2015届高考文科数学三角函数专题训练及答案

合集下载

三角函数高考真题文科总结及答案

三角函数高考真题文科总结及答案

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2)C .y =sin 2x +cos 2xD .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数 3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x 4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x +12x D .y =x 2+sin x6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2 D. 37.(2015·福建卷6)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5128.(2015·重庆卷6)若tan α=13,tan(α+β)=12,则 tan β=( )A.17B.16C.57D.569.(2015·山东卷4)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位10.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.12.(2015·北京卷11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B=________.13.(2015·安徽卷12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.14.(2015·福建卷14)若△ABC 中,AC =3,A =45°,C =75°,则BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________.17.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, 3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.21.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(π4+A )=2.(1)求sin 2Asin 2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.22.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.24.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .25.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ; (2)设B =90°,且a =2,求△ABC 的面积.26.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值.27.(2015·新课标Ⅱ卷17)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求sin B sin C;(2)若∠BAC =60°,求∠B .28.(2015·山东卷17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33,sin(A +B )=69,ac =23,求sin A 和c 的值.29.(2015·四川卷19)已知A ,B ,C 为△ABC 的内角,tan A ,tan B 是关于x 的方程x 2+3px -p +1=0(p ∈R )的两个实根.(1) 求C 的大小;(2) 若AB =3,AC =6,求p 的值.30.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间[0,π2]上的最大值和最小值.31.(2015·北京卷15)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值.32.(2015·重庆卷18)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)...........,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y=g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:,及,可得7.【答案】D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=- 8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯ 9.【答案】B 【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B .10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 12.【解析】由正弦定理,得sin sin a b A B =,=所以sin B =所以4B π∠=. 13.【解析】由三角形内角和和正弦定理可知:14.【解析】由题意得0018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以BC ==.15.【答案】-1【解析】由已知可得,sin α=-2cos α,即tan α=-22sin αcos α-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由3sin 2sin A B =及正弦定理知:32a b =,又因为2a =,所以2b =,45sin )]4575(180sin[ACAB =+-245sin 60sin 6=⇒=⇒AC AC由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;17.【答案】π【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =. 18.【答案】2 19.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .20.试题解析:(I)因为//m n ,所以sin cos 0a B A =由正弦定理,得sin sin cos 0A B B A =,又sin 0B ≠,从而tan A =,由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =.2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =. 21.【答案】(1)25;(2)9 试题解析:(1)由tan(A)24π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=.22.【答案】(1;(223.【答案】(1);(2).(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-222222⨯=+-1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )14(II )1 试题解析:(I )由题设及正弦定理可得22b ac =. 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==.(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得c a ==所以D ABC 的面积为1.26.【答案】(I )a =8,sin C =(II .试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(2))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=27.【解析】(I )由正弦定理得因为AD 平分BAC ,BD =2DC ,所以.(II )因为 所以 由(I )知, 所以 28.【解析】在ABC ∆中,由cos B =sin B =. 因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+=+=. 由,sin sin a c A C =可得sin sin c A a C ===,又ac =,所以1c =. 29.【解析】(Ⅰ)由已知,方程x 2px -p +1=0的判别式,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠∠sin 1.sin 2B DC C BD ∠==∠()180,60,C BAC B BAC ∠=-∠+∠∠=()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 30.3B B ∠=∠=△=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanBp ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0 从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==-所以p(tanA +tanB )(2+1)=-130.【答案】(Ⅰ)π ;(Ⅱ)最大值为10 【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.31.解析(Ⅰ)∵()f x =x sin +3cos x -3=2sin (x +3π)-3 ∴()f x 的最小正周期为2π.(Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.32.【答案】(Ⅰ)()f x 的最小正周期为p ,最小值为-(Ⅱ).试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+1sin 22sin(2)23x x x p =--=--,因此()f x 的最小正周期为p ,最小值为-.(2)由条件可知:g()sin()3x x p =--当[,]2x p p Î时,有2[,]363x p p p-?, 从而sin()3x p -的值域为1[,1]2,那么sin()3x p --的值域为.故g()x 在区间[,]2pp 上的值域是.33.【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-.34.【解析】(Ⅰ);(Ⅱ)(ⅰ);(ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 因为对任意的整数,,2π()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x >452<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >k ()()00022213k k πππαπαπα+--+=->>所以对任意的正整数,都存在正整数000(2,2)x k k παππα∈++-,使得04sin 5x >.亦即存在无穷多个互不相同的正整数,使得.k 0x ()00g x >。

2015高考数学总复习三角函数专题测试(含答案)

2015高考数学总复习三角函数专题测试(含答案)

2015福建文科高考数学总复习(6)----三角函数单元测试题一、选择题1.设a<0,角α的终边经过点P(-3a,4a),那么sin α+2cos α的值等于:A.52B.-52C.51D.-512.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于:A.-23B.23C.21D.±233. 已知sin α>sin β,那么下列命题成立的是:A.若α,β是第一象限角,则cos α>cos βB.若α,β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β4.若sinx +cosx =1,那么sin n x +cos nx 的值是:A .1B .0C .-1D .不能确定 5. 函数y=-x ·cos x 的部分图象是:6. 函数x x y sin cos 2-=的值域是: A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,17. 已知:函数sin()y A x ωϕ=+,在同一周期内,当12x π=时取最大值4y =;当712x π=时,取最小值4y =-,那么函数的解析式为: A .4sin(2)3y x π=+ B. 4sin(2)3y x π=-+C 4sin(4)3=+y x π. D. 4sin(4)3y x π=-+8. 在函数y =|tanx |,y =|sin(x +2π)|,y =|sin2x |,y =sin(2x -2π)四个函数中,既是以π为周期的偶函数,又是区间(0,2π)上的增函数个数是:A .1B .2C .3D .49. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为:A. 21- B .23 C. 23-D 2110. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是:A.)32sin(π-=x y B.)62sin(π-=x y C .)62sin(π+=x y D .)62sin(π+=x y 11.函数f(x)=cos(3x +φ)的图象关于原点中心对称,则: A .φ=π2 B .φ=k π+π2 C .φ=k π D .φ=2k π-π2(k ∈Z) 二.填空题:12. 函数sin 2y x =的定义域是 . 13. 若1351016()sin ()()()(n f n f f f f π=++++,)= .14,函数⎪⎭⎫⎝⎛+=43cos log 21πx y 在区间_______上是减函数15.给出下列命题:(1)存在实数x ,使sinx+cosx =3π; (2)若αβ,是锐角△ABC 的内角,则sin α>cos β; (3)函数y =sin(32x-27π)是偶函数; (4)函数y =sin2x 的图象向右平移4π个单位,得到y =sin(2x+4π)的图象.其中正确的命题的序号是 . 三、解答题16.已知函数y =3sin3x .(1)作出函数在x ∈[π6,5π6]上的图象. (2)求(1)中函数的图象与直线y =3所围成的封闭图形的面积.17 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;18. 已知y =Asin(ωx +φ),(A >0, ω>0,ϕπ<)的图象过点P(π12,0)图象上与点P 最近的一个顶点是Q(π3,5). (1)求函数的解析式;(2)求使y ≤0的x 的取值范围.19,已知函数.2sin 21log 21⎪⎭⎫⎝⎛=x y(1) 求它的定义域、值域以及在什么区间上是增函数;(2) 判断它的奇偶性; (3) 判断它的周期性。

2015年高考文科数学试题分类解析之三角函数与解三角形.doc

2015年高考文科数学试题分类解析之三角函数与解三角形.doc

试题部分1.【2015高考福建,文6】若5sin 13α=-,且α为第四象限角,则tan α的值等于( )A .125 B .125- C .512 D .512- 2.【2015高考重庆,文6】若11tan ,tan()32a ab =+=,则tan =b ( )(A) 17 (B) 16 (C) 57 (D) 563.【2015高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 4.【2015高考陕西,文6】“sin cos αα=”是“cos 20α=”的( ) A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要5.【2015高考上海,文17】已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ).A.233 B. 235 C. 211 D. 213 6.【2015高考广东,文5】设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =b c <,则b =( )A .B .2C .D .3 7.【2015高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 .8.【2015高考福建,文14】若ABC ∆中,AC =,045A =,075C =,则BC =_______.9.【2015高考重庆,文13】设ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,且12,cos ,4a C ==-3sin 2sin A B =,则c=________. 10.【2015高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.11【2015高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为 . 12.【2015高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为,则ω =_____.13.【2015高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .14.【2015高考四川,文13】已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是______________.15.【2015高考安徽,文12】在ABC ∆中,6=AB , 75=∠A , 45=∠B ,则=AC .16【2015高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.17【2015高考上海,文14】已知函数x x f sin )(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤<⋅⋅⋅<<≤m x x x ,且AB12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),2(*∈≥N m m ,则m 的最小值为 .18.【2015高考北京,文11】在C ∆AB 中,3a =,b =,23π∠A =,则∠B = .19.【2015高考北京,文15】(本小题满分13分)已知函数()2sin 2x f x x =-. (I )求()f x 的最小正周期;(II )求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.20.【2015高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++ (Ⅰ)求()f x 最小正周期;(Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.21.【2015高考福建,文21】已知函数()2cos 10cos 222x x xf x =+.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 22.【2015高考广东,文16】(本小题满分12分)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值. 22.【2015高考广东,文16】(本小题满分12分)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.23.【2015高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求()y g x =的图象离原点O 最近的对称中心.24.【2015高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =; (II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C . 25.【2015高考山东,文17】 ABC ∆中,角A B C ,,所对的边分别为,,a b c .已知cos ()B A B ac =+==求sin A 和c 的值. 26.【2015高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B =平行.(I)求A ;(II)若2a b ==求ABC ∆的面积.27.【2015高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x 2px -p +1=0(p ∈R )两个实根. (Ⅰ)求C 的大小(Ⅱ)若AB =1,AC ,求p 的值28.【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为,12,cos ,4b c A -==-(I )求a 和sin C 的值;(II )求πcos 26A ⎛⎫+ ⎪⎝⎭ 的值.29.【2015高考新课标1,文17】(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B(II )若90B =,且a = 求ABC ∆的面积.30.【2015高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若B ,34a π==,求ABC ∆的面积.31.【2015高考重庆,文18】已知函数f(x)=122cos x .(Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域.32.【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为,12,cos ,4b c A -==-(I )求a 和sin C 的值;(II )求πcos 26A ⎛⎫+ ⎪⎝⎭ 的值.参考答案1.【答案】D 由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=-,故选D . 2.【答案】A 11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A. 3.【答案】B 因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B .4【答案】A 22cos 20cos sin 0(cos sin )(cos sin )0ααααααα=⇒-=⇒-+=,所以sin cos αα=或sin cos αα=-,故答案选A .5【答案】D 设直线OA 的倾斜角为α,)0,0)(,(>>n m n m B ,则直线OB 的倾斜角为απ+3,因为)1,34(A ,所以341tan =α,m n =+)3tan(απ,3313341313413=⋅-+=m n ,即2216927n m =, 因为491)34(2222=+=+n m ,所以491692722=+n n ,所以213=n 或213-=n (舍去),所以点B 的纵坐标为213. 6【答案】B 由余弦定理得:2222cos a b c bc =+-A,所以(22222b b =+-⨯⨯2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B . 7【答案】π()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =. 8.由题意得0018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以BC ==.9.【答案】4由3sin 2sin A B =及正弦定理知:32a b =,又因为2a =,所以2b =,由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;故填:4.10.【答案】8由图像得,当sin()16x π+Φ=-时min 2y =,求得5k =,当sin()16x π+Φ=时,max 3158y =⨯+=,故答案为8.11.【答案】π因为x x 2cos 1sin 22-=,所以x x x f 2cos 2321)2cos 1(231)(+-=--=,所以函数)(x f 的最小正周期为ππ=22.12.【答案】2πω= 由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .13.由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos sin 14f ωωωω⎛⎫=+=⇒+= ⎪⎝⎭,所以2ππ42ωω+=⇒= 14.【答案】-1由已知可得,sin α=-2cos α,即tan α=-22sin αcos α-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++15.【答案】2由正弦定理可知:45sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC16.【答案】.在ABC ∆中,030CAB ∠=,000753045ACB ∠=-=,根据正弦定理知,sin sin BC AB BAC ACB =∠∠,即1sin sin 2AB BC BAC ACB =⨯∠==∠,所以tan CD BC DBC =⨯∠==,故应填.17.【答案】8 因为函数x x f sin )(=对任意i x ,j x ),,3,2,1,(m j i ⋅⋅⋅=,2)()(|)()(|min max =-≤-x f x f x f x f j i ,欲使m 取得最小值,尽可能多的让),,3,2,1(m i x i ⋅⋅⋅=取得最高点,考虑π6021≤<⋅⋅⋅<<≤m x x x ,12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),2(*∈≥N m m 按下图取值满足条件,所以m 的最小值为8.18.【答案】4π由正弦定理,得sin sin a bA B ==sin B =所以4B π∠=.19.【答案】(I )2π;(II ).(Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.20.【答案】(Ⅰ)π ;(Ⅱ)最大值为1+,最小值为0 【解析】 (Ⅰ)因为x x x x x x x x f 2c o s 2s i n 12c o s c o s s i n 2c o s s i n )(22++=+++=1)42s i n (2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.21.【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析.【解析】(I )因为()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象. 又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 22.【答案】(1)3-;(2)1. 【解析】解:(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-222222⨯=+-1=23.【答案】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:且函数表达式为π()5sin(2)6f x x =-;(Ⅱ)离原点O 最近的对称中心为π(,0)12-. 【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-. (Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-. 24.【答案】(I )略;(II) 30,120,30.A B C ===25【解析】在ABC ∆中,由cos B =sin B =因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+=+=由,sin sin a cA C =可得sin sin c A a C ===,又ac =,所以1c =. 26【答案】(I) 3A π=;(II)【解析】(II)解法一:由余弦定理,得2222cos a b c bc A =+-,代入数值求得3c =,由面积公式得ABC ∆面积为1sin 2bc A =.解法二:由正弦定理,2sin B=,从而sin B =,又由a b >知A B >,所以cos B =,由sin sin()sin()3C A B B π=+=+,计算得sin C =所以ABC ∆面积为1sin 2ab C =解:(I)因为//m n ,所以sin cos 0a B A =由正弦定理,得sin sin cos 0A B B A -=,又sin 0B ≠,从而tan A = 由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =27.【解析】(Ⅰ)由已知,方程x 2px -p +1=0的判别式 △=)2-4(-p +1)=3p 2+4p -4≥0 所以p ≤-2或p ≥23由韦达定理,有tanA +tanBp ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0 从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB == 解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tanA =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+- 所以ptanA +tanB )(2+1)=-128【答案】(I )a=8,sin C =(II. 【解析】(I )由面积公式可得24,bc =结合2,b c -=可求得解得6, 4.b c ==再由余弦定理求得a =8.最后由正弦定理求sin C 的值;(II )直接展开求值.试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(II ))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=29.【答案】(I )14(II )1 解:(I )由题设及正弦定理可得22b ac =. 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a c b B ac +-==.(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得c a =所以D ABC 的面积为1.30.【答案】(1)25;(2)9【解析】 (1)由tan(A)24π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=.31.【答案】(Ⅰ)()f x 的最小正周期为p ,最小值为-,. 【解析】(1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+1sin 22sin(2)23x x x p =--=--,因此()f x 的最小正周期为p ,最小值为-.(2)由条件可知:g()sin()3x x p =--当[,]2x p p Î时,有2[,]363x p p p -?,从而sin()3x p -的值域为1[,1]2,那么sin()3x p --的值域为.故g()x 在区间[,]2pp 上的值域是.32.【答案】(I )a =8,sin C =(II 【解析】(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(II ))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=。

