黑龙江省哈尔滨2019届高三第一次月考文科数学试卷(含答案)

合集下载

数学分类汇编(12)三角函数的化简与求值(含答案)

数学分类汇编(12)三角函数的化简与求值(含答案)

(山东省德州市2019届高三期末联考数学(理科)试题)8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)3.若,则()A. B. C. D.【答案】C【解析】【分析】本道题化简式子,计算出,结合,即可.【详解】,得到,所以,故选C.【点睛】本道题考查了二倍角公式,难度较小.(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)14.已知,则_______【答案】【解析】原式化为,,所以,,填。

(江西省新余市2019届高三上学期期末考试数学(理)试题)15.已知,则______.【答案】【解析】【分析】根据同角的三角函数的关系和二倍角公式即可求出.【详解】解:,,,,,故答案为:.【点睛】本题考查同角的三角函数关系式和二倍角公式的应用,属于基础题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)15.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则__________.【答案】【解析】【分析】结合终边过点坐标,计算出,结合二倍角公式和余弦两角和公式,即可。

【详解】,所以【点睛】本道题考查了二倍角公式与余弦的两角和公式,难度中等。

2019届高三数学10月月考试题 文 人教 新目标版

2019届高三数学10月月考试题 文 人教 新目标版

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019高三数学10月月考试题 文(满分150分 考试时间120分)一. 选择题:(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={0,1,2},则集合B={x-y |x∈A,y∈A}中元素的个数是 ( ) A.1 B.3 C.5 D.92. 命题∃x 0∈R ,sin x 0<12x 0的否定为( )A .∃x 0∈R ,sin x 0=12x 0B .∀x ∈R ,sin x <12xC .∃x 0∈R ,sin x 0≥12x 0D .∀x ∈R ,sin x ≥12x3. ()81sin log ,-0tan(2)42πππ-∂=∂∈-∂已知且(,),则的值为( )A.–5 B.5 C.±5 D. 24. 一个扇形的面积为2,周长为6则扇形的圆中角的弧度数为( )A.1B.1 或4C.4D. 2或4 5.设f (x )是R 上的任意函数,则下列叙述正确的是( )A .f (x )f (-x )是奇函数 B.()()f x f x -是奇函数C .f (x )-f (-x )是偶函数D .f (x )+f (-x )是偶函数6.已知1sin()43πα-=,则cos()4πα+的值是( )A. 13B. 13- D. 7.307cos 83sin 37cos 7sin -=( )A.-12 B. 12C.- 2D. 28.设函数f (x )为奇函数,且在(-∞,0)上是减函数,若f (-2)=0,则xf (x )<0的解集为 ( ).A .(-1,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)9.为了得到函数y =sin (2x -π3)的图象,只需把函数y =cos 2x 的图象上所有的点( )A .向左平行移动512π个单位长度 B .向右平行移动512π个单位长度 C .向左平行移动56π个单位长度 D .向右平行移动56π个单位长度 10. 函数ln cos ()22y x x ππ=-<<的图象是( )11.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌新的墙壁所用的材料最省时,堆料场的长和宽分别为 ( )A .40米,20米B .30米,15米C .32米,16米D .36米,18米12.若函数f(x)= 2log (2)+x 2xa --有零点,则a 的取值范围为( )A .(-∞,-2]B .(-∞,4]C .[2,+∞)D .[4,+∞)二、填空题(本大题共4小题,每小题5分,共20分.)13. 函数f (x ) =的定义域是________.14.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m ___________ 15.曲线y =x e x+2x -1在点(0,-1)处的切线方程为 ..16. 已知函数f (x )=a x-1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是 .三、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分) 已知角α终边上一点P (-4,3),求 cos ⎝ ⎛⎭⎪⎫π2+αsin(-π-α)cos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α 的值18. (本小题满分12分)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos (π3-α)=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.