 D.以上都不对8、下面是一个长方形的展开图,其中错误的是()9、下列各数中,负数出现的频率是()-6.1,1||2--,-(-1),(-2)2,(-2)3,-[-(-3)]A.83.3% B. 66.7% C.50% D.33.3%10、一列数:0,1,2,3,6,7,14,15,30.____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四A.次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( ) A .31,32,64; B .31,62,63; C .31,32,33; D .31,45,46二.填空题1. 已知线段AB,延长AB 到C ,使BC=31AB ,D 为AC 的中点,若AB =9cm ,则DC 的长为 。
山东省德州市第五中学2023-2024学年七年级上学期期中数学试题(含答案解析)
山东省德州市第五中学2023-2024学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题二、填空题三、解答题(1)用含a的整式表示三角形(2)用含a的代数式表示阴影部分面积,并求出当米?23.某食品厂从生产的袋装食品中抽取不足的部分分别用正.负数来表示,记录如下表:与标准质量的差值(单位:克)袋数(1)这批样品的质量比标准质量多还是少?多或少几克?(1)在数轴上表示2的点与表示5的点之间的距离为点之间的距离为;由此可得点A、-++---;(2)化简:a b c b b a(3)若24c=,b-的倒数是它本身,的值.参考答案:【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.403【分析】本题考查有理数的四则混合运算,利用“共航行路程=顺水路程+逆水路程=(静水速度+水流速度)×顺水时间+(静水速度-水流速度)×逆流时间”求解即可,熟练掌握“顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度”是解题的关键.【详解】解:顺水航行的距离3(803)249=⨯+=千米,逆水航行的距离()2803154⨯-=千米,所以一共航行了249154403+=千米.故答案为:403.17.②④/④②【分析】根据多项式的次数以及合并同类项的运算法则进行分析判断,【详解】①不对,A B +次数不可能高于三次;②正确;③错误,A C +可能为五次单项式;④正确;⑤A B C +-不可能为常数,错误.故答案为②④.【点睛】本题考查多项式的次数,整式的加减,理解多项式次数的概念,掌握合并同类项(系数相加,字母及其指数不变)的计算法则是解题关键.18.()22+n 【分析】根据给出的已知图形,找出规律,列出代数式即可.【详解】解:观察图形发现:第1个图案中有灰色瓷砖4块,第2个图案中灰色瓷砖多了2块,第3个图案中灰色瓷砖又多了2块,依此类推,第n 个图案中,灰色瓷砖是()22n +块.故答案为:()22+n .。
德州市七年级数学上册第一单元《有理数》经典复习题(培优专题)(1)
一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分2.13-的倒数的绝对值()A.-3 B.13-C.3 D.133.有理数a、b在数轴上,则下列结论正确的是()A.a>0 B.ab>0 C.a<b D.b<04.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④5.若1<a<2,则化简|a-2|+|1-a|的结果是()A.a-1 B.1 C.a+1 D.a-36.若一个数的绝对值的相反数是17-,则这个数是()A.17-B.17+C.17±D.7±7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2D .4,38.用计算器求243,第三个键应按( ) A .4B .3C .y xD .=9.下列各组数中,互为相反数的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|10.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( ) A .(-3.4)3<(-3.4)4<(-3.4)5 B .(-3.4)5<(-3.4)4<(-3.4)3 C .(-3.4)5<(-3.4)3<(-3.4)4 D .(-3.4)3<(-3.4)5<(-3.4)4 11.下列运算正确的是( ) A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-12.若a ,b 互为相反数,则下面四个等式中一定成立的是( ) A .a+b=0 B .a+b=1C .|a|+|b|=0D .|a|+b=013.若1<x <2,则|2||1|||21x x x x x x---+--的值是( ) A .﹣3B .﹣1C .2D .114.已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2±B .±1C .2±或0D .±1或015.下列各式计算正确的是( ) A .826(82)6--⨯=--⨯ B .434322()3434÷⨯=÷⨯ C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题16.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______. 17.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.18.绝对值小于2018的所有整数之和为________.19.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.20.计算3253.1410.31431.40.284⨯+⨯-⨯=__. 21.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.22.把点P 从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P 所表示的数是______.23.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.24.给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________. 25.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___. 26.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位; (2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题27.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算; 1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 28.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 29.计算:(1)()()30122021π--+---; (2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 30.计算:(1)9-(-14)+(-7)-15; (2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]。
山东德州市七年级数学上册第一单元《有理数》-选择题专项经典题(培优)
一、选择题1.下列说法:①a-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a-不一定是负数,故该说法错误;②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.2.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.3.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是()A.3 B.﹣13C.0 D.﹣3D解析:D 【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D .【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.4.计算-2的结果是( ) A .0B .-2C .-4D .4A 解析:A【详解】解:因为|-2|-2=2-2=0,故选A .考点:绝对值、有理数的减法5.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.6.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D 解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x∴-<,10x->,0x>,∴原式1111=-++=,故选:D.【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.7.下列四个式子,正确的是()①33.834⎛⎫->-+⎪⎝⎭;②3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+⎪⎝⎭.A.③④B.①C.①②D.②③D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.8.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.10.计算-3-1的结果是()A.2 B.-2 C.4 D.-4D 解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.11.如果向右走5步记为+5,那么向左走3步记为( )A.+3 B.-3 C.+13D.-13B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.12.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.13.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .14.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B 解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.15.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.16.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误;2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 17.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.18.下列说法中,正确的是( )A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意; 既没有最大的数,也没有最小的数,正确,故选项D 符合题意.故选:D .本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键. 19.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.20.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 21.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++ 7=,故选:C .【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 22.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.23.