2015全国高考数学,三角函数

2015全国高考数学,三角函数
2.(15 年福建文科)若 sin

(A)
3 2
(B)Leabharlann 3 2(C) 1 2
(D)
1 2
sin 2 A sin C
4.(15 北京理科)在 △ ABC 中, a 4 , b 5 , c 6 ,则 5.(15 北京文科)在 C 中, a 3 , b
. .
6 ,
2 ,则 3
6.(15 年广东理科)设 ABC 的内角 A , B , C 的对边分别为 a , b , c ,若 a 3 ,
sin B
1 π , C ,则 b 2 6
c. C 的对边分别为 a , b, c2 3, 7. (15 年广东文科) 设 C 的内角 , 若a 2, ,
cos 3 ,且 b c ,则 b 2

8. ( 15 年 安 徽 文 科 ) 在 ABC 中 , AB 6 , A 75 , B 45 , 则
AC

9.(15 年福建理科)若锐角 ABC 的面积为 10 3 ,且 AB 5, AC 8 ,则 BC 等于 ________.
专题三 三角函数小题

3
1.(15 年山东理科)要得到函数 y sin(4 x (A)向左平移
) 的图象,只需将函数 y sin 4 x 的图像

12 (C)向左平移 个单位 3
个单位
(B) 向右平移

12 (D) 向右平移 个单位 3
个单位
5 ,且 为第四象限角,则 tan 的值等于( 13 12 5 12 5 A. B. C. D. 5 12 5 12 3.(15 年新课标 1 理科)sin20°cos10°-con160°sin10°=

2015年全国高考真题_三角函数(详细答案)

2015年全国高考真题_三角函数(详细答案)
(其中) 依题意,在区间内有两个不同的解当且仅当,故m的取值范围是. 2)因为是方程在区间内有两个不同的解, 所以,. 当时, 当时, 所以 解法二:(1)同解法一. (2)1) 同解法一. 2) 因为是方程在区间内有两个不同的解, 所以,. 当时, 当时, 所以 于是 22.【2015高考浙江,理16】在中,内角,,所对的边分别为,,,已 知,=. (1)求的值; (2)若的面积为7,求的值. 【答案】(1);(2).
又∵,,∴,故. 23.【2015高考山东,理16】设. (Ⅰ)求的单调区间; (Ⅱ)在锐角中,角的对边分别为,若,求面积的最大值. 【答案】(I)单调递增区间是; 单调递减区间是 (II) 面积的最大值为 【解析】 (I)由题意知 由 可得 由 可得 所以函数 的单调递增区间是 ; 单调递减区间是
(Ⅱ)若,,求和的长. 【答案】(Ⅰ);(Ⅱ). 【解析】(Ⅰ),,因为,,所以.由正弦定理可得. (Ⅱ)因为,所以.在和中,由余弦定理得 ,. .由(Ⅰ)知,所以. 20.【2015江苏高考,15】(本小题满分14分)
在中,已知. (1)求的长;
(2)求的值. 【答案】(1);(2)
21.【2015高考福建,理19】已知函数的图像是由函数的图像经如下变 换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不 变),再将所得到的图像向右平移个单位长度. (Ⅰ)求函数的解析式,并求其图像的对称轴方程;
∴ ,又, ∴ ,∴ 即,∴ ; (2)由(1)依题知 , ∴ 又, ∴ 即. 32.【2015高考湖南,理17】设的内角,,的对边分别为,,,,且为 钝角. (1)证明:; (2)求的取值范围. 【答案】(1)详见解析;(2).
,∴,于是 ,∵,∴,因此,由此可知的取值范围是.

2015课标卷(Ⅱ)三角函数

2015课标卷(Ⅱ)三角函数

2015年新课标卷Ⅱ《三角函数》1.(2015年新课标卷Ⅱ文科)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,2BD DC =.(I )求sin sin BC ∠∠ ;(II )若60BAC ∠= ,求B ∠.【解析】(I )由正弦定理得,,sin sin sin sin ADBDADDCB BADC CAD ==∠∠∠∠因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2BDCC BD ∠==∠ (角平分线定理:ABBDAC CD =能不能用?)(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan ,30.3B B ∠=∠=2.(2015年新课标卷Ⅱ理科)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆的面积是ADC ∆面积的2倍.(I )求sin sin B C∠∠ ; (Ⅱ) 若AD =1,DC =22,求BD 和AC 的长. 【解析】(I )2,2ABD ADC S S BD DC ∆∆=∴= ,由角平分线定理得12AC CD AB DB == 正弦定理sin 1sin 2B AC C AB ∠==∠ (角平分线定理:AB BD AC CD=能不能用?似乎此题就是在推证角平分线定理)(Ⅱ)由(I )知2BD DC =ABD ∆和ADC ∆中,由余弦定理得 2222cos AB AD BD AD BD ADB=+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠. 222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =. 【点评】此题第二问也是2014年文科题的延续。

近几年的三角形考查偏向于应用意识,在众多的边角问题上组建等量关系式,加强了思维含量的考查,这也是高考以能力立意的一个好的素材。

《三角函数》高考真题文科总结及答案

《三角函数》高考真题文科总结及答案

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2)C .y =sin 2x +cos 2xD .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x+12x D .y =x 2+sin x6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2 D. 37.(2015·福建卷6)若sin α=-513,且α为第四象限角,则tanα的值等于( )A.125 B .-125 C.512 D .-5128.(2015·重庆卷6)若tan α=13,tan(α+β)=12,则 tan β=( )A.17B.16C.57D.569.(2015·山东卷4)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位10.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.12.(2015·北京卷11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.14.(2015·福建卷14)若△ABC 中,AC =3,A =45°,C =75°,则BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________.17.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, 3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.21.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(π4+A )=2.(1)求sin 2Asin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积.22.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.24.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .25.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.26.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝⎛⎭⎪⎫2A +π6的值.27.(2015·新课标Ⅱ卷17)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求sin B sin C;(2)若∠BAC =60°,求∠B .28.(2015·山东卷17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33,sin(A +B )=69,ac =23,求sin A 和c 的值.29.(2015·四川卷19)已知A ,B ,C 为△ABC 的内角,tan A ,tan B是关于x 的方程x 2+3px -p +1=0(p ∈R )的两个实根.(1) 求C 的大小;(2) 若AB =3,AC =6,求p 的值.30.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间[0,π2]上的最大值和最小值.31.(2015·北京卷15)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值.32.(2015·重庆卷18)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)...........,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:,及,可得7.【答案】D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=-8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯ 9.【答案】B 【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B .10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 12.【解析】由正弦定理,得sin sin a bA B ==sin B =4B π∠=.13.【解析】由三角形内角和和正弦定理可知:14.【解析】由题意得0018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以BC ==.15.【答案】-145sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC【解析】由已知可得,sin α=-2cos α,即tan α=-22sin αcos α-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由3sin 2sin A B =及正弦定理知:32a b =,又因为2a =,所以2b =, 由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;17.【答案】π【解析】()211c o s 2113s i ns i n c o s 1s i n 21s i n 2c o s 222222x fx x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =-. 18.【答案】2 19.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .20.试题解析:(I)因为//m n ,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A -=,又sin 0B ≠,从而tan A =由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --=因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =21.【答案】(1)25;(2)9 试题解析:(1)由tan(A)24π+=,得1tan 3A =, 所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=.22.【答案】(1(223.【答案】(1);(2).(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+-- ()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+-222222⨯=+-1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )14(II )1 试题解析:(I )由题设及正弦定理可得22b ac =. 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==.(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得c a ==. 所以D ABC 的面积为1.26.【答案】(I )a =8,sin C =(II试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(2))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=27.【解析】(I )由正弦定理得因为AD 平分BAC ,BD =2DC ,所以.(II )因为 所以由(I )知,所以 28.【解析】在ABC ∆中,由cos B =sin B =因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+=+=由,sin sin a c A C =可得sin sin c A a C ===,又ac =,所以1c =. 29.【解析】(Ⅰ)由已知,方程x 2-p +1=0的判别式△=)2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanBp ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠∠sin 1.sin 2B DC C BD ∠==∠()180,60,C BAC B BAC ∠=-∠+∠∠=()1sin sin sin .22C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 30.B B ∠=∠=从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+- 所以ptanA +tanB )(21)=-130.【答案】(Ⅰ)π ;(Ⅱ)最大值为1+,最小值为0 【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x 由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0. 综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.31.解析(Ⅰ)∵()f x =x sin +3cos x -3=2sin (x +3π)-3 ∴()f x 的最小正周期为2π. (Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.32.【答案】(Ⅰ)()f x 的最小正周期为p ,最小值为-,(Ⅱ).试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+1sin 22sin(2)23x x x p =--=--因此()f x 的最小正周期为p ,最小值为-(2)由条件可知:g()sin()3x x p =--. 当[,]2x p p Î时,有2[,]363x p p p-?, 从而sin()3x p -的值域为1[,1]2,那么sin()3x p --的值域为.故g()x 在区间[,]2pp 上的值域是.33.【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:21且函数表达式为()5sin(2)6f x x =-. (Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k∈Z ,其中离原点O 最近的对称中心为π(,0)12-.34.【解析】(Ⅰ);(Ⅱ)(ⅰ); (ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 因为对任意的整数,,所以对任意的正整数,都存在正整数000(2,2)x k k παππα∈++-,使得04sin 5x >.亦即存在无穷多个互不相同的正整数,使得. 2π()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x >45<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >k ()()00022213k k πππαπαπα+--+=->>k 0x ()00g x >。