(1)求sin 2α的值;(2)求tan α-1tan α的值.19.(本小题满分12分).已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数). (1)当a=2时,求函数f (x )的单调递增区间.(2)函数f (x )是否为R 上的单调递减函数,若是,求出a 的取值范围;若不是,请说明理由. 20. (本小题满分12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.若f (x )的极大值为1,求a 的值.21.(本小题满分12分) 已知函数f (x )=(x 2-2x )ln x +ax 2+2. (1)当a =-1时,求f (x )在点(1,f (1))处的切线方程; (2)若a =1,证明:当x ≥1时,g (x )=f (x )-x -2≥0成立 22. (本小题满分12分)已知函数f (x )=1+ln xx.(1)若函数f (x )在区间⎝ ⎛⎭⎪⎫a ,a +12上存在极值,求正实数a 的取值范围;(2)如果函数g (x )=f (x )-k 有两个零点,求实数k 的取值范围.平遥二中高三十月质检文科数学试题答案一.CDAB DBAC BACD 二.13. -+2,233k k k z ππππ⎡⎤+∈⎢⎥⎣⎦14.1 15 . y =3x -1., 16,a ≤115. ()2,2- 16.①②⑤ 三、解答题17、解:原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.18.【解】(1)∵cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝⎛⎭⎪⎫2α+π3=-14,∴sin ⎝ ⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3=12.(2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π,又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.19.【解】 (1)∵当a=2时,f (x )=(-x 2+2x )e x,∴f'(x )=(-2x+2)e x +(-x 2+2x )e x =(-x 2+2)e x. 令f'(x )>0,即(-x 2+2)e x>0, ∵e x>0,∴-x 2+2>0,解得X <<故函数f (x )的单调递增区间是(. (2)若函数f (x )在R 上单调递减, 则f'(x )≤0对x ∈R 都成立,即[-x 2+(a-2)x+a ]e x≤0对x ∈R 都成立. ∵e x >0,∴x 2-(a-2)x-a ≥0对x ∈R 都成立.因此应有Δ=(a-2)2+4a ≤0,即a 2+4≤0,这是不可能的. 故函数f (x )不可能在R 上单调递减. 20.【解】(1) (1)f ′(x )=3x 2-3a =3(x 2-a ), 当a <0时,对x ∈R ,有f ′(x )>0,所以当a <0时,f (x )的单调增区间为(-∞,+∞), 当a >0时,由f ′(x )>0,解得x <-a 或x >a , 由f ′(x )<0,解得-a <x <a ,所以当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞),f (x )的单调减区间为(-a ,a ).因为f (x )在x =-1处取得极值,所以f ′(-1)=3×(-1)2-3a =0,所以a =1. 所以f (x )=x 3-3x -1,f ′(x )=3x 2-3. 由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性,可知f (x )在x =-1处取得极大值f (-1)=1, 在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点, 又f (-3)=-19<-3,f (3)=17>1,结合f (x )的单调性,可知m 的取值范围是(-3,1).21. (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),f ′(x )=(2x -2)ln x +(x -2)-2x .所以f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程为3x +y -4=0. (2)22. (1)函数的定义域为(0,+∞),f ′(x )=1-1-ln x x 2=-ln xx2. 令f ′(x )=0,得x =1;当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以,x =1为极大值点,所以a <1<a +12,故12<a <1,即实数a 的取值范围为⎝ ⎛⎭⎪⎫12,1. (2(0,1))。

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。

2019届黑龙江省哈尔滨市高三第一次模拟考试文科数学试卷Word版含答案

2019届黑龙江省哈尔滨市高三第一次模拟考试文科数学试卷Word版含答案

2019届黑龙江省哈尔滨市高三第一次模拟考试文科数学试卷考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷分第Ⅰ卷、第Ⅱ卷和答题卡, 满分150分,考试用时120分钟。

