许昌高级中学数学轴对称填空选择易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学全等三角形填空题(难)
1.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,则∠ACE=_____°;若AB=1,则OE的最小值=_____.
【答案】301 4
【解析】【分析】
根据等边三角形的性质可得OC=1
2
AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可
得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE 的最小值.
【详解】
解:∵△ABC的等边三角形,点O是AC的中点,
∴OC=1
2
AC,∠ABD=30°
∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)
∴∠ACE=30°=∠ABD
当OE⊥EC时,OE的长度最小,
∵∠OEC=90°,∠ACE=30°
∴OE最小值=1
2
OC=
1
4
AB=
1
4
故答案为:30,1 4
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.
2.如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则
BD的长为______.
【答案】234.
【解析】
【分析】
将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,由全等三角形的性质可得
CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,结合等边三角形的性质可得出
∠ECP=60°,进而证明△ECP为等边三角形,由等边△ECP的性质进而证明D、P、E三点共线以及∠DEB=90°,最后利用勾股定理求出BD的长度即可.
【详解】
将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,
∴CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,
∵等边△ABC,
∴∠ACP+∠PCB=60°,
∴∠ECB+∠PCB=60°,即∠ECP=60°,
∴△ECP为等边三角形,
∴∠CPE=∠CEP=60°,PE=6,
∴∠DEB=90°,
∵∠APC=150°,∠APD=30°,
∴∠DPC=120°,
∴∠DPE=180°,即D、P、E三点共线,
∴ED=3+7=10,
∴BD=22
DE BE
=234.
故答案为34
【点睛】
本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.
3.如图,ABC ∆中,90ACB ∠=︒,8cm AC ,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.
【答案】235
或7或8 【解析】
【分析】
易证∠MEC =∠CFN ,∠MCE =∠CNF .只需MC =NC ,就可得到△MEC 与△CFN 全等,然后只需根据点M 和点N 不同位置进行分类讨论即可解决问题.
【详解】
①当0≤t <4时,点M 在AC 上,点N 在BC 上,如图①,
此时有AM =2t ,BN =3t ,AC =8,BC =15.
当MC =NC 即8−2t =15−3t 时全等,
解得t =7,不合题意舍去;
②当4≤t <5时,点M 在BC 上,点N 也在BC 上,如图②,
若MC =NC ,则点M 与点N 重合,即2t−8=15−3t ,
解得t =235
; 当5≤t <233
时,点M 在BC 上,点N 在AC 上,如图③,
当MC=NC即2t−8=3t−15时全等,解得t=7;
④当23
3
≤t<
23
2
时,点N停在点A处,点M在BC上,如图④,
当MC=NC即2t−8=8,解得t=8;
综上所述:当t等于23
5
或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为
顶点的三角形全等.
故答案为:23
5
或7或8.
【点睛】
本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.
4.如图,C为线段AE上一动点(不与A. E重合),在AE同侧分别作等边△ABC和等边
△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:
①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)
【答案】①②③⑤
【解析】
【分析】
①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.
③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;
②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②
正确.
④没有条件证出BO=OE,得出④错误;
⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【详解】
解:∵△ABC和△CDE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC BC
ACD BCE CD CE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.
∵△ACD≌△BCE,
∴∠CAD=∠CBE,
又∵∠ACB=∠DCE=60°,
∴∠BCD=180°-60°-60°=60°,∴∠ACP=∠BCQ=60°,
在△ACP和△BCQ中,
ACP BCQ
CAP CBQ AC BC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ACP≌△BCQ(AAS),
∴CP=CQ,结论③正确;
又∵∠PCQ=60°,
∴△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,结论②正确.
∵△ACD≌△BCE,
∴∠ADC=∠AEO,
∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,
∴结论⑤正确.没有条件证出BO=OE,④错误;
综上,可得正确的结论有4个:①②③⑤.
故答案是:①②③⑤.
【点睛】
此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.
5.如图,在△ABC中,AB=AC,点D是BC的中点,点E是△ABC内一点,若
∠AEB=∠CED=90°,AE=BE,CE=DE=2,则图中阴影部分的面积等于__________.
