北师大版八年级上学期期中数学试卷H卷
北师大版八年级上册数学期中测试卷及答案
![北师大版八年级上册数学期中测试卷及答案](https://img.taocdn.com/s3/m/88302a28c381e53a580216fc700abb68a982adc6.png)
北师大版八年级上册数学期中测试卷及答案北师大版八年级上册数学期中测试卷及答案本试卷满分120分,考试时间120分钟)一、选择题(每小题3分,共36分)1、36的平方根是()A、±6B、36C、±6D、-6改写:求36的平方根,正确的答案是±6.2、下列语句:①-1是1的平方根。
②带根号的数都是无理数。
③-1的立方根是-1.④38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应。
其中正确的有()A、2个B、3个C、4个D、5个改写:以下语句中,正确的是:①-1是1的平方根;③-1的立方根是-1;⑤(-2)的算术平方根是2;⑥-125的立方根是±5;⑦有理数和数轴上的点一一对应。
共有4个正确的语句,选项C为正确答案。
3、下列计算正确的是()A、-327=3B、a2+a3=a5C、a2·a3=a6D、(-2x)3=-6x3改写:下列计算中正确的是:A、-3-27=3.因为-3-27=-30,不等于3;B、a^2+a^3=a^5,正确;C、a^2·a^3=a^5,不等于a^6;D、(-2x)^3=-8x^3,不等于-6x^3.因此,正确答案为B。
4、分解因式-2xy2+6x3y2-1xy时,合理地提取的公因式应为()A、-2xy2B、2xyC、-2xyD、2x2y改写:分解因式-2xy^2+6x^3y^2-xy时,合理地提取的公因式应为2xy。
因为-2xy^2、6x^3y^2和-xy都含有xy,而且2是它们的最大公因数。
因此,正确答案为B。
5、对下列多项式分解因式正确的是()A、a3b2-a2b3+a2b2=a2b2(a-b)B、4a2-4a+1=4a(a-1)+1C、a2+4b2=(a+2b)2D、1-9a2=(1+3a)(1-3a)改写:对下列多项式分解因式正确的是:A、a^3b^2-a^2b^3+a^2b^2=a^2b^2(a-b);B、4a^2-4a+1=(2a-1)^2;C、a^2+4b^2=(a+2b)(a-2b);D、1-9a^2=(1+3a)(1-3a)。
北师大版八年级上册数学期中考试试卷含答案
![北师大版八年级上册数学期中考试试卷含答案](https://img.taocdn.com/s3/m/6bcdd9a89f3143323968011ca300a6c30d22f14a.png)
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是()A .227B C .-3.14D 2.下列四组线段中,能组成直角三角形的是()A .a=1,b=2,c=3B .a=2,b=3,c=4C .a=2,b=4,c=5D .a=3,b=4,c=53.若点P (a ,b )是第二象限内的点,则点Q (b ,a )在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列计算错误的是()AB C D .5.若函数()15m y m x =--是一次函数,则m 的值是()A .±1B .1-C .1D .26.下列二次根式中,最简二次根式是()A .B CD 7.一次函数24y x =-+的图象与y 轴的交点坐标是()A .(4,0)B .(0,4)C .(2,0)D .(0,2)8.如图,在Rt ABC △中分别以三角形的三条边为边向外作正方形,面积分别记为1S ,2S ,3S ,若14S =,216S =,则3S 的值为()A .10B .6C .12D .209.一次函数23y x =-的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限10.如图,在数轴上,点O 对应数字O ,点A 对应数字2,过点A 作AB 垂直于数轴,且AB=4,连接OB ,绕点O 顺时针旋转OB ,使点B 落在数轴上的点C 处,则点C 所表示的数介于()A .2和3之间B .3和4之间C .4和5之间D .5和6之间二、填空题11=________.12.已知点(),1A a 与点()4,B b -关于原点对称,则a-b 的值为________13有意义的x 的取值范围是14.点A(1,a)在直线y =-2x +3上,则a =_________15.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.16.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是_____.17.如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.三、解答题18.计算(1)-19.计算:(1(2)2(2(2-+.20.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?21.已知点P (a ,b )在第二象限,且|a|=3,|b|=8,求点P 的坐标.22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?23.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.24.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=,CD=BC=8,求四边形ABCD的面积.25.已知一次函数y=-2x+4.求:(1)求图象与x轴、y轴的交点A、B的坐标.(2)画出函数的图象.(3)求△AOB的面积.26.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为1y(元),B套餐为2y(元),月通话时间为x分钟.(1)分别表示出1y与x,2y与x的函数关系式;(2)月通话时间多长时,A,B两种套餐收费一样?(3)某客户每月的通话时间大概是500分钟,他应该选择哪种套餐更省钱?(4)如果某公司规定员工的话费最多是200元,他应该选择哪种套餐?参考答案1.B【解析】【分析】根据有理数和无理数的定义直接求解,无限不循环小数是无理数.【详解】解:A.227是有理数,故本选项不符合题意;C. 3.14-是有理数,故本选项不符合题意;2=是有理数,故本选项不符合题意.故选:B【点睛】本题主要考查了有理数和无理数的判断,熟练掌握有理数和无理数的概念是解答此题的关键.2.D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A.∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B.∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C.∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D.∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选D.【点睛】本题考查了勾股定理的逆定理.解题的关键是,验证两小边的平方和等于最长边的平方即可证明直角三角形.3.D【解析】【分析】应先判断出所求的点的横坐标的符号,进而判断其所在的象限.【详解】解:∵点P (a 、b )在第二象限,∴a<0,b>0,∴点Q (b ,a )在第四象限,故选D .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,-);第二象限(-,+);第三象限(-,-)第四象限(+,-).4.B 【解析】【分析】根据二次根式的运算直接进行计算化简判断即可.【详解】A,正确;BC =D故选:B .【点睛】本题主要考查二次根式的化简运算,熟练掌握二次根式的运算是解题的关键.5.B 【解析】【分析】函数()15my m x =--是一次函数,根据一次函数的定义,求出m 的值即可.【详解】∵函数()15m y m x =--是一次函数,∴1m =,且10m -≠,解得:1m =-,故答案选:B .【点睛】本题考查一次函数的定义:一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,正确判断未知数的次数与系数是解答本题的关键.6.A 【解析】【分析】根据最简二次根式的两个条件逐项判定即可.【详解】解:A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意;B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含分母,故C 不符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选:A .【点睛】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.B 【解析】【分析】求一次函数图像与y 轴的交点坐标,令x=0,求出y 值即可.【详解】令x=0,得y=-2×0+4=4,∴一次函数与y 轴的交点坐标是(0,4),故选B.【点睛】本题考查一次函数与坐标轴的交点坐标问题,求图像与y 轴交点坐标时,令x=0,解出y 即可;求图像与x 轴交点坐标时,令y=0,解出x 即可.8.D【分析】根据勾股定理的验证计算即可;【详解】在Rt ABC △中,222AC AB BC +=,由正方形的面积公式可得21S AB =,222S AC =,223S BC =,∵14S =,216S =,∴31241620S S S =+=+=;故选D .【点睛】本题主要考查了勾股定理的应用,准确分析计算是解题的关键.9.B 【解析】【分析】根据一次函数(0)y ax b a =+≠的a 、b 的符号判定该一次函数所经过的象限即可.【详解】解: 一次函数23y x =-的20k =>,30b =-<,∴一次函数23y x =-经过第一、三、四象限,即一次函数23y x =-不经过第二象限.故选:B .【点睛】本题考查了一次函数的图象,即直线y kx b =+所在的位置与k 、b 的符号有直接的关系.解题的关键是掌握当0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.10.C 【解析】【分析】因为△OAB 是一个直角三角形,且有OC=OB ,所以可求得OB 的长度即得C 点所表示的数,可判断其大小.解:∵AB ⊥OA∴在直角三角形OAB 中有OA 2+AB 2=OB 2∴.OB ==∴45又∵OC=OB∴点C 所表示的数介于4和5之间故选:C .【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案.11.2【解析】【分析】先根据二次根式的性质化简,再合并即可.【详解】22==,故答案为:2.12.5【分析】直接利用关于原点对称点的性质得出a ,b 的值,代入求解即可.【详解】解:∵点A (a ,1)与点B (﹣4,b )关于原点对称,∴4a =,1b =-,∴5a b -=,故答案为:5.13.x≥3【分析】根据二次根式有意义的条件,可推出30x -≥,然后通过解不等式,即可推出5x ≥【详解】解:若30x -≥,原根式有意义,3x ∴≥,故答案为3x ≥.14.1【详解】将点A 的坐标(1,a)代入直线的解析式y=-2x+3,得a=-2+3=1.故答案为:115.4【分析】少走的距离是AC+BC-AB ,在直角△ABC 中根据勾股定理求得AB 的长即可.【详解】解:如图,∵在Rt ABC 中,222AB AC BC =+,∴5AB ===米,则少走的距离为:3452AC BC AB +-=+-=米,∵2步为1米,∴少走了4步.故答案为:4.16.x=2【解析】由直线y=2x+b 与x 轴的交点坐标是(2,0),求得b 的值,再将b 的值代入方程2x+b=0中即可求解.【详解】把(2,0)代入y=2x+b,得:b=-4,把b=-4代入方程2x+b=0,得:x=2.故答案为:x=2.17.y=12x【详解】设该正比例函数的解析式为y=kx(k≠0).将点(2,1)的坐标代入该正比例函数的解析式y=kx,得2k=1,∴12k=,∴该正比例函数的解析式为12y x =.故答案为:12 y x =18.(1)-1(2)32-【分析】(1)根据平方差公式,结合二次根式的性质进行计算即可;(2)先根据二次根式的性质进行化简,然后再进行运算即可.(1)解:22=-56=-1=-(2)23==32=19.(1)(2)8﹣【分析】(1)先利用二次根式的乘除法则计算,然后化简后合并即可;(2)根据完全平方公式和平方差公式计算即可;【详解】解:(1+=(2)原式=4343-++-=8﹣20.0.8【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC ==∴ 2.4BC ==∴2CE BC BE =-=∵在Rt CDE 中 2.5DE =∴ 1.5CD ==∴0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.21.(-3,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数确定出a 、b 的值,然后写出点的坐标即可.【详解】解:∵点P(a ,b)在第二象限,且|a|=3,|b|=8,∴a=−3,b=8,∴点P 的坐标为(−3,8).22.发生火灾的住户窗口距离地面14米【分析】在Rt △ACB 中,利用勾股定理求出BC 即可解答.【详解】解:由题意,AB=15,AC=DE=9,CD=AE=2,BD ⊥AC ,在Rt △ACB 中,由勾股定理得:12BC ===,∴BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.23.(1)见解析;(2)A 2(-2,0),B 2(-1,3),C 2(1,2),(3)P (m-3,-n )【分析】(1)直接利用关于x 轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接利用平移变换的性质得出点2P 的坐标.【详解】解:(1)如图所示:△111A B C 就是所要求作的图形;(2)如图所示:△222A B C 就是所要求作的图形,其顶点坐标为A 2(-2,0),B 2(-1,3),C 2(1,2);(3)如果AC 上有一点(,)P m n 经过上述两次变换,那么对应22A C 上的点2P 的坐标是:2(3,)P m n --.故答案为:(3,)m n --.【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.24.4+3【解析】【分析】先根据勾股定理求出BD的长,再根据勾股定理逆定理求得△BCD是直角三角形,四边形ABCD的面积是两个直角三角形的面积之和.【详解】∵AB=AD,∠BAD=90°,AB=22∴BD22AB AD=4,∵BD2+CD2=42+(432=64,BC2=64,∴BD2+CD2=BC2,∴△BCD为直角三角形,∴S四边形ABCD =S△ABD+S△BCD=12×2222+12×43=4+325.(1)A(2,0)B(0,4);(2)见解析;(3)S△AOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解.【详解】解:(1)让y=0时,∴0=-2x+4解得:x=2;让x=0时,∴y=-2×0+4=4,∴一次函数y=-2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);(2)如下图是一次函数y=-2x+4的图象;(3)S△AOB=11244 22AO BO⨯⨯=⨯⨯=【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标.26.(1)y1=0.1x+15,y2=0.15x;(2)300分钟;(3)A套餐;(4)A套餐.【解析】【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)由当12y y <时A 套餐更省钱,即当x >300时,A 套餐优惠;否则B 套餐优惠,据此解答即可;(3)令y 1=200和y 2=200元,分别求得x ,选x 较大的实惠.【详解】解:(1)由题意可知,A 套餐的收费方式:10.115y x =+,B 套餐的收费方式为:20.15y x =.(2)由12y y =,得0.1150.15x x +=,解得300x =,即月通话时间为300分钟时,A ,B 两种套餐收费一样.(3)当12y y <时A 套餐更省钱,即0.1150.15x x +<,解得300x >因为500>300分钟时,所以他应选选A 套餐;(4)令y 1=200,有200=0.1x+15,解得:x=1850;令y 2=200,有200=0.15x ,解得:x≈1333;∵1850>1333∴应选择A 套餐.。
北师大版八年级上册数学期中考试试卷附答案
![北师大版八年级上册数学期中考试试卷附答案](https://img.taocdn.com/s3/m/b91758b6b9f67c1cfad6195f312b3169a551ea0b.png)
北师大版八年级上册数学期中考试试题一、单选题1.下列运算中错误的有()个①164=②393=③233-=-④2(3)3-=⑤±233=A .4B .3C .2D .12.在△ABC 中,AC=3,BC=4,则AB 的长是()A .5B .7C .5或7D .大于1且小于73.在0(2)-,38,0,934,0.010010001……,2π,-0.333…,5 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有()A .2个B .3个C .4个D .5个4.在平面直角坐标系中,点P (﹣1,x 2+2)一定在()A .第一象限B .第二象限C .第三象限D .第四象限5.满足3x 7的整数x 是()A .-2,-1,0,1,2,3B .-1,0,1,2C .-2,-1,0,1,2D .-1,0,1,2,36.下列语句:①-1是1的平方根.②带根号的数都是无理数.③-1的立方根是-1.38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有()A .2个B .3个C .4个D .5个7.若a 、b 为实数,且满足|a -2|2b -=0,则b -a 的值为()A .2B .0C .-2D .以上都不对8.在平面内,确定一个点的位置一般需要的数据个数是()A .1B .2C .3D .49.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A′,使梯子的底端A′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B′,那么BB′()A .小于1mB .大于1mC .等于1mD .小于或等于1m10.将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm ,则h 的取值范围是()A .h≤17cmB .h≥8cmC .15cm≤h≤16cmD .7cm≤h≤16cm二、填空题11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12.2(5)-的算术平方根是__________________,-8的立方根是_________,13.直角三角形两直角边长分别为3和4,则它斜边上的高为____________________.14.已知M (a ,﹣3)和N (4,b )关于原点对称,则(a+b )2002=_____.15.在直角三角形ABC 中,斜边2AB =,则222AB AC BC ++=________.16.若一个正数的两个平方根分别为231a a +-与,则=a _____,这个正数是_________.17.如图,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短路程为________cm.(π取3)18===,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题19.计算(13(2)(3)2+(4)02(1++-20.已知21b +的平方根为±3,3a+2b-1的算术平方根为4,求a+2b 的平方根.21.如图所示的一块地,∠ADC =90°,AD =8m ,CD =6m ,AB =26m ,BC =24m ,求这块地的面积S .22.在如图所示的正方形网络中,每个小正方形的边长为1,格点三角形(顶点是网络的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(3)点B 关于x 轴的对称点B 2的坐标是;(4)△ABC 的面积为.23.如图,在长方形ABCD 中,AB =6,BC =8,将长方形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处.(1)求EF 的长;(2)求四边形ABCE 的面积.24.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(),0a ,点C 的坐标为()0,b ,且a ,b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动.