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( )A .0.15×105B .15×103C .1.5×104D .1.5×105C 解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.15000用科学记数法表示是1.5×104.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.24.定义一种新运算2x yx yx+*=,如:2212122+⨯*==.则()(42)1**-=()A.1 B.2 C.0 D.-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 25.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.26.下列各式中,不相等的是()A.(﹣5)2和52B.(﹣5)2和﹣52C.(﹣5)3和﹣53D.|﹣5|3和|﹣53|B解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.27.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④D解析:D【分析】 数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D.【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.28.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.29.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b∴两数乘积为ab根据题意,得11 10202a b ab故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.30.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.。
山东德州市七年级数学上册第一单元《有理数》-填空题专项经典题(培优)
一、填空题1.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.2.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.3.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 4.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.5.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2.【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.6.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b【点睛】本题考查了数轴相反数和有理数的大小解析:b<-a<a<-b【分析】先在数轴上标出a、b、-a、-b的位置,再比较即可.【详解】解:∵a>0,b<0,|b|>|a|,∴b<-a<a<-b,故答案为:b<-a<a<-b.【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a、b、-a、-b在数轴上的位置是解此题的关键.7.点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.8.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.9.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.10.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.11.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 12.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__;(2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决; (3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题.【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n =m n a a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.13.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.2【分析】设点A表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减. 14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070= 解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5 )=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题. 15.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m 其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确 近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m ,其中1.90是近似数. 故答案为:准确;近似.【点睛】本题考查了近似数. 近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.16.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键解析:【分析】根据新定义把新运算转化为常规运算进行解答便可.【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点睛】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.17.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.73xy3=-2【分析】首先确定使用的是xy 键先按底数再按yx 键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y ,3,= -2【分析】首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.18.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.19.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.20.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.21.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.22.计算3253.1410.31431.40.284⨯+⨯-⨯=__.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】 解:3253.1410.31431.40.284⨯+⨯-⨯, 353.141 3.14 3.14288=⨯+⨯-⨯, 353.14(12)88=⨯+-, 3.140=⨯,0=.故答案为:0.【点睛】本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便. 23.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.24.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.25.已知a是7的相反数,b比a的相反数大3,则b比a大____.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a和b,再根据有理数的减法法则即可求得结果.【详解】由题意,得a=-7,b=7+3=10.∴b-a=10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.26.数轴上,如果点 A所表示的数是3-,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.27.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.28.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.29.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.30.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.。
德州市七年级数学上册第一章《有理数》经典复习题(培优专题)(1)
1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C 【分析】根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可. 【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ; 当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ; 当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确; 当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ; 故选C . 【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个A解析:A 【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可. 【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭,故③错误;()3-=-,故④错误;0.10.001224-=-,故⑤正确;33故选A.【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.3.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.4.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是()A.0.15×105B.15×103C.1.5×104D.1.5×105C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】15000用科学记数法表示是1.5×104.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.6.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.7.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C 选项是正确的. 【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键. 8.-1+2-3+4-5+6+…-2011+2012的值等于 A .1 B .-1C .2012D .1006D解析:D 【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键. 9.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( ) A .8个 B .16个C .32个D .64个D解析:D 【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得. 【详解】26=2×2×2×2×2×2=64. 故选D . 