2015年高考文科数学试题分类解析之三角函数与解三角形.doc

2015年高考文科数学试题分类解析之三角函数与解三角形.doc

B . -C .D . -2.【2015 高考重庆,文 6】若 tan a = , tan(a + b ) = ,则 tan b = ()( 12 个单位 (B )向右平移 12 个单位(C )向左平移 π 个单位 (D )向右平移 个单位3 至 OB ,则点 B 的纵坐标为(B. C. D.试题部分1.【2015 高考福建,文 6】若 sin α = -于()513,且 α 为第四象限角,则 tan α 的值等A .12 12 5 55 5 12 121 13 21 1 5 5(A) (B) (C) (D)7 6 7 63.【2015 高考山东,文 4】要得到函数 y = sin 4 x -y = sin 4 x 的图象( )π 3 )的图象,只需要将函数(A )向左平移 πππ334.【2015 高考陕西,文 6】“ sin α = cos α ”是“ cos 2α = 0 ”的()A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要5.【2015 高考上海,文 17】已知点 A 的坐标为 (4 3,1) ,将 O A 绕坐标原点 O 逆时针旋转 π ).A.3 3 5 3 11 132 2 2 26.【2015 高考广东,文 5】设 ∆AB C 的内角 A ,B ,C 的对边分别为 a ,b ,c .若a = 2 , c = 2 3 , cos A = 3 ,且b <c ,则 b = ()2A . 3B . 2C . 2 2D . 37. 【 2015 高 考浙 江, 文 11 】函数 f (x ) = sin 2 x + sin x cos x + 1 的最 小正周 期6x+Φ)是,最小值是.8.【2015高考福建,文14】若∆ABC中,AC=3,A=450,C=750,则BC=_______.9.【2015高考重庆,文13】设∆ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=-1,3sin A=2sin B,则c=________.410.【2015高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y=3sin(π+k,据此函数可知,这段时间水深(单位:m)的最大值为____________.11【2015高考上海,文1】函数f(x)=1-3sin2x的最小正周期为.12.【2015高考湖南,文15】已知ω>0,在函数y=2sinωx与y=2cosωx的图像的交点中,距离最短的两个交点的距离为23,则ω=_____.13.【2015高考天津,文14】已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(-ω,ω)内单调递增,且函数f(x)的图像关于直线x=ω对称,则ω的值为.14.【2015高考四川,文13】已知sinα+2cosα=0,则2sinαcosα-cos2α的值是______________.15.【2015高考安徽,文12】在∆ABC中,AB=6,∠A=75 ,∠B=45 ,则AC=.16【2015高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m后到达B处,测得此D C山顶在西偏北75的方向上,仰角为30,则此山的高度B A CD=_________m.17【2015高考上海,文14】已知函数f(x)=sin x.若存在x1,x2,⋅⋅⋅,xm满足0≤x<x<⋅⋅⋅<x≤6π,且12m(II )求 f (x )在区间 ⎢0,⎥⎦ 上的最小值.(Ⅱ)求 f ( x ) 在区间 [0, ] 上的最大值和最小值.21.【2015 高考福建,文 21】已知函数 f (x ) = 10 3 sin cos + 10cos 2 .【 ( 6 个单位长度,再向下平移 a ( a > 0 )个单(1)求 tan α + ⎪ 的值;(1)求 tan α + ⎪ 的值;| f ( x ) - f ( x ) | + | f ( x ) - f ( x ) | + ⋅⋅⋅ + | f ( x1223m -1) - f ( x ) |= 12 (m ≥ 2, m ∈ N * ) ,则 mm的最小值为.18. 【 2015 高考北京,文 11 】在 ∆AB C 中, a = 3 , b = 6 , ∠A = 2π ,则3∠B =.19. 2015 高考北京,文 15】本小题满分 13 分)已知函数 f (x ) = sin x - 2 3 sin 2(I )求 f (x )的最小正周期;⎡ 2π ⎤ ⎣ 320.【2015 高考安徽,文 16】已知函数 f ( x ) = (sin x + cos x)2 + cos 2 x(Ⅰ)求 f ( x ) 最小正周期;π2x x x2 2 2 (Ⅰ)求函数 f (x )的最小正周期;x 2.(Ⅱ)将函数 f (x )的图象向右平移π位长度后得到函数 g (x )的图象,且函数 g (x )的最大值为 2.(ⅰ)求函数 g (x )的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数 x ,使得 g (x ) > 0 . 022.【2015 高考广东,文 16】(本小题满分 12 分)已知 tan α = 2 .⎛ π ⎫ ⎝4 ⎭(2)求 sin 2α的值.sin 2 α + sin α cos α - cos 2α - 122.【2015 高考广东,文 16】(本小题满分 12 分)已知 tan α = 2 .⎛ π ⎫ ⎝4 ⎭|...........cos B=3,sin(A+B)=,ac=23求sin A和c的值.(2)求sin2α的值.sin2α+sinαcosα-cos2α-123.【2015高考湖北,文18】某同学用“五点法”画函数f(x)=A s in(ωx+ϕ)(ω>0,|ϕ<π)在某一个周期内的图象时,列表并填入了部分数2据,如下表:ωx+ϕx 0π2π3π3π25π62πA s in(ωx+ϕ)5-50(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(Ⅱ)将y=f(x)图象上所有点向左平行移动π个单位长度,得到y=g(x)图6象,求y=g(x)的图象离原点O最近的对称中心.24.【2015高考湖南,文17】(本小题满分12分)设∆ABC的内角A,B,C的对边分别为a,b,c,a=b tan A.(I)证明:sin B=cos A;(II)若sin C-sin A c os B=3,且B为钝角,求A,B,C. 425.【2015高考山东,文17】∆ABC中,角A,B,C所对的边分别为a,b,c.已知63926.【2015高考陕西,文17】∆ABC的内角A,B,C所对的边分别为a,b,c,向量m=(a,3b)与n=(cos A,sin B)平行.(I)求A;(II)若a=7,b=2求∆ABC的面积.27.【2015高考四川,文19】已知A、B、C为△ABC的内角,tanA、tanB是关边分别为 a,b ,c △已知 ABC 的面积为 3 15 , b - c = 2,cos A = - ,(II )求 cos 2 A + ⎪ 的值.对的边分别为 a, b , c .已知 tan( + A) = 2 . 31.【2015 高考重庆,文 18】已知函数 f(x)= sin2x- 3 cos 2 x .到函数 g (x )的图像.当 x ∈ ⎢ , π ⎥ 时,求 g(x)的值域.边分别为 a,b ,c △已知 ABC 的面积为 3 15 , b - c = 2,cos A = - ,(II )求 cos 2 A + ⎪ 的值.(1)求的值; (2)若 B =, a = 3 ,求 ∆ABC 的面积.于方程 x 2+ 3 px -p +1=0(p ∈R)两个实根.(Ⅰ)求 C 的大小(Ⅱ)若 AB =1,AC = 6 ,求 p 的值28.【2015 高考天津,文 16】(本小题满分 13 分)△ABC 中,内角 A,B,C 所对的14(I )求 a 和 sinC 的值;⎛ π ⎫ ⎝6 ⎭29.【2015 高考新课标 1,文 17】(本小题满分 12 分)已知 a, b , c 分别是 ∆ABC 内角 A, B, C 的对边, sin 2 B = 2sin A s in C .(I )若 a = b ,求 cos B;(II )若 B = 90 ,且 a = 2, 求 ∆ABC 的面积.30.【2015 高考浙江,文 16】(本题满分 14 分)在 ∆ABC 中,内角 A ,B ,C 所π4sin 2 Asin 2 A +cos 2 Aπ412(Ⅰ)求 f (x )的最小周期和最小值,(Ⅱ)将函数 f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得⎡ π ⎤ ⎣ 2 ⎦32.【2015 高考天津,文 16】(本小题满分 13 分)△ABC 中,内角 A,B,C 所对的14(I )求 a 和 sinC 的值;⎛ π ⎫ ⎝6 ⎭,且 α 为第四象限角,则 cos α = 1 - sin 2α = ,则 =- ,故选 D . tan(α + β ) - tan α 2 3 = 1 ,故选 A.1 + tan(α + β ) tan α 1 1 7 3.【答案】B 因为 y = sin(4 x - ) = sin 4( x - ) ,所以,只需要将函数 y = sin 4 x 的12 个单位,故选 B .3 + α ,因为 A(4 3,1) ,4 3 = 13 ,即 m 2 = 27 n 2 , , tan( + α ) = , =1 - 3 ⋅ 13 m m n 2 = 49 ,所以n = 或 n = - (舍 ( ) - 2 ⨯ b ⨯ 222= b 2+ 2 31.【答案】D 由 sin α = - 参考答案5 12 13 13tan α =sin α 5cos α 121 1- 2.【答案】A tan β = tan[(α + β ) - α ] = =1 + ⨯2 3π π3 12图象向右平移 π4【答案】 A cos 2α = 0 ⇒ cos 2 α - sin 2 α = 0 ⇒ (cos α - sin α )(cos α + sin α ) = 0 ,所以 sin α = cos α 或 sin α = - cos α ,故答案选 A .5【答案】D 设直线 OA 的倾斜角为 α , B (m , n)(m > 0, n > 0) ,则直线OB 的倾斜角为π所以 tan α =因为 m 2 + n 2 = (4 3)2 + 12 = 49 ,所以n 2 + 27 13 13169 2 2去), 所以点 B 的纵坐标为13 .26【答案】B 由余弦定理得: a 2 = b 2 + c 2 - 2bc cos A ,所以23 ⨯ 3,即 b 2 - 6b + 8 = 0 ,解得:b = 2 或 b = 4 ,因为2b <c ,所以 b = 2 ,故选 B .7【答 案 】π ,3 - 2 2f(x)=sin2x+sin x cos x+1=sin2x++1=sin2x-cos2x+=2sin(2x-)+,所以T==π;f(x)2-由余弦定理得:c2=a2+b2-2ab cos C=4+9-2⨯2⨯3⨯(-)=16,所以c=4;故10.【答案】8由图像得,当sin(x+Φ)=-1时y当sin(x+Φ)=1时,y11.【答案】π因为2sin2x=1-cos2x,所以f(x)=1-(1-cos2x)=-+cos2x,所以函数f(x)的最小正周期为=π.12.【答案】ω=由题根据三角函数图像与性质可得交点坐标为((kπ+,),((kπ+,-2),k,k∈Z+,距离最短的两个交点一定ω4ω4()15ππ在同一个周期内,∴232=(-)2+(-2-2)2,ω=.,且f(ω)=sinω2+cosω2=2⇒sin ω2+⎪=1,所以ω2+π11-cos2x11322222π32π242232 min=2.8.【答案】2由题意得B=1800-A-C=600.由正弦定理得BC=AC sin A,sin BAC BC=sin B sin A,则所以BC=3⨯322=2.29.【答案】4由3sin A=2sin B及正弦定理知:3a=2b,又因为a=2,所以b=2,14填:4.π6min=2,求得k=5,π6max=3⨯1+5=8,故答案为8.3132222π2π21π15π21212π∴ω244213.【答案】π由f(x)在区间(-ω,ω)内单调递增,且f(x)的图像关于直线x=ω2对称,可得2ω≤πω⎛π⎫⎝4⎭ππ=⇒ω=.42214.【答案】-1由已知可得,sinα=-2cosα,即tanα=-22sinαcosα-cos2α====-1理知,BC=⨯sin∠BAC=⨯=3002,,即BC=4由正弦定理,得a b3622sinαcosα-cos2α2tanα-1-4-1sin2α+cos2αtan2α+14+115.【答案】2由正弦定理可知:sin[180AB AC6AC=⇒=⇒AC=2-(75 +45 )]sin45 sin60sin4516.【答案】1006.在∆ABC中,∠CAB=300,∠ACB=750-300=450,根据正弦定AB AB6001sin∠BAC sin∠ACB sin∠ACB222所以CD=BC⨯tan∠DBC=3002⨯3=1006,3故应填1006.17.【答案】8因为函数f(x)=sin x对任意x,x(i,j=1,2,3,⋅⋅⋅,m),i j|f(x)-f(x)|≤f(x)i j max -f(x)min=2,欲使m取得最小值,尽可能多的让x(i=1,2,3,⋅⋅⋅,m)取得最高点,考虑i0≤x<x<⋅⋅⋅<x≤6π,12m|f(x)-f(x)|+|f(x)-f(x)|+⋅⋅⋅+|f(x 1223取值满足条件,所以m的最小值为8.m-1)-f(x)|=12(m≥2,m∈N*)按下图m18.【答案】π=,即=,所以sin B=,sin A sin B3sin B224.,∴≤x+≤π.当x+=π,即x=时,f(x)取得最小值.∴f(x)在区间[0,]上的最小值为f()=-3.4)+14)+1当x∈[0,]时,2x+∈[,]由正弦函数y=sin x在[,]上的图象知,当2x+=,即x=时,f(x)取最大值2+1;当2x+=,即x=时,f(x)取最小值0.综上,f(x)在[0,]上的最大值为2+1,最小值为0.【解析】(I)因为f(x)=103sin cos+10cos222x s所以∠B=π19.【答案】(I)2π;(II)-3.(Ⅱ)∵0≤x≤2πππ333π2π332π2π3320.【答案】(Ⅰ)π;(Ⅱ)最大值为1+2,最小值为0【解析】(Ⅰ)因为f(x)=s i n x+c o s x+2s i n c o x+c o s2x=1+s i n2x+c o s2x=2s i n2(x+π所以函数f(x)的最小正周期为T=2π=π.2(Ⅱ)由(Ⅰ)得计算结果,f(x)=2sin(2x+ππππ5π2444π5π44πππ428π5ππ444π221.【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)g(x)=10sin x-8;(ⅱ)详见解析.x x x222=53sin x+5cos x+5= 10sin x + ⎪ + 5 .6 个单位长度后得到 y = 10sin x + 5 的图象,由 4 知,存在 0 < α < ,使得 sin α = .5 2 3 53 > 1,54 = tan α + 1 = 2 + 1 = -3解:(1) tan α + ⎪ = 4⎭ 1 - tan α tan π 1 - tan α 1 - 2⎛ π ⎫ ⎝6 ⎭所以函数 f (x )的最小正周期 T = 2π .(II )(i )将 f (x )的图象向右平移 π再向下平移 a ( a > 0 )个单位长度后得到 g (x ) = 10sin x + 5 - a 的图象.又已知函数 g (x )的最大值为 2 ,所以10 + 5 - a = 2 ,解得 a = 13 .所以 g (x ) = 10sin x - 8 .(ii )要证明存在无穷多个互不相同的正整数 x ,使得 g (x ) > 0 ,就是要证明存在无穷多个互不相同的正整数 x ,使得10sin x - 8 > 0 ,即 sin x > 0 0 03 π4 < 0 0 45.由正弦函数的性质可知,当 x ∈ (α , π - α )时,均有 sin x > 0 0因为 y = sin x 的周期为 2π ,45.所以当 x ∈ (2k π + α , 2k π + π - α ) ( k ∈ Z )时,均有 sin x > 0 0 45.因为对任意的整数 k , (2k π + π - α )- (2k π + α 0) = π - 2α0 >π所 以 对 任 意 的 正 整 数 k , 都 存 在 正 整 数 x ∈ (2k π + α , 2k π + π - α ksin x > 4.k亦即存在无穷多个互不相同的正整数 x ,使得 g (x ) > 0 .0 022.【答案】(1) -3 ;(2)1.【解析】tan α + tan π ⎛π ⎫⎝4sin 2α(2)sin 2 α + sin α cos α - cos 2α - 1) ,使得2 π3π22π====2sin α cos αsin 2 α + sin α cos α - (2cos 2 α - 1)- 12sin α cos αsin 2 α + sin α cos α - 2cos 2 α 2 tan αtan 2 α + tan α - 2 2 ⨯ 222 + 2 - 2= 123.【答案】(Ⅰ)根据表中已知数据,解得 A = 5, ω = 2, ϕ = - π .数据补全如下表: 6ω x + ϕ0 πxA s in(ωx + ϕ)π 120 π 35 7π 125π 6-513 12π且函数表达式为 f ( x ) = 5sin(2 x - π ) ;(Ⅱ)离原点 O 最近的对称中心为 (- π , 0) . 612【解析】(Ⅰ)根据表中已知数据可得: A = 5 , π ω + ϕ = π , 5π ω + ϕ = 3π ,解3262 得 ω = 2, ϕ = - π . 数据补全如下表:6ω x + ϕ0 π2π 3π22πxA s in(ωx + ϕ)π 120 π 357π 125π 6-513 12π且函数表达式为 f ( x ) = 5sin(2 x - π ) .6(Ⅱ)由(Ⅰ)知 f ( x ) = 5sin(2 x - π) ,因此 g ( x ) = 5sin[2( x + π ) - π ] = 5sin(2 x + π ) .666 6因为 y = sin x 的对称中心为 (k π, 0) , k ∈ Z . 令 2 x + π = k π ,解得 x = k π- π , k ∈ Z .6212即 y = g ( x ) 图象的对称中心为(k π - π ,),k ∈ Z ,其中离原点 O 最近的对称中心为 212(- π, 0) .1224.【答案】(I )略;(II) A = 30 , B = 120 , C = 30.,得 sin B = . 因此 sin A = sin( B + C ) = sin B cos C + cos B sin C = 6 5 3c sin Ac= 3 = 2 3c ,又 ac = 2 3 ,所以 c = 1 .=, 可得 a =sin C3;(II)25【答案】 2 2,1.3【解析】在 ∆ABC 中,由 cos B =3 6 3 3因为 A + B + C = π ,所以 sin C = sin( A + B) = 69,因为 sin C < sin B ,所以 C < B , C 为锐角, cos C = 5 39,3 6 2 2 ⨯ + ⨯ = 3 9 3 9 3.由26【答案】(I) A = π3 3 2.【解析】(II)解法一:由余弦定理,得 a 2 = b 2 + c 2 - 2bc cos A ,代入数值求得 c = 3 ,由面积公式得∆ABC面积为bc sin A=.,从而sin B=,又由a>b知A>B,,由sin C=sin(A+B)=sin(B+),计算得sin C=,所以∆ABC面积为ab sin C=332.3,故∆ABC面积为bc sin A=sinπ=3)133 22解法二:由正弦定理,得7sinπ3=2sin B217所以cos B=12解:(I)因为m//n,所以a sin B-3b cos A=0由正弦定理,得sin A s in B-3sin B cos A=0,又sin B≠0,从而tan A=3,由于0<A<π所以A=π3(II)解法一:由余弦定理,得a2=b2+c2-2bc cos A,而a=7,b=2,A=π得7=4+c2-2c,即c2-2c-3=0因为c>0,所以c=3,13322.解法二:由正弦定理,得732 sin B从而sin B=21 7又由a>b知A>B,所以cos B=27 7故sin C=sin(A+B)=sin(B+π3+cos B sin所以∆ABC面积为ab s in C=.从而tan(A+B)=tan A+tan B错误!tan450+tan3001+所以p=-1(tanA+tanB)=-(2+3+1)=-1-3;(II).=sin B cosππ3=32114,1332227.【解析】(Ⅰ)由已知,方程x2+3px-p+1=0的判别式=3p)2-4(-p+1)=3p2+4p-4≥0所以p≤-2或p≥2 3由韦达定理,有tanA+tanB=-3p,tanAtanB=1-p 于是1-tanAtanB=1-(1-p)=p≠0-3p==-31-tan A tan B p所以tanC=-tan(A+B)=3所以C=60°(Ⅱ)由正弦定理,得sinB=AC sin C6sin6002== AB32解得B=45°或B=135°(舍去)于是A=180°-B-C=75°则tanA=tan75°=tan(45°+30°)==1-tan450tan3001-33=2+3 3313328【答案】(I)a=8,sin C=1515-73816【解析】(I)由面积公式可得bc=24,结合b-c=2,可求得解得b=6,c=4.再由余弦定理试题解析 :(I )△ABC 中,由 cos A = - , 得 sin A = , 由 bc sin A = 3 15 ,得15 4 sin C ,得 sin C = ππ3 (2cos 2 A -1)- sin A c os A cos 2 A + ⎪ = cos 2 A cos - sin 2 A sin4 (II )1 由余弦定理可得 cos B = a 2 + c 2 - b 25 ;(2) 9【解析】 (1)由 tan( + A) = 2 ,得 tan A = 3 ,所以 sin 2 A sin 2 A + cos 2 A = 2sin A c os A + cos 2 A 5 .2 tan A + 1 =3 可得, sin A =4 ,由正弦定理知: b = 35 .求得 a=8.最后由正弦定理求 sinC 的值;(II )直接展开求值.1 14 2bc = 24, 又由 b - c = 2, 解得 b = 6, c = 4. 由 a 2 = b 2 + c 2 - 2bc cos A , 可得 a=8. 由a csin A =15 8 .(II⎛ π ⎫ ⎝ 6 ⎭ 6 6 =2= 15 - 7 31629.【答案】(I ) 1解:(I )由题设及正弦定理可得 b 2 = 2ac .又 a = b ,可得 b = 2c , a = 2c ,12ac = 4 .(II )由(1)知 b 2 = 2ac .因为 B = 90°,由勾股定理得 a 2 + c 2 = b 2 .故 a 2 + c 2 = 2ac ,得 c = a = 2 .所以 D ABC 的面积为 1.30.【答案】(1) 2π142sin A c os A 2 tan A 2 =),(2)由 tan A = 1 10 10 ,cos A =3 1010 .a = 3, B =π, Ⅱ)[ , ] . ( ( 当 x [ , p ] 时,有 x - ?[ , ] ,从而 sin( x - ) 的值域为 [ ,1] ,那么 sin( x - p的值域为 [ 故 g( x) 在区间 [ , p ] 上的值域是 [ , ] .;(II ) . ( )△I ABC 中,由 cos A = - , 得 sin A = , 由 bc sin A = 3 15 ,得 bc = 24, 又15 4又 sin C = sin( A + B) = sin A c os B + cos A s in B = 2 55,所以 S ∆ABC =1 12 5ab sin C = ⨯ 3 ⨯ 3 5 ⨯ = 9 .2 2 531.【答案】 Ⅰ)f ( x ) 的最小正周期为 p ,最小值为 - 2+ 3 1- 3 2- 32 2 2【解析】1 1 3(1) f ( x ) = sin 2 x - 3 cos 2 x = sin 2 x - (1+cos 2 x )2 2 21 3 3 p 3= sin 2x - cos 2x - = sin(2 x - )-2 2 23 2,因此 f ( x ) 的最小正周期为 p ,最小值为 - 2+ 32.(2)由条件可知: g( x) = sin( x - p 3 )- 3 2.p p p 2p2 3 6 3p 13 23 1- 3 2- 3)- , ] .3 2 2 2p 1- 3 2- 32 2 232.【答案】(I )a=8, sin C = 15 15 - 7 38 16【解析】1 14 2由 b - c = 2, 解得 b = 6, c = 4. 由 a 2 = b 2 + c 2 - 2bc cos A ,可得 a=8.由得 sin C =15 .8a c= sin A sin C,cos 2 A + ⎪ = cos 2 A cos - sin 2 A sin = 2cos 2 A -1)- sin A cos Aπ ⎫ π π 3 ((II )⎛ ⎝ 6 ⎭ 6 6 2= 15 - 7 316,。