(1)点B 的坐标为___________;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.25.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?参考答案1.B【解析】【分析】根据平方根、立方根及算术平方根的定义,即可求解.【详解】=,正确;43≠,错误;=-该等式无意义,错误;33=,正确;=±,错误.⑤3故选:B.【点睛】此题主要考查了立方根、算术平方根、平方根的定义,解题注意平方根和算术平方根的区别:一个非负数的平方根有两个,算术平方根有一个,是非负数.2.D【解析】【分析】三角形中,两边之和永远大于第三边,两边之差永远小于第三边;【详解】题中三角形的两边为3与4,所以第三边的范围应该大于1而小于7【点睛】本题主要考查了三角形三边的关系,由三角形三边性质我们不难得出最后结果3.C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0(=1,2π 2.010101…(相邻两个1之间有1个0)共4个.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B【解析】【详解】解:210,20,x -+ 符合第二象限点的特征故选B5.B【解析】【分析】二次根式的估算,需要准确地找出整数部分【详解】1的整数部分为2,所以整数x 应该满足23x -<<,故答案为B 选项【点睛】本题主要考查了二次根式中的估算思想,重点在于准确找出相应的整数或小数部分.6.B【解析】【分析】根据平方根的意义求出a≥0),即可判断①,根据无理数的意义即可判断②;根据立(a≥0),即可判断⑤;根据实数和数轴上的点能建立一一对应关系,即可判断⑦.解:1的平方根是±1,①正确;=2-1的立方根是-1,③正确;,2(-2)2=4,4,⑤正确;-125的立方根是-5,⑥错误;实数和数轴上的点一一对应,⑦错误;∴正确的有3个.故选:B.7.C【解析】【详解】由题意得:a-2=0,20b-=,所以a=2,b=0.∴b-a的值为0-2=-2.故选C.8.B【解析】【分析】在一个平面内,要有两个有序数据才能表示清楚一个点的位置.【详解】解:因为在一个平面内,一对有序实数确定一个点的位置,即2个数据,所以选B.故选B.【点睛】本题考查如何在平面内表示一个点的位置的知识.9.A【解析】【分析】由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,得出AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【详解】在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB由题意可知AB=A′B′,又OA′=3,根据勾股定理得:OB′∴BB′=<1.故选:A.10.D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【详解】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题考查了勾股定理的应用,解题的关键是注意此题要求的是筷子露在杯外的取值范围,主要是根据勾股定理求出筷子在杯内的最大长度.【分析】利用勾股定理求得AC即可求解.【详解】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,∴4=∴AC+BC=3+4=7米.故答案是:7.【点睛】本题考查勾股定理的应用,理解题意是解答的关键.12.5±3-2【解析】【分析】根据算术平方根、平方根、立方根的定义即可求解.【详解】解:2(5)-=25∴2(5)-算术平方根是5,±3-8的立方根是-2故答案为:5;±3;-2.【点睛】此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.13.12 5【解析】【分析】设斜边为c,斜边上的高为h,利用勾股定理可求出斜边的长,根据面积法即可得答案,设斜边为c ,斜边上的高为h ,∵直角三角形两直角边长分别为3和4,∴,∴此直角三角形的面积=12×5h=12×3×4,解得:h=125.故答案为:125.【点睛】本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,解题的关键是熟练掌握面积法.14.1【解析】【详解】解:∵M (a ,﹣3)和N (4,b )关于原点对称,∴a=-4,b=3,∴200220022002()(43)(1)1a b +=-+=-=,故答案为:1.15.8【解析】【分析】直接由勾股定理求解即可.【详解】解:∵在直角三角形ABC 中,2AB =,∴222AC BC AB +==4,∴222AB AC BC ++=4+4=8,故答案为:8.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答的关键.16.14-##-0.254916【解析】【分析】根据平方根的性质,可得2310a a ++-=,从而得到14a =-,即可求解.【详解】解:∵一个正数的两个平方根分别为231a a +-与,∴2310a a ++-=,解得:14a =-,∴这个正数为()2214922416a ⎛⎫+=-+= ⎪⎝⎭.故答案为:14-;491617.15【解析】【分析】本题应先把圆柱展开即得其平面展开图,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πr ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理求得AB 的长.【详解】解:如图所示,圆柱展开图为长方形,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πrcm ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理得=15cm .故蚂蚁经过的最短距离为15cm .(π取3)【点睛】本题考查了平面展开图-最短路径问题,解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.18(1)n n =+≥【解析】【分析】=(2=+(3=+则将此规律用含自然数n(n≥1)(1)n n =+≥【详解】解:=(2=+(3=+……,发现的规律用含自然数n(n≥1)(1)n n =+≥.(1)n n =+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.19.(1)1;(2;(3)0;(4)3+【解析】【分析】(1)先运用分母有理化化简,然后再计算即可;(2)先运用二次根式的性质化简,然后再计算即可;(3)先运用平方差公式计算,然后再化简即可;(4)先运用零次幂、二次根式的性质、完全平方公式化简,然后再计算即可.【详解】解:(133=623 2+-=4-3=1;(2)=(3)2+=5-7+2=0;(4)02(1=41(12)⨯-=423+-+=3+【点睛】本题主要考查了二次根式的运算,掌握分母有理化、二次根式的性质成为解答本题的关键.20..【解析】【分析】直接利用平方根以及算术平方根的定义得出a,b的值,进而得出答案.【详解】∵2b+1的平方根为±3,∴2b+1=9,解得:b=4,∵3a+2b−1的算术平方根为4,∴3a+2b−1=16,则3a+8−1=16,解得:a=3,则a+2b=11,故a+2b 的平方根是:.【点睛】此题考查平方根,算术平方根,解题关键在于掌握其性质定义.21.这块地的面积为296m .【解析】【分析】如图所示,连接AC ,利用勾股定理求出AC ,运用勾股定理逆定理可证ACB △为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【详解】解:如图所示,连接AC ,在Rt ADC 中,10(m)AC ===,22222102467624AC BC BC +=+===,ACB ∴ 为直角三角形,∴这块地的面积21124106896(m )22ACB ADC S S S =-=⨯⨯-⨯⨯= ,答:这块地的面积为296m .【点睛】本题考查了勾股定理和逆定理的应用,解题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.22.(1)见解析;(2)见解析;(3)(﹣2,﹣1);(4)4【解析】【分析】(1)根据A 、C 两点坐标确定平面直角坐标系即可;(2)画出A 、B 、C 的对应点A 1、B 1、C 1即可;(3)根据点B 2的位置,写出坐标即可解决问题;(4)利用分割法求出面积即可.【详解】(1)平面直角坐标系如图所示:(2)△A 1B 1C 1如图所示;(3)点B 关于x 轴的对称点B 2的坐标是(﹣2,﹣1);(4)S △ABC=3×412-⨯2×412-⨯1×212-⨯3×2=4.【点睛】本题考查了作图﹣轴对称变换,解答本题的关键是熟练掌握轴对称的性质,学会用分割法求三角形面积,属于中考常考题型.23.(1)EF=3;(2)梯形ABCE 的面积为39.【解析】【详解】试题分析:(1)根据折叠的性质,折叠前后边相等,即CF CD DE EF ==,,得:AE AD EF =-,在Rt ACD △中,根据勾股定理,可将AC 的长求出,知CF 的长,可求出AF 的长,在Rt AEF 中,根据222AE EF AF =+,可将EF 的长求出;(2)根据S 梯形=()2AE BC AB +⨯,将各边的长代入进行求解即可.试题解析:(1)设EF=x ,∵四边形ABCD 是矩形,∴CD=AB=6,AD=BC=8,依题意知:△CDE ≌△CFE ,∴DE=EF=x ,CF=CD=6.∵在Rt ACD △中,226810AC =+=,∴AF=AC−CF=4,AE=AD−DE=8−x.在Rt AEF 中,有222AE EF AF =+,即222(8)4x x -=+解得x=3,即:EF=3.(2)由(1)知:AE=8−3=5,梯形ABCE 的面积()()5863922AE BC AB S +⨯+⨯===.24.(1)(4,6);(2)(2,6);(3)2.5秒或5.5秒.【解析】【分析】(1|6|0b -=,可以求得a 、b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.【详解】解:(1)a 、b |6|0b -=,40a ∴-=,60b -=,解得4a =,6b =,∴点B 的坐标是(4,6),故答案是:(4,6);(2) 点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,248∴⨯=,4= OA ,6OC =,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:862-=,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:52 2.5÷=秒,第二种情况,当点P 在BA 上时.点P 移动的时间是:(641)2 5.5++÷=秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.【点睛】本题考查坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.25.0.8【解析】【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC ==∴ 2.4BC ==∴2CE BC BE =-=∵在Rt CDE 中 2.5DE =∴ 1.5CD ==∴0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.【点睛】本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键.。
最新北师大新版八年级上学期数学期中考试试卷(含答卷)
![最新北师大新版八年级上学期数学期中考试试卷(含答卷)](https://img.taocdn.com/s3/m/0407595c58eef8c75fbfc77da26925c52cc591f4.png)
最新北师大新版八年级上学期数学期中试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、16的算术平方根是()A.4B.﹣4C.±4D.82、在2π,,﹣,,3.14,3.868668666…(相邻两个8之间6的个数逐次加1)中,无理数的数是()个A.2B.3C.4D.53、直线y=2x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4、方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限5、下列运算正确的是()A.B.C.D.=2 6、△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=137、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度8、一个正数的两个平方根分别是2a﹣3和5﹣a,则这个数是()A.49B.25C.16D.79、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3 B.﹣3 C.3或﹣3 D.k的值不确定10、如图所示,直线y=x+4与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB,y轴上的动点,则△CDE周长的最小值是()A.3B.3C.2D.2二、填空题(每小题3分,满分18分)11、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是.12、计算:|3.14﹣π|=.13、函数y=2x﹣4+b是正比例函数,则b=.14、如图,长方形OABC放在数轴上,OA=2,OC=1,以A为圆心,AC长为半径画弧交数轴于P点,则P点表示的数为.15、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为cm.16、如图,在Rt△ABC中,AB=AC,∠BAC=90°,点D,E为BC上两点.∠DAE=45°,F为三角形ABC外一点,且FB⊥BC,F A⊥AE,则结论:①CE =BF;②BD2+CE2=DE2;③S△ADE=AD•EF;④CE2+BE2=2AE2,其中正确的有(横线上填写序号).第14题第15题第16题最新北师大新版八年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算18、已知2a﹣1的算术平方根是3,3a+b﹣1的立方根是2,求a﹣2b的平方根.19、如图,直角坐标系中,每个小正方形边长为单位1,△ABC的三个顶点分别在正方形格点上.(1)请在图中作出△ABC关于原点中心对称的△A′B′C′;(2)求△ABC的面积.20、已知y+4与x﹣3成正比例,且x=1时,y=0.(1)求y与x的函数表达式;(2)点M(m+1,2m)在该函数图象上,求点M的坐标.21、如图,矩形ABCD中,AB=10,BC=7,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD交于点O,且OE=OD.(1)求证:OP=OF;(2)求AP的长.22、已知平面直角坐标系中一点P(m﹣4,2m+1);(1)当点P在y轴上时,求出点P的坐标;(2)当P A平行于x轴,且A(﹣4,﹣3),求出点P的坐标;(3)当点P到两坐标轴的距离相等时,求出m的值.23、小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?24、如图,直线y=﹣2x+4交x轴和y轴于点A和点B,点C(0,﹣2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BE交x轴于点E(E点在点A右侧),当∠ABE=45°时,求直线BE.25、在平面直角坐标系中,点A(a,0),点B(0,b),且a、b满足(a﹣5)2+|b﹣3|=0.(1)填空:a=,b=;(2)如图1,作等腰Rt△ABC,∠ABC=90°,AB=BC,求C点坐标;(3)如图2,点M(m,0)在x轴负半轴上,分别以AB、BM为腰,点B为直角顶点,在第一、第二象限作等腰Rt△ABD、等腰Rt△MBE,连接DE交y轴于点F,求点F的坐标。
北师大版八年级上册数学期中考试试题含答案
![北师大版八年级上册数学期中考试试题含答案](https://img.taocdn.com/s3/m/a47830883086bceb19e8b8f67c1cfad6185fe94d.png)
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
北师大版八年级上学期期中考试数学试卷带答案
![北师大版八年级上学期期中考试数学试卷带答案](https://img.taocdn.com/s3/m/64a29126b207e87101f69e3143323968011cf4b7.png)
北师大版八年级上学期期中考试数学试卷带答案一、单选题(本大题共10小题)1.下列说法正确的是( )A .2的相反数是2-B .2是4的平方根C .327D .计算:2(3)3-=-2.估计11 ).A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.已知M 285M 的取值范围是( )A .8<M <9B .7<M <8C .6<M <7D .5<M <6 4.下列计算,正确的是( )A .2222a a a ⨯=B .224a a a +=C .224()a a -=D .22(1)1a a +=+5.通过计算比较图1、图2中阴影部分的面积,可以验证的计算式子是( )A .a (a -2b )=a 2-2abB .(a -b )2=a 2-2ab +b 2C .(a +b )(a -b )=a 2-b 2D .(a +b )(a -2b )=a 2-ab -2b 26.已知多项式x a -与221x x +-的乘积中不含2x 项,则常数a 的值是( )A .1-B .1C .2-D .27.在等腰三角形中,两个内角的比为4:1,则顶角为( )A .036B .020C .036或0144D .020或01208.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=1300,∠B=1000,则∠BCD的度数为()A.700B.800C.600D.9009.如图,在∆ABC中,AB、BC的垂直平分线相交于三角形内一点O,下列结论中错误的是()A.点O在AC的垂直平分线上B.∆AOB、∆BOC、∆COA都是等腰三角形C.∠OAB+∠OBC+∠OCA=90︒D.点O到AB、BC、CA的距离相等10.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0B.1C.2D.3二、填空题(本大题共7小题)11.一个正数的平方根分别是1x+和5x-,则x=.12.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.13.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=27,y=3时,用上述方法产生的密码是:(写出一个即可).14.小明站在镜子前看到他运动衣上的号码是108,则小明衣服上的实际号码是. 15.如图,一条船从A处出发,以15里/小时的速度向正北方向航行,10个小时到达B处,从A 、B 望灯塔,得∠NAC =37°,∠NBC =74°,则B 到灯塔C 的距离是 里.16.如图,在∠ABC 中,∠ ACB =115O ,BD =BC ,AE =AC . 则∠ECD 的度数为 .17.已知2是x 的立方根,且(y ﹣2z +5)23z -,3339x y z ++- . 三、解答题(本大题共7小题)18.计算:()2231342233448-+ 19.先化简,再求值:(1)x (x -2)+(x +1)2,其中x =1.(2)已知3a 2-4a -7=0,求代数式(2a -1)2-(a +b )(a -b )-b 2的值.20.如图,已知在∠ABC 中,AB =AC ,AD ∠BC 于D ,若将此三角形沿AD 剪开后再拼成一个四边形,你能拼出所有不同形状的四边形吗?画出所拼的四边形的示意图(标出图中的直角).21.先填写表,通过观察后再回答问题: a … 0.0001 0.01 1 100 10000 …a … 0.01x 1 y 100 …(1)表格中x = ,y = ;(2)从表格中探究a 与a ①已知10,则1000≈ ; ②已知m 8.973,若b =89.73,用含m 的代数式表示b ,则b = ;(3)试比较a a 的大小.22.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a +2b )(a +b )=a 2+3ab +2b 2.请回答下列问题:(1)写出图2中所表示的数学等式: .(2)利用(1)中所得的结论,解决下列问题:已知a +b +c =11,ab +bc +ac =38,求a 2+b 2+c 2的值;(3)图3中给出了若干个边长为a 和边长为b 的小正方形纸片及若干个长为b 、宽为a 的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框内,要求所拼的几何图形的面积为2a 2+5ab +2b 2;②再利用另一种计算面积的方法,可将多项式2a 2+5ab +2b 2分解因式,即2a 2+5ab +2b 2= .23.ABC 中,AB=AC ,D 是BC 中点,DE AB ⊥于E ,DF AC ⊥于F ,求证:DE DF =.24.如图,在∠ABC中,AB=AC,P为BC边上任意一点,PF∠AB于F,PE∠AC于E,若AC边上的高BD=a.(1)试说明PE+PF=a;(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a的关系式,不需要说明理由.参考答案1,B2,C3,C4,C5,D6,D7,D8,B9,D10,D11.212.﹣213.103010 (答案不唯一)14.801.15.150.16.32.5°.17.318.2.19.(1)3;(2)8.20.如图所示:21.(1)0.1,10 (2)①31.6;②100b m = (3)当0a =时a a =;当1a =时a a =;当01a <<时a a >;当1a >时a a <22.(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;故答案为(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc .(2)a 2+b 2+c 2=(a +b +c )2﹣2ab ﹣2ac ﹣2bc=112﹣2×38=45.(3)①如图所示②如上图所示的矩形面积=(2a +b )(a +2b )它是由2个边长为a 的正方形、5个边长分别为a 、b 的长方形、2个边长为b 的小正方形组成,所以面积为2a 2+5ab +2b 2,则2a 2+5ab +2b 2=(2a +b )(a +2b ) 故答案为:(2a +b )(a +2b ).23.证明:AB AC =,D 是BC 中点B C ∴∠=∠ BD CD =DE AB ⊥于E ,DF AC ⊥于F90BED CFD ∴∠=∠=︒在BED 和CFD △中 B C BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩BED CFD ∴≌(AAS ) DE DF ∴=.24.(1)如图,连接AP ,则S △ABC =S △ABP +S △ACP∠12AC •BD =12AB •PF +12AC •PE ∠AB =AC∠BD =PE +PF =a .(2)PF -PE =a ,理由如下: 连接AP ,则S △ABC =S △ABP -S △ACP ∠12AC •BD =12AB •PF -12AC •PE ∠AB =AC∠BD =PF -PE =a .。