考试结束后,请将答题卡卷交回,试题卷自己保存。

2.答题前,请您务必将自己的班级、姓名、学号、考号用0.5毫米黑色签字笔填写在答题卡上。

3.作答非选择题必须用0.5毫米的黑色签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

4.保持答题卷清洁、完整,严禁使用涂改液和修正带。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题四个选项中,只有一项正确. 1. 已知集合}2,1,0,1{-=A ,{}421|<≤=x x B ,则=B A ( )A. {}1,0,1-B. {}2,1,0C. {}1,0D.{}2,1 2.已知是虚数单位,且复数2121,21,3z z i z bi z 若-=-=是实数,则实数b 的值为 ( ) A . 6 B .6-C .0D .61 3. 已知点),2,3(),1,0(B A 向量)3,4(--=→AC ,则向量→BC = ( ) A .)4,7(-- B .)4,7( C .)4,1(- D .)4,1(4. 已知函数⎩⎨⎧≥<+=,4,2,4),1()(x x x f x f x则=+)3log 2(2f ( )A .8B .12C .16D .245. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )(参考数据:sin150.2588sin 7.50.1305==,) A .12B .24C .26D .486题图5题图6. 已知某几何体的三视图如图所示,则该几何体的体积等于 ( )A .1603B .160 C. 64+.60 7.如图①,这个美妙的螺旋叫做特奥多鲁斯螺旋,是由公元5世纪古希腊哲学家特奥多鲁斯给出的,螺旋由一系列直角三角形组成(图②),第一个三角形是边长为的等腰直角三角形,以后每个直角三角形以上一个三角形的斜边为直角边,另一个直角边为。

贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案

贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案

江西省贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案贵溪市实验中学高中部2019-2020学年第一学期第一次月考高三(文科)数学试卷考试时间:120分钟 总分:150 命题人:第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题.每小题5分,共60分。

在每个小题给出的四个选项中 ,只有一项是符合题目要求的。

1.已知集合{}31|<<-=x x A ,(){}1lg |-==x y x B ,则()=⋂B C A R ( )A 。

()3,1B 。

()3,1- C.()1,1- D.(]1,1-2.已知命题:p x R ∀∈,1sin x e x ≥+。

则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R∃∈,001sin x e x ≤+D .0x R∃∈,001sin x e x <+3.下列哪一组函数相等( ) A 。

()()xx x g x x f 2==与B.()()()42x x g x x f ==与C.()()()2x x g x x f ==与D.()()362x x g x x f ==与 4. = 255tan ( )A .3-2- B .32-+C .3-2D .32+5.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.()的图像为函数R x x y x ∈-=22( ) A.B.C 。

D 。

7.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值在x =e 处取得极大值;③函数f (x )在x =c 处取得极大值在x =e 处取得极小值;④函数f (x )的最小值为f (d ).A.③ B 。

湖南师范大学附属中学2019届高三上学期月考(四)数学(文)试卷(带答案)

湖南师范大学附属中学2019届高三上学期月考(四)数学(文)试卷(带答案)