【答案】4
【解析】
【分析】
作DG⊥BE于G,CF⊥AE于F,可证△DEG≌△CEF,可得DG=CF,则是S△BDE=S△AEC,由D 是BC中点可得S△BED=2,即可求得阴影部分面积.
【详解】
作DG⊥BE于G,CF⊥AE于F,
∴∠DGE=∠CFE=90°,
∵∠AEB=∠DEC=90°,
∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,
∴∠GED=∠CEF,
又∵DE=EC,
∴△GDE≌△FCE,
∴DG=CF,
∵S△BED=1
2BE•DG,S△BED=
1
2
AE•CF,AE=BE,
∴S△BED=S△BED,
∵D是BC的中点,
∴S△BDE=S△EDC=1
22
2
⨯⨯=2,
∴S阴影=2+2=4,
故答案为4.
【点睛】
本题考查了全等三角形的判定与性质,正确添加辅助线构造全等三角形是解题的关键.
6.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,
∠DEC=30°,HF=
3
2
,则EC=______
【答案】6
【解析】
【分析】
延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得
EC的长.
【详解】
如图,延长AF交CE于P,
∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,
∴∠ABH=∠PAC,
∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,
∴∠HEK=∠FAH,
∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,
∴∠AHF=∠EPF,
∴∠AHB=∠APC,
在△ABH与△APC中,
ABE PAC
AB AC
AHB APC
∠∠
⎧
⎪
⎨
⎪∠∠
⎩
=
=
=
,
∴△ABH≌△APC(ASA),
∴AH=CP,
在△AHF与△EPF中,
90
AHF EPF
AFH EFP
AF EF
∠∠
⎧
⎪
∠∠︒
⎨
⎪
⎩
=
==
=
,
∴△AHF≌△EPF(AAS),
∴AH=EP,∠CED=∠HAF,
∴EC=2AH,
∵∠DEC=30°,
∴∠HAF=30°,
∴AH=2FH=2×
3
2
=3,
∴EC=2AH=6.
【点睛】
本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,作出辅助线根据全等三角形是解题的关键.
7.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:
①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是
__________.(填写序号)
【答案】①③④
【解析】
【分析】
根据三角形内角和定理、角平分线的定义、三角形外角的性质、角平分线的性质解答即可.
【详解】
解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正确;
∵BD是∠ABC的平分线,∴∠DBC=
1
2
∠ABC=25°,∴∠DOC=25°+60°=85°,②错误;
∠BDC=60°﹣25°=35°,③正确;
∵∠ABC的平分线BD与∠ACE的平分线CD相交于点D,∴AD是∠BAC的外角平分
线,∴∠DAC=55°,④正确.
故答案为①③④.
本题考查的是角平分线的定义和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
8.如图所示,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段上,连接EF 、CF ,则下列结论
2BCD DCE ①∠=∠;EF CF =②;3DFE AEF ③∠=∠,2BEC CEF S
S =④中一定
成立的是______ .(把所有正确结论的序号都填在横线上)
【答案】②③
【解析】
分析:由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,易得AF=FD=CD ,继而证得①∠DCF=12
∠BCD ;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),得出对应线段之间关系,进而得出答案.
详解:①∵F 是AD 的中点,
∴AF=FD ,
∵在▱ABCD 中,AD=2AB ,
∴AF=FD=CD ,
∴∠DFC=∠DCF ,
∵AD ∥BC ,
∴∠DFC=∠FCB ,
∴∠DCF=∠BCF ,
∴∠DCF=12
∠BCD , 即∠BCD=2∠DCF ;故此选项错误;
②延长EF ,交CD 延长线于M ,
∵四边形ABCD 是平行四边形,
∴AB ∥CD ,
∴∠A=∠MDF ,
∵F 为AD 中点,
在△AEF 和△DFM 中,
A FDM AF DF
AFE DFM ∠∠⎧⎪⎨⎪∠∠⎩
=== , ∴△AEF ≌△DMF (ASA ),
∴FE=MF ,∠AEF=∠M ,
∵CE ⊥AB ,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF ,
∴FC=FM ,故②正确;
③设∠FEC=x ,则∠FCE=x ,
∴∠DCF=∠DFC=90°-x ,
∴∠EFC=180°-2x ,
∴∠EFD=90°-x+180°-2x=270°-3x ,
∵∠AEF=90°-x ,
∴∠DFE=3∠AEF ,故此选项正确.