北师大版八年级上册数学期中考试试卷带答案
![北师大版八年级上册数学期中考试试卷带答案](https://img.taocdn.com/s3/m/b8ac5f9f4128915f804d2b160b4e767f5acf80a5.png)
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,最小的数是()A .-3B .3C .13D .-π2.在下列各数0,13,3.14,π,0.731)A .1B .2C .3D .43.与数轴上的点一一对应的是()A .有理数B .无理数C .实数D .正数和负数4.在平面直角坐标系中,点(5,-7)在()A .第一象限B .第二象限C .第三象限D .第四象限5.点A(-3,4)关于y 轴对称的点的坐标是()A .(3,-4)B .(-3,-4)C .(3,4)D .(-4,-3)6.如图:在△ABC 中,∠C =90°,AB =13,BC =5,则以AC 为直径的半圆面积为()A .6πB .12πC .36πD .18π7.已知△ABC 为直角三角形,在下列四组数中,不可能是它的三边长的一组是()A .3,4,5B .6,8,10C .5,12,13D .3,3,58.下列说法正确的是()A .-4没有立方根B .1的立方根为±1C .5的立方根为D .136的立方根是169.下列函数:①y=8x ;②y=-8x;③y=2x 2;④y=-2x+1.其中是一次函数的个数为A .0B .1C .2D .310.已知一次函数y kx b =+的图象如图示,则k ,b 的取值范围是()A .0,0k b <>B .0,0k b <<C .0,0k b >>D .0,0k b ><二、填空题11.计算:328.12.比较大小(填“>、<或=”)55-121213.若函数y=(a-1)x+2a -1是正比例函数,则a=_____________.14.在坐标系中,已知两点A (3,-2)、B (-3,-2),则直线AB 与x 轴的位置关系是__________.15.如图,在△ABC 中,AB =10,AC =13,AD ⊥BC ,垂足为D ,M 为AD 上任一点,则MC 2﹣MB 2等于_____.16.若实数a ,b 10a a b ++,则代数式20212022a b +=________.17.已知点A(a ,0)和点B(0,4),且直线AB 与坐标轴围成的三角形的面积10,则a 的值是______.三、解答题18.计算:12793(2)(1312364324-⎛⎫----+- ⎪⎝⎭;57)572+;21220482333⎛÷ ⎝19.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上,如果用(0,0)表示A点的位置,用(4,-1)表示B点的位置.(1)画出直角坐标系;(2)画出与△ABC关于x轴对称的图形△DEF;(3)分别写出点D、E、F的坐标.20.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.21.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.;①求证:EC BD②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.x+3与x轴相交于点A,与y轴相交于点B22.如图,直线y=12(1)直接写出△AOB的面积;(2)若C为y轴上一点,且△ABC的面积是12,求点C的坐标;(3)若P是x轴上一点,且AB=AP,求P的坐标.23.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.(1)分别求AB、EB的长;(2)求CD的长.24.某教育网站对下载资源规定如下:若注册VIP用户,则下载每份资源收0.2元,另外每年收500元的VIP会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用()1分别写出注册VIP用户的收费1(y元)和注册普通用户2(y元)与下载数量(x份)之间的函数关系式()2某学校每年要下载1500份资源,那么注册哪种用户比较合算?()3一年内下载多少份资源是两种用户收费一样?25.如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求EF的长参考答案1.D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵-π<−3<13<3,∴最小的数是-π,故选:D.【点睛】此题考查了实数的大小比较,解题的关键是掌握实数的大小比较法则.2.B【解析】【分析】根据无理数的定义即可求解.【详解】解:在下列各数0,13,3.14,π,0.7312π2两个.故选:B【点睛】本题考查了无理数的定义,无理数是指无限不循环小数,熟知无理数的定义是解题的关键.3.C【解析】【详解】∵实数与数轴上的各点是一一对应关系,∴与数轴上的点一一对应的是实数.故选C.4.D【解析】【分析】根据各象限的点的坐标的符号特点判断即可.【详解】解:在平面直角坐标系中,点(5,-7)所在的象限为第四象限.故选:D.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点A(-3,4)关于y轴对称的点坐标(3,4).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.D 【解析】【详解】∵∠C=90°,AB=13,BC=5,∴=12,∴以AC 为直径的半圆的面积=211822AC ππ=(故选D .7.D 【解析】【详解】A 选项:∵32+42=52,∴三条线段能组成直角三角形,故A 选项不符题意;B 选项:∵62+82=102,∴三条线段能组成直角三角形,故B 选项不符题意;C 选项:∵52+122=132,∴三条线段能组成直角三角形,故C 选项不符题意;D 选项:∵32+32≠52,∴三条线段不能组成直角三角形,故D 选项符合题意;故选D .8.C 【解析】【分析】根据正数的立方根是正数,负数的立方根是负数,可以求出题目中各式子的结果,然后分析即可.【详解】解:∵正数的立方根是正数,负数的立方根是负数,∴A .-4有立方根,故选项错误,不符合题意;B .1的立方根是1,故选项错误,不符合题意;C .5的立方根,故选项正确,符合题意;D .136的立方根是故选:C .【点睛】此题考查了立方根,解题的关键是明确正数的立方根是正数,负数的立方根是负数.9.D【解析】【详解】根据一次函数定义可知:③由于的自变量x的指数是2,故不是一次函数,其它都是一次函数,共计有3个.故选D.10.D【解析】【分析】观察图象,找到一次函数y=kx+b的图象过的象限,进而分析k、b的取值范围,即可得答案.【详解】观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选:D.【点睛】本题要求学生根据图象分析出k、b参数的取值范围,考查学生对一次函数中k、b参数的意义的了解与运用.11【解析】【分析】【详解】解:-=【点睛】本题考查了二次根式的加减,熟知二次根式的加减运算法则是解题关键,注意将二次根式化简后被开方数相同的二次根式才能进行加减运算.12.>>【解析】【分析】根据二次根式比较大小的方法:作差法及平方法进行求解即可.【详解】解:∵25=,22=4,∴5>4,;12=,∴1122->0,∴1122,故答案为:>;>.【点睛】本题考查了二次根式的大小比较,解题的关键是熟练掌握二次根式的大小比较的方法.13.-1【详解】解: 函数y=(a-1)x+2a -1是正比例函数,解得:1,a =-故答案为:1-【点睛】本题考查的是正比例函数的定义,掌握“正比例函数的定义”是解本题的关键.14.平行【解析】【详解】∵A (3,-2)、B (-3,-2),∴点A 、点B 到x 轴的距离相等,∴AB∥x轴,故答案是:平行.15.69【解析】【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2),=132−102,=69.故答案为:69.【点睛】此题考查了勾股定理的知识,解题的关键是熟练掌握勾股定理,分别两次运用勾股定理求出MC2和MB2.16.0【解析】【分析】首先根据二次根式的非负性,即可求得a,b的值,再把a,b的值代入代数式,即可求得其值.【详解】解: 0+=,0≥0≥100a ab +=⎧∴⎨+=⎩解得11a b =-⎧⎨=⎩20212022∴+a b ()2021202211=-+11=-+0=故答案为:0【点睛】本题考查了利用算术平方根的非负性求参数及代数式的值,熟练掌握和运用利用二次根式的非负性求参数的方法是解决本题的关键.17.±5【解析】【分析】根据坐标先表示,4,OA a OB ==再利用三角形的面积公式列方程即可.【详解】解: 点A(a ,0)和点B(0,4),直线AB 与坐标轴围成的三角形的面积10,故答案为:5±【点睛】本题考查的是坐标与图形,直线与坐标轴围成的图形面积,掌握“表示坐标系内线段的长度”是解本题的关键.18.(1)3;(2)3;(3)0;(4)3-.【解析】(1)333=+33=+2833=;(2)解:(101224-⎛⎫-- ⎪⎝⎭()()(1442=---+-1442=+-+3=(3)解:2+=5-7+2=0;(4)⎛÷ ⎝3⎛÷ ⎝==.【点睛】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,立方根的定义,绝对值的化简等知识,综合性较强,熟练掌握二次根式的运算法则和相关定义是解题关键.19.(1)见解析;(2)见解析;(3)D(0,0),E(4,1),F(1,2)【解析】【分析】(1)根据平面直角坐标系的定义以点A为坐标原点建立即可;(2)根据网格结构找出点A、B、C关于x轴对称的点D、E、F的位置,然后顺次连接即可;(3)根据平面直角坐标系写出各点的坐标即可.【详解】解:(1)如图所示;(2)△DEF如图所示;(3)由图可知:D(0,0),E(4,1),F(1,2).【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.12米【解析】【分析】设旗杆的高度为x米,根据勾股定理列方程求解即可.【详解】解:设旗杆的高度为x米,则绳长为(x+1)米,根据题意得:(x+1)2=x2+52,即2x-24=0,解得:x=12.答:旗杆的高度是12米.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.21.①证明见解析;②见解析.【分析】①通过AAS 证得CAE BCD ∆≅∆,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【详解】①证明:∵90ACB ︒∠=,∴90ACE BCD ︒∠+∠=.∵90ACE CAE ︒∠+∠=,∴CAE BCD ∠=∠.在△AEC 与△BCD 中,CEA BDCCAE BCD AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CAE BCD AAS ∆∆≌.∴EC BD =;②解:由①知:BD CE a==CD AE b==∴1()()2AEDB S a b a b =++梯形221122a ab b =++.又∵AEC BCD ABCAEDB S S S S =++ 梯形2111222ab ab c =++212ab c =+.∴222111222a ab b abc ++=+.整理,得222+=a b c .【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.22.(1)9;(2)(0,-1)或(0,7);0)或0).【解析】【分析】(1)先求出点A 、B 的坐标,即可求出△AOB 的面积;(2)设点C(0,y),根据△ABC 的面积是12,得到12×6×∣3-y ∣=12,求出y ,问题得解;(3)根据勾股定理求出P 坐标.(1)解:∵直线y=12x+3与x 轴相交于点A ,与y 轴相交于点B ,∴点A(-6,0),点B(0,3),∴AO=6,BO=3,∴△AOB 的面积=12×AO×BO=12×6×3=9;(2)解:设点C(0,y),∵△ABC 的面积是12,∴12×6×∣3-y ∣=12∴y=-1或y=7∴点C 的坐标为(0,-1)或(0,7);(3)解:∵AO=6,BO=3,∠AOB=90°,∴∴∴点0)或0).【点睛】本题为一次函数综合题,考查了一次函数与坐标轴交点问题,面积问题,勾股定理等知识,综合性较强,理解题意,学会用点的坐标表示线段的长是解题关键.23.(1)10cm,4cm AB BE ==(2)3cm CD =【解析】【分析】(1)根据勾股定理求得AB 的长,根据折叠的性质可得AE AC =,根据BE AB AE =-即可求解(2)由勾股定理求得AB=10cm ,然后由翻折的性质求得BE=4cm ,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在△BDE 中,利用勾股定理列方程求解即可.【详解】解:(1)∵在Rt △ABC 中,两直角边AC=6cm ,BC=8cm ,10cm AB ∴===.由折叠的性质可知:DC=DE ,AC=AE=6cm ,1064cmBE AB AE ∴=-=-=(2)由折叠的性质可知:DC=DE ,AC=AE=6cm ,∠DEA=∠C=90°,∴∠DEB=90°,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在Rt △BED 中,由勾股定理得:BE 2+DE 2=BD 2,即42+x 2=(8-x )2,解得:x=3,3CD ∴=cm【点睛】本题主要考查的是翻折变换以及勾股定理的应用;熟练掌握翻折的性质和勾股定理是解题的关键.24.(1)VIP 用户:10.2500y x =+,普通用户:20.4y x =.(2)当1500x =时,注册普通用户比较合算;(3)当下载量为2500份时,注册两种用户的收费相等.【解析】【分析】(1)依据若注册VIP 用户,则下载每份资源收0.2元,另外每年收500元的VIP 会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用,即可得到VIP 用户的收费(y 1元)和注册普通用户y 2(元)与下载数量x (份)之间的函数关系式;(2)依据x=1500,分别求得y 1和y 2的值,即可得到结论;(3)由y 1=y 2得:0.2x+500=0.4x ,进而得出当下载量为2500份时,注册两种用户的收费相等.【详解】解:()1VIP 用户:10.2500y x =+,普通用户:20.4y x =.()2 当1500x =时,10.25000.21500500800(y x =+=⨯+=元)20.40.41500600(y x ==⨯=元)12y y ∴>∴当1500x =时,注册普通用户比较合算;()3由1y =2y 得:0.25000.4x x +=,解得:2500x =,所以当下载量为2500份时,注册两种用户的收费相等.【点睛】这道题主要考查了一次函数的定义和综合应用的知识点,只要掌握这个知识点进行计算即可.25.5【解析】【分析】根据折叠的性质得到AF=AD ,DE=EF ,根据勾股定理计算即可.【详解】解:∵四边形ABCD 是长方形,BC=10cm ,AB=8cm ∴AD=BC=10cm ,AB=CD=8cm又∵AF 为AD 折叠所得∴AF=AD=10cm ,,DE EF ∴BF 2=AF 2-AB 2=36∴BF=6cm∴FC=BC-BF=4设CE 长为x cm ,则DE 长为(8-x )cm ,则EF 长为(8-x )cm .在RT △CEF 中,x 2+42=(8-x)2解得:x=3∴CE=3cm∴EF=8-3=5cm故EF 的长为5cm .。
北师大版八年级(上)期中数学试卷(含答案)
![北师大版八年级(上)期中数学试卷(含答案)](https://img.taocdn.com/s3/m/88949cfa767f5acfa0c7cd32.png)
北师大版八年级(上)期中数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)1.16的算术平方根是()A.±4B.﹣4C.4D.±82.下列各组数中,是直角三角形的三条边长的是()A.1,3,B.7,24,25C.2,3,D.3,4,63.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(3,2)B.(﹣3,﹣2)C.(2,3)D.(﹣3,2)4.若点P(x,y)的坐标x,y满足=0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(﹣3,﹣4)C.(4,﹣3)D.(﹣4,3)6.下列函数中是一次函数的是()A.y2=4x B.y=C.y=2x2 D.y=(x﹣1)2﹣x27.已知点A(1,a),B(﹣2,b)在一次函数y=(m2+1)x﹣3的图象上,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定8.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A.B.C.D.9.甲、乙两艘客轮沿不同方向同时离开港口P,航行的速度都是40m/min,甲客轮15min到达点A,乙客轮用20min到达B点,若A、B两点的直线距离为1000m.甲客轮沿北偏东30°的方向航行,则乙客轮的航行方向可能是()A.南偏西30°B.北偏西30°C.南偏东60°D.南偏西60°10.在平面直角坐标系xOy中,点A(2,﹣2),点P在坐标轴上,如果△AOP是等腰三角形,则满足条件的点P有()个A.2B.4C.6D.8二、填空题(共6小题,每小题3分,共18分)11.若a,b为两个连续的正整数a<2<b,则a+b=.12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k=.13.如图在平面直角坐标系中xOy中,四边形ABCD是平行四边形,AB=10,∠DAB=45°,点D在y轴上,且OD=4,则点B的坐标为.14.若实数x、y满足,则2x+y的立方根是.15.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.16.如图所示,在矩形纸片ABCD中,AB=6,AD=10.折叠纸片使点A落在边BC上的A’处,折痕为PQ.当点A′在边BC上移动时,折痕的端点P、Q也随之移动,若限定点P、Q分别在边AB、AD上移动,则点A′在边BC上可移动的最大距离为.三、解答题(共7小题,共52分)17.计算:(1);(2);(3);(4).18.如图所示,在平面直角坐标系中,已知A(2,2),B(1,0),C(3,﹣2).(1)请在平面直角坐标系中画出△ABC.(2)请作△ABC关于y轴对称的△A′B′C′.(3)已知点P为x轴上一点,若S△ABP=5时,则点P的坐标为.19.已知点P(3a+6,a﹣1).(1)若点P在y轴上,求点P的坐标;(2)直线PQ∥x轴,且经过y轴上的点M(0,﹣2)且PQ=5,求点Q的坐标.20.如图,在Rt△ABC,∠ACB=90°,AC=BC,分别过A、B作过C的直线l的垂线,垂足分别为M、N.(1)求证:△AMC≌△CNB;(2)若AM=3,BN=5,求AB的长.21.如图,已知直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的函数表达式.(2)已知直线AB上一点C在第一象限,且点C的坐标为(a,2),求a的值及△BOC的面积.22.自来水公司为限制单位用水,每月只给启迪中学计划内用水3000吨,计划用水每吨收费4元,超计划部分每吨按6元收费.(1)某月启迪中学用水2800吨,水费是元;若用水3200吨,水费元.(2)写出超出计划时,启迪中学水费y(元)与每月用水量x(吨)之间的函数关系式并写出自变量的取值范围.(3)若某月启迪中学缴纳水费15000元,求该单位用水多少吨?23.(1)问题探究①如图1,在直角△ABC中,∠BAC=90°,BC=13,AB=5,P是BC边上一动点,连接AP,则AP的最小值为.②如图2,在等腰直角△ABC中,∠ABC=90°,AC=a,求边AB的长度(用含a的代数式表示).(2)问题解决如图3,在等腰直角△ABC中,∠ABC=90°,AC=4,D是边BC的中点,若P是AB边上一动点,E 是AC边上一动点,试求PD+PE的最小值.北师大版八年级(上)数学期中试卷答案一、选择题二、填空题三、解答题17.(1)28;(2)56-;(3)1133-;(4)81- 18.(1)作图略;(2)作图略;(3)(6,0)或(-4,0).19.(1)点P 的坐标(0,﹣3);(2)点Q 的坐标(8,﹣2)或(﹣2,﹣2)20.(1)证明略;(2)AB 的长为172.21.(1)22-=x y ;(2)2,2==∆BOC S a22.(1)11200;13200(2)()300060006>x x y -=;(3)该单位用水3500吨.23.(1)①1360;②a 22. (2)PD+PE 的最小值为3;。
