垂直平分线与角平分线典型题练习题23710
线段的垂直平分线和角平分线专题训练及答案
线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。
垂直平分线和角平分线典型题
线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm针对性练习::1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果△EBC的周长是24cm,那么BC=2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△EBC的周长是3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果∠A=28度,那么∠EBC是例2. 已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
圆形角平分线与垂直平分线练习题(经典)
圆形角平分线与垂直平分线练习题(经典)题目一在一个半径为 $r$ 的圆内,作一条角平分线,连接圆心和角平分线的交点,记为 $A$。
请证明:线段 $AO$ 垂直于角所对的弧。
题目二在一个半径为 $r$ 的圆内,作一条垂直平分线,连接圆心和垂直平分线的交点,记为 $B$。
设角 $BOC$ 为 $\alpha$ 度,请求弧$BC$ 所对的角大小。
题目三在一个半径为 $r$ 的圆内,作一条垂直平分线,连接圆心和垂直平分线的交点,记为 $D$。
设垂直平分线与弧 $AB$ 的交点分别为 $E$ 和 $F$。
请证明:角 $DEF$ 为直角。
题目四在一个半径为 $r$ 的圆内,作一条垂直平分线,连接圆心和垂直平分线的交点,记为 $G$。
设角 $DGH$ 为 $\beta$ 度,角$GHJ$ 为 $\gamma$ 度,求证:$\beta$ 度和 $\gamma$ 度的和等于$90$ 度。
解答题目一首先,考虑将圆分成 $4$ 个相等的扇形,由于扇形的圆心角相等,每个扇形的圆心角为 $90$ 度。
现在我们将扇形 $AOB$ 的边$OA$ 延长,交于圆上的点 $C$,如下图所示:A/// C/B根据圆心角的性质,可以知道圆心角 $ACB$ 等于扇形角$AOB$,即 $ACB=90$ 度。
又因为 $\angle OAC$ 是角 $OAB$ 的角平分线,所以 $\angle OAC = \angle CAB = \angle CBA = \frac{1}{2} ACB = 45$ 度。
现在我们要证明 $AO$ 垂直于弧 $AB$。
设 $AD$ 是半径 $r$,由于角 $OAD$ 是 $45$ 度,根据直角三角形的性质,我们可以得到:\[\sin 45^\circ = \frac{AD}{AO}\]而正弦 $45$ 度是 $\frac{1}{\sqrt{2}}$,所以我们得到 $AD =\frac{AO}{\sqrt{2}}$。
垂直平分线与角平分线综合 练习题(带答案))
垂直平分线与角平分线综合 题集一、垂直平分线(1)(2)1.如图,中,,垂直平分,交于点,交于点,且.若,求的度数.若周长,,求长.【答案】(1)(2)..【解析】(1)(2)∵垂直平分,垂直平分,∴,∴,∵,∴,∴.∵周长,,∴,即,∴.【标注】【知识点】作三角形的高,中线和角平分线(1)(2)2.的两边和的垂直平分线分别交于点、.若,求的周长.若,求.【答案】(1)(2)..【解析】(1)(2)∵边、的垂直平分线分别交于、,∴,,∴的周长.∵的两边,的垂直平分线分别交于,,∴,,∴,.∵,①∴.∵,∴,即.②由①②组成的方程组.解得,故答案为:.【标注】【知识点】三角形的周长与面积问题3.在中,,,的垂直平分线交于,的垂直平分线交于.求证:.【答案】证明见解析.【解析】连接、,∵,,∴,∵的垂直平分线交于,的垂直平分线交于,∴,,∴,,,∵,∴,∴是等边三角形,∴,∴.【标注】【知识点】等边三角形的构造4.已知中,是的平分线,的垂直平分线交的延长线于.求证:.【答案】证明见解析.【解析】∵是的平分线,∴,∵是的垂直平分线,∴,,∵,,∴.【标注】【能力】推理论证能力【知识点】线段的垂直平分线的性质定理【知识点】角分线性质定理5.中,是线段的垂直平分线,垂足为点,是上一点,.求证:点在线段的垂直平分线上.【答案】(1)证明见解析.【解析】(1)连接,是线段的垂直平分线,,,,在的垂直平分线上.【标注】【知识点】线段的和差的证明【知识点】线段的垂直平分线的性质定理【知识点】线段的垂直平分线的判定定理【知识点】等边三角形的性质【思想】数形结合思想【能力】运算能力【能力】推理论证能力6.如图,四边形中,的垂直平分线与的垂直平分线交于点,且.求证:点一定在的垂直平分线上.【答案】证明见解析.【解析】连接、,∵点是、的垂直平分线的交点,∴,,又∵,∴,∴点一定在的垂直平分线上.【标注】【知识点】作线段的垂直平分线(1)(2)7.如图,已知等腰三角形中,,点、分别在边、上,且,连接、,交于点.判断与的数量关系,并说明理由.求证:过点、的直线垂直平分线段.【答案】(1)(2)相等,证明见解析.证明见解析.【解析】(1)(2).在和中,,∴≌,∴.∵,∴,由()可知,∴,∴,∵,∴点、均在线段的垂直平分线上,即直线垂直平分线段.【标注】【知识点】线段的垂直平分线的性质定理【知识点】SAS【知识点】全等三角形的对应边与角【能力】推理论证能力二、角平分线8.如图,平分,于,于,,.