湖南师大附中2019届高三月考试卷(四)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

时量120分钟。

满分150分。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合M ={} |x 2x <1,集合N ={} |x log 2x >1,则下列结论中成立的是(C) A .M ∩N =M B .M ∪N =N C .M ∩()∁U N =M D.()∁U M ∩N =【解析】由2x <1=20,得x <0,由log 2x >1=log 22,∴x >2,∴M ∩()∁U N ={}x |x <0∩{}x |x ≤2=M ,故答案为C.2.已知三条不重合的直线m 、n 、l ,两个不重合的平面α、β,下列四个命题中正确的是(A) A .若l ⊥α,m ⊥β,且l ∥m ,则α∥β B .若m ∥n ,n α,则m ∥αC .若m α,n α,m ∥β,n ∥β,则α∥βD .若α⊥β,α∩β=m ,n β,则n ⊥α【解析】∵m 与α的位置关系不确定,∴m ∥α不一定成立,B 不成立;由于m 与n 几何位置关系不确定,∴α∥β的条件不具备,C 不成立;D 也不成立,∴选A.3.已知P (1,3)在双曲线x 2a 2-y 2b 2=1()a >0,b >0的渐近线上,则该双曲线的离心率为(A)A.10 B .2 C. 5 D. 3【解析】根据点P (1,3)在双曲线的渐近线上,所以双曲线的一条渐近线方程为y =3x ,所以有ba =3,即b =3a ,根据双曲线中a ,b ,c 的关系,可以得c =10a ,所以有e =10,故选A.4.已知f (x )=A sin(ωx +φ)(A >0,ω>0,||φ<π2,x ∈R )在一个周期内的图象如图所示,则y =f (x )的解析式是(B)A .f (x )=sin ⎝⎛⎭⎫2x -π6B .f (x )=sin ⎝⎛⎭⎫2x +π3C .f (x )=sin ⎝⎛⎭⎫2x +π6D .f (x )=sin ⎝⎛⎭⎫x +π3【解析】由函数f (x )=A sin(ωx +φ)(A >0,ω>0,||φ<π2,x ∈R )在一个周期内的图象可得:A =1,14T =14·2πω=π12+π6,解得ω=2,再把点⎝⎛⎭⎫π12,1代入函数的解析式可得:1=sin ⎝⎛⎭⎫2×π12+φ,即sin ⎝⎛⎭⎫π6+φ=1.再由||φ<π2可得:φ=π3,所以函数f (x )=sin ⎝⎛⎭⎫2x +π3.故应选B.5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为(参考数据:sin 15°=0.258 8,sin 7.5°=0.130 5)(C)A .12B .16C .24D .48【解析】由程序框图可列表如下:n 6 12 24 S332336-32因为36-32≈3.106>3.10,所以输出n 的值为24,故选C.6.已知数列{}a n 的前n 项和为S n ,通项公式a n =log 2n +1n +2(n ∈N *),则满足不等式S n <-6的n的最小值是(D)A .62B .63C .126D .127【解析】因为S n =log 2⎝ ⎛⎭⎪⎫23×34×…×n +1n +2=log 2⎝⎛⎭⎫2n +2<-6,所以2n +2<2-6,n >126,故应选D. 7.设A 、B 、C 为圆O 上三点,且AB =3,AC =5,则AO →·BC →=(D) A .-8 B .-1 C .1 D .8【解析】取BC 的中点D ,连接AD ,OD ,因为O 为三角形ABC 外接圆的圆心,则AD →=12(AB →+AC →),OD →·BC →=0.所以AO →·BC →=(AD →+DO →)·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=8,选D.8.已知定义在R 上的奇函数f (x )满足f (x )=f (x +2),数列{}a n 的前n 项和为S n ,且S n =2a n +2,则f (a n )=(A)A .0B .0或1C .-1或0D .1或-1【解析】∵f (x )=f (x +2),所以f (x )函数周期为2,∵数列{}a n 满足S n =2a n +2,∴a 1=-2,S n -1=2a n -1+2,∴a n =2a n -2a n -1,即a n =2a n -1,∴{a n }以-2为首项,2为公比的等比数列,∴a n =-2n ,∴f (a n )=f (-2n )=f ()0=0,故选A.9.设定义域为R 的函数f (x )=⎩⎨⎧||lg ||x -2,x ≠2,0,x =2,若b <0,则关于x 的方程[f (x )]2+bf (x )=0的不同实数根共有(C)A .4个B .5个C .7个D .8个【解析】由[f (x )]2+bf (x )=0,得f (x )=0或f (x )=-b .所以方程[f (x )]2+bf (x )=0的根的个数转化为函数y =f (x )与函数y =0,y =-b (b <0)的图象的交点个数.因为函数f (x )的图象大致如图所示,数形结合可知,f (x )=0有3个实数根,f (x )=-b (b <0)有4个实数根,所以[f (x )]2+bf (x )=0共有7个不同的实数根,故答案选C.10.一个圆锥被过顶点的平面截去了较少的一部分几何体,余下的几何体的三视图如下,则余下部分的几何体的体积为(D)A.8π3+15B.16π3+ 3C.8π3+233D.16π9+233【解析】由已知中的三视图,圆锥母线为l =(5)2+⎝⎛⎭⎫2322=22,圆锥的高h =(5)2-12=2,圆锥底面半径为r =l 2-h 2=2,截去的底面弧的圆心角为120°,故底面剩余部分为S =23πr 2+12r 2sin 120°=83π+3,故几何体的体积为:V =13Sh =13×⎝⎛⎭⎫83π+3×2=169π+233,故选D. 11.