北师大版八年级上册数学期中考试试卷有答案
![北师大版八年级上册数学期中考试试卷有答案](https://img.taocdn.com/s3/m/0ab13075a88271fe910ef12d2af90242a895ab88.png)
北师大版八年级上册数学期中考试试题一、单选题1.下列数是无理数的是( )A.227- B .π C .0 D 2.已知点A(﹣2,y 1),B(3,y 2)在函数y =﹣3x+2的图象上,则y 1与y 2的大小关系是() A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .无法确定 3.下列几组数中,不能作为直角三角形三边长的是( )A .5,12,13B .9,40,41C .3,4,5D .2,3,4 4.在平面直角坐标系中,下列各点属于第四象限的是( )A .(1,2)B .(3,8)-C .(3,5)--D .(6,7)- 5.在同一坐标系中,函数y kx =与y x k =-的图象大致是( )A .B .C .D . 6.如图,长方体的高为9m ,底面是边长为6m 的正方形,一只蚂蚁从如图的顶点A 开始,爬向顶点B.那么它爬行的最短路程为( )A .10mB .12mC .15mD .20m7.已知:如图,在△ABC ,△ADE 中,△BAC =△DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:△BD =CE ;△BD△CE ;△CD 2+CE 2=2CA 2;△BE 2=2(AD 2+AB 2),其中结论正确的个数是( )A .1B .2C .3D .48.下列说法:△实数和数轴上的点是一一对应的;△-1-有意义,则x≥1;±8,其中正确的有( )A .1个B .2个C .3个D .4个9.点M (﹣4,3)关于x 轴对称的点的坐标为( )A .(3,﹣4)B .(4,﹣3)C .(﹣4,﹣3)D .(4,3) 10.已知正比例函数y kx =,且y 随x 的增大而减少,则直线2y x k =+的图像是( ) A . B . C . D .二、填空题11.﹣125的立方根是 .12.若直线y =2x 是直线m 向左平移3个单位再向下平移1个单位后得到的,则直线m 的表达式为____.13a 的小数部分是b ,则ab =___.14.如图,在平面直角坐标系中,直线y =x+2和直线y =ax+b (a≠0)相交于点P .根据图象可知,方程x+2=ax+b 的解是x =___.15.如图,一次函数483y x =-+的图像与x 轴、y 轴分别交于A 、B 两点,P 是x 轴正半轴上的一个动点,连接BP ,将△OBP 沿BP 翻折,点O 恰好落在AB 上,则点P 的坐标为______.16.点P (2,4)与点Q (-3,4)之间的距离是____.17.如图,在平面直角坐标系中,A(0,6),B(﹣4,0),C(2,0),点D,E分别在射线CA上,并且DE=AC,P为线段AB上一点,当△DPE为以ED为斜边的等腰直角三角形时,Р点坐标为____.三、解答题18.计算:(1(2)3).19.如图,在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5).请回答下列问题:(1)△ABC关于x轴的对称图形为△A1B1C1,则A1点坐标为.(2)△ABC的面积=,点C到AB的距离为.(3)P为x轴上一点,PA+PB最小值=.20.我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫可爱三角形.(1)△根据“可爱三角形”的定义,请判断:等边三角形一定是可爱三角形,是否正确.并填空 (填“正确”或“不正确”);△若三角形的三边长分别是4、、,则该三角形 (是或不是)可爱三角形;(2)△,则周长为 ;△若Rt△ABC 是可爱三角形,且一条直角边长为,则斜边长为 .21.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为300AC km =,400BC km =,又500AB km =,以台风中心为圆心周围250km 以内为受影响区域.(1)求ACB ∠的度数.(2)海港C 受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E 处时,海港C 刚好受到影响,当台风运动到点F 时,海港C 刚好不受影响,即250CE CF km ==,则台风影响该海港持续的时间有多长?22.甲骑电动车,乙骑自行车从同一出发地点沿同一路线到棋盘山游玩,设乙行驶的时间x (h ),甲、乙两人距出发点的路程S 甲、S 乙关于x 的函数图象如图△所示,甲、乙两人之间的路程差y 关于x 的函数图象如图△所示.请你解决以下问题:(1)甲的速度是 km/h ,乙的速度是 km/h ;(2)甲出发 h 时,与乙相遇;(3)对比图△、图△可知:a = ;(4)乙出发 h 时,甲、乙两人之间的路程差为7.5km .23.如图,直线l1分别与x轴,y轴交于A,B两点,A,B的坐标分别为(2,0)、(0,3),过点B的直线l2:y=132x 交x轴于点C、D(n,6)是直线l1上的一点,连接CD.(1)求l1的解析式;(2)求C、D的坐标;(3)P为直线l1线上的动点,△DCP面积等于16时,直接写出Р点坐标为.24.如图,在平面直角坐标系中,直线y=﹣0.5x+2与x轴,y轴分别交于点A和点B,与直线y=x交于点C、P(m,0)为x轴上一动点(P不与原点重合),过P作x轴垂线与直线y=x和y=﹣0.5x+2分别交于点M和点N,过N作x轴的平行线交直线y=x于D.(1)求C点坐标;(2)求当MN=OB时,m的值;并直接写出此时四边形COPN的面积=;(3)直接写出当DN=2NP时,m的值=;(4)过D作y轴平行线交直线AB于点E,P点在运动过程中,MNDE的值=.25.如图所示,在直角坐标系xOy中,A(3,4),B(1,2),C(5,1).(1)作出△ABC关于y轴的对称图形△A1B1C1;(2)写出△A1B1C1的顶点坐标;(3)求出△ABC的面积.26.如图所示的一块地,已知AD=4米,CD=3米,△ADC=90°,AB=13米,BC=12米,则这块地的面积为多少?参考答案1.B2.A3.D4.D5.B6.C7.C8.B9.C10.D11.-5【解析】【分析】根据立方根的定义计算即可【详解】因为3(5)125-=-,所以-125的立方根是-5故答案为:-5【点睛】本题考查了求一个数的立方根,熟知立方根的定义是解决本题的关键12.25y x =-【解析】【分析】根据直线的平移规律求解即可.函数的平移规律:左加右减,上加下减.【详解】解:△直线y =2x 是直线m 向左平移3个单位再向下平移1个单位后得到的,△直线y =2x 向右平移3个单位再向上平移1个单位后可得到直线m ,△()23125y x x =-+=-,△直线m 的表达式为25y x =-.故答案为:25y x =-.【点睛】此题考查了函数的平移规律,解题的关键是熟练掌握函数的平移规律:左加右减,上加下减.132 ( 2-)【分析】的大小,a 的小数部分b ,再代入计算即可.【详解】解:<<12∴<,的整数部分1a =,<<23∴<<,的小数部分2b =,△12)2ab =⨯=.2.【点睛】此题主要考查了无理数的估算能力,能够正确的估算出无理数的大小是解答此类题的关键.14.5【解析】【分析】两直线的交点坐标横坐标为方程x+2=ax+b 的解.【详解】解:把y =7代入y =x+2得,7=x+2,解得x =5,△P 点的横坐标为5,△直线y =x+2和直线y =ax+b (a≠0)相交于点P ,△方程x+2=ax+b 的解是x =5.故答案为5.【点睛】本题考查了根据一次函数图像解二元一次方程组,数形结合是解题的关键.15.(83,0) 【解析】【分析】过P 作PC△AB 于C ,设OP=x ,由一次函数解析式求出点A 、B 坐标,进而求得OA 、OB 、AB ,由折叠性质得PC=OP=x ,BC=OB ,在Rt△APC 中,由勾股定理即可求解.【详解】解:过P 作PC△AB 于C ,设OP=x ,当x=0时,y=8,当y=0时,由4083x =-+得:x=6, △OA=6,OB=8,10,由折叠性质得:PC=OP=x ,BC=OB=8,△AP=6﹣x ,AC=AB ﹣BC=10﹣8=2,在Rt△APC 中,由勾股定理得:2222(6)x x +=-,解得:x=83, △点P 的坐标为(83,0),故答案为:(83,0). 16.5【分析】P 、Q 两点纵坐标相等,在平行于x 轴是直线上,其距离为两点横坐标差的绝对值.【详解】△P (2,4)、Q (-3,4)两点纵坐标相等,△PQ△x 轴,△点P (2,4)与点Q (-3,4)之间的距离PQ=|-3-2|=5,故答案为5.17.208,93⎛⎫- ⎪⎝⎭【解析】如图所示,过点P 作直线l△y 轴,分别过点D 作DG△直线l 于G ,EH△直线l 于H ,过点D 作DN△y 轴于N ,过点E 作EM△x 轴于M,设直线AB ,直线CD 的解析式分别为11y k x b =+,22y k x b =+,则可求得直线AB ,直线CD 的解析式分别为362y x =+,36y x =-+,然后证明△NDA△△MCE 得到DN=CM ,NA=EM ,△PDG△△EPH 得到DG=PH ,GP=EH ,设3,62P m m ⎛⎫+ ⎪⎝⎭,(),36E n n -+,则OH n =,36EM n =-+,EH n m =-2DN CM n ==-,36NA EM n ==-+,312ON n =-+,2DG m n =--+,33636322PH m n m n =++-=+,3331263622GP n m n m =-+--=--+由此即可得到33623232n m n m m n m n ⎧-=--+⎪⎪⎨⎪--+=+⎪⎩,解方程即可. 【详解】解:如图所示,过点P 作直线l△y 轴,分别过点D 作DG△直线l 于G ,EH△直线l 于H ,过点D 作DN△y 轴于N ,过点E 作EM△x 轴于M ,设直线AB ,直线CD 的解析式分别为11y k x b =+,22y k x b =+,△111046k b b =-+⎧⎨=⎩,222026k b b =+⎧⎨=⎩解得1126b ⎨⎪=⎩,26b ⎨=⎩,△直线AB ,直线CD 的解析式分别为362y x =+,36y x =-+, △DE=AC , △DA=CE ,△DN△y 轴,EM△x 轴△DN△CM ,△DNA=△CME=90° △△NDA=△MCE , △△NDA△△MCE (AAS ), △DN=CM ,NA=EM ,△△DPE 是以DE 为斜边的等腰直角三角形, △PD=PE ,△DPE=90°, △△DPG+△EPH=90°, △DG△GH ,EH△GH , △△DGP=△PHE=90°, △△PDG+△DPG=90°, △△PDG=△EPH , △△PDG△△EPH (AAS ), △DG=PH ,GP=EH ,△A (0,6),B (-4,0),C (2,0), △OA=6,OB=4,OC=2, 设3,62P m m ⎛⎫+ ⎪⎝⎭,(),36E n n -+,△OH n =,36EM n =-+,EH n m =- △2DN CM n ==-,36NA EM n ==-+,△312ON n =-+,2DG m n =--+,33636322PH m n m n =++-=+△3331263622GP n m n m =-+--=--+,△23232m n m n⎪⎪⎨⎪--+=+⎪⎩,解得209169mn⎧=-⎪⎪⎨⎪=⎪⎩,△208,93P⎛⎫-⎪⎝⎭,故答案为:208,93⎛⎫- ⎪⎝⎭.18.(1)40;(2)3【分析】(1)先化简二次根式,再按二次根式的乘法法则计算即可;(2)利用平方差公式计算即可;【详解】解:(1)原式=10,=30+10=40,(2)原式=223-,=12-9,=319.(1)作图见解析,(1,4)-;(2)72(3)【解析】(1)根据题意作△ABC 的顶点,,A B C 关于x 轴的点111,,A B C ,顺次连接111,,A B C 则△A 1B 1C 1即为所求,根据坐标系写出1A 的坐标即可;(2)根据△ABC 的面积等于长方形的面积减去三个三角形的面积即可求得,根据勾股定理求,A B 两点的距离,进而根据等面积法求得C 到AB 的距离;(3)连接1A B 交x 轴于点P ,连接PA ,根据11PA PB PA PB A B +=+≥,根据勾股定理以及1,A B 的坐标求解即可.【详解】(1)如图,根据题意作△ABC 的顶点,,A B C 关于x 轴的点111,,A B C ,顺次连接111,,A B C 则△A 1B 1C 1即为所求;点1A (1,4)- 故答案为:(1,4)-(2)1117331213232222ABCS =⨯-⨯⨯-⨯⨯-⨯⨯=△()()1,4,4,2A BAB ∴==∴点C 到AB72⨯=故答案为:72(3)连接1A B 交x 轴于点P ,连接PA ,根据11PA PB PA PB A B +=+≥,()()11,4,4,2A B -1A B ∴==故答案为: 【点睛】本题考查了轴对称的性质,轴对称作图,勾股定理,两点之间线段最短,掌握以上知识是解题的关键.20.(1)△正确;△是;(2)△4或【解析】 【分析】(1)△设等边三角形的边长为a ,根据定义即可判断;△根据定义将已知数据代入验证即可; (2)△根据定义分类讨论,根据最短边的平方与最长边的平方和等于第三边的平方的2倍,列出方程求解即可;△设斜边长为m ,根据新定义以及勾股定理列出方程解方程即可 【详解】(1)△设等边三角形的边长为a ()0a >,2222a a a∴等边三角形一定是可爱三角形,故答案为:正确;△((222416,24,20===((22242∴+=⨯∴该三角形是可爱三角形(2)△c ,根据题意可得: 2222c +=或2222c +=c ∴=∴周长为=d ,根据题意得: 2222d d +=或2222d d +=解得d =∴周长为=△Rt ABC 一条直角边长为m ,,Rt△ABC 是可爱三角形,((22222m m ⎡⎤+=-⎢⎥⎣⎦或((22222m m +-=⨯解得:4m =或m =故答案为:4或【点睛】本题考查了新定义,实数的运算,勾股定理,等腰三角形的性质,分类讨论是解题的关键. 21.(1)90︒;(2)海港C 受台风影响,证明见解析;(3)台风影响该海港持续的时间为7小时. 【解析】 【分析】(1)根据勾股定理的逆定理进行判断;(2)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响;(3)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间. 【详解】 (1)300AC km =,400BC km =,500AB km =,222AC BC AB ∴+=,ABC ∆∴是直角三角形,△△ACB=90°;(2)海港C 受台风影响, 过点C 作CD AB ⊥,ABC ∆是直角三角形,AC BC CD AB ∴⨯=⨯, 300400500CD ∴⨯=⨯,240()CD km ∴=,以台风中心为圆心周围250km 以内为受影响区域, ∴海港C 受台风影响.(3)当250EC km =,250FC km =时,正好影响C 港口,70()ED km =,140EF km ∴=,台风的速度为20千米/小时, 140207∴÷=(小时)答:台风影响该海港持续的时间为7小时. 【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.22.(1)25,10;(2)13;(3)10;(4)43或74.【解析】【分析】(1)根据图象即可得出;(2)根据甲乙距离差为0,即可求得(2)结合图象△△,a是甲到达终点,乙还为到达终点,此时 1.5x=,求得两者距离差即可;(3)分时间段列二元一次方程即可得出.【详解】(1)根据函数图象可知,甲用了1h行驶了25km,根据v=st,得v甲=25km1h=25km/h;乙用了2.5h行驶了25km,根据v=st,得v乙=25km2.5h=10 km/h .故答案分别为25,10.由图△当甲、乙两人之间的路程差为0时,甲、乙两人相遇S乙=S甲设甲出发t h,与乙相遇,()250.510t t=+⨯解得13 t=∴甲出发13h时,与乙相遇(3)当x=1.5时,根据图象可知,S甲=25将x=1.5代入S乙=10x中得S乙=10⨯1.5=15km甲乙之间路程差为:S甲-S乙=25-15=10km 故答案为10(4)由(3)可知:a=10,b=1.5,相遇的时间为x=150.536 +=由(1)可知:当甲到达目的地时,甲的行驶时间为1h,乙的行驶时间为1.5h,此时a=10,设图△中函数解析式为y=mx+n(m≠0),当56≤ x≤1.5时,函数y =mx +n(m≠0)的图象经过(56,0),(1.5,10)两点, △5061.510m n m n ⎧+=⎪⎨⎪+=⎩, 解得 1.512.5m n =⎧⎨=-⎩△y =15x -12.5 5 1.56x ⎛⎫≤≤ ⎪⎝⎭.当1.5≤x≤2.5时,函数y =mx +n(m≠0)的图象经过(56,0),(2.5,0)两点,△5062.50m n m n ⎧+=⎪⎨⎪+=⎩, 解得1025m n =-⎧⎨=⎩,△y =-10x +25(1.5≤x≤2.5).由题意得:15x -12.5=7.5或-10x +25=7.5,解得:x =43,或x =74.故乙出发43或74小时,甲、乙两人路程差为 7.5km .故答案为:43或7423.(1)332y x =-+;(2)(6,0)-,()2,6-;(3)2(,2)3或14(,10)3-【分析】(1)用待定系数法求解函数解析式即可;(2)将0y =代入直线2l 解析式,将6y =代入直线1l 解析式,分别求解即可; (3)设3(,3)2P x x -+,分情况讨论,求解△DCP 的面积,列方程求解即可.【详解】解:(1)设直线1l 解析式为y kx b =+ 将A ,B 的坐标代入解析式,可得 320b k b =⎧⎨+=⎩解得323k b ⎧=-⎪⎨⎪=⎩,即332y x =-+故直线1l 的解析式为332y x =-+(2)将0y =代入直线2l 解析式132y x =+,可得:1302x +=,解得6x =- 将6y =代入直线1l 解析式332y x =-+,可得3632x =-+,解得2x =-△(6,0)C -,(2,6)D - 故答案为(6,0)-,()2,6-(3)由题意可得,3(,3)2P x x -+,8AC =△124162ACD D S AC y =⨯=>△ △点P 在点A 的左侧当点P 在线段AD 上时,134(3)61222ACP P S AC y x x =⨯=⨯-+=-+△ 2461216CDP ACD ACP S S S x =-=+-=△△△,解得23x =,323223y =-⨯+=△2(,2)3P当点P 在点D 的左侧时,134(3)61222ACP P S AC y x x =⨯=⨯-+=-+△ 6122416CDP ACP ACD S S S x =-=-+-=△△△,解得143x =-,31431023y ⎛⎫=-⨯-+= ⎪⎝⎭△14(,10)3P -综上,2(,2)3或14(,10)3-故答案为2(,2)3或14(,10)3-24.