2015年高考真题解答题专项训练:三角函数(文科)教师版

2015年高考真题解答题专项训练:三角函数(文科)教师版

2015年高考真题解答题专项训练:三角函数(文科)1.(浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .(1(2(22.(江苏)在ABC ∆中,已知 60,3,2===A AC AB . (1)求BC 的长;(2)求C 2sin 的值. 试题解析:(1)由余弦定理知,(2 因为C AB<B ,所以C 为锐角,则考点:余弦定理,二倍角公式3.(全国一卷)已知a ,b ,c 分别是ΔABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)若B =90∘,且a = 求ΔABC 的面积. 试题解析:(1)由题设及正弦定理可得b 2=2ac 又a =b ,可得b =2c ,a =2c由余弦定理可得cos B =a 2+c 2−b 22ac=14(2)由(1)知b 2=2ac因为B =90∘,由勾股定理得a 2+c 2=b 2 故a 2+c 2=2ac ,得c =a = 2 所以的面积为1考点:正弦定理,余弦定理解三角形4.(湖南)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. ,且B 为钝角,求,,A B C .试题解析:(Ⅰ)由tan a b A =及正弦定理,所以sin cos B A =。

(Ⅱ)因为sin sin cos sin[180()]sin cos C A B A B A B -=-+-sin()sin cos sin cos cos sin sin cos cos sin A B A B A B A B A B A B =+-=+-=有(Ⅰ)知sin cos B A =,因此 故120B = ,由知30A =,从而180()30C A B =-+= , 综上所述,30,120,30,A B C === 5.(广东)已知tan α=2. (Ⅰ)求tan(α+π4)的值;(Ⅱ)求sin 2αsin 2α+sin αcos α−cos 2α−1的值. 试题解析:(Ⅰ)tan(α+π4)=tan α+tanπ41−tan αtanπ=2+11−2×1=−3.(Ⅱ)原式=2sin αcos asin 2α+sin αcos α−2cos 2α=2tan αtan 2α+tan α−2=2×222+2−2=1.考点:(1)两角和的正切公式(2)齐次式的应用 6.(安徽)已知函数f (x )=(sin x +cos x )2+cos2x (Ⅰ)求f (x )最小正周期;(Ⅱ)求f (x )在区间[0,π2]上的最大值和最小值. 试题解析:(Ⅰ)∴f (x )的最小正周期T =2π|2|=π(Ⅱ)∴f (x )max =1+ 2,f (x )min =0考点:1.三角函数式化简;2.三角函数性质 7.(全国二卷)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC.(Ⅱ)若60BAC ∠= ,求B ∠.试题解析:AD 平分∠BAC,BD=2DC,(Ⅱ)因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以由(I)知2s i ns B C ∠=∠, 8.(天津)△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知△ABC(Ⅰ)求a 和sinC 的值;. 试题解析:(Ⅰ)△ABC 中,得又由解得由,可得a=8.由24,bc =2,b c -=6, 4.b c ==2222cos a b c bc A =+-9.(陕西)ABC 的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与()cos ,sin n A B =平行.(1)求A ;(2)若2a b ==,求ABC 的面积. 试题解析:(I)因为//m n,所以sin cos 0a B A = 由正弦定理,得sin cos 0sinA B A =, 又sin 0B ≠,从而tan A =0A π<<所以3A π=.(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得,即2230c c --=因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =10.(山东)ABC ∆中,角A BC ,,所对的边分别为,,a b c .已知求sin A 和c 的值. 【解析】在ABC ∆中,由 因为A B C π++=,所以 因为sin sin C B <,所以C B <,C 为锐角, ,所以1c =. 考点:1.两角和差的三角函数;2.正弦定理.11. (Ⅰ)求()f x 的最小正周期;f x在区间(Ⅱ)求()试题解析:f x的最小正周期为2π.∴()。

三角函数高考真题文科总结及答案

三角函数高考真题文科总结及答案

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2)C .y =sin 2x +cos 2xD .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x+12x D .y =x 2+sin x 6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .22C .2 D.37.(2015·福建卷6)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5128.(2015·重庆卷6)若tan α=13,tan(α+β)=12,则 tan β=( )A.17B.16C.57D.569.(2015·山东卷4)要得到函数y =sin(4x -π3)的图象,只需将函数y=sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位10.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎪⎫k -14,k +34,k ∈Z D.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z 11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.12.(2015·北京卷11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B=________.13.(2015·安徽卷12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.14.(2015·福建卷14)若△ABC 中,AC =3,A =45°,C =75°,则BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________.17.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin ⎝ ⎛⎭⎪⎫x +π2-x 2的零点个数为__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, 3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.21.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(π4+A )=2.(1)求sin 2A sin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积.22.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长;(2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.24.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .25.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.26.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值.27.(2015·新课标Ⅱ卷17)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC.(1)求sin Bsin C;(2)若∠BAC=60°,求∠B.28.(2015·山东卷17)△ABC中,角A,B,C所对的边分别为a,b,c.已知cos B=33,sin(A+B)=69,ac=23,求sin A和c的值.29.(2015·四川卷19)已知A ,B ,C 为△ABC 的内角,tan A ,tan B 是关于x 的方程x 2+3px -p +1=0(p ∈R )的两个实根.(1)求C 的大小; (2)若AB =3,AC =6,求p 的值.30.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间[0,π2]上的最大值和最小值.31.(2015·北京卷15)已知函数f (x )=sin x -23sin 2x 2.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值.32.(2015·重庆卷18)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)...........,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=103sin x 2cos x 2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:,及,可得7.【答案】D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=- 8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯ 9.【答案】B 【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B .10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 12.【解析】由正弦定理,得sin sin a b A B =,=所以sin B =所以4B π∠=.13.【解析】由三角形内角和和正弦定理可知:14.【解析】由题意得0018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以BC ==.15.【答案】-1【解析】由已知可得,sinα=-2cosα,即tanα=-22sinαcosα-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4 【解析】由3sin 2sin AB 及正弦定理知:32a b =,又因为2a =,所以2b =,由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;17.【答案】π 【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+45sin )]4575(180sin[ACAB =+-245sin 60sin 6=⇒=⇒AC AC3)42x π=-+,所以22T ππ==;min 3()2f x =. 18.【答案】2 19.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .20.试题解析:(I)因为//m n ,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A =,又sin 0B ≠,从而tan A =,由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =.2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =. 21.【答案】(1)25;(2)9 试题解析:(1)由tan(A)24π+=,得1tan 3A =, 所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=.22.【答案】(1(223.【答案】(1);(2).(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-222222⨯=+-1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )14(II )1 试题解析:(I )由题设及正弦定理可得22b ac .又ab ,可得2bc ,2a c ,由余弦定理可得2221cos 24a cb Bac. (II )由(1)知22b ac .因为B90°,由勾股定理得222a c b .故222a c ac ,得2c a .所以ABC 的面积为1.26.【答案】(I )a=8,sin C =(II试题解析:(I )△ABC 中,由1cos ,4A =-得sin A =由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(2))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=27.【解析】(I )由正弦定理得因为AD 平分BAC ,BD =2DC ,所以.(II )因为所以 由(I )知, 所以 28.【解析】在ABC ∆中,由cos B =sin B = ,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠∠sin 1.sin 2B DC C BD ∠==∠()180,60,C BAC B BAC ∠=-∠+∠∠=()1sin sin sin .22C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 30.B B ∠=∠=因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+=+=. 由,sin sin a c A C =可得sin sin c A a C ===,又ac =,所以1c =. 29.【解析】(Ⅰ)由已知,方程x 2px -p +1=0的判别式△=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanB,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+- 所以p(tanA +tanB )+1)=-130.【答案】(Ⅰ)π ;(Ⅰ)最大值为1+,最小值为0 【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅰ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x 由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0. 综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.31.解析(Ⅰ)∵()f x =x sin +3cos x -3=2sin (x +3π)-3 ∴()f x 的最小正周期为2π.(Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.32.【答案】(Ⅰ)()f x 的最小正周期为,最小值为2+3,(Ⅱ)1323,]. 试题解析: (1) 2113()sin 23cos sin 2(1cos 2)22f x x xx x1333sin 2cos 2sin(2)232x x x, 因此()f x 的最小正周期为,最小值为2+3. (2)由条件可知:3g()sin()32x x. 当[,]2x时,有2[,]363x , 从而sin()3x的值域为1[,1]2, 那么3sin()32x的值域为1323,].故g()x 在区间[,]2上的值域是1323,].33.【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-.34.【解析】(Ⅰ);(Ⅱ)(ⅰ);(ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 2π()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x >45<003πα<<04sin 5α=由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 因为对任意的整数,,所以对任意的正整数,都存在正整数000(2,2)x k k παππα∈++-,使得04sin 5x >.亦即存在无穷多个互不相同的正整数,使得.()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >k ()()00022213k k πππαπαπα+--+=->>k 0x ()00g x >。