④∵EF=FM ,
∴S △EFC =S △CFM ,
∵MC >BE ,
∴S △BEC <2S △EFC
故S △BEC =2S △CEF 错误;
综上可知:一定成立的是②③,
故答案为②③.
点睛:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DME 是解题关键.
9.如图,已知BD ,CD 分别是 ∠ABC 和∠ACE 的平分线,连接AD ,∠DAC=46°, ∠BDC _________
【答案】44°
【解析】
如图,过点D 作DF ⊥BA ,交BA 的延长线于点F ,过点D 作DH ⊥AC 于点H ,过点D 作
DG⊥BA,交BC的延长线于点G,
∵BD,CD分别是∠ABC和∠ACE的平分线,∴DF=DG=DH,
∵DH⊥AC,DF⊥BA,
∴AD平分∠CAF,
∴∠DAC=∠FAD=46°,
∴∠BAC=180°-46°-46°=88°;
∵BD,CD分别是∠ABC和∠ACE的平分线,
∴∠DCE=1
2
ACE
∠,∠DBC=
1
2
ABC
∠,
∵∠DCE=∠BDC+∠DBC,∠ACE=
∴∠BDC+∠DBC=1
2
(∠BAC+∠ABC),
∴∠BDC=1
2
∠BAC=00
1
8844
2
⨯= .
10.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.
【答案】4
【解析】
试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,
∵AB∥CD,
∴MN⊥CD,
∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,
∴OM=OE=2,
∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,
∴ON=OE=2,
∴MN=OM+ON=4,
即AB与CD之间的距离是4.
点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.
二、八年级数学全等三角形选择题(难)
11.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握12.如图,BD是∠ABC的角平分线,AD⊥AB,AD=3,BC=5,则△BCD的面积为()
A.7.5 B.8 C.10D.15
【答案】A
【解析】
作DE⊥BC于E,根据角平分线的性质,由BD是∠ABC的角平分线,AD⊥AB,DE⊥BC,求出
DE=DA=3,根据三角形面积公式计算S△BCD=1
2
×BC×DE=7.5,
故选:A.
13.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;
②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有()
A.①②④B.①②③C.①②④⑤D.①②③⑤
【答案】D
【解析】
试题解析:①利用公式:∠CDA=1
2
∠ABC=45°,①正确;
②如图:延长GD与AC交于点P',
由三线合一可知CG=CP',
∵∠ADC=45°,DG⊥CF,
∴∠EDA=∠CDA=45°,
∴∠ADP=∠ADF,
∴△ADP'≌△ADF(ASA),
∴AF=AP'=AC+CP'=AC+CG,故②正确;
③如图:
∵∠EDA=∠CDA,
∠CAD=∠EAD,
从而△CAD≌△EAD,
故DC=DE,③正确;
④∵BF⊥CG,GD⊥CF,
∴E为△CGF垂心,
∴CH⊥GF,且△CDE、△CHF、△GHE均为等腰直角三角形,
∴2CD,故④错误;
⑤如图:作ME⊥CE交CF于点M,
则△CEM为等腰直角三角形,从而CD=DM,CM=2CD,EM=EC,∵∠MFE=∠CGE,
∠CEG=∠EMF=135°,
∴△EMF≌△CEG(AAS),
∴GE=MF,
∴CF=CM+MF=2CD+GE,
故⑤正确;
故选D
点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.
14.在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与△ABC全等的是()
A.△ACF B.△ACE
C.△ABD D.△CEF
【答案】C
【解析】
【分析】
利用勾股定理先分别求得△ABC的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.