(1)44(,)33;(2)83m =,209;(3)2.4或4-;(4)2【分析】(1)联立两直线解析式求解即可;(2)设(,0)P m ,求得点M N 、坐标,再求得线段MN ,求解即可; (3)设(,0)P m ,求得点D N 、坐标,根据题意列方程求解即可; (4)设(,0)P m ,求得线段MN 、DE ,求解即可. 【详解】解:(1)联立两直线解析式,可得0.52y x y x =⎧⎨=-+⎩解得4343x y ⎧=⎪⎪⎨⎪=⎪⎩,即点C 坐标为44(,)33 故答案为44(,)33(2)设(,0)P m ,则,()M m m ,(,0.52)N m m -+ 线段 1.52MN m =-由题意可得:(0,2)B ,(4,0)A ,则2OB = △1.522m -=,解得83m =或0m =(舍去) 四边形COPN 的面积11()22OPMCMN M C S S OP PM MN x x =-=⨯-⨯-△△188184324202()233233939=⨯⨯-⨯⨯-=-= 故答案为83m =,209(3)设(,0)P m ,则,()M m m ,(,0.52)N m m -+则D 的纵坐标为0.52m -+又△D 在y x =直线上,△D 的横坐标为0.52m -+即(0.52,0.52)D m m -+-+NP =0.52m -+, 1.52DN m =- 由题意可得:1.5220.52m m -=-+化简可得:2.56m =或0.52m =-解得 2.4m =或4m =-故答案为2.4或4-;(4)由(3)得(0.52,0.52)D m m -+-+,则E 的横坐标为0.52m -+则E 的纵坐标为10.5(0.52)214m m --++=+,即1(0.52,1)4E m m -++ 则13341(0.52)14443DE m m m m =+--+=-=-由(1)得341.5223MN m m =-=- △342323443m MN DE m -==-故答案为2此题考查了一次函数的性质,一次函数的交点问题,解题的关键是熟练掌握一次函数的性质,求得对应线段的长度.25.(1)如图,△A 1B 1C 1即为所求;见解析;(2)A 1(﹣3,4),B 1(﹣1,2),C 1(﹣5,1);(3)S △ABC =5.【解析】【分析】(1)根据轴对称图形的画法,以y 轴为对称轴作图即可;(2)根据平面直角坐标系中的任意一点(,)x y 关于y 轴的对称点为(,)x y -即可求解;(3)根据割补法将三角形补成一个长方形,减去多余三角形的面积即可.【详解】(1)如图,△A 1B 1C 1即为所求;(2)由图可知,A 1(﹣3,4),B 1(﹣1,2),C 1(﹣5,1);(3)11143412223122235222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=---=. 【点睛】本题主要考查了平面直角坐标系中轴对称图形的画法及对称点坐标的表示,同时还考查了特殊三角形面积的求法,熟练掌握平面直角坐标系对称点的表示及割补法求面积时解决本题的关键.26.24平方米【解析】【分析】利用割补法,将图形补齐,连接AC ,根据勾股定理判定ABC 是直角三角形,即可求出四【详解】解:如图,连接AC ,在ACD △中,△AD=4米,CD=3米,△ADC=90°, △AC=5米,又△22222251213AC BC AB +=+==, △ABC 是直角三角形, △这块地的面积=ABC S -ACD S =11512342422⨯⨯-⨯⨯=(平方米)。
北师大版八年级上册数学期中考试试题带答案
![北师大版八年级上册数学期中考试试题带答案](https://img.taocdn.com/s3/m/bf04f5680a4c2e3f5727a5e9856a561252d32128.png)
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.在−1.414π,2 3.212212221…,17这些数中,无理数的个数为( )A .2B .3C .4D .52.下列函数中,y 是x 的正比例函数的是( )A .y =−2x +1B .3x y =-C .y =2x 2D .1y x=3.在平面直角坐标系中,点P (−1,在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列数据中,哪一组不是勾股数()A .7,24,25B .9,40,41C .3,4,5D .8,15,195.下面计算正确的是()A .3=B 3=C D 2±6.在平面直角坐标系中,点P (-3,5)关于x 轴的对称点的坐标是()A .(3,-5)B .(-3,-5)C .(3,5)D .(5,-3)7.已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大,则一次函数y=kx+k 的图象大致是()A .B .C .D .8.坐标平面上,在第二象限内有一点P ,且P 点到x 轴的距离是4,到y 轴的距离是5,则P 点的坐标为()A .(-5,4)B .(-4,5)C .(4,5)D .(5,-4)9.若一个直角三角形的三边分别为a 、b 、c ,a 2=144,b 2=25,则c 2=( )A .169B .119C .169或119D .13或2510.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)11.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是()A .32B C D .1.412.如图,点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,点B 的坐标为()A .(0,0)B .(-12,12)C .(2,-2)D .(12,-12)二、填空题13_____.14.从大村到黄岛的距离为60千米,一辆摩托车以平均每小时35千米的速度从大村出发到黄岛,则摩托车距黄岛的距离y (千米)与行驶时间t (时)的函数表达式为_____.15.已知点(−2,y 1),(3,y 2)都在直线y =kx +1上,且k <0,则y 1______y 2.(填>,<或=)16.我国古代有这样一个数学问题,其题意是:如图所示,把枯木看作一个圆柱体,该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则葛藤的最短长度是_______尺.三、解答题17.计算:(1(2(3)21)-(4)0111.414)()14--+-18.在如图所示的正方形网格中,每个小正方形的单位长度均为1,△ABC 的三个顶点都是正方形网格的格点.(1)写出图中△ABC 各顶点的坐标;(2)求出△ABC 的面积.19.已知函数y =(2m+1)x+m ﹣3;(1)若函数图象经过原点,求m 的值;(2)若函数图象在y 轴的截距为﹣2,求m 的值;(3)若函数的图象平行直线y =3x ﹣3,求m 的值;(4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.20.已知,如图,折叠长方形的一边AD 使点D 落在BC 边的点F 处,折痕为AE ,已知AB =6cm ,BC =10cm ,求EC 的长.21.如图,直线L :122y x =-+与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点()0,4C ,动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.()1求A 、B 两点的坐标;()2求COM ∆的面积S 与M 的移动时间t 之间的函数关系式;()3当t 为何值时COM ∆≌AOB ∆,并求此时M 点的坐标.22.如图,在一棵树CD 的10m 高处的B 点有两只猴子,它们都要到A 处池塘边喝水,其中一只猴子沿树爬下走到离树20m 处的池塘A 处,另一只猴子爬到树顶D 后直线跃入池塘的A 处.如果两只猴子所经过的路程相等,试问这棵树多高?23.如图,在直角坐标系中,Rt AOB 的两条直角边OA OB ,分别在x 轴的负半轴,y 轴的负半轴上,且21OA OB ==,.将Rt AOB 绕点O 按顺时针方向旋转90 ,再把所得的像沿x 轴正方向平移1个单位,得CDO .(1)写出点A C ,的坐标;(2)求点A 和点C 之间的距离.24.如图,在平面直角坐标系中,原点为O ,点A (0,3),B (2,3),C (2,-3),D (0,-3).点P ,Q 是长方形ABCD 边上的两个动点,BC 交x 轴于点M .点P 从点O 出发以每秒1个单位长度沿O→A→B→M的路线做匀速运动,同时点Q也从点O出发以每秒2个单位长度沿O→D→C→M的路线做匀速运动.当点Q运动到点M时,两动点均停止运动.设运动的时间为t秒,四边形OPMQ的面积为S.(1)当t=2时,求S的值;(2)若S<5时,求t的取值范围.25.已知△ABC中,AB=AC,(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.参考答案1.C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在−1.414π,2 3.212212221…,17π,23.212212221…,共4个,故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.B 【分析】根据正比例函数的定义:一般地,两个变量x ,y 之间的关系式可以表示成形如y =kx (k 为常数,且k ≠0)的函数,那么y 就叫做x 的正比例函数.【详解】解:根据正比例函数的定义可知选B .故选:B .【点睛】主要考查正比例函数的定义:一般地,两个变量x ,y 之间的关系式可以表示成形如y =kx (k 为常数,且k ≠0)的函数,那么y 就叫做x 的正比例函数.3.B 【分析】应先判断出所求点P 的横坐标、纵坐标的符号,进而判断其所在的象限.【详解】解:∵−1<0,0,∴点P 在第二象限.故选:B .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、22272425+=,能构成直角三角形,是正整数,故是勾股数;B 、22294041+=,能构成直角三角形,是正整数,故是勾股数;C 、222345+=,能构成直角三角形,是正整数,故是勾股数;D 、22281519+≠,不能构成直角三角形,故不是勾股数;故选:D .【点睛】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知ABC ∆的三边满足222+=a b c ,则ABC ∆是直角三角形.5.B 【详解】分析:A .根据合并二次根式的法则即可判定;B .根据二次根式的除法法则即可判定;C .根据二次根式的乘法法则即可判定;D .根据二次根式的性质即可判定.详解:A .不是同类二次根式,不能合并.故选项错误;B.故选项正确;CD=2.故选项错误.故选B .点睛:本题考查了二次根式的计算,要掌握各运算法则.二次根式的加减运算,只有同类二=.=6.B【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】点P(−3,5)关于x轴的对称点的坐标是(−3,−5).故选:B.【点睛】考查关于x轴的对称点的坐标特征:横坐标不变,纵坐标互为相反数.7.A【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得答案.【详解】∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限;故答案为:A.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.8.A【详解】解:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0;又∵P到x轴的距离是4,到y轴的距离是5,∴点P的纵坐标是4,横坐标是-5;故点P的坐标为(-5,4),故选A.9.C【分析】分c是斜边和直角边两种情况讨论求解.【详解】解:c是斜边时,c2=a2+b2=144+25=169,c是直角边时,c2=a2-b2=144-25=119,综上所述,c2=169或119.故选:C.【点睛】本题考查了勾股定理,难点在于分情况讨论.10.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.11.B【详解】A故选B. 12.D【详解】∵B在直线y=-x上,∴设B坐标为(a,-a),则2222213||(1)2212()24AB a a a a a =-+=-+=-+所以,当a=12即B (12,12-)时,AB 最短,故选D.13.2【详解】,4的算术平方根是2,2.【点睛】16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.14.y=60﹣35t .【详解】试题分析:根据题意可得摩托车距黄岛的距离y=大村到黄岛的距离为60千米﹣摩托车行驶t 的距离.解:由题意得:y=60﹣35t ,故答案为y=60﹣35t .【点评】此题主要考查了列函数解析式,关键是正确理解题意,找出题目中的等量关系.15.>【分析】直线系数k <0,可知y 随x 的增大而减小,-2<3,则y 1>y 2.【详解】解:∵直线y=kx-1中k <0,∴函数y 随x 的增大而减小,∵-2<3,∴y 1>y 2.故答案为>.【点睛】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.16.25【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴(尺).故答案为25尺.【点睛】本题考查的是平面展开-最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.17.(1(2)1;(3)13-(4【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据把二次根式化为最简二次根式,然后合并后,再二次根式的乘除法则运算;(3)利用完全平方公式计算即可;(4)根据0指数,负整数幂运算的意义,去绝对值的方法,数的开方计算即可.【详解】解:(1==(2,1=;(3)21)-,2211=-⨯+,121=-,13=-(4)0111.414)()14--+-,())1441=---+,1441=+-+,【点睛】本题主要考查了二次根式的混合运算,要熟练掌握二次根式的化简,0指数、负指数指数幂及绝对值的运算.先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(1)A(2,2),B(−2,−1),C(3,−2);(2)△ABC 的面积为9.5【分析】(1)根据平面直角坐标系的特点写出各点的坐标即可;(2)根据△ABC 的面积=S 矩形DECF ﹣S △BEC ﹣S △AFC ﹣S △ADB ,即可解答.【详解】解:A(2,2),B(−2,−1),C(3,−2);故答案为:(1)A(2,2),B(−2,−1),C(3,−2);(2)△ABC 的面积为9.5.(2)如图所示:S△ABC=S矩形DECF﹣S△BEC﹣S△ADB﹣S△AFC=111 54514341 222⨯-⨯⨯-⨯⨯-⨯⨯=9.5.故答案为:9.5.【点睛】本题考查了坐标与图形的性质,熟练掌握平面直角坐标系的坐标的特点是解题的关键.19.(1)m=3;(2)m=1;(3)m=1;(4)m<﹣12.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【详解】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣12.【点睛】此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.20.EC=83 cm.【分析】首先求出BF的长度,进而求出FC的长度;根据勾股定理列出关于线段EF的方程,即可解决问题.【详解】解:设DE=x cm.∵四边形ABCD是矩形,∴AD=BC=10cm,DC=AB=6cm;∠B=90°,由折叠的性质可得:AF=AD=10cm;DE=EF=x,EC=(6﹣x)cm;在Rt△ABF中,由勾股定理得:BF2=102﹣62=64,∴BF=8cm,CF=10﹣8=2cm;在Rt△EFC中,由勾股定理得:x2=22+(6﹣x)2,解得:x=10 3,∴EC=6﹣103=83(cm).【点睛】该题主要考查了翻折变换及其应用问题;解题的关键是根据翻折变换的性质找出图形中隐含的等量关系;根据有关定理灵活分析、正确判断、准确求解.21.(1)A (0,4),B (0,2);(2)()()8-2t 0t 4S 2t-8t 4<≤⎧⎪=⎨>⎪⎩;(3)当t =2或6时,△COM ≌△AOB ,此时M (2,0)或(﹣2,0).【分析】(1)由直线L 的函数解析式,令y =0求A 点坐标,x =0求B 点坐标;(2)由面积公式S =12OM•OC 求出S 与t 之间的函数关系式;(3)若△COM ≌△AOB ,OM =OB ,则t 时间内移动了AM ,可算出t 值,并得到M 点坐标.【详解】(1)∵y =﹣12x+2,当x =0时,y =2;当y =0时,x =4,则A 、B 两点的坐标分别为A (4,0)、B (0,2);(2)∵C (0,4),A (4,0)∴OC =OA =4,当0≤t≤4时,OM =OA ﹣AM =4﹣t ,S △OCM =12×4×(4﹣t )=8﹣2t ;当t >4时,OM =AM ﹣OA =t ﹣4,S △OCM =12×4×(t ﹣4)=2t ﹣8;∴COM ∆的面积S 与M 的移动时间t 之间的函数关系式为:()()8-2t 0t 4S 2t-8t 4<≤⎧⎪=⎨>⎪⎩(3)∵OC =OA ,∠AOB =∠COM =90°,∴只需OB =OM ,则△COM ≌△AOB ,即OM =2,此时,若M 在x 轴的正半轴时,t =2,M 在x 轴的负半轴,则t =6.故当t =2或6时,△COM ≌△AOB ,此时M (2,0)或(﹣2,0).【点睛】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.22.15m【详解】试题分析:先由实际问题构造出数学模型,构造出直角三角形,然后列方程求解.试题解析:解:设BD 高为x ,则从B 点爬到D 点再直线沿DA 到A 点,走的总路程为x+AD ,其中AD=而从B 点到A 点经过路程(20+10)m=30m ,根据路程相同列出方程x+=30,可得=30﹣x ,两边平方得:(10+x )2+400=(30﹣x )2,整理得:80x=400,解得:x=5,所以这棵树的高度为10+5=15m .故答案为15m .考点:勾股定理23.(1)点A 的坐标是(20)-,,点C 的坐标是(12),.(2)AC =【分析】(1)x 轴上点纵坐标为0,旋转的图形全等,则2CD OA ==,而1OD =,因此点A 的坐标是(20)-,,点C 的坐标是(12),(2)点A 和点C 之间的距离就是线段AC 的长,把线段AC 放到,运用勾股定理即可.【详解】(1)点A 的坐标是(20)-,,点C 的坐标是(12),.(2)连结AC ,在Rt ACD △中,3AD OA OD =+=,2CD =,222222313AC CD AD ∴=+=+=,AC ∴=24.(1)S =5;(2)1.5<t <2或3<t <4【解析】试题分析:设OPM 的面积为1S ,OQM 的面积为则12S S S =+.()1当t =2时,点P (0,2),Q (1,−3),过点Q 作QE ⊥x 轴于点E .根据三角形的面积公式分别求出1S ,2S ,进而得出S 的值;()2设点P 运动的路程为t ,则点Q 运动的路程为2t .分五种情况进行讨论:①0 1.5t <≤;②1.5 2.5t <≤;③2.53t <≤;④34t <<;⑤4t =.针对每一种情况,首先确定出对应范围内点,P Q 的位置,再根据三角形的面积公式求解即可.试题解析:设OPM 的面积为1S ,OQM 的面积为2S ,则12S S S =+.(1)当t =2时,点P (0,2),Q (1,−3),过点Q 作QE ⊥x 轴于点E .11122222S OP OM =⋅=⨯⨯= ,21132322S QE OM =⋅=⨯⨯=,125S S S ∴=+=;(2)设点P 运动的路程为t ,则点Q 运动的路程为2t .①当0 1.5t <≤时,点P 在线段OA 上,点Q 在线段OD 上,此时四边形OPMQ 不存在,不合题意,舍去.②当1.5 2.5t <≤;时,点P 在线段OA 上,点Q 在线段DC 上,11223322S t t =⨯+⨯⨯=+,∵S <5,∴t +3<5,解得t <2.此时1.5<t <2.③当2.53t <≤;时,点P 在线段OA 上,点Q 在线段CM 上,1122(82)822S t t t =⨯+⨯⨯-=-,∵S <5,∴8−t <5,解得t >3.④当3<t <4时,点P 在线段AB 上,点Q 在线段CM 上,11232(82)11222S t t =⨯⨯+⨯-=-,∵S <5,∴11−2t <5,解得t >3.此时3<t <4.⑤当t =4时,点P 是线段AB 的中点,点Q 与M 重合,两动点均停止运动,此时四边形OPMQ 不存在,不合题意,舍去.综上所述,当S <5时,1.5<t <2或3<t <4.25.(1)证明见解析;(2)5;(3)CD 2=BD 2+4AH 2.证明见解析.【详解】分析:(1)、根据∠DAE=∠BAC 得出∠DAC=∠BAE ,结合已知条件得出△ACD 和△ABE 全等,从而得出答案;(2)、连接BE ,根据中垂线的性质以及∠DAE=60°得出△ADE 是等边三角形,根据△ABE 和△ACD 全等得出答案;(3)、过B 作BF ⊥BD ,且BF=AE ,连接DF ,则四边形ABFE 是平行四边形,设∠AEF=x ,∠AED=y ,则∠FED=x+y ,然后证明△ACD 和△EFD 全等,得出CD=DF ,然后根据BD 2+BF 2=DF 2得出答案.详解:(1)、如图1,证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAE=∠BAC+∠CAE ,即∠DAC=∠BAE .∴△ACD ≌△ABE (SAS ),∴CD=BE ;(2)、连接BE ,∵CD 垂直平分AE ∴AD=DE ,∵∠DAE=60°,∴△ADE 是等边三角形,∴∠CDA=∠ADE=×60°=30°,∵△ABE ≌△ACD ,∴BE=CD=4,∠BEA=∠CDA=30°,∴BE ⊥DE ,DE=AD=3,∴BD=5;(3)、如图,过B 作BF ⊥BD ,且BF=AE ,连接DF ,则四边形ABFE 是平行四边形,∴AB=EF ,设∠AEF=x ,∠AED=y ,则∠FED=x+y ,∠BAE=180°﹣x,∠EAD=∠AED=y,∠BAC=2∠ADB=180°﹣2y,∠CAD=360°﹣∠BAC﹣∠BAE﹣∠EAD=360°﹣(180°﹣2y)﹣(180°﹣x)﹣y=x+y,∴∠FED=∠CAD,∴△ACD≌△EFD(SAS),∴CD=DF,而BD2+BF2=DF2,∴CD2=BD2+4AH2.点睛:本题主要考查的是三角形全等的判定与性质,勾股定理的性质,综合性非常强.理解三角形全等的判定法则是解决这个问题的关键.。