若,则.【答案】【解析】∵平分,,,∴,∵,,∴,即,解得.故答案为:.【标注】【知识点】角分线性质定理9.如图,在中,,平分,,,则点到的距离为.【答案】【解析】∵,,∴.∵平分,,∴点到的距离等于,即点到的距离等于.【标注】【知识点】角分线性质定理A. B. C. D.10.如图,的三边、、的长分别,,,是三条角平分线的交点,则( ).【答案】C 【解析】∵是三条角平分线的交点,∴点到各边的距离相等,即、、的高相等,∵、、的长分别,,,∴,故答案为.【标注】【知识点】与中线或等分线有关的等积变换A.B.C.D.11.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( ).在、两边高线的交点处在、两边中线的交点处在、两内角平分线的交点处在、两边垂直平分线的交点处【答案】C 【解析】内角平分线上的点到,距离相等,内角平分线上的点到,距离相等,∴要到三条公路距离相等,应在,内角平分线交点处满足到,,距离相等.故选.【标注】【知识点】角分线性质定理A. B. C. D.12.如图,点是的两外角平分线的交点,下列结论:①;②点到、的距离相等;③点到的三边的距离相等;④点在的平分线上.以上结论正确的个数是().【答案】C【解析】如图,过点作于,作于,作于,∵点是的两外角平分线的交点,,,∴点在的平分线上,故②③④正确,只有点是的中点时,,故①错误,综上所述,正确的是②③④.【标注】【知识点】角分线性质定理【知识点】角平分线判定定理三、角分线的角度模型(1)(2)(3)(4)13.完成下列各题:如图 ,、分别是中和的平分线,则与的关系是 (直接写出结论).如图 ,、分别是两个外角和的平分线,则与的关系是 ,请证明你的结论.如图 ,、分别是一个内角和一个外角的平分线,则与的关系是 ,请证明你的结论.利用以上结论完成以下问题:如图,已知:,点 、 分别是射线、上的动点,的外角的平分线与角的平分线相交于点,猜想的大小是否变化?请证明你的猜想.图图图图【答案】(1)(2)(3)(4). ..的大小没有变化,证明见解析.【解析】(1)理由如下:如图 ,∵ ,,分别是,的角平分线,∴ ,∴.(2)(3)(4)图如图 ,∵ 平分 ,∴ ,同理可证: ,∴ ,∵ ,∴,∴ .图∵ 平分 , 平分 ,∴ ,∵ 是 的外角,∴ ,∵ 是 的外角,∴ ,∴.根据⑶可得: ,∵ ,∴ ,∴ 的大小不会变化始终为 .【标注】【知识点】三角形-内角角分线;三角形-外角角分线;三角形-内外角角分线(1)(2)(3)14.回答下列问题.探索发现:如图,在中,点是内角和外角的角平分线的交点,试猜想与之间的数量关系,并证明你的猜想.图迁移拓展:如图,在中,点是内角和外角的等分线的交点,即,,试猜想与之间的数量关系,并证明你的猜想.图应用创新:已知,如图,、相交于点,、、的角平分线交于点,,,则 .图【答案】(1),证明见解析.(2)(3),证明见解析.【解析】(1)(2)(3)∵点是内角和外角的角平分线的交点,∴,,∵是的外角,∴,∴∴∵是的外角,∴,∴.∵是的外角,∴,∴,∵,,∴,∵是的外角,∴,∴.∵、、的角平分线交于点,∴由()的结论知,,,∴,故答案为:.【标注】【知识点】三角形-内外角角分线(1)15.阅读下面的材料,并解决问题:已知在中,.如图(1),、的角平分线交于点,则可求得.如图(2),、的三等分线交于点、,则 .如图(3),、的等分线交于点、、……,则.;(用含的代数式)(2)(3)图图图如图,,、的三等分线交于点、,若,,求的度数;(要求写出解答过程)如图,,的三等分线分别与的平分线交于点,,若,,求的度数为 (不要求写出解答过程).【答案】(1)(2)(3); ;.【解析】(1)(2)(3)是的外角,,、是的三等分线,,在中,,又是的平分线,,.只需抓住加.则等分,下面两个小角之和为,.【标注】【知识点】三角形-内角角分线。
垂直平分线与角平分线典型题练习题新选
线段的垂直平分线与角平分线(1)经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm针对性练习:已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC的周长是 3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
针对性练习:已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC,求证:点O 在BC 的垂直平分线.例3. 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
针对性练习:1. 在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为40°,则底角B 的大小为________________。