本周星期日下午1点至6点学校图书馆照常开放,甲、乙两人计划前去自习,其中甲连续自习2小时,乙连续自习3小时.假设这两人各自随机到达图书馆,则下午5点钟时甲、乙两人都在图书馆自习的概率是(B)A.19B.16C.13D.12【解析】据题意,甲、乙应分别在下午4点、3点之前到达图书馆,设甲、乙到达图书馆的时间分别为x ,y ,则⎩⎨⎧1≤x ≤4,1≤y ≤3,所对应的矩形区域的面积为6.若下午5钟点时甲、乙两人都在自习,则⎩⎨⎧3≤x ≤4,2≤y ≤3,所对应的正方形区域的面积为1,所以P =16,选B.12.设函数d (x )与函数y =log 2x 关于直线y =x 对称.已知f (x )=⎩⎨⎧d (x )-a ,x <1,4(x 2-3ax +2a 2),x ≥1,若函数f (x )恰有2个不同的零点,则实数a 的取值范围是(A)A.⎣⎡⎭⎫12,1∪[2,+∞)B.⎣⎡⎭⎫14,1∪⎣⎡⎭⎫32,+∞ C.⎣⎡⎭⎫14,+∞ D.⎝⎛⎦⎤-∞,32 【解析】因为函数d (x )与函数y =log 2x 关于直线y =x 对称,所以d (x )=2x ;设g (x )=4(x -a )(x -2a ),x ≥1,h (x )=2x -a ,x <1,因为f (x )恰有2个不同的零点,又因为h (x )至多有一个零点,故:①若g (x )有两个零点,h (x )没有零点,则⎩⎨⎧a ≥1,h (1)=2-a ≤0,得a ≥2②若g (x )和h (x )各有1个零点,则⎩⎪⎨⎪⎧a <1,2a ≥1且⎩⎨⎧-a <0,h (1)=2-a >0,得12≤a <1.综上,a ∈⎣⎡⎭⎫12,1∪[2,+∞).故答案选A.选择题答题卡题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CAABCDDACDBA本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.已知圆C 1:(x -a )2+y 2=1与圆C 2:x 2+y 2-6x +5=0外切,则a 的值为__0或6__. 【解析】圆C 1:(x -a )2+y 2=1的圆心为()a ,0,半径为1,圆C 2:x 2+y 2-6x +5=0的圆心为()3,0,半径为2,两圆外切,所以||a -3=3,∴a =0,6,故a 的值为0或6.14.如果复数z 满足关系式z +||z -=2+i ,那么z 等于__34+i__. 【解析】设z =a +b i(a ,b ∈R ),则z -=a -b i ,||z -=a 2+b 2,所以a +b i +a 2+b 2=2+i , 所以得:⎩⎨⎧a +a 2+b 2=2,b =1,解得:⎩⎪⎨⎪⎧a =34,b =1所以z =34+i.15.已知2a =5b =10,则a +bab=__1__.【解析】由已知,a =log 210=1lg 2,b =log 510=1lg 5.所以a +b ab =1a +1b =lg 2+lg 5=lg 10=1.16.已知定义在R 上的函数f (x )满足:对任意实数a 、b 都有f (a +b )=f (a )+f (b )-1,且当x >0时f (x )>1.若f (4)=5,则不等式f (3x 2-x -2)<3的解集为__⎝⎛⎭⎫-1,43__. 【解析】设x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>1.所以f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)-1>0,即f (x 1)>f (x 2),所以f (x )是增函数.因为f (4)=5,即f (2)+f (2)-1=5,所以f (2)=3.所以原不等式化为f (3x 2-x -2)<f (2)3x 2-x -2<23x 2-x -4<0-1<x <43.故不等式的解集是⎝⎛⎭⎫-1,43. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)已知函数f (x )=a sin x +b cos x ,a ≠0,x ∈R ,f (x )的最大值是2,且在x =π6处的切线与直线x -y=0平行.(1)求a 、b 的值;(2)先将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,已知g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2,求cos 2α的值.【解析】(1)f ′(x )=a cos x -b sin x ,1分由已知有:⎩⎪⎨⎪⎧a 2+b 2=2a cos π6-b sin π6=1,解之得:⎩⎨⎧a =3,b =1.4分 (2)由(1)有f (x )=3sin x +cos x =2sin ⎝⎛⎭⎫x +π6,6分因为将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,则g (x )=2sin ⎝⎛⎭⎫2x -π6,8分由g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2得sin ⎝⎛⎭⎫2α+π3=513,且2α+π3∈⎝⎛⎭⎫2π3,π,则cos ⎝⎛⎭⎫2α+π3=-1213,10分cos 2α=cos ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=cos ⎝⎛⎭⎫2α+π3cos π3+sin ⎝⎛⎭⎫2α+π3sin π3=-1213·12+513·32=53-1226.12分18.(本题满分12分)如图,已知三棱柱ABC -A ′B ′C ′的侧棱垂直于底面,AB =AC ,∠BAC =90°,点M ,N 分别是A ′B 和B ′C ′的中点。