(完整)《三角函数》高考真题文科总结及答案,推荐文档

(完整)《三角函数》高考真题文科总结及答案,推荐文档

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +)B .y =cos (2x +)π2π2C .y =sin 2x +cos 2xD .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x +D .y =x 2+sin x 12x 6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =2,cos A =且b <c ,则b =( )332A .3 B .22C .2 D.37.(2015·福建卷6)若sin α=-,且α为第四象限角,则tan α513的值等于( )A.B .-C.D .-1251255125128.(2015·重庆卷6)若tan α=,tan(α+β)=,则 tan β=( )1312A.B.C.D.171657569.(2015·山东卷4)要得到函数y =sin(4x -)的图象,只需将函数π3y =sin 4x 的图象( )A .向左平移个单位B .向右平移个单位π12π12C .向左平移个单位D .向右平移个单位π3π310.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.,k ∈Z (k π-14,k π+34)B.,k ∈Z (2k π-14,2k π+34)C.,k ∈Z (k -14,k +34)D.,k ∈Z (2k -14,2k +34)11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=,则tan β的值为17________.12.(2015·北京卷11)在△ABC 中,a =3,b =,∠A =,则62π3∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =,∠A =75°,∠B =45°,6则AC =________.14.(2015·福建卷14)若△ABC 中,AC =,A =45°,C =75°,则3BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-,3sin A =2sin B ,则c =__________.1417.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin-x 2的零点个数为(x +π2)__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为2,则3ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, b )与n =(cos A ,sin B )平行.3(1)求A ;(2)若a =,b =2,求△ABC 的面积.721.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(+A )=2.π4(1)求的值;sin 2Asin 2A +cos2A (2)若B =,a =3,求△ABC 的面积.π422.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长;(2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan的值;(α+π4)(2)求的值.sin 2αsin2α+sin αcos α-cos 2α-124.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =,且B 为钝角,求A ,B ,C .3425.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =,求△ABC 的面积.226.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为3,b -c =2,cos A =-.1514(1)求a 和sin C 的值;(2)求cos的值.(2A +π6)27.(2015·新课标Ⅱ卷17)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求;sin B sin C(2)若∠BAC =60°,求∠B .28.(2015·山东卷17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =,sin(A +B )=,ac =2,33693求sin A 和c 的值.29.(2015·四川卷19)已知A ,B ,C 为△ABC 的内角,tan A ,tan B 是关于x 的方程x 2+px -p +1=0(p ∈R )的两个实根.3(1)求C 的大小;(2)若AB =3,AC =,求p 的值.630.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最大值和最小值.π231.(2015·北京卷15)已知函数f (x )=sin x -2sin 2.3x2(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最小值.2π332.(2015·重庆卷18)已知函数f (x )=sin 2x -cos 2x .123(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈时,求g (x )的值域.[π2,π]33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)在某一个周期内的图象时,列表并填入了部分数据,(ω>0,|φ|<π2)如下表:ωx +φ0π2π3π22πx π35π6A sin(ωx +φ)5-5(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动个单位长度,得到π6y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=10sin cos +10cos 2.3x 2x 2x2(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移个单位长度,再向下平移a (a >0)π6个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:2222cos a b c bc =+-A ,及b c <,可得2b =7.【答案】D 【解析】由,且为第四象限角,则,5sin 13α=-α12cos 13α==则sin tan cos ααα=512=-8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯9.【答案】【解析】因为,所以,只需要将函数B sin(4sin 4()312y x x ππ=-=-的图象向右平移个单位,故选.4y sin x =12πB 10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++-12.【解析】由正弦定理,得sin sin a bA B ==sin B =.4B π∠=13.【解析】由三角形内角和和正弦定理可知:45sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC 14.【解析】由题意得.由正弦定理得,则0018060B A C =--=sin sinAC BCB A=,sin sin AC ABC B=所以.BC ==15.【答案】-1【解析】由已知可得,sinα=-2cosα,即tanα=-22sinαcosα-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由及正弦定理知:,又因为,所以,3sin 2sin A B =32a b =2a =2b =由余弦定理得:,所以;22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=4c =17.【答案】π【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+,所以;.3)42x π=-+22T ππ==min 3()2f x =18.【答案】219.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为, 距离最短的两个交点一定在同12211154242k k k k Z ππππωω+++-∈((,),((,),,一个周期内, .(22221522442πππωω∴=-+--∴=()(),20.试题解析:(I)因为,所以//m nsin cos 0a B A -=由正弦定理,得,sin sin cos 0A B B A -=又,从而,sin 0B ≠tan A =由于0A π<<所以3A π=(II)解法一:由余弦定理,得,而,,2222cos a b c bc A =+-2a b ==3A π=得,即2742c c =+-2230c c --=因为,所以,0c >3c =故面积为.ABC ∆1sin 2bc A =2sin B=从而sin B =又由知,所以a b >A B >cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以面积为.ABC ∆1sin 2ab C =21.【答案】(1);(2)259试题解析:(1)由,得,tan(A)24π+=1tan 3A =所以.22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++(2)由可得,.1tan 3A=sin A A ==,由正弦定理知:3,4a B π==b =又,sin sin()sin cos cos sin C A B A B A B =+=+=所以.11sin 3922ABC S ab C ∆==⨯⨯=22.【答案】(1223.【答案】(1)3-;(2)1.(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭-(2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+---222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+- 222222⨯=+- 1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )(II )114试题解析:(I )由题设及正弦定理可得.22b ac =又,可得,,a b =2b c =2a c =由余弦定理可得.2221cos 24a cb B ac +-==(II )由(1)知.22b ac =因为90°,由勾股定理得.B =222a c b +=故,得.222a c ac +=c a =所以ABC 的面积为1.D26.【答案】(I )a =8,(II .sin C =试题解析:(I )△ABC 中,由得 由,得1cos ,4A =-sin A =1sin 2bc A = 又由解得 由,可得a =8.由24,bc =2,b c -=6, 4.b c ==2222cos a b c bc A =+-,得sin sin a cA C=sin C =(2),)2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭=27.【解析】(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠=28.【解析】在中,由ABC ∆cos B =sin B =因为,所以,A B C π++=sin sin()C A B =+=因为,所以,为锐角,sin sin C B <C B <C cos C =因此.sin sin()sincos cos sin A BC B C B C =+=+==由可得,又,所以.,sinsin a c A C=sinsin c A a C ===ac =1c =29.【解析】(Ⅰ)由已知,方程x 2px -p +1=0的判别式△=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanB =-p ,tanAtanB =1-p于是1-tanAtanB =1-(1-p )=p ≠0从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60°(Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去)于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+-所以p(tanA +tanB )+1)=-130.【答案】(Ⅰ) ;(Ⅱ)最大值为0π1【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=142sin(2++=πx 所以函数的最小正周期为.)(x f ππ==22T(Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f 当 时,2,0[π∈x ]45,4[42πππ∈+x 由正弦函数在上的图象知,x y sin =]45,4[ππ当,即时,取最大值;242ππ=+x 8π=x )(x f 12+当,即时,取最小值.4542ππ=+x 4π=x )(x f 0综上,在上的最大值为,最小值为.)(x f [0,]2π12+031.解析(Ⅰ)∵=+cos -=2(+)-()f x x sin 3x 3sin x 3π3∴的最小正周期为2.()f x π(Ⅱ)∵,∴.203x π≤≤33x πππ≤+≤当,即时,取得最小值.3x ππ+=23x π=()f x∴在区间上的最小值为.()f x 2[0,]3π2(3f π=32.【答案】(Ⅰ)的最小正周期为,最小值为,(Ⅱ).()f x p -试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+,1sin 22sin(2)23x x x p =--=--因此的最小正周期为,最小值为()f x p -(2)由条件可知:.g()sin()3x x p=--当时,有,[,]2x pp Î2[,]363x pp p -Î从而的值域为,sin(3x p-1[,1]2那么的值域为.sin(3x p--故在区间上的值域是.g()x [,]2pp 33.【解析】(Ⅰ)根据表中已知数据可得:,,,解得5A =32ππωϕ+=5362ππωϕ+=. 数据补全如下表:π2,6ωϕ==-且函数表达式为.π()5sin(2)6f x x =-(Ⅱ)由(Ⅰ)知,因此 .因π()5sin(26f x x =-πππ()5sin[2(]5sin(2)666g x x x =+-=+为的对称中心为,. 令,解得,.即sin y x =(π,0)k k ∈Z π2π6x k +=ππ212k x =-k ∈Z 图象的对称中心为,,其中离原点最近的对称中心为()y g x =ππ0212k -(((k ∈Z O . π(,0)12-34.【解析】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >.因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >.因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数,使000(2,2)x k k παππα∈++-得.亦即存在无穷多个互不相同的正整数0x ,使得()00g x >.04sin 5x >。

2015年高考数学—三角函数(解答+答案)

2015年高考数学—三角函数(解答+答案)

2015年高考数学—三角函数(解答+答案)1.(2015新课标Ⅰ文数(17)(本小题满分12分))已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B=2sinAsinC (Ⅰ)若a=b ,求cosB ;(Ⅱ)设B=90°,且a=2,求△ABC 的面积2.(2015新课标II 文数17.(本小题满分12分))ΔABC 中,D 是BC 上的点,AD 平分∠BAC ,BD=2DC 。

(1)求sin sin BC∠∠;(2)若60BAC ∠=o,求B ∠。

3.(2015安徽文数16.(本小题满分12分)) 已知函数2()(sin cos )cos 2f x x x x =++(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.4.(2015北京文数(15)(本小题13分))已知函数2()sin 2f x x π=-(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值。

5.(2015重庆文数18)已知函数21()sin 22f x x x =. (Ⅰ)求()f x 的最小周期和最小值;(Ⅱ)将函数()f x 的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数()g x 的图像.当,2x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.6.(2015福建文数21.(本小题满分12分))已知函数()2cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.7.(2015广东文数16、(本小题满分12分)) 已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.8.(2015湖北文数18.(本小题满分12分))某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求()y g x =的图象离原点O 最近的对称中心.9.(2015湖南文数17. (本小题满分12分))设△ABC 的内角,,A B C 的对边分别为,,,tan a b c a b A =. (Ⅰ)证明:sin cos B A =; (Ⅱ)若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C .10.(2015山东文数17.(本小题满分12分))AB C ∆中,角C B,A,所对的边分别为c b a ,,,已知33cos =B ,sin()A B +=ac =,求A sin 和c 的值.11.(2015陕西文数17.)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =u r 与(cos ,sin )n A B =r平行.(Ⅰ)求A ; (Ⅱ)若7,2a b ==求ABC ∆的面积.12.(2015上海文数21. (本题满分14分))如图,,,O P Q 三地有直道相通,3OP =千米,4PQ =千米,5OQ =千米,现甲、乙两警员同时从O 地出发匀速前往Q 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时,乙到达Q 地后在原地等待.设1t t =时,乙到达P 地,2t t =时,乙到达Q 地.(1)求1t 与1()f t 的值;(2)已知警员的对讲机的有效通话距离是3千米,当12t t t ≤≤时,求()f t 的表达式,并判断()f t 在12[,]t t 上的最大值是否超过3?说明理由.13.(2015四川文数19、(本小题满分12分))已知A 、B 、C 为ABC ∆的内角,tan ,tan A B 是关于方程2310()x px p p R +-+=∈的两个实根.(Ⅰ)求C 的大小; (Ⅱ)若3,6AB AC ==,求p 的值14.(2015天津文数16.(13分))△ABC 中,内角A,B,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,12,cos ,4b c A -==-(Ⅰ)求a 和sin C 的值; (Ⅱ)求cos 26A π⎛⎫+ ⎪⎝⎭的值。

(完整版)三角函数高考真题文科总结及答案,推荐文档

(完整版)三角函数高考真题文科总结及答案,推荐文档

A.既是奇函数又是减函数 B.既是奇函数又是增函数
C.是有零点的减函数
D.是没有零点的奇函数
3.(2015·北京卷 3)下列函数中为偶函数的是( ) A.y=x2sin x B.y=x2cos x C.y=|ln x| D.y=2-x
4.(2015·安徽卷 4)下列函数中,既是偶函数又存在零点的是( )
ωx 的图象的交点中,距离最短的两个交点的距离为 2 3,则 ω=________.
20.(2015·陕西卷 17)△ABC 的内角 A,B,C 所对的边分别为 a,b,c.向量 m=(a, 3b)与 n=(cos A,sin B)平行.
(1)求 A; (2)若 a= 7,b=2,求△ABC 的面积.
.
2015《三角函数》高考真题总结
1.(2015·四川卷 5)下列函数中,最小正周期为 π 的奇函数是( )
π
π
A.y=sin (2x+2) C.y=sin 2x+cos 2x
B.y=cos (2x+2) D.y=sin x+cos x
2.(2015·陕西卷 9)设 f(x)=x-sin x,则 f(x)( )
23.(2015·广东卷 16)已知 tan α=2.
.
.
( )π
α+ (1)求 tan 4 的值;
sin 2α (2)求sin2α+sin αcos α-cos 2α-1的值.
24.(2015·湖南卷 17)设△ABC 的内角 A,B,C 的对边分别为 a,b,c,a=btan A.
(1)证明:sin B=cos A; 3
A.y=ln x
B.y=x2+1
C.y=sin x
D.y=cos x
5.(2015·广东卷 3)下列函数中,既不是奇函数,也不是偶函数的是

三角函数高考真题文科总结及答案

三角函数高考真题文科总结及答案

三角函数高考真题文科总结及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2) C .y =sin 2x +cos 2x D .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x+12x D .y =x 2+sin x 6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2 D. 37.(2015·福建卷6)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5128.(2015·重庆卷6)若tan α=13,tan(α+β)=12,则 tan β=( )A.17B.16C.57D.569.(2015·山东卷4)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位10.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.⎝⎛⎭⎪⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎪⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎪⎪⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z 11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.12.(2015·北京卷11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.14.(2015·福建卷14)若△ABC 中,AC =3,A =45°,C =75°,则BC =___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________.17.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin ⎝ ⎛⎭⎪⎫x +π2-x 2的零点个数为__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, 3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.21.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(π4+A )=2.(1)求sin 2Asin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积.22.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.24.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .25.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ; (2)设B =90°,且a =2,求△ABC 的面积.26.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值.27.(2015·新课标Ⅱ卷17)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求sin B sin C;(2)若∠BAC =60°,求∠B .28.(2015·山东卷17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33,sin(A +B )=69,ac =23,求sin A 和c 的值.29.(2015·四川卷19)已知A,B,C为△ABC的内角,tan A,tan B 是关于x的方程x2+3px-p+1=0(p∈R)的两个实根.(1) 求C的大小;(2) 若AB=3,AC=6,求p的值.30.(2015·安徽卷16)已知函数f(x)=(sin x+cos x)2+cos 2x.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,π2]上的最大值和最小值.31.(2015·北京卷15)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值.32.(2015·重庆卷18)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)...........,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动π6个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.34.(2015·福建卷21)已知函数f(x)=103sin x2cosx2+10cos2x2.(1)求函数f(x)的最小正周期;(2)将函数f(x)的图象向右平移π6个单位长度,再向下平移a(a>0)个单位长度后得到函数g(x)的图象,且函数g(x)的最大值为2.①求函数g(x)的解析式;②证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:2222cos a b c bc =+-A ,及b c <,可得2b =7.【答案】D 【解析】由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα=512=-8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯ 9.【答案】B 【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B .10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 12.【解析】由正弦定理,得sin sin a bA B =63=2sin B =以4B π∠=.13.【解析】由三角形内角和和正弦定理可知:45sin )]4575(180sin[ACAB =+-245sin 60sin 6=⇒=⇒AC AC14.2【解析】由题意得0018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以BC ==.15.【答案】-1【解析】由已知可得,sin α=-2cos α,即tan α=-22sin αcos α-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由3sin 2sin A B 及正弦定理知:32a b =,又因为2a =,所以2b =,由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;17.【答案】π【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =. 18.【答案】2 19.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .20.试题解析:(I)因为//m n ,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A -=,又sin 0B ≠,从而tan A = 由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =21.【答案】(1)25;(2)9试题解析:(1)由tan(A)24π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++. (2)由1tan 3A =可得,10310sin ,cos 1010A A ==. 3,4a B π==,由正弦定理知:35b =.又25sin sin()sin cos cos sin 5C A B A B A B =+=+=, 所以1125sin 3359225ABC S ab C ∆==⨯⨯⨯=. 22.【答案】(1)7;(2)43723.【答案】(1)3-;(2)1.(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭-(2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+-222222⨯=+-1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )14(II )1试题解析:(I )由题设及正弦定理可得22b ac .又a b ,可得2b c ,2a c , 由余弦定理可得2221cos 24a cb B ac. (II )由(1)知22b ac .因为B 90°,由勾股定理得222a c b .故222a c ac ,得2c a .所以ABC 的面积为1.26.【答案】(I )a =8,sin C =(II .试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =.(2))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=27.【解析】(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.3B B ∠=∠=28.【解析】在ABC ∆中,由cos B =sin B =因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+==由,sin sin a c A C =可得sin sin c A a C ===,又ac =,所以1c =. 29.【解析】(Ⅰ)由已知,方程x 2-p +1=0的判别式 △=p )2-4(-p +1)=3p 2+4p -4≥0 所以p ≤-2或p ≥23由韦达定理,有tanA +tanBp ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0 从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+- 所以p(tanA +tanB )1)=-130.【答案】(Ⅰ)π ;(Ⅱ)最大值为10 【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.31.解析(Ⅰ)∵()f x =x sin +3cos x -3=2sin (x +3π)-3 ∴()f x 的最小正周期为2π.(Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.32.【答案】(Ⅰ)()f x 的最小正周期为,最小值为2+3,(Ⅱ)1323,].试题解析: (1) 2113()sin 23cos sin 2(1cos 2)22f x x xx x1333sin 2cos 2sin(2)232x x x , 因此()f x 的最小正周期为,最小值为2+3. (2)由条件可知:3g()sin()32x x . 当[,]2x 时,有2[,]363x, 从而sin()3x 的值域为1[,1]2, 那么3sin()32x的值域为1323,]. 故g()x 在区间[,]2上的值域是1323,].33.【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-.34.【解析】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由452<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数000(2,2)x k k παππα∈++-,使得04sin 5x >.亦即存在无穷多个互不相同的正整数0x ,使得()00g x >.。

