最新题库2017-2018学年北京市海淀区高三(上)期中数学试卷与解析(文科)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百度文库
2017-2018学年北京市海淀区高三(上)期中数学试卷(文科)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.(5分)若集合A={x|x﹣2<0},集合B={x|2x>1},则A∩B=()
A.R B.(﹣∞,2)C.(0,2) D.(2,+∞)
2.(5分)命题“?x≥0,sinx≤1”的否定是()
A.?x<0,sinx>1 B.?x≥0,sinx>1 C.?x<0,sinx>1 D.?x≥0,sinx>1 3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A.f(x)=﹣x2B.f(x)=3﹣x C.f(x)=ln|x|D.f(x)=x+sinx
4.(5分)已知数列{a n}满足a1+a2+a3+…+a n=2a2(n=1,2,3,…),则()A.a1<0 B.a1>0 C.a1≠a2D.a2=0
5.(5分)在平面直角坐标系xOy中,点A的纵坐标为2,点C在x轴的正半轴上.在△AOC中,若,则点A的横坐标为()A.B.C.﹣3 D.3
6.(5分)已知向量,是两个单位向量,则“=”是“||=2”的()A.充分不必要条件 B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
7.(5分)已知函数()的部分图象如图所示,则ω,φ的值分别为()
A.B. C.D.
8.(5分)若函数的值域为,则实数a的取值范围是()
A.(0,e) B.(e,+∞)C.(0,e]D.[e,+∞)
二、填空题共6小题,每小题5分,共30分.
9.(5分)已知等差数列{a n}满足a1=2,a2+a4=a6,则公差d=.
10.(5分)已知向量=(1,0),=(m,n),若与平行,则n的值为.11.(5分)已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,,则=.
12.(5分)如图,弹簧挂着一个小球作上下运动,小球在t秒时相对于平衡位置的高度h(厘米)由如下关系式确定:h=cost,t∈[0,+∞),则小球在开始振动(即t=0)时h的值为,小球振动过程中最大的高度差为
厘米.
13.(5分)能够说明“设x是实数,若x>1,则”是假命题的一个实数
x的值为.
14.(5分)已知非空集合A,B满足以下两个条件:
(ⅰ)A∪B={1,2,3,4},A∩B=?;
(ⅱ)集合A的元素个数不是A中的元素,集合B的元素个数不是B中的元素.那么用列举法表示集合A为.
三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)已知函数f(x)=2sinxcosx+2cos2x﹣1.
(Ⅰ)求的值;
(Ⅱ)求函数f(x)的单调递增区间.
16.(13分)已知等比数列{a n}满足a1a2a3=8,a5=16.
(Ⅰ)求{a n}的通项公式及前n项和S n;
(Ⅱ)设b n=log2a n+1,求数列的前n项和T n.
17.(13分)如图,△ABD为正三角形,AC∥DB,AC=4,.(Ⅰ)求sin∠ACB的值;
(Ⅱ)求AB,CD的长.
18.(13分)已知函数f(x)=x3﹣x,g(x)=2x﹣3.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)在[0,2]上的最大值;
(Ⅲ)求证:存在唯一的x0,使得f(x0)=g(x0).
19.(14分)已知数列{a n}满足a1=a2=1,a n+2=a n+2(﹣1)n,(n∈N*).(Ⅰ)写出a5,a6的值;
(Ⅱ)设b n=a2n,求{b n}的通项公式;
(Ⅲ)记数列{a n}的前n项和为S n,求数列{S2n﹣18}的前n项和T n的最小值.20.(14分)已知函数f(x)=(x2﹣x)lnx.
(Ⅰ)求证:1是函数f(x)的极值点;
(Ⅱ)设g(x)是函数f(x)的导函数,求证:g(x)>﹣1.
2017-2018学年北京市海淀区高三(上)期中数学试卷(文
科)
参考答案与试题解析
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选
出符合题目要求的一项.
1.(5分)若集合A={x|x﹣2<0},集合B={x|2x>1},则A∩B=()
A.R B.(﹣∞,2)C.(0,2) D.(2,+∞)
【解答】解:集合A={x|x﹣2<0}={x|x<2},
集合B={x|2x>1}={x|x>0},
则A∩B={x|x>0}∩{x|x<2}={x|0<x<2}=(0,2).
故选:C.
2.(5分)命题“?x≥0,sinx≤1”的否定是()
A.?x<0,sinx>1 B.?x≥0,sinx>1 C.?x<0,sinx>1 D.?x≥0,sinx>1【解答】解:∵“?x≥0”的否定是“?x≥0”,“都有sinx≤1”的否定是“使得sinx >1”,
∴“?x≥0,都有sinx≤1”的否定是“?x≥0,使得sinx>1”.