2019年上海市第五十二中学高考数学选择题专项训练(一模)

2019年上海市第五十二中学高考数学选择题专项训练(一模)

2019年上海市第五十二中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源:高中数学第二章统计本章整合试卷及答案新人教A版必修3某高级中学有学生270人,其中一年级108人,二、三年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样【答案】D第 2 题:来源:黑龙江省双鸭山市第一中学2019届高三数学上学期第一次月考试题理(含解析)函数其中()的图象如图所示,为了得到的图象,则只需将的图象()A. 向右平移个长度单位B. 向右平移个长度单位C. 向左平移个长度单位D. 向左平衡个长度单位【答案】A【详解】由函数其中()的部分图象可得A=1,,求得ω=2.再根据五点法作图可得,.故把的图象向右平移个长度单位,可得的图象,第 3 题:来源:广西南宁市2016_2017学年高一数学下学期第一次月考试题试卷及答案在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成的角的正弦值为( )A. B. C.D.【答案】D 提示:在平面A1B1C1D1内过点C1作B1D1的垂线,垂足为E,连接BE.⇒C1E⊥平面BDD1B1,∴∠C1BE的正弦值就是所求角的正弦值.∵BC1=,C1E=,∴sin∠C1BE=.第 4 题:来源:山东省泰安市2019届高三数学一轮复习质量检测试卷理(含解析)若复数的实部与虚部互为相反数,则实数A. 3B.C.D.【答案】D【解析】【分析】利用复数乘法的运算法则化简复数,然后利用复数的实部与虚部的和为零,列方程求解即可.【详解】因为,且复数的实部与虚部互为相反数,所以,,解得,故选D.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查乘法/除法运算,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.第 5 题:来源:甘肃省兰州市2016_2017学年高一数学下学期期末考试试题试卷及答案若,则是第几象限角()A.一或二B.二或三C.三或四D.四或一第 6 题:来源:湖北省宜昌市2017_2018学年高一数学上学期期中试题试卷及答案已知集合,则= A.B. C. D.【答案】B第 7 题:来源:广东省天河区普通高中2017_2018学年高一数学10月月考试题试卷及答案08若奇函数在上为增函数,且有最小值0,则它在上A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值0【答案】D第 8 题:来源:湖南省怀化三中2018_2019学年高一数学上学期期中试题.函数在上是增函数,在上是减函数,则()A. B. C. D.的符号不确定【答案】B第 9 题:来源:重庆市万州三中2018_2019学年高二数学下学期期中试题理函数的图象如图所示,下列数值排序正确的是( )A. B.C. D.第 10 题:来源:四川省崇州市2016-2017学年高一数学下学期开学考试试题设,则的大小关系是()A. B.C. D.【答案】A第 11 题:来源:河北省衡水中学2018届高三数学上学期一轮复习周测试题理试卷及答案已知命题有解,命题,则下列选项中是假命题的为()A.B. C.D.【答案】B第 12 题:来源:广东省天河区普通高中2017_2018学年高二数学11月月考试题04 试卷及答案若,,则下列不等式成立的是A. B. C. D.【答案】.A第 13 题:来源: 2019高考数学一轮复习第2章函数的概念与基本初等函数第3讲函数的奇偶性与周期性分层演练文若函数f(x)=ln(ax+)是奇函数,则a的值为( )A.1 B.-1C.±1 D.0【答案】C.因为f(x)=ln(ax+)是奇函数,所以f(-x)+f(x)=0.