三角函数高考真题文科总结及答案

三角函数高考真题文科总结及答案

2015《三角函数》高考真题总结1.(2015·四川卷5)下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2) C .y =sin 2x +cos 2x D .y =sin x +cos x2.(2015·陕西卷9)设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数 3.(2015·北京卷3)下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x 4.(2015·安徽卷4)下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin x D .y =cos x5.(2015·广东卷3)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x+12x D .y =x 2+sin x 6.(2015·广东卷5)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .2 2 C .2 D. 37.(2015·福建卷6)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5128.(2015·重庆卷6)若tan α=13,tan(α+β)=12,则 tan β=( )A.17B.16C.57D.569.(2015·山东卷4)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位10.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )(2015·新课标8)A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈Z D.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z 11.(2015·江苏卷8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.12.(2015·北京卷11)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.13.(2015·安徽卷12)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.14.(2015·福建卷14)若△ABC 中,AC =3,A =45°,C =75°,则BC=___________.15.(2015·四川卷13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.16.(2015·重庆卷13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________. 17.(2015·浙江卷11)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________.18.(2015·湖北卷13)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为__________19.(2015·湖南卷15)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.20.(2015·陕西卷17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a, 3b )与n =(cos A ,sin B )平行. (1)求A ;(2)若a =7,b =2,求△ABC 的面积.21.(2015·浙江卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan(π4+A )=2.(1)求sin 2Asin 2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.22.(2015·江苏卷15)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.23.(2015·广东卷16)已知tan α=2.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.24.(2015·湖南卷17)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .25.(2015·新课标I 卷17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ; (2)设B =90°,且a =2,求△ABC 的面积.26.(2015·天津卷16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14. (1)求a 和sin C 的值;(2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值.27.(2015·新课标Ⅱ卷17)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC.(1)求sin B sin C;(2)若∠BAC=60°,求∠B.28.(2015·山东卷17)△ABC中,角A,B,C所对的边分别为a,b,c.已知cos B=33,sin(A+B)=69,ac=23,求sin A和c的值.29.(2015·四川卷19)已知A,B,C为△ABC的内角,tan A,tan B是关于x的方程x2+3px-p+1=0(p∈R)的两个实根.(1) 求C的大小;(2) 若AB=3,AC=6,求p的值.30.(2015·安徽卷16)已知函数f (x )=(sin x +cos x )2+cos 2x . (1)求f (x )的最小正周期;(2)求f (x )在区间[0,π2]上的最大值和最小值.31.(2015·北京卷15)已知函数f (x )=sin x -23sin 2x2. (1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值.32.(2015·重庆卷18)已知函数f (x )=12sin 2x -3cos 2x . (1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.33.(2015·湖北卷18)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)...........,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.34.(2015·福建卷21)已知函数f (x )=103sin x 2cos x 2+10cos 2x2. (1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2. ①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.2015《三角函数》高考真题答案1.【答案】B2.【答案】B3.【答案】B4.【答案】D5.【答案】D6.【解析】由余弦定理得:,及,可得7.【答案】D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=- 8.【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯9.【答案】B 【解析】因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数4y sin x =的图象向右平移12π个单位,故选B .10.【答案】D11.【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 12.【解析】由正弦定理,得sin sin a b A B =,=所以sin B =所以4B π∠=. 13.【解析】由三角形内角和和正弦定理可知:14.【解析】由题意得0018060B A C =--=.由正弦定理得sin sin AC BCB A=,则 45sin )]4575(180sin[ACAB =+-245sin 60sin 6=⇒=⇒AC ACsin sin AC ABC B=,所以BC ==.15.【答案】-1【解析】由已知可得,sin α=-2cos α,即tan α=-22sin αcos α-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++16.【答案】4【解析】由3sin 2sin A B =及正弦定理知:32a b =,又因为2a =,所以2b =, 由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;17.【答案】π 【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =. 18.【答案】2 19.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),, , 距离最短的两个交点一定在同一个周期内,(22221522442πππωω∴=-+--∴=()(), .20.试题解析:(I)因为//m n,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A =, 又sin 0B ≠,从而tan A =,由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =.2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =. 21.【答案】(1)25;(2)9 试题解析:(1)由tan(A)24π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=. 22.【答案】(1(223.【答案】(1);(2).(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-222222⨯=+-1=24.【答案】(I )略;(II) 30,120,30.A B C ===25.【答案】(I )14(II )1 试题解析:(I )由题设及正弦定理可得22b ac =. 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==.(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得c a ==所以D ABC 的面积为1.26.【答案】(I )a =8,sin C =(II .试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(2))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=27.【解析】(I )由正弦定理得因为AD 平分BAC ,BD =2DC ,所以.(II )因为 所以 由(I )知, 所以 28.【解析】在ABC ∆中,由cos B =sin B =. 因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+=+=. 由,sin sin a cA C =可得sin sin c A a C ===,又ac =,所以1c =. ,,sin sin sin sin AD BD AD DCB BADC CAD ==∠∠∠∠∠sin 1.sin 2B DC C BD ∠==∠()180,60,C BAC B BAC ∠=-∠+∠∠=()1sin sin sin .22C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 30.3B B ∠=∠=29.【解析】(Ⅰ)由已知,方程x 2px -p +1=0的判别式 △=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanB,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0 从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tan A =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==-所以p(tanA +tanB )+1)=-130.【答案】(Ⅰ)π ;(Ⅱ)最大值为1+0 【解析】(Ⅰ)x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.31.解析(Ⅰ)∵()f x =x sin +3cos x -3=2sin (x +3π)-3 ∴()f x 的最小正周期为2π.(Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.32.【答案】(Ⅰ)()f x 的最小正周期为p ,最小值为-(Ⅱ).试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+1sin 22sin(2)23x x x p =--=--,因此()f x 的最小正周期为p ,最小值为-.(2)由条件可知:g()sin()3x x p =--. 当[,]2x p p Î时,有2[,]363x p p p-?, 从而sin()3x p -的值域为1[,1]2,那么sin()3x p --的值域为.故g()x 在区间[,]2pp上的值域是.33.【解析】(Ⅰ)根据表中已知数据可得:5A =,32ππωϕ+=,5362ππωϕ+=,解得π2,6ωϕ==-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-.34.【解析】(Ⅰ);(Ⅱ)(ⅰ);(ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 2π()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x >45<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >因为对任意的整数,,所以对任意的正整数,都存在正整数000(2,2)x k k παππα∈++-,使得04sin 5x >.亦即存在无穷多个互不相同的正整数,使得.k ()()00022213k k πππαπαπα+--+=->>k 0x ()00g x >。

