单项式和多项式知识点例题讲解1

合集下载

单项式、多项式1

单项式、多项式1

单项式、多项式学生/课程七年级-初一-数学年级初一学科数学授课教师日期时段核心内容单项式、多项式课型一对一/一对N教学目标1.了解整式的有关概念,会识别单项式;2.能说出一个单项式的系数和次数;3.能说出一个多项式是几次几项式;4.在参与对单项式识别的过程中,培养观察、归纳、概括和语言表达的能力。

重、难点1.重点:单项式的系数、次数;2.难点:多项式每一项的系数、次数,及整个多项式是几次几项式。

课首沟通1.我们小学学过哪些图形的周长和面积公式?2.我们是怎么样用字母表示这些公式的呢?知识导图课首小测1.用字母表示出:加法交换律:()加法结合律:()乘法交换律:()乘法结合律:()乘法分配律:()2.用字母表示出长方形的周长公式:(),长方形的面积公式:(),正方形的周长公式:()正方形的面积公式:()3.修路队要修a米的路,还剩下52米没有修,已经修了()米。

4.淄博到济南有105千米,一辆客车从淄博开往济南,每小时行v千米,行了t小时,此时客车距淄博()千米,距济南()千米。

当v=65,t=0.8时,距淄博()千米,距济南()千米。

5.三个连续偶数的和是a,其中最小的数是(),最大的数是()【学有所获】对于连续的奇数或者偶数我们都可以设其中某一个为,根据每两个数之间相差,就可以表示出其他的数,对于要求的数字我们常常可以通过题目中的等量关系建立来进行求解。

[学有所获答案]2;方程导学一:代数式知识点讲解 1:代数式的概念用基本的运算符号(运算包括加、减、乘、除、乘方与开方等)把数和表示数的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.例如:5,,,等等.例 1. 列代数式:(1)若三角形一边长为,并且这边上的高为,则这个三角形的面积为;(2)若表示正方体棱长,则正方体的体积是;(3)若表示一个有理数,则它的相反数是;(4)小明从每月的零花钱中贮存元钱捐给希望工程,一年下来小明捐款元。

单项式和多项式

单项式和多项式

初中数学单项式和多项式编稿老师巩建兵一校杨雪二校黄楠审核王琛一、考点冲破明白单项式、单项式的系数、单项式的次数的概念,能熟练找出单项式的系数和次数,了解多项式、整式及其有关的概念,会依照所给的语句列出相应的代数式,并能熟练说出多项式的项及第二数。

初步培育观看、分析、抽象、归纳等思维能力和应用意识。

二、重难点提示重点:把握整式的概念,能熟练识别单项式的系数和次数、多项式的项和次数。

难点:单项式、多项式、多项式的项,这三者次数的联系和区别。

1. 单项式(1)概念:由数字或字母的积组成的式子叫做单项式。

(2)单项式的系数:单项式中的数字因数叫做那个单项式的系数。

(3)单项式的次数:一个单项式中,所有字母指数的和叫做那个单项式的次数。

例如:234x y-的系数是-34,次数是3。

注意:单独的一个数或一个字母也是单项式,如-3、a、πr2都是单项式,其中π是常数,是2rπ那个单项式的系数。

2. 多项式(1)多项式:几个单项式的和叫做多项式,如2x+1,a-2等。

(2)多项式的项:在多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项,单项式的次数是几,就叫几回项。

(3)多项式的次数:多项式里次数最高项的次数,叫做多项式的次数。

例如:多项式3x3-2x2+x+8中,一共有四项,别离是:3x3、-2x2、x、8;其中8是常数项,而3x3是三次项,-2x2是二次项,x是一次项。

一个多项式中有几项,它就叫几项式,如上述的多项式有四项,故称四项式。

上面的多项式里,次数最高为“3”,因此那个多项式的次数确实是3,称做三次四项式。

注意:(1)多项式中的每一项都必需是单项式;(2)多项式中只含有三种运算符号:加号(能够省略)、正负号、乘号(能够省略);(3)多项式的项包括它前面的正、负号。

3. 整式单项式和多项式统称为整式。

它们的关系:整式包括单项式和多项式;多项式的项是单项式,单项式组成多项式。

多项式的次数是组成多项式的单项式中次数最高的项的次数。

苏科版七年级数学上册3.2《代数式(2)单项式、多项式的概念》

苏科版七年级数学上册3.2《代数式(2)单项式、多项式的概念》

(2) (a+b)h
【讲解】:
(1)可设苹果a元/kg,香蕉b元/kg,那么3a+4b就表示3kg苹果和4kg香蕉的
总金额,则代数式20-(3a+4b)表示用20元钱买3kg苹果和4kg香蕉应找回的零钱。 (2)设a,b,h,分别表示一个梯形的上底、下底和高,那么代数式 12(a+b)
就表示这个梯形的面积.
(5)
1 a
+8
(3)
2 xy
(6)-3x2+2x2-1
【讲解】:多项式有(1)(4)(6);整式有(1)(2)(4)(6)
【方法小结】单项式和多项式统称为整式,判断一个代数式是 否是整式就看是否是单项式或多项式,关键是看分母中是否含 有字母,按照目前的知识没有字母的就是整式,多项式的识别要 注意一下几点; (1)分母中不含字母; (2)含加、减、除运算。
小明走5步、小亮走8步两人相遇,小桥长______m; (3)a个五面体、b个八面体共有______个面.(教材第72页的“议一议”)
答案:列出的代数式都是5a+8b
总结提升
回顾反思
单项式有关概念: 数字与字母的积所组成的代数式叫做单项式,单独的一个数或一个
字母也是单项式.单项式中的数字因数叫做它的系数.单项式中所有字 母的指数的和叫做它的次数. 多项式有关概念:
课堂练习
1.多项式 1+2xy-3xy² 的次数及最高次项的系数分别是( A )
A 3,-3
B 2,-3
C 5,-3
D 2, 3
2.如果整式xn-2 -5x+2是关于x的三次三项式,那么n等于( C )
A3
B4
C5
D6