即ln(-ax+)+ln(ax+)=0恒成立,所以ln[(1-a2)x2+1]=0,即(1-a2)x2=0恒成立,第 14 题:来源:福建省泉州市2017届高考数学模拟试卷(文科)含答案解析若,则=()A.i B.﹣i C.﹣1 D.1【答案】D【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解: ===i,则=1.故选:D.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.第 15 题:来源:山东省武城二中2017届高三数学下学期第一次月考试题试卷及答案理若直角坐标平面内两点P,Q满足条件①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组”).则下列函数中,恰有两个“伙伴点组”的函数是___(填空写所有正确选项的序号)①;②;③;④.【答案】②③第 16 题:来源: 2015-2016学年广东省东莞市高二数学下学期期末试卷a 理(含解析)用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根【答案】A【考点】反证法与放缩法.【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是:方程x2+ax+b=0没有实根.故选:A.第 17 题:来源:江西省上饶市玉山县第一中学2018_2019学年高二数学下学期期中试题理(10_19班)若函数的导函数的图像关于原点对称,则的解析式可能为()A.B.C.D.【答案】A第 18 题:来源:重庆市六校联考高一(上)期末数学试卷(含答案解析)若区间[x1,x2]的长度定义为|x2﹣x1|,函数f(x)=(m∈R,m≠0)的定义域和值域都是[a,b],则区间[a,b]的最大长度为()A. B. C. D.3【答案】A【解答】解:函数f(x)=(m∈R,m≠0)的定义域是{x|x≠0},则[m,n]是其定义域的子集,∴[m,n]⊆(﹣∞,0)或(0,+∞).f(x)==﹣在区间[a,b]上时增函数,则有:,故a,b是方程f(x)=﹣=x的同号相异的实数根,即a,b是方程(mx)2﹣(m2+m)x+1=0同号相异的实数根.那么ab=,a+b=,只需要△>0,即(m2+m)2﹣4m2>0,解得:m>1或m<﹣3.那么:n﹣m==,故b﹣a的最大值为,第 19 题:来源: 2017年湖北省宜昌市长阳县高一数学3月月考试题试卷及答案在△ABC中,,c=2,C=600,则A等于() A.1500 B.750 C.1050 D.750或1050【答案】 B第 20 题:来源:湖南省郴州市湘南中学2019届高三数学上学期期中试题理函数的零点所在的大致区间是()A.(0,1) B.(1,2) C.(2,e) D.(3,4)【答案】B第 21 题:来源:河北省石家庄市2017_2018学年高一数学上学期期中试题试卷及答案函数的零点所在区间为( )A. B. C. D.【答案】 C第 22 题:来源:河南省安阳市2017_2018学年高二数学上学期第二次月考试题试卷及答案已知等差数列中,,公差,则使前项和为取最小值的正整数的值是()A.4和 5 B.5和 6 C.6和7 D.7和8【答案】C第 23 题:来源: 2015-2016学年广东省东莞市高二数学下学期期末试卷a 理(含解析)对具有线性相关关系的两个变量y与x进行回归分析,得到一组样本数据(x1,y1),(x2,y2)…(xn,yn),则下列说法中不正确的是()A.若最小二乘法原理下得到的回归直线方程=0.52x+,则y与x具有正相关关系B.残差平方和越小的模型,拟合的效果越好C.在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适D.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好【答案】D【分析】可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好.