【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.10.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12C .-2或12D .-2或-12A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑. 11.下列四个式子,正确的是( )①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④ B .①C .①②D .②③D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+ ⎪⎝⎭,故①错误; ②∵33154420⎛⎫--== ⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭, 15122020>, ∴3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故②正确; ③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确; ④∵111523623⎛⎫--== ⎪⎝⎭,217533346+==,333466<, ∴125523⎛⎫-->+ ⎪⎝⎭,故④错误. 综上,正确的有:②③. 故选:D . 【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2±B .±1C .2±或0D .±1或0C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果. 【详解】 ∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键. 13.某市11月4日至7日天气预报的最高气温与最低气温如表: 日期11月4日11月5日 11月6日 11月7日 最高气温(℃) 19 1220 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日 B .11月5日C .11月6日D .11月7日C解析:C 【分析】运用减法算出每一天的温差,再进行比较即可. 【详解】11月4日的温差为19415-=(℃); 11月5日的温差为12(3)15--=(℃); 11月6日的温差为20416-=(℃); 11月7日的温差为19514-=(℃). 所以温差最大的一天是11月6日. 故选C . 【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.14.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0A解析:A根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.15.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是()A.3 B.﹣13C.0 D.﹣3D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.1.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.2.3 的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.3.数轴上,如果点 A所表示的数是3-,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.4.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.6.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.7.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.8.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点A,B对应的数分别为0和1点C所对应的数为1,则再翻转3次后,点C所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,+⨯=.∴点C对应的数是1134故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.9.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.10.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.11.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.1.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键. 2.计算: (1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯.解析:(1)6;(2)-5 【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题; (2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23 =9﹣15+12 =6;(2)20203221124(2)3()3-+÷--⨯=﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1 =﹣5. 【点睛】此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键. 3.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8. 【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可. 【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5, ∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0, 所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6, 所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8, 答:m 的值为2或8. 【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键.4.计算题:(1)()()121876---+-+; (2)()231513221428⎫⎛---⨯-+⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4 【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题. 【详解】解:(1)|-12|-(-18)+(-7)+6 =12+18+(-7)+6 =30+(-7)+6 =23+6 =29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯=-1+24-80+52 =-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.3 近似数
学习目标: 初步理解和掌握近似数和有效数字的概念,由一个四舍五入得到的近似数,能准确地确定它的精确度和有效数字。
重点:理解和掌握近似数和有效数字的概念
难点:近似数、精确度、有效数字的概念
一、学习过程:
(1)初一(1)有50 位同学;
(2)每个三角形都有3个内角.
这里的50、3与实际完全符合的,我们叫它们为准确数.
我们还会遇到这样的问题:
(3)我国的领土面积为约960万平方千米;
(4)王强的体重是约49千克.
960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数. 我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.
王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.
▲我们把这些___________________________称为近似数.
归纳:
▲一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.从都叫做这个数的有效数字.
二、例题解析
例1 下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?
(1)132.4;(2)0.0572;(3)2.40万(4)4.5×103
▲注意:由于2.40万的单位是万,所以不能说它精确到百分位
.
例2 用四舍五入法,按括号中的要求把下列各数取近似数.
(1)0.34082(精确到千分位);(2)64.8 (精确到个位);(3)1.504 (精确到0.01);(4)0.0692 (保留2个有效数字);★(5)30542 (保留3个有效数字);
注意:▲1、例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;
▲2、例2的(5)中,如果把结果写成30500,就看不出哪些是保留的有效数字,所以我们用科学记数
法,把结果写成3.05×104
三、课堂练习
1. 由四舍五入得到的近似数0.600的有效数字是 ( )
A. 1个
B. 2个
C. 3个
D. 4个
2. 用四舍五入法取近似值,
3.1415926精确到百分位的近似值是_________,精确到千分位近似值是________.
3. 用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________.
4. 用四舍五入法取近似值,396.7精确到十位的近似数是______________;保留两个有效数字的近似数是____________.
5. 用四舍五入法得到的近似值0.380精确到_____位,48.68万精确到___位.
6、判断下列各数,哪些是准确数,哪些是近似数:
(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;
(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;
(3)通过计算,直径为10cm的圆的周长是31.4cm;
(4)检查一双没洗过的手,发现带有各种细菌80000万个;
(5)1999年我国国民经济增长7.8%
.
7、下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?
(1)38200 (2)0.040 (3)20.05000 (4)4×104
四、课下训练
1、下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?
(1)70万 (2)9.03 (3)1.8亿(4)6.40×105
2、用四舍五入法,按括号里的要求对下列各数取近似值.
(1)1.5982(精确到0.01) (2)0.03049(保留两个有效数字)
(3)3.3074(精确到个位) (4)81.661(保留三个有效数字)
3、用四舍五入法,按括号里的要求对下列各数取近似值,并说出它的精确度(或有效数字).
★(1)26074(精确到千位) (2)7049(保留2个有效数字)
★(3)26074000000(精确到亿位) (4)704.9(保留3个有效数字)
五、小结
1、在大量的实际数学问题中,都会遇到近似数的问题.使用近似数,就有一个近似程度的问题,也就是精确度的问题.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位(这个数位上的数字若是0也得算)止,所有的数字,都叫做这个数的有效数字.
2、求整数的近似数时,应注意以下两点:
(1)近似数的位数一般都与已知数的位数相同;
(2)当近似数不是精确到个位,或有效数字的个数小于整数的位数时,一般用科学记数法表示这个近似数.因为形如a×10n(1≤a<10,n为正整数=的数可以体现出整数的精确度
3、.1.60与0.030的最后一个0都不能随便去掉.1.60是表示精确到0.01,而1.6表示精确到0.1.对0.030,最后一个0也是表示精确度的,表示精确到千分位,而0.03只精确到百分位.。