单项式和多项式的经典例题

单项式和多项式的经典例题

单项式和多项式的经典例题大家好,今天咱们聊聊代数里的单项式和多项式,探讨一些经典的例题,带着一点轻松的感觉,把这些数学概念用最简单的语言搞明白。

大家都知道,数学这玩意儿,搞懂了才能玩的开心!1. 单项式的基本概念单项式是什么呢?简而言之,它就是一个只有一个“项”的代数表达式。

听起来简单,但里面的门道可不少。

单项式的标准形式就是系数和变量的乘积,比如 ( 3x^2 ) 或者( 7y ) 。

1.1 系数和变量系数就是那个和变量一块出现的数,比如在 ( 5x^3 ) 里,5 就是系数。

变量呢,就是那个字母,比如 ( x ) 或 ( y ) 。

1.2 单项式的运算单项式的加减法就像是整理屋子,把一类物品放在一起。

举个例子,( 3x^2 ) 和( 5x^2 ) 可以加起来,结果是 ( 8x^2 )。

但如果是 ( 3x^2 ) 和 ( 4x ) ,它们就没法直接加减,因为它们的“类型”不一样。

简单说,就是不同的“品种”,没法混在一块儿。

2. 多项式的基本概念多项式就是由多个单项式组成的代数表达式。

比如 ( 2x^2 + 3x 5 ) 就是一个典型的多项式,它有三个不同的项。

多项式里的每一项都是单项式。

2.1 多项式的运算多项式的加减法也挺简单,主要是把相同“类型”的项合在一起。

比如 ( (2x^2 + 3x)+ (4x^2 5) ),你可以把相同的项加在一块儿,结果就是 ( 6x^2 2x 5 )。

2.2 多项式的乘法乘法就有点意思了。

比如 ( (x + 2) ) 乘以 ( (x + 3) ),咱们可以用分配律,也就是把每一项都和对方的每一项乘一遍。

最终得到 ( x^2 + 5x + 6 ) 。

这是个经典的练习,熟练了之后,你会发现它其实也蛮有趣的。

3. 经典例题解析现在,咱们来看看一些经典的例题,深入了解一下单项式和多项式的运算吧。

3.1 例题1:单项式的加法题目:简化 ( 7x^3 2x^2 + 4x^3 + x^2 ) 。

八年级数学单项式与多项式的乘法1

八年级数学单项式与多项式的乘法1
单项式与多项式相乘 ,就是用单项式去乘多项
式的每一项 ,再把所有的积相加 .即
m(a b c) ma mb mc (m, a,b,c都是单项式)
注意:
(1) 单项式与多项式相乘,结果是一 个多项式,其项数与因式中多项式的项 数相同.
(2) 计算时,要注意符号问题,多项式中 每一项都包括它前面的符号,同时还要注 意单项式的符号.
.
2.例题讲解.
例1 计算 : (1)0.5ab( 2 ab2 2ab); 3
(2)x(x2 xy y2 ) y(x2 xy y2 );
(3)4ab[2a2b (ab ab2 ) 3b].
解:
(1)0.5ab(2 ab2 2ab) 3
1 a b(2 a b2 2a b) 23
1 ab2c 1 a2b2 (8b3c6 )
24
a3b7c7.
2. 什么叫多项式? 几个单项式的代数和叫做多项式.
如: 2x2 x 1.它的项是: 2x2, x, 1.
3. 乘法对加法的分配律.
a(b c) ab ac
二.讲授新课.
计算:
2a(2a2 3a 1) (2a) 2a2 (2a)(3a) (2a) 1 4a3 6a2 2a. 1. 单项式与多项式相乘的法则 :
(4)( x2 )3 2x3[x3 x2 (4x 1)].
四.小结.
1.单项式与多项式相乘的依据是乘法 对加法的分配律.
2.单项式与多项式相乘,其积仍是多 项式,项数与原多项式的项数相同,注 意不要漏乘项.
3.积的每一项的符号由原多项式各项 符号和单项式的符号来决定,注意运用 去括号法则.
4ab[2a2b (ab 3b ab2 3b)]

单项式和多项式(知识点+练习)

单项式和多项式(知识点+练习)

单项式和多项式————小学知识回顾————一、运算律加法交换律:两个数相加,交换加数的位置,和不变.式子表示为 a+b=b+a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变用式子表示为(a+b)+c= a+(b+c)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,即:(ab)c=a(bc)乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即:a(b+c)= ab+bc二、常用计算公式1、长方形面积=长×宽,计算公式S=ab2、正方形面积=边长×边长,计算公式S=a×a=a23、长方形周长=(长+宽)×2,计算公式C=(a+b)×24、正方形周长=边长×4,计算公式C=4a5、平行四边形面积=底×高,计算公式S=ah6、三角形面积=底×高÷2,计算公式S=a×h÷27、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷28、长方体体积=长×宽×高,计算公式V=abh9、圆的面积=圆周率×半径平方,计算公式V=πr210、正方体体积=棱长×棱长×棱长,计算公式V=a311、长方体和正方体的体积:都可以写成底面积×高,计算公式V=sh12、圆柱的体积=底面积×高,计算公式V=sh————初中知识链接————1.单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.2.多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.3.整式(1)概念:单项式和多项式统称为整式.他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.(2)规律方法总结:①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“-”将单项式连起来的就是多项式,不含“+”或“-”的整式绝对不是多项式,而单项式注重一个“积”字.②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.【经典题型】初中经典题型1.下列说法错误的是( )A .5y 4是四次单项式B .5是单项式C .243a b 的系数是13 D .3a 2+2a 2b ﹣4b 2是二次三项式 2.下列代数式:20,,,,,2273a x x y m x x y +-++,其中单项式有m 个,多项式有n 个,整式有t 个,则m +n +t 等于( )A .12B .13C .14D .153.多项式2213x -的常数项是( ) A .1 B .1- C .13 D .13- 4.多项式2435a b ab -+-的项为( )A .24,3a b ab -,5B .2435a b ab -+-C .24,3a b ab -,5-D .24,3a b ab ,55.在代数式2141,,42,,3235x y a mn b ---+中,多项式的个数是( ) A .4 B .3 C .2 D .16.下列说法正确的是( )A .x 2+1是二次单项式B .﹣m 2的次数是2,系数是1C .﹣23πab 的系数是﹣23D .数字0也是单项式7.如果﹣22a 2bc n 是7次单项式,则n 的值是( )A .4B .3C .2D .510.单项式253a bc -的次数是 . 11.多项式2254x x -+的一次项系数是 .12.﹣5x 2y 2+3x 2y+2x ﹣5是 次四项式.13.写一个系数是2014且只含x 和y 的三次单项式 .14.2257x y -的系数是_________,次数是_________。

第02讲 整式(单项式与多项式)(9类热点题型讲练)(原卷版)--初中数学北师大版7年级上册

第02讲 整式(单项式与多项式)(9类热点题型讲练)(原卷版)--初中数学北师大版7年级上册

第02讲整式(单项式与多项式)1.掌握单项式、多项式、整式的概念;2.掌握单项式的系数与次数和多项式的项数、系数与次数;3.掌握单项式的规律题的方法;4.掌握多项式的升幂、降幂排列方法.知识点01单项式的概念如mn 2-,23xy π,0,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式.【注意】(1)单项式包括三种类型:①数字与字母相乘或字母与字母相乘组成的式子;②单独的一个数;③单独的一个字母.(2)单项式中不能含有加减运算,但可以含有除法运算.如:2mn 可以写成mn 21。

但若分母中含有字母,如x 1就不是单项式,因为它无法写成数字与字母的乘积.知识点02单项式的系数与次数1.单项式的系数:单项式中的数字因数叫做这个单项式的系数.(1)确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数;(2)圆周率π是常数.单项式中出现π时,应看作系数;(3)当一个单项式的系数是1或-1时,“1”通常省略不写;(4)单项式的系数是带分数时,通常写成假分数.2.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;(2)不能将数字的指数一同计算.知识点03多项式1.多项式的概念:几个单项式的和叫做多项式.2.多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项.【注意】(1)多项式的每一项包括它前面的符号.(2)一个多项式含有几项,就叫几项式,如:1-xx是一个三项式.22+33.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.【注意】(1)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.(2)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.知识点04整式单项式与多项式统称为整式.【注意】(1)单项式、多项式、整式这三者之间的关系如图所示.即单项式、多项式必是整式,但反过来就不一定成立.(2)分母中含有字母的式子一定不是整式.题型01单项式的判断题型02单项式的系数、次数题型03写出满足某些特征的单项式题型04单项式规律题题型05多项式的判断题型06多项式的项、项数或次数题型07多项式系数、指数中字母求值的值是题型08将多项式按某个字母升幂(降幂)排列题型09整式的判断一、单选题。

第二章 第一节 单项式和多项式

第二章 第一节 单项式和多项式

第一节 单项式和多项式知识结构导图知识点一:单项式1.概念:式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。

注意:单项式是一种特殊的式子,它包含一种运算、三种类型。

一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,2.单项式的系数:单项式中的数字因数叫做这个单项式的系数。

注意:(1)单项式的系数可以是整数,也可能是分数或小数。

如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。

(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。

(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。

如2πxy 的系数就是2π3单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。

(3)单项式的指数只和字母的指数有关,与系数的指数无关。

如单项式-43242z y x 的次数是2+3+4=9而不是13次。

(4)单项式通常根据单项式的次数进行命名。

如x 6是一次单项式,xyz 2是三次单项式。

例题:下列说法正确的是( )A .单项式23x -的系数是3-B .单项式3242π2ab -的次数是7 C .1x是单项式 D .单项式可能不含有字母检测:1、判断下列各代数式是不是单项式?若是,写出它的系数与次数。