【详解】
在△ABC中,22
+10,22
31
+2,2,
11
A、在△ACF中,22
21
+5105252,则△ACF与△ABC不全等,故不符合题意;
B、在△ACE中,10,2,2,则△ACE与△ABC不全等,故不符合题意;
C、在△ABD中,AB=AB,2=BC,2=AC,则由SSS可证明△ACE与△ABC全等,故符合题意;
D、在△CEF中,102,2,则△CEF与△ABC不全等,故不符合题意,故选C.
【点睛】
本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.
15.已知等边三角形ABC的边长为12,点P为AC上一点,点D在CB的延长线上,且BD=AP,连接PD交AB于点E,PE⊥AB于点F,则线段EF的长为()
A.6 B.5
C.4.5 D.与AP的长度有关
【答案】A
【解析】
【分析】
作DQ⊥AB,交直线AB的延长线于点Q,连接DE,PQ,根据全等三角形的判定定理得出△APE≌△BDQ,再由AE=BQ,PE=QD且PE∥QD,可知四边形PEDQ是平行四边形,进而
可得出EF=1
2
AB,由等边△ABC的边长为12可得出DE=6.
【详解】
解;如图,作DQ⊥AB,交AB的延长线于点F,连接DE,PQ,
又∵PE ⊥AB 于E ,
∴∠BQD=∠AEP=90°,
∵△ABC 是等边三角形,
∴∠A=∠ABC=∠DBQ=60°,
在△APE 和△BDQ 中,
A DBQ AEP BQD AP BD ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△APE ≌△BDQ (AAS ),
∴AE=BQ ,PE=QD 且PE ∥QD ,
∴四边形PEDQ 是平行四边形, ∴EF=12
EQ , ∵EB+AE=BE+BQ=AB , ∴EF=
12AB , 又∵等边△ABC 的边长为12,
∴EF=6.
故选:A.
【点睛】
本题主要考查全等三角形的判定与性质,平行四边形的判定与性质,解此题的关键在于根据题中PE ⊥AB 作辅助线构成全等的三角形.
16.如图,在△ABC 中,P 是BC 上的点,作PQ ∥AC 交AB 于点Q ,分别作PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若PR=PS ,则下面三个结论:①AS=AR ;②AQ=PQ ;③△PQR ≌△CPS ;④AC ﹣AQ=2SC ,其中正确的是( )
A.②③④B.①②C.①④D.①②③④【答案】B
【解析】
【分析】
连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得
△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.
【详解】
解:如图
连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,
AP是∠BAC的平分线,∠1=∠2,
△APR≌△APS.
AS=AR,
又QP/AR,
∠2 = ∠3又∠1 = ∠2,
∠1=∠3,
AQ=PQ,
没有办法证明△PQR≌△CPS,③不成立,
没有办法证明AC-AQ=2SC,④不成立.
所以B选项是正确的.
【点睛】
本题主要考查三角形全等及三角形全等的性质.
17.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;
;,其中正确的有( )个.
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;
由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;
先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;
先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】
‚解:①∵∠DAF=90°,∠DAE=45°,
∴∠FAE=∠DAF-∠DAE=45°.
在△AED与△AEF中,
,
∴△AED≌△AEF(SAS),①正确;
②∵△AED≌△AEF,
∴AF=AD,
∵,
∴∠FAB=∠CAD,
∵AB=AC,
∴≌,②正确;
③∵∠BAC=∠DAF=90°,
∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.
在△ACD与△ABF中,
,
∴△ACD≌△ABF(SAS),
∴CD=BF,
由①知△AED≌△AEF,
在△BEF 中,∵BE+BF >EF ,
∴BE+DC >DE ,③正确;
④由③知△ACD ≌△ABF ,
∴∠C=∠ABF=45°,
∵∠ABE=45°,
∴∠EBF=∠ABE+∠ABF=90°.④正确.
故答案为D .
【点睛】
本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.