例4、如图8,已知AD 是△ABC 的BC 边上的高,且∠C =2∠B ,求证:BD =AC +CD.O B A C NB课堂练习:1.如图,AC=AD,BC=BD,则()A.CD垂直平分ADB.AB垂直平分CDC.CD平分∠ACBD.以上结论均不对2.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个4.△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么△DBC的周长是()A.6 cmB.7 cmC.8 cmD.9 cm5.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥B C.6.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N. 求证:CM=2BM.课后作业:1. 如图7,在△ABC中,AC=23,AB的垂直平分线交AB于点D,交BC于点E,△ACE的周长为50,求BC边的长.2. 已知:如图所示,∠ACB,∠ADB都是直角,且AC=AD,P是AB上任意一点,求证:CP=DP。
垂直平分线与角平分线典型题#(精选.)
线段的垂直平分线与角平分线 (1)知识要点详解1、线段垂直平分线的性质1 )垂直平分线性质定理: 线段垂直平分线上的点到这条线段两个端点 的距离相等. 定理的数学表示: 如图 1,已知直线 m 与线段 AB 垂直相交于点 D , 且AD = BD ,若点 C 在直线 m 上,则 AC = BC.定理的作用:证明两条线段相等2)线段关于它的垂直平分线对称课堂笔记:2、线段垂直平分线性质定理的逆定理1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上 . 定理的数学表示:如图 2,已知直线 m 与线段 AB 垂直相交于点 D , 若 AC =BC ,则点 C 在直线 m 上 .课堂笔记:3、关于三角形三边垂直平分线的定理 ( 1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等定理的数学表示:如图 3,若直线 i, j,k 分别是△ ABC 三边 AB 、BC 、CA 的垂直平分线,则直线 i,j,k 相交于一点 O ,且 OA =OB =OC.定理的作用: 证明三角形内的线段相等 .2)三角形三边垂直平分线的交点位置与三角形形状的关系:定理的作用:证明一个点在某线段的垂直平分线上 BB若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形, 则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点 在三角形外部 .反之, 三角形三边垂直平分线的交点在三角形内部, 则该三角形是锐角三角形; 三角 形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交 点在三角形外部,则该三角形是钝角三角形经典例题:例 1 如图 1,在△ ABC 中,BC = 8cm ,AB 的垂直平分线交 AB 于点 D ,交边 AC 于点 E ,△BCE 的周针对性练习:已知:1)如图 , AB=AC=14cm,AB 的 垂直 平分 线交 AB 于点 D ,交 AC 于点E ,如果△ EBC 的周长是 24cm ,那么 BC=2) 如图, AB=AC=14cm,AB 的垂直平分线交 AB 于点 D ,交 AC 于点 E ,如果 BC=8cm ,那么△ EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交 AB 于点 D ,交 AC 于点 E ,如果∠ A=28 度,那么∠ EBC 是例 2. 已知: AB=AC ,DB=DC ,E 是 AD 上一点,求证: BE=CE 。
(新)角平分线与垂直平分线练习题(经典)
0角平分线角平分线性质定理:角平分线上的点到这个角两边的距离相等。
角平分线的判定: 到一个叫两边的距离相等的点在这个角的平分线上。
例1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .例2.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数.3、考点深入练习例3:如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
求证:(1)AD=AG ,(2)AD 与AG 的位置关系如何。
例4:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(8分)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BEBPABCD GHFE DCBA例5:△DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N. 求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三角形(4)MN ∥BC垂直平分线的性质与判定强化练习1如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( ) A .6cm B .8cm C .10cm D .12cm2题2如图,在Rt ABC △中,90ACB D E ∠=,,分别为AC AB ,的中点,连DE CE ,. 下列结论中不一定正确的是 ( ) A .ED BC ∥ B .ED AC ⊥ C .ACE BCE ∠=∠D .AE CE =3、△ABC 中,∠C=90°,AB 的中垂线交直线BC 于D ,若∠BAD -∠DAC=22.5°,则∠B 等于 ( ) A.37.5° B.67.5° C.37.5°或67.5° D.无法确定4、线段的垂直平分线上的点_____________________________________.5、到一条线段的两个端点的距离相等的点,______________________.6、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是12 cm ,AC=5cm ,则AB+BD+AD= cm ;AB+BD+DC= cm;△ABC的周长是 cm 。