【新】七年级 数学 人教版 单项式和多项式讲义(知识点+练习题)【精编版】

【新】七年级 数学 人教版 单项式和多项式讲义(知识点+练习题)【精编版】

单项式和多项式☆☆☆知识讲解1、代数式:用基本的运算符号(包括加、减、乘、除、乘方、开方)把数、表示数的字母连结而成的式子叫做代数式,单独一个数或一个字母也是代数式。

2、单项式:只含有数字或字母的乘积的式子叫做单项式.①定义中的“积”是对数与字母而言的,只能是乘法或乘方运算,而不能是加、减、除等其他运算. 如ab 2+2,32y x -,mn2等都不是单项式. ②单独的一个数或一个字母也是单项式.(1)单项式的系数:单项式中的数字因数叫做这个单项式的系数.(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项数的次数.3、多项式:几个单项式的和叫做多项式.(1)多项式的项:是指在多项式中,每个单项式叫做多项式的项.多项式的项包括它前面的性质符号。

(2)多项式的项数:一个多项式中有几个单项式就有几项,这个多项式就叫几项式。

(3)常数项:在多项式中,不含有字母的项叫做多项式的常数项。

(4)多项式的次数:一个多项式中,次数最高的项的次数,叫做这个多项式的次数.(5)降(升)幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降(升)幂排列.4、整式:单项式与多项式统称为整式. 注意:分母中含有字母的代数式是分式1. 对单项式、多项式、整式进行判断例1 判断下列各代数式,哪些是单项式,哪些是多项式,哪些不是整式.(1)-3xy 2;(2)2x 3+1;(3)21(x +y +1); (4)-a 2; (5)0;(6)yx 2; (7)32xy; (8)x21;(9)x 2+x 1-1; (10)11+x ;2、单项式、多项式的次数和项例2 指出下列各单项式的系数与次数:(1);832ab (2)-mn 3; (3)3432y x π (4)-3;例3 填空:(1)多项式2x 4-3x 5-2π4是次项式,最高次项的系数是,四次项的系数是,常数项是,补足缺项后按字母x 升幂排列得;(2)多项式a 3-3ab 2 +3a 2b-b 3是次项式,它的各项的次数都是,按字母b 降幂排列得.例1、 用代数式表示:一个两位数,个位数字是a ,十位数字是b ,则这个两位数可表示为___________。

第10课 单项式、多项式及同类项

第10课 单项式、多项式及同类项

第10讲 单项式、多项式及同类项一、知识点简述1、掌握单项式、多项式的概念;2、掌握单项式的系数和次数等概念;掌握多项式的项,次数等概念;3、掌握同类项的概念;4、升降幂排列。

二、例题精选例1、下列说法正确的是( )A 、47不是单项式B 、qS 是单项式 C 、X 的系数是0 D 、33b a 是整式 例2、单项式-21mp 2r 2-1的系数和次数分别是( ) A 、-1,5 B 、0,6 C 、-21,5 D 、0,5 例3、多项式X 2-21X-1的各项分别是( ) 例4、下列多项式中,是二次三项式的是( )A 、a 2+b 2B 、X+Y+7C 、5-X-Y 2D 、X 2-Y 2+X-Y例5、如果4XY |k|- 51(K-3)Y 2+1是四次三项式,则Y 的值为( ) A 、±2 B 、2 C 、-3 D 、±3例6、已知5X 3Y m 和-9X n Y 2是同类项,则m= ,n=例7、将多项式X 2Y 2- X 4+X 3Y+2X-1按字母X 的升幕排列。

三、对应练习1、下列结论中不正确的是( )A 、单项式和多项式统称为整式B 、-25X 2Y 的系数是-25,次数是3 C 、五次多项式的任何一项的次数均可以为9 D 、h1不是整式 2、下列说法正确的是( ) A 、7+a1是多项式 B 、3X 4-5X 2Y 2-6Y 4-2是四次四项式 C 、X6-1的次数和次数均为6 D 、m 1-n 1为整式 3、如果-322122-n Y X X 是七次单项式,则n 的值为( ) A 、4 B 、3 C 、2 D 、14、在代数式XY ,-3,-41X 3+1,X-y,-m 2n, X 1,4X ,4-X 2,ab 2, 32+X 中,单项式有 个,多项式有 个。

5、多项式-26X 2Y-3X 8+232Y X +210是 次 项式,最高次项的系数是 。

6、三角形的高是底的21,底为Xcm ,则这个三角形的面积是 cm 2。

单项式多项式同类项概念复习知识点复习题型分类汇总基础应用能力提高中考

单项式多项式同类项概念复习知识点复习题型分类汇总基础应用能力提高中考

单项式、多项式、同类项知识点梳理一、单项式单项式的有关定义:单项式:数字与字母积的代数式。

单项式的系数:单项式中的数字因数。

单项式的次数:单项式中所有的字母的指数和。

单项式的相关注意事项:1. 单独一个字母或数字也是单项式。

2. 单项式系数包括它前面的符号;3. 只含有字母因式的单项式的系数是1或一1。

(单项式系数是1或—1时,1可省略不写,但“―1时,“―”号不可省略。

)4. 单独的一个数字是单项式,它的系数是它本身,次数是0。

5. 单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

6. 单项式的系数是带分数时,应化成假分数。

7. 单项式的次数仅与字母有关,与单项式的系数无关。

8. 圆周率n是常数,不是字母,如 2 n r的系数是2n,不是2.二、多项式单项式的有关定义:多项式:在数学中,由若干个单项式相加组成的代数式叫做多项式。

多项式的项:组成多项式中的单项式叫多项式的项,其中不含字母的项叫做常数项。

多项式的次数:多项式中次数最高项的次数叫多项式的次数。

单项式的相关注意事项:1. 一个多项式有几项,就叫做几项式。

2. 多项式的每一项都包括项前面的符号。

3. 多项式没有系数的概念,但有次数的概念。

4. 多项式的次数不是组成多项式的所有字母指数和。

三、同类项同类项:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单注意:同类项必须满足两个条件: 1.所含字母全部相同项式为同类项。