18.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF .列结论:
①△ADC ≌△AFB ;②△ABE ≌△ACD ;③△AED ≌△AEF ;④BE DC DE += 其中正确的是( )
A .②④
B .①④
C .②③
D .①③
【答案】D
【解析】 解:∵将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,∴△ADC ≌△AFB ,故①正确; ②无法证明,故②错误;
③∵△ADC ≌△AFB ,∴AF =AD ,∠FAB =∠DAC .∵∠DAE =45°,∴∠BAE +∠DAC =45°,∠FA E =∠DAE =45°.在△FAE 和△DAE 中,∵AF =AD ,∠FAE =∠DAE ,AE =AE ,∴△FAE ≌△DAE ,故③正确;
④∵△ADC ≌△AFB ,∴DC =BF ,∵△FAE ≌△DAE ,∴EF =ED ,∵BF +BE >EF ,∴DC +BE >ED .故④错误.
故选D .
19.已知111122,A B C A B C △△的周长相等,现有两个判断:①若
21212112,A A B C B A A C ==,则111222A B C A B C △≌△;②若12=A A ∠∠,1122=A C A C ,则111222A B C A B C △≌△,对于上述的两个判断,下列说法正确的是( )
A .①,②都正确
B .①,②都错误
C .①错误,②正确
D .①正确,②错误
【解析】
【分析】
根据SSS即可推出△111
A B C≅△
222
A B C,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.
【详解】
解:①△111
A B C,△
222
A B C的周长相等,
1122
A B A B
=,
1122
AC A C
=,1122
B C B C
∴=,
∴△
111
A B C≅△
222
()
A B C SSS,
∴①正确;
②如图,延长11
A B到
1
D,使
1111
B D B C
=,,延长
22
A B到
2
D,使
2222
B D B C
=,
∴111111
A D A
B B C
=+,
222222
A D A
B B C
=+,
∵111122
,
A B C A B C
△△的周长相等,
1122
=
A C A C
∴
1122
A D A D
=,
在△111
A B D和△
222
A B D中
1122
12
1122
=
=
A D A D
A A
A C A C
=
⎧
⎪
∠∠
⎨
⎪
⎩
,
∴△
111
A B D≅△
222
A B D(SAS)
∴12
=
D D
∠∠,
∵1111
B D B C
=,
2222
B D B C
=
∴1111
=
D D C B
∠∠,
2222
=
D D C B
∠∠,
又∵1111111
=
A B C D D C B
∠∠+∠,
2222222
=
A B C D D C B
∠∠+∠,
∴1112221
==2
A B C A B C D
∠∠∠,
在△111
A B C和△
222
A B C中
111222
12
1122
=
=
=
A B C A B C
A A
A C A C
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
,
∴△
111
A B C≅△
222
A B C(AAS),
综上所述:①,②都正确.
故选:A.
【点睛】
本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.
20.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()
A.2对B.3对C.4对D.5对
【答案】C
【解析】
【分析】
先根据条件,利用AAS可知△ADB≌△AEC,然后再利用HL、ASA即可判断
△AOE≌△AOD,△BOE≌△COD,△AOC≌△AOB.
【详解】
∵AB=AC,BD⊥AC于D,CE⊥AB于E,
∴∠ADB=∠AEC=90°,
∵∠A为公共角,
∴△ADB≌△AEC,(AAS)
∴AE=AD,∠B=∠C
∴BE=CD,
∵AE=AD,OA=OA,∠ADB=∠AEC=90°,
∴△AOE≌△AOD(HL),
∴∠OAC=∠OAB,
∵∠B=∠C,AB=AC,∠OAC=∠OAB,
∴△AOC≌△AOB.(ASA)
∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,
∴△BOE≌△COD(ASA).
综上:共有4对全等三角形,
故选C.
【点睛】
本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法
有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.
21.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:
①BD=CD;②AD+CF=BD;③CE=1
2
BF;④AE=BG.其中正确的是
A.①②B.①③C.①②③D.①②③④
【答案】C
【解析】
【分析】
根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出
CE=AE=1
2
AC,又因为BF=AC所以CE=
1
2
AC=
1
2
BF,连接CG.因为△BCD是等腰直角三角
形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.
【详解】
解:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.故①正确;
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴△DFB≌△DAC.
∴BF=AC;DF=AD.