垂直平分线和角平分线典型题
知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.图1图2经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
垂直平分线与角平分线典型题
线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的图1图2交点在三角形外部,则该三角形是钝角三角形.经典例题:例1如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm针对性练习::1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果△EBC的周长是24cm,那么BC=2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△EBC的周长是3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果∠A=28度,那么∠EBC是例2. 已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
线段垂直平分线与角平分线练习题
线段的垂直平分线与角的平分线一、选择题 1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于 ( ) A .50︒ B .65︒ C .80︒ D .95︒ 2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ; ②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
其中正确的有 ( )A .2个B .3个C .4个D .1个 4.如图4,AD ∥BC ,∠D=90︒,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC的大小关系是 ( )A .PD>PCB .PD<PC C .PD=PCD .无法判断 。
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点;C 、三角形三条中线的交点;D 、三角形三条高的交点。
6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有 ( )A 、①②③④B 、①③C 、②④D 、②③④7题图 8题图 9题图F DEC BADE C B A PD CBAEDCB A DCB AE D CBA图3 图4图1图2c b aOCB ADP8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE⊥AB ,则EB 的长是 ( )A 、3㎝B 、4㎝C 、5㎝D 、不能确定9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。
垂直平分线与角平分线典型题练习题
线段的垂直平分线与角平分线〔1〕经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,那么AC 的长等于〔 〕 A .6cm B .8cmC .10cmD .12cm针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,若是△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若是BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若是∠A=28 度,那么∠EBC 是例2. : AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
针对性练习::在△ABC 中,ON 是AB 的垂直平分线,OA=OC,求证:点O 在BC 的垂直平分线.例3. 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
针对性练习:1. 在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为40°,那么底角B 的大小为________________。