2. 每个相同字母的指数相同四、整式整式:单项式和多项式统称为整式。

注意:1.单项式或多项式都是整式。

2. 整式不一定是单项式。

3. 整式不一定是多项式。

4. 分母中含有字母的代数式不是整式;而是今后将要学习的分式。

五、整式的加减运算基本步骤:去括号,合并同类项。

特别注意:1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘•单项式、多项式概念练习题知识点一:单项式 基本应用:-不是单项式.33, x 1,1 1x x,(R 2 r2), 0, !b 2•—1,-(a+b ) c , 3xy ,2a 32—5a 2 +ax 1 x 34 5232•代数式15a 2b , 3, X 2y , x 23x 2,仝 2)个, x , 5中,单项式共有(3yA.6个B.5个C.4个D.3个3.指出下列各单项式的系数和次数:5ab 12 24m 2n c 4 3 3 R (4)3x 2y 4(5) 3x 2 (6) — 0.6x 2y 3z(7) a 2b (8) —2.15ab23系数: 系数: 系数: 系数: 系数: 系数: 系数: 系数: 次数: 次数:次数:次数:次数: 次数: 次数:次数:(9)—3m(10) 0.12h(11) — 25 3 4x y z(12)—yx 2(13)—〕x 20 2(14) 32ab :(15) 235系数: 系数: 系数:系数: 系数: 系数: 系数: 次数:次数:次数:次数:次数:次数:次数:4.判断下列说法是否正确 ,正确的在括 号内打”2”,不正确的打” X ” .①单项式 m 既没有系数 ,也没有次数 .()②单项式 55 10 t 的系数是5. ()1.是单项式的打V3—2001是单项式.③ ()A.3abcB.2 X3X 4 C.13x y 4D.52x6.单项式— 3xy 22的系数与次数分别是()A.— 3, 3B.—丄,3C2. -§ , 2 2D . — - , 327.单项式— 2yxz 3 32S -的系数是()A. — 2B.2C.—29D.2 9( ) 2 35.下列单项式次数为 3的是 单项式 2x 的系数是3x,3—2x 2 , — (a+b ) c , 3xy , 0,_3,— 5a 2 +a , 3523'1 x 1,,x 1x 3(R 2 r 2),0, - b 2 .48.下列说法中正确的是 A. x 的次数为0, B. x 的系数为 1, C. — 5是一次单项式,D.5a 2b 的次数是3次9.对于单项式—23x 2y 2z 的系数和次数,下列说法正确的是()A.系数为—2,次数为8B. 系数为—8,次数为5C.系数为—2,次数为4D. 系数为—2,次数为7 能力提高:1. 下列说法中正确的是( )A. x 的次数为0,B.x 的系数为 1 , C. — 5是一次单项式,D. 5a 2b 的次数是3次2. 若3ab n 1是四次单项式,则 n= _________ .3. 若单项式 5x 3y m 的次数是9,则m =4. 若22x 2y n 1是关于x, y 的五次单项式,n ____________ .5. 若ax 2y b 1是关于x , y 的一个单项式,且系数是 年,次数是5,则a 和b 的值是多少?6. 若(m 2)a 2b |m 1是关于a 、b 的五次单项式,则 m= . 中考真题:231. (2011 ?柳州)单项式3x y 的系数是 3 .c 2 3 4^5 一 6x , 3x , 5x , 7x , 9x , 11x ,知识点二:多项式 基础应用: 1. 是多项式的打V:2. 代数式5x 6是单项式还是多项式?说明理由。

单项式、多项式、去括号知识点和练习

单项式、多项式、去括号知识点和练习

知识点一:单项式、多项式、整式1. 整式的概念1) 单项式:数字与字母的积组成的的代数式叫做单项式,单独的一个数或者一个字母也是单项式,如5,a ,-3a ,ab/2是单项式,而a+b 和不是单项式。

i. 单项式的系数:单项式中的数字因数叫做单项式的系数。

如-3a 的系数-3,ab/2的系数1/2 注意:单项式的系数一定不能忽略符号!ii. 单项式的次数:单项式中的所有字母的指数的和叫做单项式的次数。

如-2a 的次数为1,的次数是3,ab/5的次数是22) 多项式:几个单项式的和叫做多项式。

如a+b 、、x+1等等i. 多项式的项:多项式中每一个单项式叫做多项式的项,其中不含字母的项叫做常数项。

例如多项式中有三项,分别是,其中是常数项。

ii. 多项式的次数:多项式的次数由多项式中次数最高的项的次数决定,次数最高的项的次数就是该多项式的次数,例如:多项式的次数是3,的次数是5iii. 多项式的降(升)幂排列:把一个多项式按照某一字母的指数从大到小(或从小到大)的顺序排列起来,叫做把多项式按照这个字母的降(升)幂排列。

例题分析1.在代数式x x 3252-,y x 22π,x 1,5-,a ,0中,单项式的个数是( ) A.1 B.2 C.3 D.42. 1022223x x y π--+-是_____次_____项式,常数项是_____,最高次项是_____.3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 针对练习1. 下列语句中错误的是( )A 、数字0也是单项式B 、单项式-a 的系数与次数都是 1C 、21xy 是二次单项式D 、-32ab 的系数是 -32 2. 在代数式,2n m +2πx 2y ,x 1,-5,a ,0,π1中,单项式的是__________________,多项式有_____________3、多项式9322++xy x π中,次数最高的项是________,它是______次的,它的系数是_________.4、已知 –8x m y 2m+1+12x 4y 2+4是一个七次多项式,则m=知识点二:同类项、去括号1、同类项与合并同类项1) 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

第3章 整式的乘除——单项式与多项式乘法及化简题型归纳 2023—2024学年浙教版数学七年级下册

第3章 整式的乘除——单项式与多项式乘法及化简题型归纳 2023—2024学年浙教版数学七年级下册

专题:单项式的乘法、多项式乘法整式化简题型知识点1:单项式乘单项式单项式与单项式的乘法法则:把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。