∵CD=CF+DF,
∴AD+CF=BD;故②正确;
在Rt△BEA和Rt△BEC中.
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt △BEA ≌Rt △BEC.
∴CE=AE=12
AC. 又由(1),知BF=AC ,
∴CE=
12AC=12
BF ;故③正确; 连接CG.
∵△BCD 是等腰直角三角形,
∴BD=CD.
又DH ⊥BC ,
∴DH 垂直平分BC.∴BG=CG.
在Rt △CEG 中,
∵CG 是斜边,CE 是直角边,
∴CE<CG.
∵CE=AE ,
∴AE<BG.故④错误.
故选C.
【点睛】
本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.
22.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,DBC DCB ∠=∠,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:
①CDE △≌BDF ;②CE AB AE =+;③BDC BAC ∠=∠;④DAF CBD ∠=∠. 其中正确的结论有( ).
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
BD=CD,AD是角平分线,所以FD=DE,∠DFB=∠DEC=90°,所以CDE≌BDF;①正确.由全等得BF=CE,因为FA=AE,FB=AB+FA,所以CE=AB+AE, ②正确.由全等知,
∠=∠,
∠DCE=∠FBD,所以∠BAC=∠BDC.③正确. ∴DBF DCE
∴A、B、C、D四点共圆,
∠=∠,④正确.
∴DAF CBD
故选D.
23.在△ABC与△DEF中,下列各组条件,不能判定这两个三角形全等的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DE,∠B=∠E,∠A=∠F
C.AC=DF,BC=DE,∠C=∠D D.AB=EF,∠A=∠E,∠B=∠F
【答案】B
【解析】利用全等三角形的判定定理,分析可得:
A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;
B、∠A=∠F,∠B=∠E,AC=DE,对应边不对应,不能证明△ABC与△DEF全等;
C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF全等;
D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;
故选:D.
点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
24.如图,与都是等边三角形,,下列结论中,正确的个数是
( )①;②;③;④若,且,则.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
利用全等三角形的判定和性质一一判断即可.
【详解】
解:∵与都是等边三角形
∴AD=AB,AC=AE,∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC +∠BAC
即∠DAC=∠EAB
∴
∴,①正确;
∵
∴∠ADO=∠ABO
∴∠BOD=∠DAB=60°,②正确
∵∠BDA=∠CEA=60°,∠ADC≠∠AEB
∴∠BDA-∠ADC≠∠CEA-∠AEB
∴,③错误
∵
∴∠DAC+∠BCA=180°
∵∠DAB=60°,
∴∠BCA=180°-∠DAB-∠BAC=30°
∵∠ACE=60°
∴∠BCE=∠ACE+∠BCA=60°+30°=90°
∴④正确
故由①②④三个正确,
故选:C
【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
25.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC
的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .
A.8 B.10 C.2D.2
【答案】A
【解析】
【分析】
将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.
【详解】
解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,
根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,
∴△ABE是等腰直角三角形,
∴∠ABE=45°,
又∵∠ABC=45°,
∴∠EBC=90°,
∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,
∴∠BDF=∠ECB
在△EBC和△BFD中
EBC=BFD=90
ECB=BDF
EC=BD
⎧∠∠
⎪
∠∠
⎨
⎪
⎩
∴△EBC≌△BFD(AAS)
∴DF=BC=4
∴△DBC的面积=
11
BC DF=44=8
22
⋅⨯⨯
故选A.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.
26.如图,点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,BF=CE,添加一个适当的条件后,仍不能使得△ABC≌△DEF()
A.AC=DF B.AC∥DF C.∠A=∠D D.AB=DE
【答案】A
【解析】
【分析】
根据AB∥DE证得∠B=∠E,又已知BF=CE证得BC=EF,即已具备两个条件:一边一
角,再依次添加选项中的条件即可判断.