例4、如图8,AD 是△ABC 的BC 边上的高,且∠C =2∠B ,求证:BD =AC +CD.O B A C NB课堂练习:1.如图,AC =AD ,BC =BD ,那么〔 〕 垂直平分AD 垂直平分CD 平分∠ACB2.若是三角形三条边的中垂线的交点在三角形的外部, 那么,那个三角形是〔 〕3.以下命题中正确的命题有〔 〕①线段垂直平分线上任一点到线段两头距离相等;②线段上任一点到垂直平分线两头距离相等;③通过线段中点的直线只有一条;④点P 在线段AB 外且PA =PB ,过P 作直线MN ,那么MN 是线段AB 的垂直平分线;⑤过线段上任一点能够作这条线段的中垂线. 个 个 个 个4.△ABC 中,AB 的垂直平分线交AC 于D ,若是AC =5 cm ,BC =4cm ,那么△DBC 的周长是〔 〕 A.6 cm B.7 cm C.8 cm D.9 cm5.如图,在△ABC 中,AB =AC ,O 是△ABC 内一点,且OB =OC ,求证:AO ⊥B C.6.如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线MN 别离交BC 、AB 于点M 、N . 求证:CM =2BM .课后作业:1. 如图7,在△ABC 中,AC =23,AB 的垂直平分线交AB 于点D ,交BC 于点E ,△ACE 的周长为50,求BC 边的长.2. :如以下图,∠ACB ,∠ADB 都是直角,且AC=AD ,P 是AB 上任意一点,求证:CP=DP 。
线段的垂直平分线、角平分线经典习题及答案#精选、
3.线段的垂直平分线4.角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。
例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。
求证:直线AB 是线段CD 的垂直平分线。
AC DEBA B C NM AB C N M AB CN M例4:如图所示,在△ABC中,AB=AC,∠BAC=1200,D、F分别为AB、AC的中点,,,E、G在BC上,BC=15cm,求EG的长度。
⊥⊥DE AB FG ACAB E G C例5::如图所示,Rt△ABC中,,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F。
求证:BE垂直平分CD。
CEFA D B例6::在⊿ABC中,点O是AC边上一动点,过点O作直线M N∥BC,与F,求证:OE=OF例7、如图所示,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE AB⊥于,求证:BE=CF。
E,DF AC FAEB M CFD答案如下:例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;(2)同理得,∠M=35°;(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.证明:设∠A=α,则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AH⊥BC于H,HC=15/2∵等腰∴∠ACB=∠ABC=30°∴AC=2EC/根号3EC=5根号3∵F为AC中点∴FC=5/2根号3∵FG⊥AC∴CG=5同理,BE=5∴EG=5例5:证明:∵DE⊥AB,∠ACB=90∴∠BDE=∠ACB=90∵BD=BC,BE=BE∴△BCE≌△BDE (HL)∴∠CBE=∠DBE∵BF=BF∴△BCF≌△BDF (SAS)∴∠BFC=∠BFD,CF=DF∵∠BFC+∠BFD=180∴∠BFC=∠BFD=90∴BE⊥CD∴BE垂直平分CD例6:解:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.例7:证明:连接DC,DB∵点D在BC的垂直平分线上∴DB=DC∵D在∠BAC的平分线上∴DE=DF∵∠DFC=∠DEB∴△DCF≌△DEB∴CF=BE最新文件仅供参考已改成word文本。
角平分线与垂直平分线练习题(不错的题)
ED CABF全等、等腰三角形、角平分线、垂直平分线强化训练1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是2.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数.3、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .考点深入练习4、如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,求证:△DBE 是等腰三角形.BPABCD图1 图2 DCEA B 5、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(8分)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE6、如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
求证:(1)AD=AG ,(2)AD 与AG 的位置关系如何。
7、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( ) A .6cm B .8cm C .10cm D .12cmGHFE DCBA8、如图,在Rt ABC △中,90ACB D E ∠=,,分别为AC AB ,的中点,连DE CE ,.下列结论中不一定正确的是( )A .ED BC ∥B .ED AC ⊥ C .ACE BCE ∠=∠D .AE CE =9、△ABC 中,∠C=90°,AB 的中垂线交直线BC 于D ,若∠BAD -∠DAC=22.5°,则∠B 等于 ( ) A.37.5° B.67.5° C.37.5°或67.5° D.无法确定10、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是12 cm ,AC=5cm ,则AB+BD+AD= cm ;AB+BD+DC= cm ;△ABC 的周长是 cm 。