故选:D.
3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A.f(x)=﹣x2B.f(x)=3﹣x C.f(x)=ln|x|D.f(x)=x+sinx
【解答】解:对于A,函数在(0,+∞)递减,不合题意;
对于B,不是偶函数,不合题意;
对于C,既是偶函数又在(0,+∞)上单调递增,符合题意;
对于D,是奇函数,不合题意;
故选:C.
4.(5分)已知数列{a n}满足a1+a2+a3+…+a n=2a2(n=1,2,3,…),则()
A.a1<0 B.a1>0 C.a1≠a2D.a2=0
【解答】解:数列{a n}满足a1+a2+…+a n=2a2(n=1,2,3,…),
n=1时,a1=2a2;
n=2时,a1+a2=2a2,
可得a2=0.
故选:D.
5.(5分)在平面直角坐标系xOy中,点A的纵坐标为2,点C在x轴的正半轴上.在△AOC中,若,则点A的横坐标为()A.B.C.﹣3 D.3
【解答】解:设点A的横坐标为a,由题意可得a<0,|OA|=,
且=sin(﹣∠AOC)=﹣sin(∠AOC﹣)=﹣,
求得a=﹣,
故选:A.
6.(5分)已知向量,是两个单位向量,则“=”是“||=2”的()A.充分不必要条件 B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
【解答】解:∵向量,是两个单位向量,
则“=”时,“||=2”,
即“=”是“||=2”的充分条件;
“||=2”,向量,同向,结合向量,是两个单位向量,可得“=”,
即“=”是“||=2”的必要条件;
故“=”是“||=2”的充分必要条件;
故选:C.
7.(5分)已知函数()的部分图象如图所示,则ω,φ的值分别为()
A.B. C.D.
【解答】解:由图象可知f(x)的周期为T==π,
∴=π,解得ω=2.
由图象可知f()=1,即=1,
∴+φ=+kπ,k∈Z.
∴φ=﹣+kπ,
又,
∴φ=﹣.
故选:B.
8.(5分)若函数的值域为,则实数a的取
值范围是()
A.(0,e) B.(e,+∞)C.(0,e]D.[e,+∞)
【解答】解:由题意,当x≥0时,f(x)=xe x,
则f′(x)=(x+1)e x,
令f′(x)=0,可得x=﹣1,
当x∈(﹣∞,﹣1)时,f′(x)<0,在函数f(x)在(﹣∞,﹣1)单调递减;当x∈(﹣1,0]时,f′(x)>0,在函数f(x)在(﹣1,0]单调递增;
∴当x=﹣1时,f(x)=xe x取得最小值为.其值域为[,+∞)
那么:当x>0时,二次函数f(x)=ax2﹣2x的最小值大于等于.
∴a>0,其对称x=>0.
则f(x)min=f().
即,
解得:a≥e
故选:D.
二、填空题共6小题,每小题5分,共30分.
9.(5分)已知等差数列{a n}满足a1=2,a2+a4=a6,则公差d=2.
【解答】解:在等差数列{a n}中,由a1=2,a2+a4=a6,
得2a1+4d=a1+5d,即4+4d=2+5d,得d=2.
故答案为:2.
10.(5分)已知向量=(1,0),=(m,n),若与平行,则n的值为0.【解答】解:向量=(1,0),=(m,n),=(m﹣1,n),
若与平行,可得:n?1=0?(m﹣1),即n=0.
故答案为:0.
11.(5分)已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,,则=﹣2.
【解答】解:函数f(x)是定义在R上的周期为2的奇函数,
可得f(0)=0,且f(x+2)=f(x),
则=﹣f()+0=﹣f(+2)=﹣f(),
由当0<x<1时,,
可得f()=2,
即=﹣2.
故答案为:﹣2.
12.(5分)如图,弹簧挂着一个小球作上下运动,小球在t秒时相对于平衡位置的高度h(厘米)由如下关系式确定:h=cost,t∈[0,+∞),则小球在开始振动(即t=0)时h的值为,小球振动过程中最大的高度差为4厘米.
【解答】解:由关系式:h=cost,t∈[0,+∞),
整理得:h=,
当t=0时,h=,
小球振动过程中最大的高度,
即:,
小球振动过程中最低的高度,
即:厘米.,
所以最大高度差为:4.
故答案为:;4.
13.(5分)能够说明“设x是实数,若x>1,则”是假命题的一个实数x的值为2.
【解答】解:令x=2,则,
故答案为:2
14.(5分)已知非空集合A,B满足以下两个条件:
(ⅰ)A∪B={1,2,3,4},A∩B=?;
(ⅱ)集合A的元素个数不是A中的元素,集合B的元素个数不是B中的元素.那么用列举法表示集合A为{3}或{1,2,4} .