【详解】
∵AB ∥DE ,
∴∠B =∠E ,
∵BF =CE ,
∴BF +FC =CE +FC ,
∴BC =EF ,
若添加AC =DF ,则不能判定△ABC ≌△DEF ,故选项A 符合题意;
若添加AC ∥DF ,则∠ACB =∠DFE ,可以判断△ABC ≌△DEF (ASA ),故选项B 不符合题意;
若添加∠A =∠D ,可以判断△ABC ≌△DEF (AAS ),故选项C 不符合题意;
若添加AB =DE ,可以判断△ABC ≌△DEF (SAS ),故选项D 不符合题意;
故选:A .
【点睛】
此题考查三角形全等的判定定理,熟练掌握定理,并能通过定理去判断条件是否符合全等是解决此题的关键.
27.如图(1),已知AB AC =,D 为BAC ∠的角平分线上一点,连接BD ,CD ;如图(2),已知AB AC =,D ,E 为BAC ∠的角平分线上两点,连接BD ,CD ,BE ,CE ;如图(3),已知AB AC =,D ,E ,F 为BAC ∠的角平分线上三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依此规律,第6个图形中有全等三角形的对数是( )
A .21
B .11
C .6
D .42
【答案】A
【解析】
【分析】
根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据
可分析出第6个图形中全等三角形的对数.
【详解】
解:∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
在△ABD与△ACD中,
AB AC
BAD CAD
AD AD
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ABD≌△ACD.
∴图1中有1对三角形全等;
同理图2中,△ABE≌△ACE,
∴BE=EC,
∵△ABD≌△ACD.
∴BD=CD,
又DE=DE,
∴△BDE≌△CDE,
∴图2中有3对三角形全等,3=1+2;
同理:图3中有6对三角形全等,6=1+2+3;
∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.
故选:A.
【点睛】
此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.
28.如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有()
A.2种B.3种C.4种D.6种
【答案】C
【解析】
【分析】
①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:证
△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:证
△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:证△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.
【详解】
解:有①②,①③,②④,③④,共4种,
①②,
理由是:∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
∴AB=AC,
即△ABC是等腰三角形;
①③,
理由是:∵在△EBO和△DCO中
BEO CDO
EOB DOC OB OC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△EBO≌△DCO,
∴∠EBO=∠DCO,
∵∠OBC=∠OCB(已证),
∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
②④,
理由是:∵在△EBO和△DCO中
BEO CDO
EOB DOC BE CD
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△EBO≌△DCO,
∴OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
③④,
理由是:∵在△EBO和△DCO中
BEO CDO
EOB DOC BE CD
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△EBO ≌△DCO ,
∴∠EBO=∠DCO ,OB=OC ,
∴∠OBC=∠OCB ,
∴∠EBO+∠OBC=∠DCO+∠OCB ,
即∠ABC=∠ACB ,
即AB=AC ,
∴△ABC 是等腰三角形;
故选C .
29.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG
=( )
A .73
B .8
3 C .113 D .133
【答案】D
【解析】
【分析】
过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.
【详解】
解:过点F 作FD ⊥AG ,交AG 的延长线于点D
∵53
BC CE = 设BC=5x ,则CE=3x
∴BE=BC +CE=8x
∵5AB BC x ==,90ABC ∠=︒,
∴∠BAC=∠BCA=45°
∴∠BCA=∠CAE +∠E=45°
由旋转可知∠EAF=90°,AF=EA
∴∠CAE +∠FAD=∠EAF -∠BAC=45°
∴∠FAD=∠E
在△FAD 和△AEB 中
90FAD E D ABE AF EA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
∴△FAD ≌△AEB
∴AD=EB=8x ,FD=AB
∴BD=AD -AB=3x ,FD=CB
在△FDG 和△CBG 中
90FDG CBG FGD CGB
FD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
∴△FDG ≌△CBG
∴DG=BG=12BD=32
x ∴AG=AB +BG=132
x ∴1313233
2
x
AG x BG == 故选D .
【点睛】
此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.
30.如图,AC ⊥BE 于点C ,DF ⊥BE 于点F ,且BC =EF ,如果添上一个条件后,可以直接利用“HL ”来证明△ABC ≌△DEF ,则这个条件应该是( )
A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A
【答案】B
【解析】
在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边AB=DE.
故选:B.。