垂直平分线与角平分线典型题
线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的图1图2交点在三角形外部,则该三角形是钝角三角形.经典例题:例1如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm针对性练习::1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果△EBC的周长是24cm,那么BC=2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△EBC的周长是3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果∠A=28度,那么∠EBC是例2. 已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
八年级数学专项练习——垂直平分线与角平分线(含答案解析)
八年级数学专项练习——垂直平分线与角平分线(含答案解析)1.如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在PA、PC的中垂线上.若∠ABC=80°,则∠APC的度数为()A.120°B.125°C.130°D.135°2.如图所示,已知AB=AB1,A1B1=B1B2,A2B2=B2B3,A3B3=B3B4…,以此规律操作下去,若∠B=50°,则∠A n-1B n B n-1(n≥2)的度数为()A.B.C.D.3.如图,∠BAC=120°.若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.30°B.40°C.50°D.60°4.如图,在△ABC中,AC的垂直平分线PD与BC的垂直平分线PE交于点P,垂足分别为D,E,连接PA,PB,PC,若∠PAD=45°,则∠ABC=.5.如图,已知BD平分∠ABC,AD=CD,DE⊥AB于点E,DF⊥BC于点F,BC=12cm,AB=6cm,那么AE的长度为cm.6.△ABC的外角∠DAC的平分线交BC的垂直平分线线于P点,PD⊥AB于D,PE⊥AC于E.⑴求证:BD=CE;⑵若AB=5cm,AC=10cm,求AD长.答案解析1.解:∵∠ABC=80°,∴∠BMN+∠BNM=180°-80°=100°,∵M、N分别在PA、PC的中垂线上,∴MA=MP,NC=NP,∴∠MPA=∠MAP,∠NPC=∠NCP,∴∠MPA+∠NPC=12(∠BMN+∠BNM)=50°,∴∠APC=180°-50°=130°,故选:C.2.解:在△ABB1中,AB=AB1,∠B=50°,∴∠AB1B=50°,∵A1B1=B1B2,∠AB1B是△A1B1B2的外角,3.解:∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠B=∠PAB,∠C=∠QAC,∵∠BAC=120°,∴∠B+∠C=60°,∴∠PAB+∠QAC=60°,∴∠PAQ=60°,故选:D.4.解:∵AC的垂直平分线PD与BC的垂直平分线PE交于点P,∴PA=PB=PC,∴∠PCA=∠PAD=45°,∠PAB=∠PBA,∠PCB=∠PBC,∵∠PCA+∠PAD+∠PAB+∠PBA+∠PCB+∠PBC=180°,∴∠PAB+∠PBA+∠PCB+∠PBC=90°,∴∠PBC+∠PBA=45°,∴∠ABC=45°,故答案为:45.5.解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,又∵AD=CD,∴Rt△ADE≌Rt△DFC(HL),∴AE=CF,∴Rt△BDE≌Rt△BDF(HL),∴BE=BF,∵BE=AB+AE=6+AE,∴BF=6+AE.∴BC=6+AE+CF=12,即12=6+2AE,解得:AE=3(cm),故答案为:3cm.6.⑴证明:如图,连接BP、PC.∵PQ垂直平分线段BC,∴PB=PC,∵∠PAD=∠PAE,PD⊥AD,PE⊥AE,∴PD=PE,∠PDB=∠PEC=90°,在Rt△PBD和Rt△PCE中,∴Rt△PBD≌Rt△PCE(HL),∴BD=CE.⑵解:在Rt△APD和Rt△APE中,∴Rt△APD≌Rt△APE,∴AD=AE,设AD=AE=x,∵△PBD≌△PCE,∴BD=EC,∴AB+AD=AC-AE,∴5+x=10-x,∴x=2.5,∴AD=2.5.。
线段的垂直平分线练习题与角平分线练习题
11、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,那么△DEB的周长为〔 〕
A、4㎝B、6㎝C、10㎝D、不能确定
18、如图11.3—4,在△ABC中∠C=900,AC=BC,AD平分.交BC于点D,DE⊥BE
5、三角形的三条角平分线相交于一点,并且这一点到________________相等。
6、点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,那么∠BOC,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD∶CD=9∶7,那么D到AB的距离为.