【解答】解:∵(ⅰ)A∪B={1,2,3,4},A∩B=?;
(ⅱ)集合A的元素个数不是A中的元素,集合B的元素个数不是B中的元素.则A,B不能为空集,且A,B不能均为二元集合,
若A含一个元素,则该元素只能是3,即A={1}
若A含三个元素,则元素不能有3,即A={1,2,4}
故答案为:{3}或{1,2,4}(答对一个给3分)
三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)已知函数f(x)=2sinxcosx+2cos2x﹣1.
(Ⅰ)求的值;
(Ⅱ)求函数f(x)的单调递增区间.
【解答】解:(I),
=,
=1…(4分)
(II)f(x)=sin2x+cos2x,
=.
令(k∈Z),

所以函数f(x)的单调递增区间为.…(13分)
16.(13分)已知等比数列{a n}满足a1a2a3=8,a5=16.
(Ⅰ)求{a n}的通项公式及前n项和S n;
(Ⅱ)设b n=log2a n+1,求数列的前n项和T n.
【解答】解:(Ⅰ)设等比数列{a n}的公比为q.
因为a1a2a3=8,且
所以,得a2=2,
又因为,所以q3=8,得q=2,a1=1.
所以(n∈N+),
所以==2n﹣1.
(Ⅱ)因为,所以b n=log2a n+1=n,
所以.
所以数列的前n项和T n===.
17.(13分)如图,△ABD为正三角形,AC∥DB,AC=4,.(Ⅰ)求sin∠ACB的值;
(Ⅱ)求AB,CD的长.
【解答】(本题13分)
解:(Ⅰ)因为△ABD为正三角形,AC∥DB,
所以在△ABC中,,
所以.
所以…(1分)
=…(3分)
因为在△ABC中,,∠ABC∈(0,π)…(4分)
所以.…(5分)
所以sin∠ACB=.…(6分)
(Ⅱ)方法1:
在△ABC中,AC=4,由正弦定理得:,…(8分)所以…(9分)
又在正△ABD中,AB=AD,,
所以在△ADC中,,…(10分)
由余弦定理得:CD2=AC2+AD2﹣2AC?ADcos∠DAC,
=
所以CD的长为.…(13分)
方法2:在△ABC中,
由正弦定理得:,…(8分)
所以,…(9分)
…(10分)
所以cos∠DBC=cos(∠DBA+∠ABC)
=cos∠DBAcos∠ABC﹣sin∠DBAsin∠ABC,
==.…(11分)
在△DBC中,由余弦定理得:
CD2=DB2+BC2﹣2DB×BC×cos∠DBC…(12分)
=,
=61.
所以CD的长为.…(13分)
18.(13分)已知函数f(x)=x3﹣x,g(x)=2x﹣3.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)在[0,2]上的最大值;
(Ⅲ)求证:存在唯一的x0,使得f(x0)=g(x0).
【解答】解:(Ⅰ)由f(x)=x3﹣x,得f'(x)=3x2﹣1,…(1分)
所以f'(1)=2,又f(1)=0…(3分)
所以曲线y=f(x)在点(1,f(1))处的切线方程为:y﹣0=2(x﹣1),
即:2x﹣y﹣2=0.…(4分)
(Ⅱ)令f'(x)=0,得.…(5分)f(x)与f'(x)在区间[0,2]的情况如下:
x
f'(x)﹣0+
f(x)极小值
…(7分)
因为f(0)=0,f(2)=6,…(8分)
所以函数f(x)在区间[﹣2,3]上的最大值为6.…(9分)
(Ⅲ)证明:设h(x)=f(x)﹣g(x)=x3﹣3x+3,
则h'(x)=3x2﹣3=3(x﹣1)(x+1),…(10分)
令h'(x)=0,得x=±1.h(x)与h'(x)随x的变化情况如下:
x(﹣∞,
﹣1)﹣1(﹣1,
1)
1(1,+∞)
h'(x)+0﹣0+
h(x)↗极大值↘极小值↗
则h(x)的增区间为(﹣∞,﹣1),(1,+∞),减区间为(﹣1,1).…(11分)又h(1)=1>0,h(﹣1)>h(1)>0,所以函数h(x)在(﹣1,+∞)没有零点,…(12分)
又h(﹣3)=﹣15<0,
所以函数h(x)在(﹣∞,﹣1)上有唯一零点x0.…(13分)
综上,在(﹣∞,+∞)上存在唯一的x0,使得f(x0)=g(x0).
19.(14分)已知数列{a n}满足a1=a2=1,a n+2=a n+2(﹣1)n,(n∈N*).