1.计算y 2•(﹣2xy )的结果是( ) A .﹣2xy 3B .2x 2y 3C .﹣2x 2y 3D .2xy 32.计算2a 2•3a 4的结果是( ) A .5a 6B .5a 8C .6a 6D .6a 83.(2019•乐清市模拟)计算2a 3•3a 3的结果是( ) A .5a 3B .6a 3C .6a 6D .6a 94.计算(﹣3x 2)•2x 3的结果是( ) A .﹣5x 6B .﹣6x 6C .﹣5x 5D .﹣6x 55.计算2x •(﹣3xy )2•(﹣x 2y )3的结果是( ) A .18x 8y 5B .6x 9y 5C .﹣18x 9y 5D .﹣6x 4y 56.若□•3xy =27x 3y 4,则□内应填的单项式是( ) A .3x 3y 4B .9x 2y 2C .3x 2y 3D .9x 2y 37.若单项式﹣8x a y 和14x 2y b 的积为﹣2x 5y 6,则ab 的值为( ) A .2B .30C .﹣15D .158.长方形的长为3x 2y ,宽为2xy 3,则它的面积为( ) A .5x 3y 4 B .6x 2y 3C .6x 3y 4D .32xy 2二、填空题9.计算:2a 2b •(﹣3a 3b 2)=.10.计算:(2xy )2(﹣5x 2y )= . 11.计算(−12xy 3)2⋅6x 2y 的结果是 . 12.计算﹣3a 2b •(-4ab 2)•(-2a 3b )2的结果为 . 13.计算:x 4•2(﹣x 2)•(﹣x )2•[﹣(﹣x 2)3]4•2(﹣x )2的值为 . 14.若5a m +1b 2与3a n +2b n 的积是15a 8b 4,则n m = .三、解答题15.计算(1)(8xy3)4•14xy2z(2)(−23x3y2)3(-15xy)(3)-3ab•(-a2c)2•6ab2 (4)(-2a2b)•364ab2•(-8a3bc)2(5)(3a)2•a4+a•a5﹣(﹣a3)2.(6)7x4•x5•(﹣x)7+5(x4)4.知识点2:单项式乘多项式单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.1、化简(−3s+12t)⋅(−7st2)=()A.21s2t2﹣14st3B.21s2t2−72st3C.﹣21s2t2+14st3D.−21s2t2+7 2 st2.把2a(ab﹣b+c)化简后得()A.2a2b﹣ab+ac B.2a2﹣2ab+2acC.2a2b+2ab+2ac D.2a2b﹣2ab+2ac3.已知x2﹣4x﹣1=0,则代数式x(x﹣4)+1的值为()A.2B.1C.0D.﹣14.若□×xy=3x2y+2xy,则□内应填的式子是()A.3x+2B.x+2C.3xy+2D.xy+25.若2x(x﹣2)=ax2+bx,则a、b的值为()A.a=1,b=2B.a=2,b=﹣2C.a=2,b=4D.a=2,b=﹣46.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy (4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.17.已知xy2=﹣2,则﹣xy(x2y5﹣xy3﹣y)的值为()A.2B.6C.10D.148.已知,a +b =2,b ﹣c =﹣3,则代数式ac +b (c ﹣a ﹣b )的值是( ) A .5B .﹣5C .6D .﹣69、已知210m m --=,则322023m m m --+的值是( ) A .2021B .2022C .2023D .202410、代数式()()232236532a a ab a b a ab a a +-++-的值( )A .与字母a ,b 都有关B .只与a 有关C .只与b 有关D .与字母a ,b 都无关二、填空题10.﹣2xy (x 2y ﹣3xy 2)= .11.若x 2+7x +9=a (x +1)2+b (x +1)+c ,则a = ,b = ,c = 12.已知x 2+2x =﹣1,则代数式5+x (x +2)的值为 . 13.如果a ﹣b =6,ab =2019,那么b 2+6b +6= .14.对于任意的x 、y ,若存在a 、b 使得8x +y (a ﹣2b )=ax ﹣2b (x ﹣2y )恒成立,则a +b = . 15.一个多项式与﹣x 3y 的积为x 6y 2﹣3x 4y ﹣x 3y 4z ,那么这个多项式为 . 三、解答题 16.计算:(1)−6a ⋅(−12a 2−13a +2) (2)(5mn 2﹣4m 2n+1)(﹣2mn )(3)(25xy 2)2(54x - 32y + 2) (4)(34x 2y - 12xy 2−56y 3 )⋅(-4xy 2)17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(−12xy )=3x 2y ﹣xy 2+12xy(1)求所捂的多项式;(2)若x =23,y =12,求所捂多项式的值.18.已知:A =12x ,B 是多项式,王虎同学在计算A +B 时,误把A +B 看成了A ×B ,结果得3x 3﹣2x 2﹣x . (1)求多项式B . (2)求A +B .知识点3:多项式乘多项式多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 1.下列结果计算错误的是( )A.(x +2)(x −3)=x 2−x −6B.(x +4)(x −4)=x 2−16C.(2x +3)(2x −6)=2x 2−3x −18D.(2x −1)(2x +2)=4x 2+2x −22. (x −a)(x 2+ax +a 2)的计算结果是( ) A.x 3+2ax 2−a 3 B.x 3−a 3C.x 3+2a 2x −a 3D.x 3+2ax 2+2a 2−a 33.化简(2x −1)(x 2−3x +3)的结果中,二次项的系数是( ) A.−5B.−7C.5D.74.若x −3与多项式x +a 的乘积为x 2+x −12,则a 的值为( ) A.2B.4C.−2D.−45.若(x +4)(x −2)=x 2+mx +n ,则m ,n 的值分别是( ) A.2,8B.−2,−8C.−2,8D.2,−86.计算:(1)(3x −2y)⋅(2x −3y)=________. (2)(a + b )(a 2 – ab + b 2)=7.对于任何实数,我们规定符号|a cb d |=ad −bc .按照这个规定,当x 2﹣3x +1=0时,|x 2+x2x −4x +3|的值是 .8.新定义一种运算,其法则为|acbd |=a 3b 2÷bc ,则|−x 2x 2x 3x|= .题型01 (x+p )(x+q )型多项式乘法1.已知(x +m )(x +n )=x 2+ax +6,且m ,n ,a 都是整数,则a 的值是________.2.已知x 2+bx +c =(x −2)(x +5),则b +c 的值为________.3.多项式x 2−3x +a 可分解为(x −5)(x −b),则a ,b 的值分别为________.4.若x 3 - 6x 2 + 11x – 6 = (x - 1)(x 2 + mx + n ),则m= ,n= .5.若2x 3 – ax 2 – 5x + 5 = (2x 2 + ax - 1)(x - b )+ 3,其中a 、b 为整数,则a + b 的值为 6.若()3221(1)1ax bx ax x x ++=---,则b = .题型02 已知多项式乘积不含某项求字母的值1.若(x +a)(x −3)的积中不含x 的一次项,则a 的值是________.2.如果多项式(2)y a +与多项式(5)y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .25-3、已知()()242x ax x b +-+的展开式中不含2x 项,常数项是8-,则a b -= .4.已知多项式x ﹣a 与2x 2﹣2x +1的乘积中不含x 2项,则常数a 的值是5.已知将(x 3+mx +n )(x 2−3x +4)展开的结果中不含x 2项,并且x 3的系数为2. 则m +n =______.6.若(x 2+nx +3)(x 2−3x +m )的展开式中不含x 2项和x 3项,求m ,n 的值.7.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,求m ,n 的值题型03 整式化简运算1.先化简,再求值:(2x +3)(2x ﹣3)﹣(x ﹣2)2﹣3x (x ﹣1),其中x =1.y =﹣3.2.已知x 2﹣2x ﹣2=0,将下式先化简,再求值:(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1).3.先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x ,其中x =3,y =﹣3.4.先化简,再求值:()()()322222084x y x y xy x y xy +-+-÷,其中2023,2024x y ==.5.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.题型04多项式乘多项式与图形面积1.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有( ) ①()()2a b m n ++;①()()2a m n b m n +++;①()()22m a b n a b +++;①22am an bm bn +++.A .①①B .①①C .①①①D .①①①①2.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好分割为两个长方形,面积分别为1S 和2S .已知小长方形纸片的长为a ,宽为b ,且a b >.当AB 长度不变而BC 变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,1S 与2S 的差总保持不变,则a ,b 满足的关系是 .3.如图,某中学校园内有一块长为()32a b +米,宽为()2a b +米的长方形地块,学校计划在中间位置留出一块长为()2a b -米,宽为2b 米的小长方形地块修建一座雕塑,然后将阴影部分进行绿化.(1)求绿化部分的面积;(用含a 、b 的代数式表示) (2)当3a =,1b =时,求绿化部分的面积.题型05 多项式乘法中的规律性问题1.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和的乘方规律,即()na b + (0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()6a b +展开式的系数和是( ) A .32B .64C .128D .2562.观察以下等式①第1个等式:()()()22221122122⨯+=⨯+-⨯, 第2个等式:()()()22222134134⨯+=⨯+-⨯ 第3个等式:()()()22223146146⨯+=⨯+-⨯ 第4个等式:()()()22224158158⨯+=⨯+-⨯ ……按照以上规律,写出你猜想的第n 个等式(用含n 的式子表示): .3.在多项式乘法的学习中,我们发现具有某些结构特征的整式的乘法运算及结果都有规律.例如:()23(1)11a a a a +-+=+;()23(2)428y y y y +-+=+;()2233(3)3927m n m mn n m n +-+=+.(1)请观察上述整式的乘法及其运算结果的规律,用含a ,b 的等式表示该规律并证明;(2)一个水平放置的长方体容器,其容积为364(4)t t ->,底面积为2(2)t n +-,装满水时的高度为4t -.求n 的值.4.发现与探索你能求(x﹣1)(x2019+x2018+x2017+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x2019+x2018+x2017+…+x+1)=.请你利用上面的结论,完成下面两题的计算:(1)32019+32018+32017+…+3+1;(2)(﹣3)50+(﹣3)49+(﹣3)48+…+(﹣3).5.解答下列问题:(1)已知a2+b2=10,a+b=4,求a﹣b的值.(2)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn=1,求5n2+9n+2的值.6.阅读理解:已知a+b=4,ab=3,求a2+b2的值.解:∵a+b=4,∴(a+b)2=42,即a2+2ab+b2=16.∵ab=3,∴a2+b2=(a+b)2﹣2ab=10.参考上述过程解答:(1)若x﹣y=﹣3,xy=﹣2,则x2+y2=,(x+y)2=;(2)若m+n﹣p=﹣10,(m﹣p)n=﹣12,求(m﹣p)2+n2的值.7.(1)计算:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;(2)由此,猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=.(3)请你利用上式的结论,求2199+2198+…+22+2+1的值.。