求证:〔1〕DE+BD=AC
〔2〕假设AB=6cm,求△DBE的周长
19、如图11.3—6,:AB=AC,BD=CD,
求证:DE=DF
2、∠AOB的平分线上一点M,M到OA的距离为1.5cm,那么M到OB的距离为_________.
3、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.
4、如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,那么BC=_____cm.
①AB⊥MN,②AD=DB,③MN⊥AB,④MD=DN,⑤AB是MN的垂直平分线.
1、:如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,假设∠B=300,求∠C的度数。
二.解答:
1、有特大城市A及两个小城市B、C,这三个城市共建一个污水处理厂,使得该厂到B、C两城市的距离相等,且使A市到厂的管线最短,试确定污水处理厂的位置。
8、三角形中到三边距离相等的点是〔 〕
角平分线与垂直平分线练习题经典
0角平分线角平分线性质定理:角平分线上的点到这个角两边的距离相等。
角平分线的判定: 到一个叫两边的距离相等的点在这个角的平分线上。
例1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .例2.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数.3、考点深入练习例3:如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
求证:(1)AD=AG ,(2)AD 与AG 的位置关系如何。
例4:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(8分)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BEBPABCD GHFE DCBA例5:△DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N. 求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三角形(4)MN ∥BC垂直平分线的性质与判定强化练习1如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( ) A .6cm B .8cm C .10cm D .12cm2题2如图,在Rt ABC △中,90ACB D E ∠=,,分别为AC AB ,的中点,连DE CE ,. 下列结论中不一定正确的是 ( ) A .ED BC ∥ B .ED AC ⊥ C .ACE BCE ∠=∠D .AE CE =3、△ABC 中,∠C=90°,AB 的中垂线交直线BC 于D ,若∠BAD -∠DAC=22.5°,则∠B 等于 ( ) A.37.5° B.67.5° C.37.5°或67.5° D.无法确定4、线段的垂直平分线上的点_____________________________________.5、到一条线段的两个端点的距离相等的点,______________________.6、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是12 cm ,AC=5cm ,则AB+BD+AD= cm ;AB+BD+DC= cm ;△ABC 的周长是 cm 。
垂直平分线和角平分线练习.docx
垂直平分线与角平分线课后练习题一:如图,AB 是ZDAC 的平分线,且AD=AC. 求证:BD 二BC ・题二:给出以下两个定理:① 线段垂直平分线上的点到这条线段两个端点的距离相等;② 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 应用上述定理进行如下推理,如图,直线/是线段M/V 的垂直平分线. •・•点&在直线/上,:.AM=AN () 9:BM=BN, •:点B 在直线/上( )TCM H CM •••点C 不在直线/上. 这是因为如果点C 在直线/上,那么CM=C/V () 这与条件CMHC/V 矛盾.以上推理屮各括号内应注明的理由依次是( )结论不一定成立的是( )题四:如图,P 是ZAOB 平分线上一点,CD 丄0P 于P,并分别交0人、0B 于C, D,则点P 到ZAOB 两边距离之和() A.小于CD B.大于CD C.等于CD D.不能确定C.①②②D.①②① 题三: 如图所示,D 是ZAOB 平分线上的一点,DE 丄0A,DF 丄03垂足分别是& F.下列 B ・ 0E 二OF C. ZODE^ZODF D. 0D 二DE+DFB.②①② A. DE=DF B题五:如图,在RtA/ABC中,ZB二90。
,AC的垂直平分线M/V与AB交于D点“ ZBCD=10°, 则Z&的度数是 .题六:如图,AB=AC^10. ZA=40\ AB的垂直平分线M/V交AC于点D. 求:(1) ZABD的度数;(2)若△BCD的周长是m,求BC的长.题七:已知:如图,在RtA/4BC中,Z/4=90% CD平分ZACB交边AB于点D, DE丄BC垂足为E, BD = 2AD・求证:BE=CE・题八:如图,在RtA/ABC中,ZACB=90\ CD丄AB于 6 AE平分ZBAC,交CD于K,交BC 于E, F 是BE上一点,且BF=CE.题九:如图,AD是AABC的角平分线,AD的屮垂线分别交AB、BC的延长线于点F、E 求证:(1) ZEAD=ZEDA; (2) DF//AC; (3) ZEAC^ZB.题十:如图,/\ABC的边BC的屮垂线DF交△BAC的外角平分线AD于D, F为垂足,DE丄题-一:如图,己知△ ABC中,ZBAC: ZABC: ZACB=4: 2: 1, AD 是ZB AC的平分线. 