(Ⅰ)写出a5,a6的值;
(Ⅱ)设b n=a2n,求{b n}的通项公式;
(Ⅲ)记数列{a n}的前n项和为S n,求数列{S2n﹣18}的前n项和T n的最小值.【解答】解:(Ⅰ)∵a n+2=a n+2(﹣1)n,
∴a3=a1﹣2=﹣1,a4=a2+2=3,a5=a3﹣2=﹣3,a6=a4+2=5;
(Ⅱ)b n=a2n=a2n﹣2+2,n∈N*
∴b n+1﹣b n=a2n+2﹣a2n=2,
∴{b n}是以1为首项,2为公差的等差数列,
∴b n=1+(n﹣1)?2=2n﹣1.
(Ⅲ)∵,n∈N*,
∴{a2n﹣1}是以1为首项,﹣2为公差d的等差数列,
∴数列{a n}的前n个奇数项之和为,
由(Ⅱ)可知,a2n=2n﹣1,
∴数列{a n}的前n个偶数项之和为.
∴S2n=2n,
∴S2n﹣18=2n﹣18.
∵S2n﹣18﹣(S2n﹣2﹣18)=2,且S2﹣18=﹣16,
∴数列{S2n﹣18}是以﹣16为首项,2为公差的等差数列.
由S2n﹣18=2n﹣18≤0可得n≤9,
∴当n=8或n=9时,数列{S2n﹣18}的前n项和T n的最小值为
T8=T9=﹣16×8+=﹣72.
20.(14分)已知函数f(x)=(x2﹣x)lnx.
(Ⅰ)求证:1是函数f(x)的极值点;
(Ⅱ)设g(x)是函数f(x)的导函数,求证:g(x)>﹣1.
【解答】(本题14分)
(Ⅰ)证明:证法1:f(x)=(x2﹣x)lnx的定义域为(0,+∞)…(1分)
由f(x)=(x2﹣x)lnx得,…(2分)
∴f'(1)=0.…(3分)
当x>1时,(2x﹣1)lnx>0,x﹣1>0,
∴f'(x)>0,故f(x)在(1,+∞)上单调递增;…(4分)
当时,(2x﹣1)lnx<0,x﹣1<0,
∴f'(x)<0,故f(x)在上单调递减;…(5分)
(此处为推理说明,若用列表说明则扣1分)
所以1是函数f(x)的极值点.…(6分)
证法2:(根据极值的定义直接证明)f(x)=(x2﹣x)lnx的定义域为(0,+∞)…(1分)
∵f(x)=x(x﹣1)lnx,∴f(1)=0…(3分)
当x>1时,x(x﹣1)>0,lnx>0,∴f(x)>0,即f(x)>f(1);…(4分)当0<x<1时,x(x﹣1)<0,lnx<0,∴f(x)>0,即f(x)>f(1);…(5分)
根据极值的定义,1是f(x)的极值点.…(6分)
(Ⅱ)由题意可知,g(x)=(2x﹣1)lnx+x﹣1
证法1:,
令,∴,故h(x)在(0,+∞)上单调递增.…(7分)
又,又h(x)在(0,+∞)上连续,
∴使得h(x0)=0,即g'(x0)=0,…(8分)∴.(*)…(9分)
g'(x),g(x)随x的变化情况如下:
x(0,x0)x0(x0,+∞)
g'(x)﹣0+
g(x)↘极小值↗
…(10分)
∴g(x)min=g(x0)=(2x0﹣1)lnx0+x0﹣1.…(11分)
由(*)式得,代入上式得
.…(12分)
令,,
故t(x)在上单调递减.…(13分)∴t(x)>t(1),又t(1)=﹣1,∴t(x)>﹣1.
即g(x0)>﹣1∴g(x)>﹣1.…(14分)
证法2:g(x)=(2x﹣1)lnx+x﹣1=2xlnx﹣lnx+x﹣1,x∈(0,+∞),
令h(x)=2xlnx,t(x)=﹣lnx+x﹣1,x∈(0,+∞),…(7分)
h'(x)=2(lnx+1),令h'(x)=0得.…(8分)h'(x),h(x)随x的变化情况如下:
x
h'(x)﹣0+
h(x)↘极小值↗
∴,即,当且仅当时取到等号.…(10分),令t'(x)=0得x=1.…(11分)t'(x),t(x)随x的变化情况如下:
x(0,1)1(1,+∞)
t'(x)﹣0+
t(x)↘极小值↗
…(12分),∴t(x)min=t(1)=0,即x﹣1﹣lnx≥0,
当且仅当x=1时取到等号.…(13分)∴.
即g(x)>﹣1.…(14分)
百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百
度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百
百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百度百百度百度百度百度百度百度。

相关文档
最新文档