北师大版八年级上册数学期中考试试卷含答案
![北师大版八年级上册数学期中考试试卷含答案](https://img.taocdn.com/s3/m/af3037a3c9d376eeaeaad1f34693daef5ef71335.png)
北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,无理数是()A B.πC.﹣13D.52.已知点A的坐标为(﹣4,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.分别以下列四组线段为三边,能构成直角三角形的是()A.0.3,0.4,0.5B.1,1,2C.1,2,3D.9,16,254.若y=mx|m﹣1|是正比例函数,则m的值是()A.0B.1C.2D.0或﹣25的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图所示,在正方形网格中有A,B,C三个点,若建立平面直角坐标系后,点A的坐标为(2,1),点B的坐标为(1,﹣2),则点C的坐标为()A.(1,1)B.(﹣2,1)C.(﹣1,﹣2)D.(﹣2,﹣1)7.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm8.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是()A.B.C.D.9.点P(3,﹣4)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m二、填空题的立方根是________.11.2712.如果一个数的平方根是2x+1和x﹣7,那么这个数是___.13.已知点A(﹣2,y1),B(3,y2)在一次函数y=2x﹣3的图象上,则y1___y2(填“>”,“<”或“=”).14.长方形ABCD在平面直角坐标系中的位置如图所示,若AD=5,点B的坐标为(﹣3,3),则点C的坐标为___.15.如图,在△ABC中,∠ACB=90°,AB=10,BC=6,CD⊥AB于点D,则CD的长为___.16.如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是___.17.如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.18.若实数x,y满足y=5x-5x-,则2x﹣y=___.三、解答题19.计算:(1)﹣(π﹣3.14)02|(22﹣1)(3)()(3)220.如图,在△ABC中,D是BC边上的一点,若AB=5,BD=3,AD=4,AC=8,求CD的长.21.在弹性限度内,弹簧的长度与所挂物体质量满足一次函数关系,某数学兴趣小组通过实验发现弹簧的长度y(cm)与所挂物体质量x(kg)之间的关系如下表:x/kg0123⋯y/cm14.51515.516⋯(1)根据上表数据求出y与x之间的关系式;(2)求当所挂物体的质量为6千克时弹簧的长度.22.如图,在平面直角坐标中,△ABC各顶点都在小方格的格点上.(1)画出△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.23.甲、乙两商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原价收费,其余每件优惠20%;乙商场的优惠条件是:每件优惠25%.设所买商品为x(x>1)件,甲商场收费为1y元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当所买商品为5件时,选择哪家商场更优惠?请说明理由.24.如图,在Rt△ABC中,∠B=90°,AB=9,BC=12,D为BC上一点,连接AD,将△ABC沿AD折叠,使点B恰好落在边AC上的点B'处,求DB'的长度.25.如图,直线y=kx+4与x轴相交于点A,与y轴相交于点B,且AB=5(1)求点A的坐标;(2)求k的值;(3)C为OB的中点,过点C作直线AB的垂线,垂足为D,交x轴正半轴于点P,试求点P的坐标及直线CP的函数表达式.26.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.参考答案1.B【解析】【分析】根据无理数的概念“无限不循环的小数”结合算术平方根可进行排除选项.【详解】3=,∴无理数是π-13、5;故选B .【点睛】本题主要考查无理数及算术平方根,熟练掌握无理数的概念是解题的关键.2.C【解析】【分析】根据平面直角坐标系象限的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)可直接进行求解.【详解】解:∵点A 的坐标为(﹣4,﹣3),∴点A 在第三象限;故选C .【点睛】本题主要考查平面直角坐标系象限的符号,熟练掌握平面直角坐标系象限的符号特点是解题的关键.3.A【解析】【分析】根据勾股定理的逆定理:若a 、b 、c 为三角形的三边长,满足222+=a b c ,那么这个三角形就是直角三角形,由此进行求解即可.【详解】解:A 、∵2220.30.40.5+=,∴能构成直角三角形,故此选项符合题意;B 、∵2221122+=≠,∴不能构成直角三角形,故此选项不符合题意;C 、∵2221253+=≠,∴不能构成直角三角形,故此选项不符合题意;D 、∵22291633725+=≠,∴不能构成直角三角形,故此选项不符合题意;故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理.4.C【解析】【分析】根据正比例函数的概念:形如y=kx ,其中k≠0的函数,可知11,0m m -=≠,进而求解即可.【详解】解:由题意得:11,0m m -=≠,∴2m =;故选C .【点睛】本题主要考查正比例函数的概念,熟练掌握正比例函数的概念是解题的关键.5.B【解析】【分析】利用4<5<91的范围.【详解】∵4<5<9,∴23,∴2+11<3+1,即31<4.故选:B.【点睛】本题主要考查了无理数的估算,估算无理数的基本方法是“两边夹”,即判断所要估算的无理数在哪两个连续的整数之间,则可得到这个无理数的整数部分,从而估算出这个无理数大小.6.D【分析】根据点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立坐标系,进而问题可求解.【详解】解:由点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立如下坐标系:∴点C的坐标为(﹣2,﹣1);故选D.【点睛】本题主要考查平面直角坐标系,解题的关键是根据点A、B的坐标建立平面直角坐标系.7.A【分析】如图把圆柱体展开,连接AB,然后可知AC=9cm,BC=12cm,进而可由两点之间,线段最短可知AB即为所求.【详解】解:如图所示:∵圆柱的高等于12cm,底面上圆的周长等于18cm,∴AC=9cm,BC=12cm,AB==,∴15cm∴蚂蚁沿圆柱侧面爬行的最短路程是15cm;故选A.本题主要考查利用勾股定理求最短路径,熟练掌握利用勾股定理求最短路径是解题的关键.8.D【解析】【分析】根据正比例函数y=kx中,y的值随着x值的增大而减小,可得k<0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:∵正比例函数y=kx中,y的值随着x值的增大而减小,∴k<0,∴一次函数y=kx+k与y轴的交点在y轴的负半轴,∴一次函数y=kx+k的图像经过第二、三、四象限,故选D.【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k<0.9.D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:∵3>0,﹣4<0,∴点P(3,﹣4)所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.C【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C..【点睛】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.11.-3【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.25或225【解析】【分析】根据一个正数的两个平方根互为相反数或相等,可知2x+1+x-7=0或2x+1=x-7,求解x,进而问题可求解.【详解】解:由题意得:2x+1+x-7=0或2x+1=x-7,解得:x=2或x=-8,∴这个正数为()222125⨯+=或(-15)²=225,故答案为25或225.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.13.<【解析】【分析】根据题意易得k=2>0,则有y 随x 的增大而增大,再由点A (﹣2,y 1),B (3,y 2)在一次函数y =2x ﹣3的图象上可进行求解.【详解】解:由题意得:k=2>0,∴y 随x 的增大而增大,∵点A (﹣2,y 1),B (3,y 2)在一次函数y =2x ﹣3的图象上,∴12y y <;故答案为<.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.14.(2,3)【解析】【分析】由题意易证BC ∥AD ,则有点B 与点C 的纵坐标相等,然后根据两点距离公式可进行求解.【详解】解:在长方形ABCD 中,BC ∥AD ,∴点B 与点C 的纵坐标相等,设点(),3C x ,∵AD =5,∴BC =5,∴352x =-+=,∴C (2,3);故答案为(2,3).15.4.8【分析】先利用勾股定理求出AC 的长,再由三角形面积公式11=22ABC S AC BC AB CD ⋅=⋅△得到AC BC CD AB⋅=,由此即可得到答案.【详解】解:∵在△ABC 中,∠ACB =90°,AB =10,BC =6,∴8AC ==,∵CD ⊥AB ,∴11=22ABC S AC BC AB CD ⋅=⋅△,∴ 4.8AC BC CD AB⋅==,故答案为:4.8.16.45°【分析】如图,连接EF ,由题意易得△AHE ≌△EGF ,则有∠AEH=∠EFG ,AE=EF ,然后可得∠AEH+∠FEG=90°,则有△AEF 是等腰直角三角形,进而问题可求解.【详解】解:如图,连接EF ,∵AH=EG=2,∠AHE=∠EGF=90°,EH=FG=1,∴△AHE ≌△EGF ,∴∠AEH=∠EFG ,AE=EF ,∵∠EFG+∠FEG=90°,∴∠AEH+∠FEG=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴∠EAF=45°;故答案为45°.【点睛】本题主要考查全等三角形的性质与判定及等腰直角三角形的性质与判定,熟练掌握全等三角形的性质与判定及等腰直角三角形的性质与判定是解题的关键.17.(22018,0)【分析】根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.【详解】根据题意得:A1和B1的横坐标为1,把x=1代入y=x得:y=1B1的纵坐标为1,即A1B1=1,∵△B1A1A2为等腰直角三角形,∴A1A2=1,A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,A2019的横坐标为22018,纵坐标为0,即点A2019的坐标为(22018,0),故答案为:(22018,0).【点睛】此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.18.2【分析】根据根式有意义的条件可知5x =,然后可知y=8,进而代入求解即可.【详解】解:∵实数x ,y 满足y =,且50,50x x -≥-≥,∴50x -=,解得:5x=,∴y=8,∴22582x y -=⨯-=,故答案为2.19.(1)3(2)2;(3)1-【分析】(1)根据零次幂、立方根及绝对值可直接进行求解;(2)先对二次根式进行化简,然后再进行二次根式的加减运算;(3)利用乘法公式进行二次根式的混合运算即可.【详解】解:(1)原式=2123-+=(2)原式=22=;(3)原式=207591--+=.【点睛】本题主要考查二次根式的混合运算及零次幂,熟练掌握二次根式的混合运算及零次幂是解题的关键.20.CD =【解析】【分析】由题意可知222AB BD AD =+,则有90ADB ADC ∠=∠=︒,然后根据勾股定理可求解.【详解】解:∵AB =5,BD =3,AD =4,∴22225,9,16AB BD AD ===,∴222AB BD AD =+,∴90ADB ADC ∠=∠=︒,在Rt △ADC 中,AC=8,∴DC ==【点睛】本题主要考查勾股定理及其逆定理,熟练掌握勾股定理及其逆定理是解题的关键.21.(1)()0.514.50y x x =+≥;(2)当所挂物体的质量为6千克时弹簧的长度为17.5cm【解析】【分析】(1)设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,然后根据表格中的数据把(0,14.5),(1,15)代入求解即可;(2)令6x =,求出此时y 的值即为弹簧的长度.【详解】解:设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,由题意得:14.515b k b =⎧⎨+=⎩,∴0.514.5k b =⎧⎨=⎩,∴一次函数关系式为()0.514.50y x x =+≥;(2)当当所挂物体的质量为6千克时,即6x =,∴0.5614.517.5y =⨯+=,∴当所挂物体的质量为6千克时弹簧的长度为17.5cm .【点睛】本题主要考查了一次函数的应用,解题的关键在于能够熟练掌握求一次函数解析式.22.(1)图见详解,()()()1112,3,3,2,1,1A B C ------;(2)图见详解,()0,1P 【解析】(1)分别作出点A 、B 、C 关于x 轴的对称点,然后顺次连接即可,最后根据图象得到点的坐标即可;(2)作点A 关于y 轴的对称点D ,然后连接DB 1,交y 轴于点P ,此时点P 即为所求,进而求出直线DB 1的函数解析式即可求解点P 的坐标.【详解】解:(1)如图所示,由图象可知()()()1112,3,3,2,1,1A B C ------;(2)作点A 关于y 轴的对称点D ,然后连接DB 1,交y 轴于点P ,由轴对称的性质可知AP PD =,则有PA+PB 1的最小值即为1DB 的长,∴设直线DB 1的函数解析式为y kx b =+,把点()()12,3,3,2D B --代入得:2332k b k b +=⎧⎨-+=-⎩,解得:11k b =⎧⎨=⎩,∴直线DB 1的函数解析式为1y x =+,令x=0时,则有y=1,∴()0,1P .【点睛】本题主要考查坐标与图形、轴对称的性质及最短路径问题,熟练掌握坐标与图形、轴对称的性质及最短路径问题是解题的关键.23.(1)()124006001y x x =+>,()222501y x x =>;(2)当所买商品为5件时,选择乙商场更优惠,理由见解析【分析】(1)根据两家商场的优惠方案分别求出对应的关系式即可;(2)根据关系式分别求出x=5时的两个商场的收费,即可得解.【详解】解:(1)由题意得:()()()1300030001120%24006001y x x x =+--=+>,()()23000125%22501y x x x =⨯-=>;(2)当5x =时,12400560012600y =⨯+=,22250511250y =⨯=,∴12y y >,∴当所买商品为5件时,选择乙商场更优惠.【点睛】本题考查了列函数关系式和代数式求值,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.92【解析】【分析】由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,先利用勾股定理求出15AC ==,即可得到6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,则()222126x x -=+,解方程即可.【详解】解:由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,∴=180=90CB D AB D ''-o o∠∠∵∠B=90°,AB=9,BC=12,∴15AC ==,∴6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,∴()222126x x -=+,解得92x =,∴92DB '=.【点睛】本题主要考查了折叠的性质,勾股定理,解题的关键在于能够熟练掌握折叠的性质与勾股定理.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+【解析】【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证△AOB ≌△COP ,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y =kx+4可得:y =4,∴()0,4B ,∴OB=4,在Rt △AOB 中,AB =2OA ==,∴()2,0A -;(2)由(1)可把点()2,0A -代入直线y =kx+4得:240k -+=,解得:2k =;(3)∵点C 为OB 的中点,OB=4,∴2OC =,∴OC OA =,∵90AOB COP ∠=∠=︒,DP AB ⊥,∴90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∴ABO CPO ∠=∠,又∵∠AOB=∠COP=90°,∴△AOB ≌△COP (AAS ),∴OP=OB=4,∴()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∴240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩,∴直线CP 的解析式为122y x =-+.【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间【解析】【分析】(1)根据图象可直接求出A 、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】21解:(1)由图象可知:A 、B 两地的相距20km ;乙骑车的速度为(30-20)÷2=5km/h ;故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,∴甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,∴乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y xy x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩,∴甲追上乙用了4小时的时间.。
北师大版八年级上册数学期中考试试卷及答案
![北师大版八年级上册数学期中考试试卷及答案](https://img.taocdn.com/s3/m/6c28d00b15791711cc7931b765ce050876327506.png)