单项式多项式及同类项概念讲解

单项式多项式及同类项概念讲解

单项式与多项式的概念1、单项式的有关概念(1)单项式:由数与字母或字母与字母相乘组成的代数式。

单独的一个数或字母.........也叫做单 项式。

例如:a x abx n m a ,9,4,,,332-注意:单项式不含加减运算,只含字母与字母或字母的乘法(包括乘方)运算(2)单项式的系数:单项式中数字因数叫做这个单项式的系数。

例如:单项式227,21xy y x -的系数分别是7,21-,当单项式系数是1或-1时,“1”通常省略不写,如ab 就是ab ⋅1,系数是1;n -就是n ⋅-1,系数是-1.(3)单项式的次数(指数):一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如x 4的次数是1,z y x 323的次数是2+3+1=6;数学的次数是0,如3,-9等可以当作0次单项式。

一个单项式的次数是几就叫做几次单项式,如2231b a 中,a 与b 的指数和为4,则2231b a 是四次单项式。

例1:指出下列各单项式的系数和次数 75332322y x bca ab a π-提示:圆周率π是常数,当单项式中含有π时,π是单项式的系数,且在计算单项式的次数时应注意不要加上π的指数。

2、多项式的有关概念(1)多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

如5232+-x x 是多项式,它的项分别是23x ,x 2-和5,其中5是常数项。

(2)多项式的次数:多项式里次数最高的项的次数就是这个多项式的次数。

如23224+-x y 的次为是3,即“32x ”的次数。

一个多项式中含有几项,最高次数是几次就叫几次几项式。

如66234+-y y 叫做四次三项式。

在多项中,含有字母的项的次数是几次就叫做几次项。

如5232-+-b ab b a 中,b a 23就是它的三次项,二次项是ab 2-,一次项是b ,常数项是-5.(3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列叫降幂排列;反之,则称为升幂排列。

单项式、多项式、去括号知识点和练习

单项式、多项式、去括号知识点和练习

知识点一:单项式、多项式、整式1. 整式的概念1) 单项式:数字与字母的积组成的的代数式叫做单项式,单独的一个数或者一个字母也是单项式,如5,a ,-3a ,ab/2是单项式,而a+b 和不是单项式。

i. 单项式的系数:单项式中的数字因数叫做单项式的系数。

如-3a 的系数-3,ab/2的系数1/2 注意:单项式的系数一定不能忽略符号!ii. 单项式的次数:单项式中的所有字母的指数的和叫做单项式的次数。

如-2a 的次数为1,的次数是3,ab/5的次数是22) 多项式:几个单项式的和叫做多项式。

如a+b 、、x+1等等i. 多项式的项:多项式中每一个单项式叫做多项式的项,其中不含字母的项叫做常数项。

例如多项式中有三项,分别是,其中是常数项。

ii. 多项式的次数:多项式的次数由多项式中次数最高的项的次数决定,次数最高的项的次数就是该多项式的次数,例如:多项式的次数是3,的次数是5iii. 多项式的降(升)幂排列:把一个多项式按照某一字母的指数从大到小(或从小到大)的顺序排列起来,叫做把多项式按照这个字母的降(升)幂排列。

例题分析1.在代数式x x 3252-,y x 22π,x 1,5-,a ,0中,单项式的个数是( ) A.1 B.2 C.3 D.42. 1022223x x y π--+-是_____次_____项式,常数项是_____,最高次项是_____.3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 针对练习1. 下列语句中错误的是( )A 、数字0也是单项式B 、单项式-a 的系数与次数都是 1C 、21xy 是二次单项式D 、-32ab 的系数是 -32 2. 在代数式,2n m +2πx 2y ,x 1,-5,a ,0,π1中,单项式的是__________________,多项式有_____________3、多项式9322++xy x π中,次数最高的项是________,它是______次的,它的系数是_________.4、已知 –8x m y 2m+1+12 x 4y 2+4是一个七次多项式,则m=知识点二:同类项、去括号 1、同类项与合并同类项 1) 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

初中数学同步 7年级上册 第6讲 单项式、多项式及整式的概念(教师版含解析)

初中数学同步 7年级上册 第6讲 单项式、多项式及整式的概念(教师版含解析)

第6讲小节单项式、多项式及整式的概念1.掌握单项式、单项式整式的定义;2.掌握单项式的系数、次数及多项式的系数、次数和项数;知识点01 单项式定义:由数与字母的积或字母与字母的积所组成的代数式叫做单项式系数:单项式中数字因数;次数:所有字母的指数的和。

1.下列代数式中,为单项式的是()A.B.a C.D.x2+y2【解答】解:A、分母中含有字母,不是单项式;B、符合单项式的概念,是单项式;C、分母中含有字母,不是单项式;D、不符合单项式的概念,不是单项式.故选:B.2.单项式2a的系数是()A.1B.a C.2D.2a【解答】解:单项式2a的系数是2,故选:C.3.单项式22xy2的次数是()A.5B.4C.3D.2【解答】解:单项式22xy2的次数是1+2=3.故选:C.4.单项式的系数和次数分别是()A.和3B.和2C.和4D.和2【解答】解:单项式的系数、次数分别是,3.故选:A.5.若单项式2xy3﹣b是三次单项式,则()A.b=0B.b=1C.b=2D.b=3【解答】解:因为单项式2xy3﹣b是三次单项式,所以3﹣b=2,所以b=1.故选:B.6.单项式ah的次数是2.【解答】解:单项式ah的次数是:1+1=2.故答案为:2.7.某单项式的系数为2,只含字母x,y,且次数是3次,写出一个符合条件的单项式可以是2xy2或2x2y(答案不唯一).【解答】解:2xy2或2x2y是只含字母x、y,系数为2,次数为3的单项式,故答案为:2xy2或2x2y(答案不唯一).8.指出下列各单项式的系数和次数(1)3xy(2)﹣xy(3)﹣7x2y3(4)﹣2a2b4c【解答】解:(1)系数为3,次数为2;(2)系数为﹣1,次数为2;(3)系数为﹣7,次数为5;(4)系数为﹣2,次数为7;知识点02 多项式定义:几个单项式的和;次数:多项式中次数最高的单项式的次数。