求证:AD=AC-AB.题十二:如图,ZX&BC 中,ZC=90°, ZBAC的平分线交BC 于D,且CD=15, 4C=30, KO AB 的长为____________ .题十三:一个风筝如图所示,两翼AB=AC,横骨BF 丄AC, CE 丄AB,问其屮骨AD 能平分Z BAC 吗?为什么?题十四:已知AC 平分ZDAB, CE 丄AB 于E, AB 二AD+2BE,则下列结论: ®AE = -(AB + AD);2② ZDAB+ZDCB=180°;③ CD=CB ;其中•正确结论的个数是() A. 1个 B. 2个C. 3个D. 4个=S A &DC ・。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段的垂直平分线与角平分线(1)
经典例题:
例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )
A .6cm
B .8cm
C .10cm
D .12cm
针对性练习:
已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,
那么BC=
2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC
的周长是 3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC
是
例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
针对性练习:
已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC,求证:点O 在BC 的垂直平分线.
例3. 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
针对性练习:
1. 在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为40°,则底角B 的大小为________________。
例4、如图8,已知AD 是△ABC 的BC 边上的高,且∠C =2∠B ,
求证:BD =AC +CD.
O B A C N
B
课堂练习:
1.如图,AC=AD,BC=BD,则()
A.CD垂直平分AD
B.AB垂直平分CD
C.CD平分∠ACB
D.以上结论均不对
2.如果三角形三条边的中垂线的交点在三角形的外部,
那么,这个三角形是()
A.直角三角形
B.锐角三角形
C.钝角三角形
D.等边三角形
3.下列命题中正确的命题有()
①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.
A.1个
B.2个
C.3个
D.4个
4.△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么△DBC的周长是()
A.6 cm
B.7 cm
C.8 cm
D.9 cm
5.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥B C.
6.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N. 求证:CM=2BM.
课后作业:
1. 如图7,在△ABC中,AC=23,AB的垂直平分线交AB于点D,交BC于点E,△ACE的周长为50,求BC边的长.
2. 已知:如图所示,∠ACB,∠ADB都是直角,且AC=AD,P是AB上任意一点,求证:CP=DP。
图7E
D
A
C
B
线段的垂直平分线与角平分线(2)
经典例题:
例1已知:如图,点B 、C 在∠A 的两边上,且AB=AC ,P 为∠A 内一点,PB=PC , PE ⊥AB ,PF ⊥AC ,垂足分别是E 、F 。
求证:PE=PF
针对性练习:
已知: PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 平分线,它们交于P ,PD ⊥BM 于D ,PF ⊥BN 于F ,求证:BP 为∠MBN 的平分线。
例2、如图10,已知在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,E 为BC 中点,连接AE 、DE ,DE 平分∠ADC ,求证:AE 平分∠BAD.
针对性练习:
如图所示,AB=AC ,BD=CD ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:DE=DF 。
例3、如图11-1,已知在四边形ABCD 中,对角线BD 平分∠ABC ,且∠BAD 与∠BCD 互补, 求证:AD =CD.
图10
E
E
B
D
A C F
课堂练习:
1. △ABC中,AB=AC,AC的中垂线交AB于E,△EBC的周长为20cm,AB=2BC,则腰长为________________。
2. 如图所示,AB//CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于______________。
A B
O
E
C D
3已知:如图,∠B=∠C=900,DM平分∠ADC, AM平分∠DAB 。
求证:M B=MC
课后作业:
1.如右图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD. 求证:AD平分∠BAC.
E
D A
,,表示三条互相交叉的公路,现在要建一个货物中转站,要求它到三条公路2. 如图所示,直线l l l
123
的距离相等,则可供选择的地址有()
A. 一处
B. 二处
C. 三处
D. 四处
l3l1
l2
P
6。