北师大版八年级上册数学期中考试试题一、单选题1.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为( ) A .(2,15) B .(2,5) C .(5,9) D .(9,5) 2.下列各线段的长,能构成直角三角形的是( )A .2,3,4B .5,12,13C .4,6,9D .5,11,13 3.下列运算中,正确的是( )A ±3B 2C .(﹣2)0 =0D .2﹣1 =﹣24.在2,13-,π,0,227,2.101010…(相邻两个1之间有1个0),3.14,0.1212212221…(相邻两个1之间2的个数逐次加1)这些数中无理数的个数是( )A .1B .2C .3D .45.在下列各组数中,互为相反数的是( )A .2与B .-2与12-C .D .26.下列根式中不是最简二次根式的是( )A B C D7.点A 关于y 轴的对称点1A 坐标是()2,1--,则点A 的坐标是( )A .()1,2--B .()2,1C .()2,1-D .()2,1- 8.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x≤5)的函数表达式为( ) A .y =﹣0.3x +6 B .y =﹣0.3x ﹣6 C .y =0.3x +6 D .y =0.3x ﹣6 9.下列运算正确的是( )A B .=﹣32C .=D 1100= 10.点A (﹣3,2)关于y 轴的对称点的坐标为( )A .(3,2)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,3)二、填空题11.2( 2.5)-的平方根是__________.12.比较大小:(用<、>或=来表示)13.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为_____.14.如图,在水塔O 的东北方向8m 处有一抽水站A ,在水塔的东南方向6m 处有一建筑物工地B ,在AB 间建一条直水管,则水管的长为______.15.如图,数轴上点B 表示的数为2,过点B 作BC OB ⊥于点B ,且1CB =,以原点O 为圆心,OC 为半径作弧,弧与数轴负半轴交于点A ,则点A 表示的实数是_______.16.若函数y =(m ﹣2)x+5﹣m 是关于x 的正比例函数,则m =_____.1750b -=,则()2a b -的值是_____.18.已知AB∥x 轴,A (-2,4),AB = 5,则B 点横纵坐标之和为______.三、解答题19.计算:1183;-;(2)1023)2);(1+2-1)2 ;(5)(1-(6)20.已知一个正数的平方根是a+3和2a-15.(1)求a的值;(2)求这个正数.21.如图在平面直角坐标系中,∥ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C (﹣3,1)(1)在图中作∥A′B′C′使∥A′B′C′和∥ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.22.如图,圆柱外底面A点处有一只蚂蚁,想去壁外点P处吃蜂蜜,已知底面圆的直径AB为16πcm,圆柱高为12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.23.已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,-4)且与y轴平行的直线上.24.已知y=(k﹣1)x IkI+(k2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.25.如图,a,b,c是数轴上三个点A,B,C所对应的实数.a b b c--26.如图,在四边形ACBD中,AC=6,BC=8,AD=BD=DE是∥ABD的边AB上的高,且DE=4,求∥ABC的边AB上的高.参考答案1.C【解析】【分析】根据用(2,15)表示2排15号可知第一个数表示排,第二个数表示号,进而可得答案.【详解】∥(2,15)表示2排15号可知第一个数表示排,第二个数表示号∥5排9号可以表示为(5,9),故选:C .【点睛】本题是有序数对的考查,解题关键是弄清楚有序数对中的数字分别对应的是行还是列 2.B【解析】【分析】根据题意利用判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方进行分析即可.【详解】解: A 、22223134+=≠,故A 选项构成不是直角三角形;B 、22251216913+==,故B 选项构成是直角三角形;C 、22246529+=≠,故C 选项构成不是直角三角形;D 、22251114613+=≠,故D 选项构成不是直角三角形.故选:B .【点睛】本题考查勾股定理的逆定理的应用.注意掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B【解析】【分析】根据算术平方根、立方根、零指数幂和负整数指数幂的运算法则分析每个选项的计算正确与否即可求解.【详解】解:A3,原计算错误,不符合题意;B2,原计算正确,符合题意;C、(﹣2)0=1,原计算错误,不符合题意;D、2﹣1 =1,原计算错误,不符合题意,2故选:B.【点睛】本题考查算术平方根、立方根、零指数幂和负整数指数幂,熟练掌握运算法则是解答的关键.4.B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:无理数有π,0.1212212221…(相邻两个1之间的2的个数逐次加1),共2个.故选:B.【点睛】本题考查了对无理数的定义的应用,能正确理解无理数的定义是解此题的关键.5.C【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A、都是2,故A错误;B、互为倒数,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、都是2,故D错误.故选:C.【点睛】本题考查了实数的性质,利用只有符号不同的两个数互为相反数判断是解题关键. 6.C【解析】【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.故选C .7.D【解析】【分析】直角坐标系中,点关于y 轴对称的特点是,横坐标变为相反数,纵坐标不变,据此解题即可.【详解】根据题意,A 关于y 轴的对称点1A 坐标是()21--,, 则点A 的坐标是()21-,, 故选:D .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,难度较易,掌握相关知识是解题关键. 8.C【解析】【分析】用初始的水位高度加上升的高度得到水库的水位高度,从而得到y 与x 的关系式.【详解】解:∥初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,∥水库的水位高度y 米与时间x 小时(0≤x≤5)的函数关系式为y=0.3x+6,故选:C .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.9.D【解析】【分析】根据二次根式的有关运算以及立方根和平方根的定义,对选项逐个判断即可.【详解】解:A=,选项错误,不符合题意;B、33()22=--=,选项错误,不符合题意;C、=±D1100,选项正确,符合题意;故选:D【点睛】此题考查了二次根式的有关运算以及立方根和平方根的求解,解题的关键熟练掌握相关运算法则.10.A【解析】【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(-x,y),进而得出答案.【详解】解:点A(﹣3,2)关于y轴的对称点的坐标为(3,2),故选:A【点睛】此题主要考查了关于y轴对称点的性质,正确把握对称点横、纵坐标的关系是解题关键.11. 2.5±【解析】【分析】先计算出2( 2.5)-的值,再根据平方根的定义即可得出答案.【详解】2(2.5)52 6.=-,则6.25的平方根为 2.5±.故答案为: 2.5±.【点睛】本题主要考查的是平方根的定义,注意一个正数的平方根有两个,它们互为相反数;0的平方根还是0;负数没有平方根.12.>【解析】【分析】【详解】解:∥162025<<,∥45<,∥5>故答案为:>.【点睛】本题考查了无理数的大小比较,正确的估算是解题的关键.13.5【解析】【分析】设斜边长为x ,根据勾股定理即可求解.【详解】解:设斜边长为x ,根据题意可得,2916x =+,解得5x =(负值已舍),故答案为:5.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.14.10m【解析】【分析】由题意可得三角形AOB是直角三角形,且AB是斜边,所以由勾股定理即可算得AB的值.【详解】解:已知东北方向和东南方向刚好是一直角,∥∥AOB=90°,又∥OA=8m,OB=6m,∥AB=10(m).故答案为:10m.【点睛】本题考查勾股定理的应用,在判断三角形为直角三角形及三角形直角边和斜边的基础上利用勾股定理求解是解题关键.15.【解析】【分析】直接利用勾股定理得出CO的长,再利用数轴得出答案.【详解】解:BC OB⊥,∴∠=︒,90OBC∴∆是直角三角形,OBCBC=,OB=,12∴==OC∴点A表示的实数是:故答案为:【点睛】此题主要考查了实数与数轴,正确数形结合分析是解题关键.16.5【解析】【分析】直接利用正比例函数的定义进而得出答案.【详解】解:∥函数y =(m ﹣2)x+5﹣m 是关于x 的正比例函数,∥50m -= ,20m -≠ ,解得:m =5.故答案为:5.【点睛】本题主要考查了正比例函数的定义,正确把握定义是解题关键.17.16【解析】【分析】根据算术平方根与绝对值的非负性可求出a 、b 的值,然后代入求解即可.【详解】解:50b -=,∥10,50a b -=-=,解得:1,5a b ==,∥()()221516a b -=-=;故答案为16.【点睛】本题主要考查算术平方根与绝对值的非负性,熟练掌握算术平方根与绝对值的非负性是解题的关键.18.-3或7【解析】【分析】由AB∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的左边或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∥AB∥x 轴,∥B 点的纵坐标和A 点的纵坐标相同,都是4,又∥A (-2,4),AB = 5,∥当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.19.(2)0(3)2+(4)13- (5)-15+23【解析】【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先计算负整数指数幂,零次幂,化简二次根式,再合并即可;(3)先计算二次根式的乘法,再合并同类二次根式即可;(4)先计算算术平方根,立方根,再合并即可;(5)先计算二次根式的乘法,再合并同类二次根式即可;(6)先计算二次根式的除法运算,再合并即可.(1)解:原式=13⨯ (2)原式=131110;22-+=-+=(3)原式=22+=+(4)原式=11 22;33 --=-(5)原式=112(31)11415---=--+=-+(6)原式=3 3.20.(1)4;(2)49【分析】(1)根据平方根的性质“正数有两个平方根,互为相反数”列出方程,解方程即可;(2)求出a+3和2a-15,即可求出这个正数.【详解】(1)依题意得:(a+3)+( 2a-15)=0解得:a=4;(2)当a=4时,a+3=7,2a-15=-7,∥这个正数为(±7)2=49.21.(1)见解析(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1)【分析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A′,B′,C′,顺次连接即可;(2)根据点的位置写出坐标即可.(1)解:∥A′B′C′如图,(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).【点睛】本题考查作图−轴对称变换,坐标与图形,解题的关键是掌握轴对称的性质.22.蚂蚁从A 点爬到P 点的最短距离为10cm【解析】【分析】把圆柱的侧面展开,连接AP ,利用勾股定理即可得出AP 的长,即蚂蚁从A 点爬到P 点的最短距离.【详解】∥圆柱底面直径AB =16πcm 、母线BC =12cm ,P 为BC 的中点, ∥圆柱底面圆的半径是8πcm ,BP =6cm , ∥如图:AB =12×2×8π=8(cm ),在Rt∥ABP 中,AP ==10(cm ),∥蚂蚁从A 点爬到P 点的最短距离为10cm .【点睛】本题考查的是勾股定理求最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.23.(1)(6,0)(2)(-12,-9)(3)(2,-2)【解析】【分析】(1)直接利用x 轴上点的坐标特点为纵坐标为零,进而得出答案;(2)利用点P 的纵坐标比横坐标大3,进而得出答案;(3)利用经过()2,4A -且平行于y 轴,则其横坐标为2,进而得出答案.(1)解:点()24,1P m m +-,点P 在x 轴上,10m ∴-=,解得:1m =,则246m +=,故()6,0P ;(2) 解:点P 的纵坐标比横坐标大3,()1243m m ∴--+=,解得:8m =-,故()12,9P --;(3) 解:点P 在过()2,4A -点且与y 轴平行的直线上,242m ∴+=,解得:1m =-,12m ∴-=-,故()2,2P - .【点睛】本题主要考查了坐标与图形的性质,正确分析各点坐标特点是解题关键.24.(1)k =﹣1;(2)y =﹣9;(3)x =32-.【解析】【分析】(1)直接利用一次函数的定义得出k 的值即可;(2)利用(1)中所求,再利用x=3时,求出y 的值即可;(3)利用(1)中所求,再利用y=0时,求出x 的值即可.【详解】解:(1)由题意可得:|k|=1,k ﹣1≠0,解得:k =﹣1;(2)当x=3时,y=﹣2x﹣3=﹣9;(3)当y=0时,0=﹣2x﹣3,解得:x=32 -.【点睛】本题考查一次函数的定义,正确把握一次函数的定义是解题关键.25.3b【解析】【分析】利用数轴可得出a-b>0,c>0,b-c<0,a+b<0,进而取绝对值开平方得出即可.【详解】由数轴可得:c>0,a﹣b>0,a+b<0,b﹣c<0,a b b c-+--=c﹣a+b+a+b+b﹣c=3b.【点睛】此题主要考查了数轴与实数,涉及算术平方根和立方根,得出各项符号并利用绝对值的性质化简是解题关键.26.∥ABC的边AB上的高为4.8.【解析】【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股定理的逆定理求出∥ABC是直角三角形,再求出面积,进一步得到∥ABC的边AB上的高即可.【详解】∥DE是AB边上的高,∥∥AED=∥BED=90°,在Rt∥ADE中,由勾股定理,得AE2==.同理:在Rt∥BDE中,由勾股定理得:BE=8,∥AB=2+8=10,在∥ABC中,由AB=10,AC=6,BC=8,得:AB2=AC2+BC2,∥∥ABC是直角三角形,设∥ABC的AB边上的高为h,则12×AB×h=12AC×BC,即:10h=6×8,∥h=4.8,∥∥ABC的边AB上的高为4.8.。
2024-2025学年北师大版八年级上册数学期中测试卷(第一章-第三章)
![2024-2025学年北师大版八年级上册数学期中测试卷(第一章-第三章)](https://img.taocdn.com/s3/m/dac1490f1fb91a37f111f18583d049649b660eb7.png)
2024-2025学年北师大版八年级上册数学期中测试卷(第一章-第三章)1.如图所示,在矩形中,,,将矩形沿折叠,点D落在点处,则重叠部分的面积为()A.6B.8C.10D.122.若有意义,则a的值可以是()A.B.1C.0D.3.图中三角形是直角三角形,所有四边形都是正方形,最大正方形的边长为,则图中所有正方形的面积的和是()A.B.C.D.4.计算:的值为()A.B.C.D.5.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4B.2a C.2b D.6.直角三角形的两直角边的长分别为3,5,第三边长为()A.4B.C.4或D.4和7.如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()A.(10,-5)B.(10,-1)C.(10,0)D.(10,1)8.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.B.C.D.9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n-3)个数是(用含n的代数式表示)().A.B.C.D.10.在平面直角坐标系中,如果点经过某种变换后得到点,我们把点叫做点的完美对应点.已知点P的完美对应点为,点的完美对应点为,的完美对应点为,这样依次得到,,,,…,,若点P的坐标为,的坐标为()A.B.C.D.11.____________.12.如图所示,平面直角坐标系中,x轴负半轴上有一点A(﹣1,0),点A第1次向上平移1个单位至点A1(﹣1,1),接着又向右平移1个单位至点A2(0,1),然后再向上平移1个单位至点A3(0,2),向右平移1个单位至点A4(1,2),…,照此规律平移下去,当点A平移至点A8时,点A8的坐标为________,当点A平移至点A2021时,点A2021的坐标是________.13.如图,在中,垂足为点D,是边上的中线,与相交于点G,则的长为____________________.14.在中,已知,,则其周长为__________.15.如图,将长AB=5cm,宽AD=3cm的矩形纸片ABCD折叠,使点A与C重合,折痕为EF,则AE长为_____cm.16.把一张长方形纸片按如图方式折叠,使点与点重合,点与点重合、两点均在上),折痕分别为、.若,,则线段的长为______.17.如图,门上针子处挂萡一个“欢迎光临”的长方形挂牌,则得,.如图1,当挂牌水平悬挂(即与地面平行)时,测得挂绳,此时点到所在直线的距离为______cm.将该门挂的挂绳长度缩短后重新挂上,此时不小心把挂牌弄斜了(如图2),发现与地面平行,且点三点在同一直线上,则点的高度下降了______cm.18.计算:(1)|-2|+-(-1)2017;(2)19.已知的一个平方根是3,的立方根为.(1)求与的值;(2)求的立方根.20.如图,矩形ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.(1)求折叠后DE的长;(2)求重叠部分△BEF的面积.21.如图,写出△ABC的各顶点坐标,22.如图,数轴上点A,B表示的数分别为1,,点C在数轴上,且(B,C两点不重合).设点C表示的数为x.(1)求x的值;(2)求的值.23.为推进乡村振兴,某地大力修建崭新的公路.如图,现从地分别向三地修了三条笔直的公路和,地、地、地在同一笔直公路上,公路和公路互相垂直,又从地修了一条笔直的公路与公路在处连接,且公路和公路互相垂直,已知千米,千米,千米.(1)求公路的长度;(2)若修公路每千米的费用是万元,请求出修建公路的费用.24.如图,中,,D为中点,点E在直线上(点E不与点B,C重合),连接,过点D作交直线于点F,连接.(1)如图1,当点F与点A重合时,请直接写出线段与的数量关系:______.(2)如图2,当点F不与点A重合时,请写出线段,,之间的数量关系,并说明理由;(3)若,,,请直接写出线段AF的长.。
北师大版八年级上册数学期中考试试卷及答案
![北师大版八年级上册数学期中考试试卷及答案](https://img.taocdn.com/s3/m/60634143640e52ea551810a6f524ccbff121cad0.png)