单项式和多项式都统称为整式9.多项式3m3+4m2n2﹣1的次数是()A.2B.3C.4D.7【解答】解:多项式3m3+4m2n2﹣1的次数是4,故选:C.10.多项式4x2﹣﹣x+1的三次项系数是()A.3B.﹣3C.﹣D.﹣【解答】解:多项式4x2﹣﹣x+1的三次项是﹣,三次项系数是﹣.故选:C.11.多项式的各项系数之积是()A.B.C.D.【解答】解:多项式的各项系数分别为:,﹣,则.故选:C.12.关于整式,下列说法正确的是()A.x2y的次数是2B.0不是单项式C.3πmn的系数是3D.x3﹣2x2﹣3是三次三项式【解答】解:A、x2y的次数是3,所以A选项错误;B、数字0是单项式,所以B选项错误;C、3πmn的系数是3π,所以C选项错误;D、x3﹣2x2﹣3是三次三项式,所以D选项正确.故选:D.13.多项式3x2y+2xy的次数为3.【解答】解:∵多项式3x2y+2xy的最高次项为3x2y,其次数是3,∴多项式3x2y+2xy的次数是3.故答案为:3.14.多项式3a2﹣2a﹣7a3+4是三次四项式.【解答】解:∵多项式的次数是“多项式中次数最高的项的次数”,∴多项式3a2﹣2a﹣7a3+4中次数最高的项是三次,由四个单项式组成,故答案为:三;四.15.已知(m+1)x3﹣(n﹣2)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式?(2)当m,n满足什么条件时,该多项式是关于x的三次二项式?【解答】解:(1)由题意得:m+1=0,且n﹣2≠0,解得:m=﹣1,n≠2,则m=﹣1,n≠2时,该多项式是关于x的二次多项式;(2)由题意得:m+1≠0,n﹣2=0,且2m+5n=0,解得:m≠﹣1,n=2,把n=2代入2m+5n=0得:m=﹣5,则m=﹣5,n=2时该多项式是关于x的三次二项式.知识点03 整式定义:单项式和多项式都统称为整式16.下列各式中不是整式的是()A.3a B.C.D.0【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.17.代数式ab,2m﹣n,,﹣4,中整式共有()个.A.2B.3C.4D.5【解答】解:代数式ab,2m﹣n,,﹣4,中整式有:ab,2m﹣n,﹣4,共4个.故选:C.18.在①1﹣a;②;③;④﹣;⑤;⑥(x+1)(x+2)=0中,①②④是整式.(填写序号)【解答】解:①1﹣a;②;③;④﹣;⑤;⑥(x+1)(x+2)=0中①1﹣a;②;④﹣是整式.故答案为:①②④.19.把下列代数式分别填入下表适当的位置:3a,,,,5,﹣xy,a2﹣2ab+1.代数式整式单项式多项式非整式【解答】解:单项式:3a,5,﹣xy;多项式:,a2﹣2ab+1;非整式:,+b.一.选择题1.下列各式中是单项式的是()A.m+n B.2x﹣3y C.2xy2D.(5a+2b)2【解答】解:A、m+n是多项式,不合题意;B、2x﹣3y是多项式,不合题意;C、2xy2是单项式,符合题意;D、(5a+2b)2是多项式,不合题意;故选:C.2.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个【解答】解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.3.单项式﹣ab2的系数是()A.B.C.2D.3【解答】解:单项式﹣ab2的系数是﹣.故选:A.4.多项式﹣5xy+xy2﹣1是()A.二次三项式B.三次三项式C.四次三项式D.五次三项式【解答】解:多项式﹣5xy+xy2﹣1是三次三项式,故选:B.5.单项式﹣的系数和次数分别是()A.﹣2,2B.3,1C.﹣,2D.,1【解答】解:单项式﹣的系数是﹣,次数是2,故选:C.6.多项式x2﹣3xy2﹣4的次数和常数项分别是()A.2和4B.2和﹣4C.3和4D.3和﹣4【解答】解:多项式x2﹣3xy2﹣4的次数是3,常数项是﹣4,故选:D.7.下列说法正确的是()A.﹣3mn的系数是3B.多项式m2+m﹣3的次数是3C.3m3n中n的指数是0D.多项式a2b﹣3ab+5的项分别为a2b、﹣3ab和5【解答】解:A、单项式﹣3mn的系数是﹣3,故原题说法错误;B、多项式m2+m﹣3的次数是2,故原题说法错误;C、单项式3m3n中n的指数是1,故原题说法错误;D、多项式a2b﹣3ab+5的项分别为a2b、﹣3ab和5,故原题说法正确;故选:D.二.填空题8.有下列式子:a,,,,4a2﹣b,,其中整式有4个.【解答】解:∵整式的分母上不能含有字母,∴,不是整式,∴整式有4个,故答案为4.9.多项式2x3﹣x2y2﹣1是四次三项式.【解答】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.10.单项式﹣xy3的系数是m,次数是n,则mn=﹣.【解答】解:∵单项式﹣xy3的系数是m,次数是n,∴m=﹣,n=4,则mn=﹣.故答案为:﹣.11.观察下列关于x的单项式:﹣x,4x2,﹣7x3,10x4,﹣13x5,16x6,…,按照上述规律,第2021个单项式是﹣6061x2021.【解答】解:∵一列关于x的单项式:﹣x,4x2,﹣7x3,10x4,﹣13x5,16x6……,∴第n个单项式为:(﹣1)n•(3n﹣2)x n,∴第2021个单项式是(﹣1)2021•(3×2021﹣2)x2021=﹣6061x2021,故答案为:﹣6061x2021.三.解答题12.下列单项式的系数与次数:32x2y3z;ab2;a2b3;﹣x;30%mn.【解答】解:32x2y3z系数与次数分别为:32;6;ab2系数与次数分别为:1;3;a2b3系数与次数分别为:;5;﹣x系数与次数分别为:﹣1,1;30%mn系数与次数分别为:30%;2.13.把下列代数式的序号填入相应的横线上:①a2b+ab2+b3②③④⑤0⑥﹣x+⑦⑧3x2+⑨⑩(1)单项式④⑤⑩(2)多项式①③⑥(3)整式①③④⑤⑥⑩(4)二项式③⑥.【解答】解:(1)单项式④⑤⑩(2)多项式①③⑥(3)整式①③④⑤⑥⑩(4)二项式③⑥.故答案为:(1)④⑤⑩;(2)①③⑥;(3)①③④⑤⑥⑩;(4)③⑥.14.已知关于x,y的多项式x4+(m+2)x n y﹣xy2+3,其中n为正整数.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?【解答】解:(1)因为多项式是五次四项式,所以m+2≠0,n+1=5.所以m≠﹣2,n=4.(2)因为多项式是四次三项式,所以m+2=0,n为任意正整数.所以m=﹣2,n为任意正整数.。

单项式与多项式知识点及分类训练(含答案解析)

单项式与多项式知识点及分类训练(含答案解析)

单项式与多项式知识点及分类训练(含答案解析)【知识点:单项式与多项式】1. 代数式的分类:代数式分为整式和分式(分式八年级学,在本章暂不提及)。

2. 整式的分类:整式分为单项式和多项式。

2.1 单项式、多项式、整式与代数式这四者之间的关系:单项式、多项式必是整式,整式必是代数式,但反过来就不一定成立.2.2 分母中含有字母的式子一定不是整式,但是代数式.3. 单项式xy,-5,它们都是数与字母的积,像这样3.1 单项式的定义:如−2mn3,310的式子叫单项式,单独的一个数字或一个字母也是单项式.3.1.1 单项式一定是代数式,但若分母中含有字母的代数式,如5就不是m单项式,因为它无法写成数字与字母的乘积.它属于我们上面提及到的分式。

3.2 单项式的系数:单项式中的数字因数叫做这个单项式的系数.3.2.1 确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数.3.2.2 圆周率π是常数,单项式中出现π时,应看作系数.3.2.3 当一个单项式的系数是1或-1时,“1”通常省略不写.-1也只写一个“-”.3.2.4 单项式的系数是带分数时,通常写成假分数.4. 多项式4.1多项式的定义:几个单项式的和叫做多项式.(“几个”是指两个或两个以上;“和”不意味着多项式的表达式中必须都是加号)4.2 多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项.4.2.1多项式的每一项包括它前面的符号.4.2.2 一个多项式含有几项,就叫几项式,如:3x2+5x−6是一个三项式.4.3多项式的次数:一个多项式中,次数最高的项的次数,叫做这个多项式的次数.4.3.1多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.4.3.2一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.4.4 升幂排列与降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;若按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.如:多项式2x3y2−xy3+12x2y4−5x4−6是六次五项式,按x的降幂排列为−5x4+2x3y2+1x2y4−xy3−6,在这里只考虑x的指数,而不考虑其它字母;2若按y的升幂排列为−6−5x4+2x3y2−xy3+12x2y4.4.4.1 重新排列多项式时,每一项一定要连同它的正负号一起移动;4.4.2 含有两个或两个以上字母的多项式,常常按照其中某一个字母的升幂排列或降幂排列.【考点1:单项式相关概念】 1. 已知单项式−4x 2y 3,下列说法正确的是( ).A .系数是-4,次数是3B .系数是−43,次数是3 C .系数是43,次数是3D .系数是−43,次数是2【答案】B 【解析】单项式中的数字因数叫做这个单项式的系数;次数是所有未知数的指数和。