C:三角函数(文科2015年) Word版含答案

C:三角函数(文科2015年) Word版含答案

数 学C 单元 三角函数C1 角的概念及任意角的三角函数C2 同角三角函数的基本关系式与诱导公式 16.C2,C5,C6 已知tan α=2. (1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.13.B9、C2、C6 函数f (x )=2sin x sin ⎝ ⎛⎭⎪⎫x +π2-x 2的零点个数为________.13.2 f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2=2sin x cos x -x 2=sin 2x -x 2.令f (x )=0,则sin 2x =x 2,则函数f (x )的零点个数即为函数y =sin 2x 与函数y =x 2图像的交点个数.作出函数图像如图所示,两函数图像的交点有2个,即函数f (x )的零点个数为2.3.B4,C2 下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x3.B 选项A 中,f (-x )=(-x )2sin(-x )=-x 2sin x =-f (x ),函数为奇函数;选项B 中,f (-x )=(-x )2cos(-x )=x 2cos x =f (x ),所以函数为偶函数;选项C 中,函数y =|ln x |的定义域不关于原点对称,所以函数不具备奇偶性;选项D 中,函数y =2-x为非奇非偶函数,故选B.6.C2 若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5126.D 因为α为第四象限角,所以cos α=1-sin 2α=1213,tan α=sin αcos α=-512.13.C2 已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是____________. 13.-1 由已知可得tan α=-2,2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.C3 三角函数的图象与性质18.C4、C3 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图像时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图像上所有点向左平行移动π6个单位长度,得到y =g (x )图像,求y =g (x )的图像离原点O 最近的对称中心.18.解:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,因此g (x )=5sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6=5sin ⎝ ⎛⎭⎪⎫2x +π6.函数y =sin x 图像的对称中心为(k π,0),k ∈Z , 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图像的对称中心为⎝⎛⎭⎪⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝ ⎛⎭⎪⎫-π12,0. 5.C3 下列函数中,最小正周期为π的奇函数是( ) A .y =sin2x +π2B .y =cos2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x5.B 选项A ,B ,C 中的函数的最小正周期都是π,选项D 中,y =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4的最小正周期是2π,故排除D.选项A 中,y =cos 2x 是偶函数;选项B 中,y=-sin 2x 为奇函数;选项C 中,y =2sin2x +π4是非奇非偶函数.5.B8、C3 函数f (x )=x -1xcos x (-π≤x ≤π且x ≠0)的图像可能为( )图1­25.D y =x -1x是奇函数,y =cos x 是偶函数,故f (x )是奇函数,排除A ,B ;当x =π时,f (π)=1π-π<0,排除C ,故选D.C4 函数sin()y A x ωϕ=+的图象与性质16.C4、C5 已知函数f (x )=(sin x +cos x )2+cos 2x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.16.解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1,所以函数f (x )的最小正周期T =2π2=π.(2)由(1)的计算结果知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图像知,当2x +π4=π2,即x =π8时,f (x )取得最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取得最小值0.综上,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.18.C4、C3 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图像时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图像上所有点向左平行移动π6个单位长度,得到y =g (x )图像,求y =g (x )的图像离原点O 最近的对称中心.18.解:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6.(2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,因此g (x )=5sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6=5sin ⎝ ⎛⎭⎪⎫2x +π6.函数y =sin x 图像的对称中心为(k π,0),k ∈Z , 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图像的对称中心为⎝⎛⎭⎪⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝ ⎛⎭⎪⎫-π12,0. 8.C4 函数f (x )=cos(ωx +φ)的部分图像如图1­2所示,则f (x )的单调递减区间为( )图1­2A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 8.D 由图知T 2=54-14=1,所以T =2,即2π||ω=2,所以ω=±π.因为函数f (x )的图像过点⎝ ⎛⎭⎪⎫14,0,所以当ω=π时,ω4+φ=π2+2k π,k ∈Z ,解得φ=π4+2k π,k ∈Z ;当ω=-π时,ω4+φ=-π2+2k π,k ∈Z ,解得φ=-π4+2k π,k ∈Z .所以f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4,由2k π<πx +π4<π+2k π解得2k -14<x <2k +34,k ∈Z ,故选D.15.C4,C5 已知函数f (x )=sin x -2 3sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.15.解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.15.C4 已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω=________.15.π2 设距离最短的两个交点为A (x 1,y 1),B (x 2,y 2).根据正弦函数、余弦函数的性质,不妨设距离最短的两个交点的横坐标满足ωx 1=π4,ωx 2=5π4,即x 1=π4ω,x 2=5π4ω,此时y 1=2,y 2=-2,由两点间距离公式得5π4ω-π4ω2+(2+2)2=12,解得ω=π2.4.C4 要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图像,只需将函数y =sin 4x 的图像( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位4.B 设将函数y =sin 4x 的图像向右平移φ个单位,得到函数y =sin 4(x -φ)=sin(4x -4φ)=sin ⎝⎛⎭⎪⎫4x -π3 的图像,故φ=π12. 14.C4 如图1­4,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin π6x+φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.图1­414.8 据图可知,-3+k =2,得k =5,所以y max =3+5=8.14.C4、C5 已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图像关于直线x =ω对称,则ω的值为________.14.π2 f (x )=sin ωx +cos ωx =2sin ωx +π4,当-π2+2k π≤ωx +π4≤π2+2k π,k ∈Z ,即-3π4ω+2k πω≤x ≤π4ω+2k πω,k ∈Z 时,函数f (x )单调递增.又函数f (x )在区间(-ω,ω)内单调递增,所以-3π4ω≤x ≤π4ω,则-3π4ω≤-ω且ω≤π4ω,所以ω2≤π4.又因为函数f (x )的图像关于直线x =ω对称,所以2sin ω2+π4=±2,所以ω2=π4+k π,k ∈Z .综上可得,ω=π2. 11.C4、C5、C6 函数f (x )=sin 2x +sin x cos x +1的最小正周期是____________,最小值是________.11.π3-22 由题得,f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝⎛⎭⎪⎫2x -π4+32,故函数f (x )的最小正周期是π,最小值是3-22.18.C3、C4、C5、C6 已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像,当x ∈π2,π时,求g (x )的值域.18.解:(1)f (x )=12sin 2x -3cos 2x =12sin 2x -32(1+cos 2x )=12sin 2x -32cos 2x-32=sin2x -π3-32, 因此f (x )的最小正周期为π,最小值为-2+32.(2)由条件可知g (x )=sin x -π3-32.当x ∈π2,π时,有x -π3∈π6,2π3,从而sin x -π3∈12,1,那么sin x -π3-32∈1-32,2-32. 故g (x )在区间π2,π上的值域是1-32,2-32.C5 两角和与差的正弦、余弦、正切16.C4、C5 已知函数f (x )=(sin x +cos x )2+cos 2x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.16.解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1,所以函数f (x )的最小正周期T =2π2=π.(2)由(1)的计算结果知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图像知,当2x +π4=π2,即x =π8时,f (x )取得最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取得最小值0.综上,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.16.C2,C5,C6 已知tan α=2. (1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.17.C5、C8 已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sinC . (1)若a =b ,求cos B;(2)若B =90°,且a =2, 求△ABC 的面积. 17.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,所以可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac .因为B =90°,所以由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a =2, 所以△ABC 的面积为1.17.C5、C8 △ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin ∠Bsin ∠C;(2)若∠BAC =60°,求∠B . 17.解:(1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC ,所以 sin ∠B sin ∠C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°,所以 sin ∠C =sin (∠BAC +∠B )= 32cos ∠B +12sin ∠B . 由(1)知2sin ∠B =sin ∠C ,所以tan ∠B =33,即∠B =30° 15.C4,C5 已知函数f (x )=sin x -2 3sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.15.解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.17.C5、C8 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .17.解:(1)证明:由a =b tan A 及正弦定理得sin A cos A =a b =sin Asin B ,所以sin B =cos A .(2)因为sin C -sin A cos B =sin -sin A cos B =sin(A +B )-sin A cos B=sin A cos B +cos A sin B -sin A cos B =cos A sin B , 所以cos A sin B =34.由(1)sin B =cos A ,因此sin 2B =34,又B 为钝角,所以sin B =32,B =120°.由cos A =sin B =32知A =30°, 从而C =180°-(A +B )=30°.综上所述,A =30°,B =120°,C =30°.19.B9,C5,C8 已知A ,B ,C 为△ABC 的内角,tan A ,tan B 是关于x 的方程x 2+3px -p +1=0(p ∈R )的两个实根.(1)求C 的大小;(2)若AB =3,AC =6,求p 的值.19.解:(1)由已知,方程x 2+3px -p +1=0的判别式 Δ=(3p )2-4(-p +1)=3p 2+4p -4≥0, 所以p ≤-2或p ≥23.由韦达定理,得tan A +tan B =-3p ,tan A tan B =1-p . 于是1-tan A tan B =1-(1-p )=p ≠0,从而tan(A +B )=tan A +tan B 1-tan A tan B =-3pp =-3,所以tan C =-tan(A +B )=3, 所以C =60°.(2)由正弦定理,得 sin B =AC sin C AB =6sin 60°3=22, 解得B =45°或B =135°(舍去). 于是A =180°-B -C =75°.则tan A =tan 75°=tan(45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-33=2+ 3.所以p =-13(tan A +tan B )=-13×(2+3+1)=-1- 3. 14.C4、C5 已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图像关于直线x =ω对称,则ω的值为________.14.π2 f (x )=sin ωx +cos ωx =2sin ωx +π4,当-π2+2k π≤ωx +π4≤π2+2k π,k ∈Z ,即-3π4ω+2k πω≤x ≤π4ω+2k πω,k ∈Z 时,函数f (x )单调递增.又函数f (x )在区间(-ω,ω)内单调递增,所以-3π4ω≤x ≤π4ω,则-3π4ω≤-ω且ω≤π4ω,所以ω2≤π4.又因为函数f (x )的图像关于直线x =ω对称,所以2sin ω2+π4=±2,所以ω2=π4+k π,k ∈Z .综上可得,ω=π2. 16.C5、C8 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos2A +π6的值.16.解:(1)在△ABC 中,由cos A =-14,可得sin A =154.由S △ABC =12bc sin A =315,得bc =24,又b -c =2,解得b =6,c =4.由a 2=b 2+c 2-2bc cos A ,可得a =8. 由asin A =c sin C ,得sin C =158. (2)cos2A +π6=cos 2A ·cos π6-sin 2A ·sin π6=32(2cos 2A -1)-12×2sin A ·cos A=15-7316. 11.C4、C5、C6 函数f (x )=sin 2x +sin x cos x +1的最小正周期是____________,最小值是________.11.π3-22 由题得,f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝⎛⎭⎪⎫2x -π4+32,故函数f (x )的最小正周期是π,最小值是3-22.6.C5 若tan α=13,tan(α+β)=12,则tan β=( )A.17B.16 C.57 D.566.A tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17.18.C3、C4、C5、C6 已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像,当x ∈π2,π时,求g (x )的值域.18.解:(1)f (x )=12sin 2x -3cos 2x =12sin 2x -32(1+cos 2x )=12sin 2x -32cos 2x-32=sin2x -π3-32, 因此f (x )的最小正周期为π,最小值为-2+32.(2)由条件可知g (x )=sin x -π3-32.当x ∈π2,π时,有x -π3∈π6,2π3,从而sin x -π3∈12,1,那么sin x -π3-32∈1-32,2-32. 故g (x )在区间π2,π上的值域是1-32,2-32.8.C5 已知tan α=-2,tan(α+β)=17,则tan β的值为________.8.3 因为β=(α+β)-α,所以tan β=tan =tan (α+β)-tan α1+tan (α+β)tan α=17+21-27=3.C6 二倍角公式16.C2,C5,C6 已知tan α=2. (1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.13.B9、C2、C6 函数f (x )=2sin x sin ⎝ ⎛⎭⎪⎫x +π2-x 2的零点个数为________.13.2 f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2=2sin x cos x -x 2=sin 2x -x 2.令f (x )=0,则sin 2x =x 2,则函数f (x )的零点个数即为函数y =sin 2x 与函数y =x 2图像的交点个数.作出函数图像如图所示,两函数图像的交点有2个,即函数f (x )的零点个数为2.11.C4、C5、C6 函数f (x )=sin 2x +sin x cos x +1的最小正周期是____________,最小值是________.11.π3-22 由题得,f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝⎛⎭⎪⎫2x -π4+32,故函数f (x )的最小正周期是π,最小值是3-22.18.C3、C4、C5、C6 已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像,当x ∈π2,π时,求g (x )的值域.18.解:(1)f (x )=12sin 2x -3cos 2x =12sin 2x -32(1+cos 2x )=12sin 2x -32cos 2x-32=sin2x -π3-32,因此f (x )的最小正周期为π,最小值为-2+32.(2)由条件可知g (x )=sin x -π3-32.当x ∈π2,π时,有x -π3∈π6,2π3,从而sin x -π3∈12,1,那么sin x -π3-32∈1-32,2-32. 故g (x )在区间π2,π上的值域是1-32,2-32.C7 三角函数的求值、化简与证明17.C7、C8 △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33,sin(A +B )=69,ac =23,求sin A 和c 的值. 17.解:在△ABC 中,由cos B =33,得sin B =63. 因为A +B +C =π, 所以sin C =sin(A +B )=69. 因为sin C <sin B ,所以C <B ,可知C 为锐角, 所以cos C =539,因此sin A =sin(B +C ) =sin B cos C +cos B sin C =63×539+33×69 =223. 由a sin A =csin C, 可得a =c sin Asin C =223c 69=23c ,又ac =23,所以c =1. 14.C7、F3 设向量a k =⎝⎛⎭⎪⎫cosk π6,sink π6+cosk π6(k =0,1,2,…,12),则k =011(a k ·a k+1)的值为________. 14.93 因为a k ·a k+1=cosk π6cos(k +1)π6+⎝⎛⎭⎪⎫sin k π6+cos k π6⎣⎢⎡⎦⎥⎤sin (k +1)π6+cos (k +1)π6=2cosk π6cos(k +1)π6+sin k π6sin (k +1)π6+sin k π6cos (k +1)π6+cos k π6sin (k +1)π6=cosk π6cos(k +1)π6+cos π6+sin (2k +1)π6=12cos (2k +1)π6+sin (2k +1)π6+334,所以k =011(a k ·a k +1)=12×334+12k =011cos (2k +1)π6+k =011sin (2k +1)π6=9 3C8 解三角形12.C8 在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.12.2 依题意得∠C =60°,由正弦定理得AB sin C =ACsin B,即AC =6×2232=2.5.C8 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2 D. 35.C 由余弦定理得a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32,即b 2-6b +8=0,解得b =2或b =4.因为b <c, 所以b =2.15.C8 如图1­2,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.图1­215.100 6 依题意,在△ABC 中,AB =600,∠BAC =30°,∠ACB =75°-30°=45°,由正弦定理得BC sin ∠BAC =AB sin ∠ACB ,即BC sin 30°=600sin 45°,所以BC =300 2.在△BCD 中,∠CBD =30°,CD =BC tan ∠CBD =3002·tan 30°=100 6.17.C5、C8 已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sinC . (1)若a =b ,求cos B;(2)若B =90°,且a =2, 求△ABC 的面积. 17.解:(1)由题设及正弦定理可得b 2=2ac . 又a =b ,所以可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac .因为B =90°,所以由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a =2, 所以△ABC 的面积为1.17.C5、C8 △ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin ∠Bsin ∠C;(2)若∠BAC =60°,求∠B . 17.解:(1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC ,所以 sin ∠B sin ∠C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°,所以 sin ∠C =sin (∠BAC +∠B )= 32cos ∠B +12sin ∠B . 由(1)知2sin ∠B =sin ∠C ,所以tan ∠B =33,即∠B =30°11.C8 在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.11.π4 根据正弦定理a sin A =b sin B,可得3sin2π3=6sin B ,解得sin B =22,因为0<∠B <π3,所以∠B =π4.14.C8 若△ABC 中,AC =3,A =45°,C =75°,则BC =________.14. 2 B =60°,因为BC sin A =AC sin B ,所以BC =AC ·sin A sin B =3sin 45°sin 60°= 2.17.C5、C8 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .17.解:(1)证明:由a =b tan A 及正弦定理得sin A cos A =a b =sin Asin B ,所以sin B =cos A .(2)因为sin C -sin A cos B =sin -sin A cos B =sin(A +B )-sin A cos B=sin A cos B +cos A sin B -sin A cos B =cos A sin B , 所以cos A sin B =34.由(1)sin B =cos A ,因此sin 2B =34,又B 为钝角,所以sin B =32,B =120°.由cos A =sin B =32知A =30°, 从而C =180°-(A +B )=30°.综上所述,A =30°,B =120°,C =30°.17.C7、C8 △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33,sin(A +B )=69,ac =23,求sin A 和c 的值. 17.解:在△ABC 中,由cos B =33,得sin B =63. 因为A +B +C =π, 所以sin C =sin(A +B )=69. 因为sin C <sin B ,所以C <B ,可知C 为锐角,所以cos C =539,因此sin A =sin(B +C ) =sin B cos C +cos B sin C =63×539+33×69 =223. 由a sin A =csin C, 可得a =c sin Asin C =223c 69=23c ,又ac =23,所以c =1.17.C8 △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.17.解:(1)因为m∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A = 3. 由于0<A <π,所以A =π3.(2)方法一:由余弦定理,得a 2=b 2+c 2-2bc cos A ,又a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0, 因为c >0,所以c =3.故△ABC 的面积为12bc sin A =332.方法二:由正弦定理,得7sinπ3=2sin B , 从而sin B =217.又由a >b ,知A >B ,所以cos B =277.故sin C =sin(A +B )=sin B +π3=sin B cos π3+cos B sin π3=32114,所以△ABC 的面积为12ab sin C =332.19.B9,C5,C8 已知A ,B ,C 为△ABC 的内角,tan A ,tan B 是关于x 的方程x 2+3px -p +1=0(p ∈R )的两个实根.(1)求C 的大小;(2)若AB =3,AC =6,求p 的值.19.解:(1)由已知,方程x 2+3px -p +1=0的判别式 Δ=(3p )2-4(-p +1)=3p 2+4p -4≥0, 所以p ≤-2或p ≥23.由韦达定理,得tan A +tan B =-3p ,tan A tan B =1-p . 于是1-tan A tan B =1-(1-p )=p ≠0,从而tan(A +B )=tan A +tan B 1-tan A tan B =-3pp =-3,所以tan C =-tan(A +B )=3, 所以C =60°. (2)由正弦定理,得 sin B =AC sin C AB =6sin 60°3=22, 解得B =45°或B =135°(舍去). 于是A =180°-B -C =75°.则tan A =tan 75°=tan(45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-33=2+ 3.所以p =-13(tan A +tan B )=-13×(2+3+1)=-1- 3. 16.C5、C8 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos2A +π6的值.16.解:(1)在△ABC 中,由cos A =-14,可得sin A =154.由S △ABC =12bc sin A =315,得bc =24,又b -c =2,解得b =6,c =4.由a 2=b 2+c 2-2bc cos A ,可得a =8. 由asin A =c sin C ,得sin C =158. (2)cos2A +π6=cos 2A ·cos π6-sin 2A ·sin π6=32(2cos 2A -1)-12×2sin A ·cos A=15-7316. 16.C8,C9 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知tan π4+A =2.(1)求sin 2Asin 2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.16.解:(1)由tan π4+A =2,得tan A =13,所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25. (2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010. 又由a =3,B =π4及正弦定理a sin A =bsin B,得b =3 5.由sin C =sin(A +B )=sin A +π4,得sin C =2 55.设△ABC 的面积为S ,则S =12ab sin C =9.13.C8 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A=2sin B ,则c =________.13.4 由3sin A =2sin B ,得3a =2b ,即b =32a =3.在△ABC 中,由余弦定理cos C=a 2+b 2-c 22ab ,得-14=22+32-c 22×2×3,解得c =4.15.C8 在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.15.解:(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知,AB sin C =BC sin A ,所以sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C 为锐角,则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437.C9 单元综合21.C92015·福建卷已知函数f (x )=10 3sin x 2·cos x2+10cos 2x2.(1)求函数f (x )的最小正周期.(2)将函数f (x )的图像向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图像,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.21.解:(1)因为f (x )=10 3sin x 2cos x2+10cos 2x2=5 3sin x +5cos x +5=10sin ⎝⎛⎭⎪⎫x +π6+5,所以函数f (x )的最小正周期T =2π.(2)①将f (x )的图像向右平移π6个单位长度后得到y =10sin x +5的图像,再向下平移a (a >0)个单位长度后得到g (x )=10sin x +5-a 的图像.又已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.②证明:要证明存在无穷多个互不相同的正整数x 0,使得g (x 0)>0,就是要证明存在无穷多个互不相同的正整数x 0,使得10sin x 0-8>0,即sin x 0>45.由45<32知,存在0<α0<π3,使得sin α0=45. 由正弦函数的性质可知,当x ∈(α0,π-α0)时,均有sin x >45.因为y =sin x 的周期为2π,所以当x ∈(2k π+α0,2k π+π-α0)(k ∈Z )时,均有sin x >45.因为对任意的整数k ,(2k π+π-α0)-(2k π+α0)=π-2α0>π3>1,所以对任意的正整数k ,都存在正整数x k ∈(2k π+α0,2k π+π-α0),使得sin x k >45.亦即,存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.16.C8,C9 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知tan π4+A =2.(1)求sin 2Asin 2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.16.解:(1)由tan π4+A =2,得tan A =13,所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25. (2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010. 又由a =3,B =π4及正弦定理a sin A =bsin B,得b =3 5.由sin C =sin(A +B )=sin A +π4,得sin C =2 55.设△ABC 的面积为S ,则S =12ab sin C =9.4. 已知向量a =sin x ,34,b =(cos x ,-1).(1)当a∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,sin B =63,求f (x )+4cos2A +π6x ∈0,π3的取值范围. 4.解:(1)∵a∥b ,∴tan x =-34,∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin2x +π4+32.由asin A =b sin B 可得sin A =22, 又b >a ,∴A =π4,∴f (x )+4cos2A +π6=2sin2x +π4-12.又∵x ∈0,π3,∴2x +π4∈π4,11π12,∴32-1≤f (x )+4cos2A +π6≤2-12. 8. 已知函数f (x )=2cos x ·(sin x -cos x )+1,x ∈R . (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间π8,3π4上的最小值和最大值.8.解:(1)f (x )=2cos x (sin x -cos x )+1=sin 2x -cos 2x =2sin2x -π4,因此函数f (x )的最小正周期为π.(2)因为f (x )=2sin2x -π4在区间π8,3π8上为增函数,在区间3π8,3π4上为减函数,且f π8=0,f 3π8=2,f 3π4=2sin 5π4=-1,所以函数f (x )在区间π8,3π4上的最大值为2,最小值为-1.9. (1)已知cos α=17,cos(α+β)=-1114,且α,β∈0,π2,求cos β的值;(2)已知α为第二象限角,且sin α=24,求cos π4-αcos 2α-sin (2α-π)+1的值.9.解:(1)∵cos α=17,cos(α+β)=-1114,α,β∈0,π2,∴sin α=1-cos 2α=4 37,sin(α+β)=1-cos 2(α+β)=5 314,∴cos β=cos =cos(α+β)cos α+sin(α+β)sin α=-1114×17+5 314×4 37=4914×7=12. (2)∵α为第二象限角,sin α=24, ∴cos α=-1-sin 2α=-144, ∴cos π4-αcos 2α-sin (2α-π)+1=22cos α+22sin αcos 2α-sin 2α+2sin αcos α+1=2-28828-2 2816=-77. 3. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =c sin B +b cos C . (1)求A +C 的值;(2)若b =2,求△ABC 面积的最大值.3.解:(1)由正弦定理,得sin A =sin C sin B +sin B cos C , 又sin A =sin =sin (B +C)=sin B cos C +cos B sin C , 所以cos B sin C =sin C sin B. 又因为C∈(0,π),所以sin C ≠0, 所以cos B =sin B ,所以tan B =1.又B∈(0,π),所以B =π4,所以A +C =34π.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 所以2=a 2+c 2-2ac ,所以2+2ac =a 2+c 2≥2ac ,当且仅当a =c 时,等号成立, 即ac≤22-2=2+2,所以S △ABC =12ac sin B =24ac ≤1+22,所以△ABC 面积的最大值为1+22.。