北师大版八年级上册数学期中考试试题一、单选题1.在实数0.3,02π123454545…中,无理数有()A .2个B .3个C .4个D .5个2.平面直角坐标系中,点P(3,-4)位于A .第一象限B .第二象限C .第三象限D .第四象限3.下列二次根式中,是最简二次根式的是()AB C .D 4.下列说法正确的是()A .-81的平方根是±9B .任何数的平方是非负数,因而任何数的平方根也是非负数C .任何一个非负数的平方根都不大于这个数D .3是9的平方根5.如图,一场大风后,一棵大树在高于地面1米处折断,大树顶部落在距离大树底部3米处的地面上,那么树高是()A .4mB mC .+1)mD .+3)m6.如图,在平面直角坐标系中,点P 的坐标为()3,4-,以点O 为圆心,以OP 长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标为()A .5B .-3C .-4D .-57.如图,学校(记作A )在蕾蕾家(记作B )南偏西25°的方向上,且与蕾蕾家的距离是4km ,若∠ABC =90°,且AB =BC ,则超市(记作C )在蕾蕾家的()A .南偏东65°的方向上,相距4kmB .南偏东55°的方向上,相距4kmC .北偏东55°的方向上,相距4kmD .北偏东65°的方向上,相距4km8123)A .1与2B .2与3C .3与4D .4与59.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 21,则点C 所对应的实数是()A .12B .22C .221D .22110.如图,在Rt ABC 中,CA =CB =2,M 为CA 的中点,在AB 上存在一点P ,连接PC 、PM ,则 PMC 周长的最小值是()A 5B 3C 5D 3二、填空题1133的倒数为____________.12.函数y=kx 的图像经过点P(3,-1),则k 的值为______________.1319x x --有意义,那么代数式()219x x --______.14.一艘轮船以16/km h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12/km h 的速度向东南方向航行,它们离开港口1小时后相距__________.15.已知点()3,M a 和(),4N b 关于x 轴对称,则()2021a b +的值为______.16.如图,Rt △ABC 中,AC =5,BC =12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为_____.17.如图,直线y ,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按照此做法进行下去,点n A 的坐标为__.三、解答题18.计算:(2)190(220.若y -1与x +2成正比例,且当x =2时,y =5.(1)求y 与x 的函数关系式;(2)如果点(),5m 在该函数图象上,求m 的值.21.在正方形网格中建立如图的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,点A 的坐标是(4,4),请解答下列问题:(1)将△ABC 向下平移5单位长度,画出平移后的△A1B1C1并写出点A 对应点A1的坐标;(2)画出△A1B1C1关于y 轴对称的△A2B2C2并写出A2的坐标;(3)求S △ABC .22.已知610a ,小数部分为b ,试求())12106b a -+的值.23.如图所示,一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?24.如图,在直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式22(3)40a b c -+--=,(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,12),请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积为△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.25.先阅读一段文字,再回答下列问题:已知在平面内两点坐标()111,P x y ,()222,P x y ,其两点间距离公式为12PP =,例如:点()3,2和()4,0同时,当两点所在的直线在坐标轴上或平行于x 轴或垂直于x 轴距离公式可简化成1221PP x x =-或1221PP y y =-.(1)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-1,则A ,B 两点的距离为______.(2)已知()A 3,5,()2,1B --,试求A ,B 两点的距离;(3)已知一个三角形各顶点坐标为()0,6A ,()3,2B -,()3,2C ,你能断定此三角形的形状吗?参考答案1.B 【解析】【分析】根据无理数的定义判断即可.【详解】2π故选:B .【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.2.D【解析】【分析】首先清楚的是,平面直角坐标系的四个象限横纵坐标的正负情况,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.然后根据p点横纵坐标正负判断所在象限.【详解】因为平面直角坐标系中,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.点p(3,-4),横纵坐标正负情况为正负,所以位于第四象限.故选D.【点睛】本题考查了点的象限,解题关键是知道直角坐标系每个象限点的横纵坐标正负情况,通过横纵坐标的正负情况,判断所在象限.3.C【解析】【分析】化简得到结果,即可做出判断.【详解】A.不是最简二次根式;不是最简二次根式;C.D.不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.4.D【解析】【分析】对于A,根据负数的平方根的性质判断即可;对于B,根据正数的平方根的性质判断;对于C,以分数为例,判断即可;对于D,根据平方根的定义判断即可.【详解】因为负数没有平方根,所以A不符合题意;因为1的平方根是±1,所以B不符合题意;因为14的平方根是12±,而1142<,所以C不符合题意;因为3是9的一个平方根,所以D符合题意.故选:D.【点睛】本题主要考查了平方根的定义和性质,理解平方根的性质是解题的关键.5.C【解析】【分析】首先根据勾股定理求得折断的树高,继而即可求出折断前的树高.【详解】解:根据勾股定理可知:折断的树高米,则这棵大树折断前的树高=()米.故选:C.【点睛】考查了利用勾股定理解应用题,关键在于把折断部分、大树原来部分和地面看作一个直角三角形,利用勾股定理求解.6.D【解析】【分析】首先根据勾股定理求出OP,进而得出OA的长,再根据点A的位置得出答案.【详解】根据勾股定理,得5OP==,∴OA=OP=5.∵点A在x轴的负半轴,∴点A的横坐标是-5.故选:D.本题主要考查了平面直角坐标系内点的坐标,根据勾股定理求出线段的长是解题的关键.7.A【解析】【分析】直接利用方向角的定义得出∠2的度数,进而确定超市(记作C)与蕾蕾家的位置关系.【详解】解:如图所示:由题意可得:∠1=25°,∠ABC=90°,BC=AB=4km,则∠2=65°,故超市(记作C)在蕾蕾家的南偏东65°的方向上,相距4km.故选:A.【点睛】本题主要考查了方向角的定义,正确根据图形得出∠2的度数是解题关键.8.A【解析】【分析】先化简,然后再利用“夹逼法”估算无理数的大小即可.【详解】∵1<3<4,∴12.故选:A.9.D【解析】设点C 所对应的实数是x ,根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【详解】设点C 所对应的实数是x .则有x 1),解得.故选D .【点睛】本题考查的是数轴上两点间距离的定义,根据题意列出关于x 的方程是解答此题的关键.10.C【解析】【分析】作点C 关于直线AB 的对称点D ,连接DM 交AB 于点P ,此时PCM ∆周长最小,根据PCM ∆周长PC PM CM PD PM CM =++=++,求出DM 即可解决问题.【详解】解:作点C 关于直线AB 的对称点D ,连接DM 交AB 于点P ,此时PCM ∆周长最小.CA CB = ,90ACB ∠=︒,45BAC B BAD ∴∠=∠=∠=︒,在Rt ADM ∆中,90DAM ∠=︒ ,2AD =,1AM =,DM ∴∴此时PCM ∆的周长为1PC PM CM PM PD CM ++=++=.故选:C .【点睛】本题考查轴对称-最短问题,勾股定理等知识,解题的关键是利用轴对称找到点P 位置,属于中考常考题型.11【解析】【分析】根据倒数的定义计算即可求解.【详解】解:1=1【点睛】本题考查了倒数的定义,二次根式的乘除,熟练进行二次根式的乘除运算是解题关键.12.1 3-【解析】【详解】解:将点P(3,-1)代入函数y=kx,13k-=,解得:k=1 3-.故答案为:1 3-.【点睛】本题考查了求正比例函数得函数表达式,把点代入函数表达式是解答本题的关键.13.8【解析】【分析】首先根据算术平方根的性质确定x的取值范围,再将待求式去掉根号,最后计算可得答案.【详解】∴x-1≥0,9-x≥0,解得1≤x≤9,即9-x≥0.则198x x x=-+-=.故答案为:8.【点睛】本题主要考查了算术平方根的性质,理解算术平方根双重非负性是解题的关键.14.20km【解析】【分析】根据题意,画出图形,且东北和东南的夹角为90°,根据题目中给出的1小时和速度可以计算AC,BC的长度,在直角△ABC中,已知AC,BC可以求得AB的长.【详解】作出图形,因为东北和东南的夹角为90°,所以△ABC为直角三角形.在Rt△ABC中,AC=16×1=16km,BC=12×1=12km.则==20km,故答案为:20km.【点睛】本题考查了勾股定理在实际生活中的应用,根据题意画出图形,确定△ABC为直角三角形,并且根据勾股定理计算AB是解题的关键.15.-1【解析】【分析】根据关于x 轴的对称点的特点可得答案.【详解】解:∵点()3,M a 和(),4N b 关于x 轴对称,∴a=-4,b=3,∴()2021a b +=()202111-=-,故答案为:-1【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.16.30【解析】【分析】根据勾股定理可得:AB=13,根据图形可得:阴影部分的面积=以BC 为直径的半圆的面积+以AC 为直径的半圆的面积+△ABC 的面积-以AB 为直径的半圆的面积,由此进行计算即可.【详解】Rt △ABC 中,AC =5,BC =12,∴,∴S 阴影=2221121511135122222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=30,故答案为30.17.1(2,0)n -【解析】【分析】先根据y =和1A 坐标求出1B 点坐标,再根据1B 点坐标求出点2A 坐标,以此类推,找出规律即可得到答案.【详解】解:由题意,点1A (1,0),11A B x ⊥轴,∴点1B 的横坐标是1,代入到y =得1B ,12OB ∴=,点2A 是以原点O 为圆心,1OB 长为半径画弧与x 轴的交点,212OA OB ∴==,∴点2A 的坐标是(2,0),同理可得2(2,B ,3(4,0)A ,以此类推可得点n A 的坐标是1(2,0)n -,故答案为:1(2,0)n -.【点睛】本题考查一次函数的应用,用了类比推理、数形结合的数学方法,平时需要多加练习这种题型.18.(1)(2)【解析】【分析】对于(1)==,再根据二次根式加减法法则计算;对于(2),根据乘法分配律计算即可.(1)原式=+=(2)原式⨯+⨯=.【点睛】本题主要考查了二次根式的计算,掌握二次根式运算的法则是解题的关键.191【解析】【分析】先化简二次根式,再算二次根式的乘法和零指数幂,最后算加减法即可.【详解】解:原式=13+=11+.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的运算法则和二次根式的性质,是解题的关键.20.(1)3y x =+(2)2【解析】【分析】(1)根据y -1与x +2成正比例列关系式1(2)y k x -=+,将x =2时,y =5,代入求解即可;(2)将x =m ,y =5代入(1)中所求函数关系式,求解即可.(1)解: y -1与x +2成正比例,∴设1(2)y k x -=+,将x =2时,y =5,代入得:51(22)k -=+,解得1k =,∴12y x -=+,移项得3y x =+,故y 与x 的函数关系式为:3y x =+;(2)点(),5m 在该函数图象上,∴53m=+,解得2m=,故m的值是2.【点睛】本题考查待定系数法求一次函数关系式、函数上点的坐标,属于基础题,注意(1)中求出12y x-=+后要移项合并同类项.21.(1)如图所示见解析,点A1的坐标(4,﹣1);(2)如图所示见解析,A2(﹣4,﹣1);(3)2.【解析】【分析】(1)根据网格结构找出点A、B、C向下平移5个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A1、B1、C1关于点y轴对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可;(3)根据三角形的面积公式求出△ABC的面积.【详解】(1)如图所示,△A1B1C1即为所求作的三角形,点A1的坐标(4,﹣1);(2)如图所示,△A2B2C2即为所求作的三角形;A2(﹣4,﹣1);(3)S△ABC=12×2×2=2.【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,以及三角形的面积计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.-1【解析】【分析】的整数部分,从而得到的整数部分a 、小数部分b ,然后将a 、b 代入计算即可.【详解】解:∵3<4,∴−4<<−3,∴2<<3,∴a=2,小数部分为−2=.∴())126b a -+=()14226--=()1226=()14106-=-1【点睛】本题主要考查估算无理数的大小,二次根式的混合运算,求出a 、b 的值是解题关键.23.能,理由见解析【解析】【分析】首先根据题意确定相应线段,再根据勾股定理求出CD 的长,进而求出CH 的长,再判断即可.【详解】能通过,理由如下:根据题意可知DH=2.3米.卡车关于中线对称更容易通过,所以OD=0.8米.在Rt △OCD 中,根据勾股定理,得0.6CD =(米),∴CH=CD+DH=0.6+2.3=2.9>2.5,∴卡车能通过此门.【点睛】本题主要考查了勾股定理的应用,构造直角三角形是解决这一类问题的常用方法.24.(1)a =2,b =3,c =4;(2)S 四边形ABOP =3﹣m ;(3)存在,点P (﹣3,12)【解析】【分析】(1)根据几个非负数和的性质得到a-2=0,b-3=0,c-4=0,分别解一元一次方程得到a=2,b=3,b=4;(2)根据三角形的面积公式和四边形ABOP 的面积=S △AOP+S △AOB 进行计算;(3)若S 四边形ABOP≥S △AOP ,则-m+3≥2×1212×2×(-m ),解得m≥-3,则m=-1,-2,-3,然后分别写出P 点的坐标.【详解】解:(1)由已知22(3)0a b -+-+,可得:a =2,b =3,c =4;故答案为:a =2,b =3,c =4.(2)∵S △ABO =12×2×3=3,S △APO =12×2×(﹣m )=﹣m ,∴S 四边形ABOP =S △ABO+S △APO =3+(﹣m )=3﹣m ,即S 四边形ABOP =3﹣m ;故答案为:S 四边形ABOP =3﹣m .(3)因为S △ABC =12×4×3=6,∵S 四边形ABOP =S △ABC∴3﹣m =6,则m =﹣3,所以存在点P(﹣3,12)使S四边形ABOP=S△ABC.故答案为:存在,P(﹣3,12).25.(1)6(3)等腰三角形【解析】对于(1),直接根据平行与y轴的两点之间的距离公式计算即可;对于(2),根据任意两点之间的距离公式计算即可;对于(3),分别根据两点之间的距离公式求出三边长,再判断即可.(1)根据题意可知5(1)6AB=--=.故答案为:6;(2)∵点A(3,5),点B(-2,-1),∴AB==所以A,B;(3)△ABC是等腰三角形,理由如下:∵点A(0,6),点B(-3,2),点C(3,2),∴5AB==,6BC==,5AC==,∴AB=AC,∴△ABC是等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级上学期期中数学试卷H卷
一、填空题 (共26题;共46分)
1. (2分)下列各式中,是分式的是().
A .
B .
C .
D .
2. (2分)(2017·武汉模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()
A .
B .
C .
D .
3. (2分)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线
AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()
A . 2个
B . 3个
C . 4个
D . 5个
4. (2分)当有意义时,a的取值范围是()
A . a≥2
B . a>2
C . a≠2
D . a≠﹣2
5. (2分) (2016八上·井陉矿开学考) 下列分式中,最简分式是()
A .
B .
C .
D .
6. (2分)下列选项中,从左边到右边的变形正确的是()
A .
B .
C .
D .
7. (2分)下面有3个等式:① ;② ;③ .其中,从左边到右边的变形正确的有()
A . 0个
B . 1个
C . 2个
D . 3个
8. (2分)(2015•达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()
A . 48°
B . 36°
C . 30°
D . 24°
9. (2分)如果一个等腰三角形的一个角为30º,则这个三角形的顶角为()
A . 120º
B . 30º
C . 90º
D . 120º或30º
10. (2分) (2016八上·重庆期中) 如图,在△ABC中,AB=AC,AD=BD=BC,则∠A 等于()
A . 16°
B . 36°
C . 48°
D . 60°
11. (2分)若分式的值为正数,则x的取值范围是()
A . x<
B . x>0
C . 0<x<
D . x<且x≠0
12. (2分)正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()
A . 60°
B . 90°
C . 120°
D . 150°
13. (2分)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点在第()象限
A . 一
B . 二
C . 三
D . 四
14. (2分)下列命题的逆命题是真命题的是()
A . 面积相等的两个三角形是全等三角形
B . 对顶角相等
C . 互为邻补角的两个角和为180°
D . 两个正数的和为正数
15. (2分)计算的结果为()
A .
B . -
C . -1
16. (2分) (2017八下·东台期中) 如果分式的值等于0,则x的值是()
A . 2
B . ﹣2
C . ﹣2或2
D . 2或3
17. (2分)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,DE∥BC,则图中等腰三角形的个数是()
A . 2
B . 3
C . 4
D . 5
18. (2分) (2015八上·宜昌期中) 在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()
A . 6
C . 12
D . 15
19. (2分)(2017·红桥模拟) 化简﹣的结果是()
A . a+b
B . a
C . a﹣b
D . b
20. (2分)(2017·河北模拟) 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()
A . =
B . =
C . =
D . =
21. (1分)已知线段AB的长为4,点P为线段AB上的一点,如果线段AP是线段BP 与线段AB的比例中项,那么线段AP的长为________ .
22. (1分)若 = = ,则 =________
23. (1分)已知a、b、c、d是成比例线段,即,其中a=3cm,b=2cm,c=6cm,则线段d=________
24. (1分)已知关于x的分式方程=1有增根,则a=________.
25. (1分) (2019八上·大庆期末) 如图,在矩形ABCD中,AB=6,对角线AC、BD 相交于点O , AE垂直平分BO于点E ,则AD的长为________.
26. (1分)如图,OC平分∠AOB,D为OC上任一点,DE⊥OB于E,若DE=4 cm,则D 到OA的距离为________.
二、解答题 (共7题;共50分)
27. (5分)如图所示,作△ABC关于直线l的对称.
28. (10分) (2018八上·黔南期末) 如图,已知A(﹣2,4),B(4,2),C(2,﹣1)
(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;
(2) P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).
29. (10分) (2017八下·邗江期中) 化简:
(1)﹣
(2)÷.
30. (10分)(2017·润州模拟) 解方程
(1)解方程: + =4
(2)解不等式组,并把它们的解集在数轴上表示出来.
31. (5分) (2015八下·苏州期中) 化简求值,,其中x=2.
32. (5分)(2017·德惠模拟) 某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.
33. (5分) (2016八上·柘城期中) 已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.
参考答案
一、填空题 (共26题;共46分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略
二、解答题 (共7题;共50分)
27、答案:略
28、答案:略
29、答案:略
30、答案:略
31、答案:略
32、答案:略
33、答案:略。