单项式和多项式知识点+例题讲解1

单项式和多项式知识点+例题讲解1

整式代数式代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,—1,2n+500,abc。

单独的一个数或一个字母也是代数式.单项式:表示数与字母的乘积的代数式叫单项式.单独的一个数或一个字母也是代数式. 单项式的系数:单项式中的数字因数单项式的次数:一个单项式中,所有字母的指数和多项式:几个单项式的和叫做多项式。

每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式里次数最高项的次数,叫做这个多项式的次数。

常数项的次数为0。

整式:单项式和多项式统称为整式。

注意:分母上含有字母的不是整式。

代数式书写规范:①数与字母、字母与字母中的乘号可以省略不写或用“·"表示,并把数字放到字母前;②出现除式时,用分数表示;③带分数与字母相乘时,带分数要化成假分数;④若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来.合并同类项同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。

去括号的法则(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变; (2)括号前面是“-”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项。

整式加减的步骤:(1)列出代数式;(2)去括号;(3)合并同类项.知识点一:单项式的意义单项式:由数字或字母乘积组成的式子是单项式.单项式中的数字因数叫作单项式的系数(4x、vt、26a、3a、-n的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、vt、26a、3a、-n 的次数分别是1、2、2、3、1).注意:单独的一个数或一个字母也是单项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式
代数式
代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。

单独的一个数或一个字母也是代数式。

单项式:表示数与字母的乘积的代数式叫单项式。

单独的一个数或一个字母也是代数式。

单项式的系数:单项式中的数字因数
单项式的次数:一个单项式中,所有字母的指数和
多项式:几个单项式的和叫做多项式。

每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。

常数项的次数为0。

整式:单项式和多项式统称为整式。

注意:分母上含有字母的不是整式。

代数式书写规范:
①数与字母、字母与字母中的乘号可以省略不写或用“·”表示,并把数字放到字母前;
②出现除式时,用分数表示;
③带分数与字母相乘时,带分数要化成假分数;
④若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。

合并同类项
同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。

去括号的法则
(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。

整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项。

整式加减的步骤:(1)列出代数式;(2)去括号;(3)合并同类项。

知识点一:单项式的意义
单项式:由数字或字母乘积组成的式子是单项式.
单项式中的数字因数叫作单项式的系数(4x、vt、2
6a、3a、-n的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、vt、2
6a、3a、-n 的次数分别是1、2、2、3、1).
注意:单独的一个数或一个字母也是单项式。

典型例题
例1、单项式―x2yz2的系数、次数分别是()
A.0,2 B.0,4 C. ―1,5 D. 1,4
例2、单项式-
23
2yz
x
是次单项式,系数是 . 变式1、下列结论中,正确的是()
A .单项式5
2ab 2的系数是2,次数是2; B .单项式a 既没有系数,也没有指数 C .单项式—ab 2c 的系数是—1,次数是4 ;D .没有加减运算的代数式是单项式。

变式2、单项式z xy 22
1是_____次单项式. 变式3、如果2)5(+-b mn a 是m 、n 的一个五次单项式,那么a ,b= . 知识点二:多项式的意义
典型例题
例1: 代数式2223
1y y x π+-有 项,各项系数分别是 . 例2: 指出下列多项式的项和次数:
(1)3x -1+3x 2; (2)4x 3+2x -2y 2。

变式训练
变式1、指出下列多项式是几次几项式。

(1)x 3-x +1; (2)x 3-2x 2y 2+3y 2。

变式2、判断:
①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;( )
②多项式3n4-2n2+1的次数为4,常数项为1。

( )
变式3、已知代数式3x n -(m -1)x +1是关于x 的三次二项式,求m 、n 的条件。

【选做题】已知三个单项式:①-2x 3 ②x 2 ③2
x π如果按次数从大到小的顺序排列,正确的次序是( )
A 、①②③
B 、③②①
C 、②③①
D 、②①③
知识点三:单项式和多项式的相同点和不同点
典型例题
例1、在y 3+1,m
3+1,―x 2y ,c ab ―1,―8z ,0中,整式的个数是( ) A. 6 B.3 C.4 D.5
例2、下列说法正确的是( )
A 、0和 x 不是单项式
B 、-2ab 的系数是2
1 C 、x 2y 的系数是0 D 、-23x 2的系数是-2
3 变式训练
变式1、单独一个字母一定不是( )
A 、一次单项式
B 、单项式
C 、多项式
D 、整式
变式2、下列叙述中,错误的是( )
A 、-a 的系数是-1,次数是1
B 、单项式ab 2c 3的系数是1,次数是5
C 、2x -3是一次二项式
D 、3x 2+xy -8是二次三项式
变式3、多项式242237
2343xy b a y x -+的次数是( )A. 3 B. 4 C. 5 D. 6 【选做题】已知(a -2)x 2y ︱a ︱+ 1是x,y 的五次单项式,求a 的值.
课堂练习
一.选择题:
1.在下列代数式:1,2
12,3,1,21,2122+-+++++x x b ab b a ab ππ中,多项式有( ) (A )2个 (B )3个 (C )4个 (D )5个
2.下列多项式次数为3的是( )
(A )-5x 2+6x -1 (B )πx 2+x -1 (C )a 2b +ab +b 2 (D )x 2y 2-2xy -1
3.下列说法中正确的是( )
(A )代数式一定是单项式 (B )单项式一定是代数式
(C )单项式x 的次数是0 (D )单项式-π2x 2y 2的次数是6。

4.下列语句正确的是( )
(A )x 2+1是二次单项式 (B )-m 2的次数是2,系数是1
(C )21x
是二次单项式 (D )32abc 是三次单项式 1.下列整式加减正确的是( )
(A )2x -(x 2+2x )=x 2 (B )2x -(x 2-2x )=x 2
(C )2x +(y +2x )=y (D )2x -(x 2-2x )=x 2
二、填空题:
1.若单项式-2x 3y n -3是一个关于x ,y 的5次单项式,则n=_________.
2.若多项式(m+2)1
2-m x y 2-3xy 3是五次二项式,则m=___________.
3.写出一个关于x 的二次三项式,使得它的二次项系数为21-,则这个二次三项式是 课后练习
一、选择题、
1.减去-2x 后,等于4x 2-3x -5的代数式是( )
(A )4x 2-5x -5 (B )-4x 2+5x +5 (C )4x 2-x -5 (D )4x 2-5
2.一个多项式加上3x 2y -3xy 2得x 3-3x 2y ,这个多项式是( )
(A )x 3+3xy 2 (B )x 3-3xy 2 (C )x 3-6x 2y +3xy 2 (D )x 3-6x 2y -3xy 2
3. 下列说法正确的是( )
A.8―z
2是多项式 B. ―x 2yz 是三次单项式,系数为0 C. x 2―3xy 2+2 x 2y 3―1是五次多项式 D. x
b 5-是单项式 4. 下列说法正确的是( )
A .没有加、减运算的式子叫单项式;
B .35πab 的系数是3
5,次数是3 C .单项式―1的次数是0 ; D .2a 2b ―2ab+3是二次三项式
5.如果一个多项式的次数是5,那么这个多项式的任何一项的次数( )
A .都小于5 B. 都等于5 C.都不小于5 D.都不大于5
二、填空题。

1.请写出一个关于x 的二次三项式,使二次项的系数为1,一次项的系数为-3,常数项是2,则这个二次三项式是________.
2.若(m -1)xy n +1是关于x 、y 的系数为-2的三次单项式,则m =________,n =________.
三、简答题。

若代数式(x2+ax-2y+7)-(bx2-2x+9y-1)的值与字母x的取值无关,求a、b的值。

相关文档
最新文档