2015高考题(文理)——三角函数及三角恒等变形

2015高考题(文理)——三角函数及三角恒等变形

2015高考题(文理)——三角函数及三角恒等变形1.(2015·北京·理科)已知函数2()2sin cos 2sin 222x x xf x =-.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.试题分析:先用降幂公式和辅助角公式进行三角恒等变形,把函数化为()sin()f x A x m ωϕ=++形式,再利用周期公式2T πω=求出周期,第二步由于0,x π-≤≤则可求出3444x πππ-≤+≤,借助正弦函数图象 找出在这个范围内当42x ππ+=-,即34x π=-时,()f x 取得最小值为:212--. 试题解析:(Ⅰ)211cos ()2sincos2sin 2sin 222222xxxxf x x -=-=⋅-⋅=222sin cos 222x x =+-2sin()42x π=+- ()f x 的最小正周期为221T ππ==; (Ⅱ)30,444x x ππππ-≤≤∴-≤+≤Q ,当3,424x x πππ+=-=-时,()f x 取得最小值为:212--考点: 1.三角函数式的恒等变形;2.三角函数图像与性质. 2.(2015·北京·文科)已知函数()2sin 23sin 2x f x x =-. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值. 3.(2015·广东·文科)已知tan 2α=.()1求tan 4πα⎛⎫+⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.4.(2015·安徽·文科)已知函数2()(sin cos )cos 2f x x x x =++(1)求()f x 最小正周期; (2)求()f x 在区间[0,]2π上的最大值和最小值.考点:1.三角函数的性质;2.三角函数的最值.5.(2015·福建·理科)已知函数f()x 的图像是由函数()cos g x x =的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2p个单位长度. (Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程;(Ⅱ)已知关于x 的方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b . (1)求实数m 的取值范围;(2)证明:22cos ) 1.5m a b -=-( 试题分析:(Ⅰ)纵向伸缩或平移: ()()g x kg x →或()()g x g x k →+;横向伸缩或平移:()()g x g x ω→(纵坐标不变,横坐标变为原来的1ω倍),()()g x g x a →+(0a >时,向左平移a 个单位;0a <时,向右平移a 个单位);(Ⅱ) (1)由(Ⅰ)得f()2sin x x =,则f()g()2sin cos x x x x +=+,利用辅助角公式变形为f()g()x x +5sin()x j =+(其中12sin ,cos 55j j ==),方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b ,等价于直线y m =和函数5sin()y x j =+有两个不同交点,数形结合求实数m 的取值范围;(2)结合图像可得+=2()2p a b j -和3+=2()2pa b j -,进而利用诱导公式结合已知条件求解.试题解析:解法一:(1)将()cos g x x =的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y 2cos x =的图像,再将y 2cos x =的图像向右平移2p个单位长度后得到y 2cos()2x p=-的图像,故f()2sin x x =,从而函数f()2sin x x =图像的对称轴方程为(k Z).2x k pp =+?(2)1) 21f()g()2sin cos 5(sin cos )55x x x x x x +=+=+ 5sin()x j =+(其中12sin ,cos 55j j ==) 依题意知,sin()=5m x j +在区间[0,2)p 内有两个不同的解,a b 当且仅当||15m<,故m 的取值范围是(5,5)-.2)因为,a b 是方程5sin()=m x j +在区间[0,2)p 内有两个不同的解, 所以sin()=5m a j +,sin()=5m b j +. 当1m<5£时,+=2(),2();2pa b j a b p b j --=-+ 当5<m<1-时, 3+=2(),32();2pa b j a b p b j --=-+ 所以2222cos )cos 2()2sin ()12()1 1.55m m a b b j b j -=-+=+-=-=-( 解法二:(1)同解法一.(2)1) 同解法一.2) 因为,a b 是方程5sin()=m x j +在区间[0,2)p 内有两个不同的解, 所以sin()=5m a j +,sin()=5mb j +. 当1m<5£时,+=2(),+();2pa b j a j p b j -=-+即 当5<m<1-时, 3+=2(),+3();2pa b j a j p b j -=-+即所以cos +)cos()a j b j =-+(cos )cos[()()]cos()cos()sin()sin()a b a j b j a j b j a j b j -=+-+=+++++(22222cos ()sin()sin()[1()]() 1.555m m m b j a j b j =-++++=--+=-考点:1、三角函数图像变换和性质;2、辅助角公式和诱导公式. 6.(2015·福建·文科)若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα=512=-,故选D .考点:同角三角函数基本关系式.7.(2015·福建·文科)已知函数()2103sin cos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x . 试题解析:(I )因为()2103sincos 10cos 222x x xf x =+ 53sin 5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象. 又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >. 由4352<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式.8.(2015·新课标Ⅰ·理科)sin20°cos10°-con160°sin10°=(A )32- (B )32 (C )12- (D )12【答案】D【解析】原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D.9.(2015·新课标Ⅰ·理科) 函数f(x)=的部分图像如图所示,则f (x )的单调递减区间为 A.(),kB.(),kC.(),kD.(),k【答案】B10.(2015·陕西·理科)如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C试题分析:由图象知:min 2y =,因为min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C . 考点:三角函数的图象与性质.11.(2015·陕西·文科)如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.【答案】8试题分析:由图像得,当sin()16x π+Φ=-时min 2y =,求得5k =,当sin()16x π+Φ=时,max 3158y =⨯+=,故答案为8.考点:三角函数的图像和性质.12.(2015·天津·理科)已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34p p-上的最大值和最小值.考点:1.两角和与差的正余弦公式;2.二倍角的正余弦公式;3.三角函数的图象与性质. 13.(2015·天津·文科)已知函数()()sin cos 0,,f x x x x ωωω=+>∈R 若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .【答案】π2试题分析:由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos 2sin 14f ωωωω⎛⎫=+=⇒+= ⎪⎝⎭,所以2πππ.422ωω+=⇒= 考点:三角函数的性质.14.(2015·湖南·理科)A.512π B.3π C.4π D.6π 【答案】D试题分析:向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,不妨ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min3x x π-=,∴632πϕπϕπ=⇒=-,故选D.考点:三角函数的图象和性质.15.(2015·江苏)已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式16.(2015·江苏)在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值.学习方法报社全新课标理念,优质课程资源考点:余弦定理,二倍角公式11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届文科数学三角函数专题训练一、选择题1 .(2013年高考大纲卷(文))已知a 是第二象限角,5sin ,cos 13a a ==则A .1213-B .513-C .513D .12132 .(2013年高考江西卷sincos 2αα==若 ( )A .23-B .13-C .13D .233.(2013年高考课标Ⅱ卷(文))已知sin2α=,则cos 2(α+)=( )A .B .C .D .4.(2013年高考广东卷(文))已知51sin()25πα+=,那么cos α=( ) A .25- B .15- C .15 D .255.(2013年高考北京卷(文))在△ABC 中,3,5a b ==,1sin 3A =,则sinB =( )A .15B .59CD .16.(2013年高考陕西卷(文))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 ( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定7 .(2013年高考辽宁卷(文))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( )A .6πB .3π C .23π D .56π8 .(2013年高考课标Ⅱ卷(文))△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为( ) A .2+2B .+1C .2-2D .-19.(2013年高考山东卷(文))ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =,则c =( ) A.B .2CD .110.要得到函数y =sin ⎝⎛⎭⎫2x +π3的图象,只要把函数f (x )=sin2x 的图象( ) A .向右平移π3个单位 B .向左平移π3个单位C .向右平移π6个单位 D .向左平移π6个单位11.(2013年高考大纲卷(文))若函数()()sin0=y x ωϕωω=+>的部分图像如下图(左),则( )A .5B .4C .3D .212 .(2013年高考四川卷(文))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如上图(右)所示,则,ωϕ的值分别是 ( )A .2,3π-B .2,6π-C .4,6π-D .4,3π13.(2013年高考安徽(文))设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =( )A .3πB .23πC .34π D .56π14.(2013年高考课标Ⅰ卷(文))已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .515.(2013年浙江卷(文))函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是( )A .π,1B .π,2C .2π,1D .2π,2二、填空题1.(2013年高考四川卷(文))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是________.2.(2013年上海高考数学试题(文科))已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是________3.(2013年上海高考数学试题(文科))若1cos cos sin sin 3x y x y +=,则()cos 22x y -=________. 4.(2013年高考课标Ⅰ卷(文))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.三、解答题1.(2013年高考辽宁卷(文))设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =⋅求的最大值2.(2013年高考陕西卷(文))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2013年高考大纲卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若sin sin A C =,求C .4.(2013年高考天津卷(文))在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =,a = 3, 2cos 3B =.(Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值..5.(2013年高考浙江卷(文))在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=3b .(Ⅰ)求角A 的大小;(Ⅱ) 若a=6,b+c=8,求△ABC 的面积.6.(2013年高考重庆卷(文))(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c =+. (Ⅰ)求A ;(Ⅱ)设a =S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.7.(2013年高考四川卷(文))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A C ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影.8.(2013年高考江西卷(文))在△ABC 中,角A,B,C 的对边分别为a,b,c,sinAsinB+sinBsinC+cos2B=1.(1) 求证:a,b,c 成等差数列;(2) 若C=23π,求ab的值.9.(2013年高考安徽(文))设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.10.(2013年高考北京卷(文))已知函数21(2cos 1)sin 2cos 42f x x x x =-+(). (I)求f x ()的最小正周期及最大值; (II)若(,)2παπ∈,且f α=()求α的值.三家函数及解三角形部分复习要点 3. 同角三角函数基本关系(1)平方关系 (2)商数关系 4.和差角公式、二倍角公式、诱导公式、辅助角公式⑴()cos αβ-= ;⑵()cos αβ+= ;⑶()sinαβ-= ;⑷()sin αβ+= ; ⑸()tanαβ-= ⑹()tan αβ+=5、二倍角的正弦、余弦和正切公式:⑴sin 2α= .⑵cos 2α= (3)tan 2α=6. 函数()()sin 0,0y x ωϕω=A +A >>的性质:(1)周期 (2)最值 (3)单调区间(4)取得最值时X 的集合解三角形:1、正弦定理:2、正弦定理的变形公式;3、三角形面积公式:.4、余弦定理:5、推论:江川二中2014届文科数学回归基础练习3(3月20、21日周四、五)答案一、选择题ACACB AABBD BABDA二、填空题1.【答案】3 2.【答案】23π 3. 【答案】79- 4.【答案】5-;三、解答题1.(2013年高考辽宁卷(文))设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =⋅求的最大值【答案】2.(2013年高考陕西卷(文))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x .最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ) 上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f .所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.3.(2013年高考大纲卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若1sin sin 4A C =,求C . 【答案】(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a cb ac +-=-.由余弦定理得,2221cos 22a cb B ac +-==-, 因此,0120B =.(Ⅱ)由(Ⅰ)知060A C +=,所以cos()cos cos sin sin A C A C A C -=+ cos cos sin sin 2sin sin A C A C A C =-+cos()2sin sin A C A C =++122=+2=故030A C -=或030A C -=-, 因此,015C =或045C =.4.(2013年高考天津卷(文))在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =,a = 3, 2cos 3B =.(Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.【答案】.5.(2013年高考浙江卷(文))在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=3b .(Ⅰ)求角A 的大小;(Ⅱ) 若a=6,b+c=8,求△ABC 的面积.【答案】解:(Ⅰ)由已知得到:2sin sin A B B=,且(0,)sin 0sin 22B B A π∈∴≠∴=,且(0,)23A A ππ∈∴=; (Ⅱ)由(1)知1cos 2A =,由已知得到:222128362()3366433623b c bc b c bc bc bc =+-⨯⇒+-=⇒-=⇒=,所以128232ABCS =⨯⨯= 11.(2013年高考重庆卷(文))(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c =+. (Ⅰ)求A ;(Ⅱ)设a =S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.12.(2013年高考四川卷(文))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A C ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影.【答案】解:(Ⅰ)由3cos()cos sin()sin()5A B B A B A c ---+=- 得53sin )sin(cos )cos(-=---B B A B B A ,则 53)cos(-=+-B B A ,即 53cos -=A又π<<A 0,则 54sin =A (Ⅱ)由正弦定理,有BbA a sin sin =,所以22sin sin ==a A b B , 由题知b a >,则 B A >,故4π=B .根据余弦定理,有 )53(525)24(222-⨯⨯-+=c c , 解得 1=c 或 7-=c (负值舍去),向量BA 在BC=B 22 13.(2013年高考江西卷(文))在△ABC 中,角A,B,C 的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.(1)求证:a,b,c 成等差数列;(2) 若C=23π,求ab的值. 【答案】解:(1)由已知得sinAsinB+sinBsinC+1-2sin 2B=1.故sinAsinB+sinBsinC=2sin 2B因为sinB 不为0,所以sinA+sinC=2sinB 再由正弦定理得a+c=2b,所以a,b,c 成等差数列(2)由余弦定理知2222cos c a b ac C =+-得2222(2)2cos3b a a b ac π-=+-化简得35a b = 14.(2013年高考安徽(文))设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.【答案】解:(1)3sincos 3cossin sin )(ππx x x x f ++=x x x x x cos 23sin 23cos 23sin 21sin +=++=)6sin(3)6sin()23()23(22ππ+=++=x x当1)6sin(-=+πx 时,3)(min -=x f ,此时)(,234,2236Z k k x k x ∈+=∴+=+πππππ所以,)(x f 的最小值为3-,此时x 的集合},234|{Z k k x x ∈+=ππ.(2)x y sin =横坐标不变,纵坐标变为原来的3倍,得x y sin 3=; 然后x y sin 3=向左平移6π个单位,得)6sin(3)(π+=x x f 15.(2013年高考北京卷(文))已知函数21(2cos 1)sin 2cos 42f x x x x =-+(). (I)求f x ()的最小正周期及最大值;(II)若(,)2παπ∈,且2f α=(),求α的值. 【答案】解:(I)因为21(2cos 1)sin 2cos 42f x x x x =-+()=1cos 2sin 2cos 42x x x +=1(sin 4cos 4)2x x +=)24x π+,所以()f x 的最小正周期为2π,最大值为2.(II)因为2f α=(),所以sin(4)14πα+=. 因为(,)2παπ∈,所以9174(,)444πππα+∈,所以5442ππα+=,故916πα=.。

相关文档
最新文档