【解答】解:若最小二乘法原理下得到的回归直线方程=0.52x+,b=0.52>0,则y与x具有正相关关系,正确;残差平方和越小的模型,拟合的效果越好,正确;可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.故正确;相关指数R2取值越大,说明残差平方和越小,模型的拟合效果越好,故不正确.故选:D.第 24 题:来源:新疆维吾尔自治区阿克苏市2017_2018学年高二数学上学期第二次月考试题试卷及答案理已知,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】若“”,则,即.所以,充分性成立;若“”,则,有或.必要性不成立.故“”是“”的充分不必要条件.故选A.第 25 题:来源:宁夏石嘴山市2018届高三数学上学期期中试题理用数学归纳法证明“”时,由的假设证明时,如果从等式左边证明右边,则必须证得右边为()A. B.C. D.【答案】D第 26 题:来源:河北省石家庄市2016_2017学年高一数学下学期学情反馈试题(一)理试卷及答案在中,角、、的对边分别为、、,则以下结论错误的为()A.若,则B.C.若,则;反之,若,则D.若,则【答案】D【解析】试题分析:∵,∴由正弦定理,,又∵,为的内角,∴,故,A正确;∵由正弦定理可得,∴,故B正确;在,设外接圆的半径为,若,则,由正弦定理可得,即;若,即有,即,即.则在中,,故C正确;∵,∴,∴或,∴或,∴三角形为直角三角形或等腰三角形,故D错误.故选:D.第 27 题:来源:湖南省长沙市雅礼中学2019届高三数学上学期月考试题二理现有四个函数:①,②,③,④的图像(部分)如下,但顺序打乱了,则按照从左到右将图象对应的序号排列正确的组是A.①③②④ B.②①③④ C.③①④② D.①④②③【答案】D第 28 题:来源: 2017届宁夏银川市高三第二次模拟考试理科数学试卷含答案已知是定义在R上的偶函数,且对恒成立,当时,,则A. B.C. D.【答案】B第 29 题:来源:贵州省思南中学2018_2019学年高二数学下学期期末考试试题理复数z满足,则复数的虚部是()A.1 B.-1 C. D.【答案】C第 30 题:来源:辽宁省沈阳市2018届高三数学11月阶段测试试题理试卷及答案下列判断错误的是()SX010202A.“”是“”的充分不必要条件B.命题“”的否定是“”C.若为真命题,则均为假命题D.命题“若,则”为真命题,则“若,则”也为真命题【答案】C第 31 题:来源:山西省芮城县2017_2018学年高二数学上学期第一次月考试题理试卷及答案已知三棱锥的所有顶点都在球的球面上,为球的直径,且,,为等边三角形,三棱锥的体积为,则球的半径为A. 3B.1C.2D.4【答案】C第 32 题:来源: 2016_2017学年福建省厦门市高二数学试卷及答案下学期期中试题理设a=,b=,,则a、b、c间的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b【答案】D第 33 题:来源:高中数学第三章导数及其应用3.1导数3.1.2瞬时速度与导数3.1.3导数的几何意义自我小测新人教B版选修1_120171101235曲线y=x3+2在点处切线的倾斜角为( )A.30° B.45° C.135° D.60°【答案】B第 34 题:来源:广东省深圳市耀华实验学校2018_2019学年高一数学下学期入学考试试题(国际1班)若函数是定义域为上的减函数,则函数的图像大致是 ( ).A. B.C . D.【答案】D第 35 题:来源:湖北省宜昌市2017_2018学年高二数学上学期期中试题理试卷及答案若圆的半径为1,圆心在第二象限,且与直线和轴都相切,则圆的标准方程是()A. B.C. D.【答案】B第 36 题:来源:黑龙江省哈尔滨市2016_2017学年高二数学6月月考试题试卷及答案理.离散型随机变量X的分布列为,则与依次为( )和和和和【答案】D第 37 题:来源: 2017届吉林省长春市朝阳区高三数学下学期第八次模拟考试试题试卷及答案理若,则=(A)(B)1 (C)5 (D)25【答案】B第 38 题:来源:广东省江门市第二中学2017_2018学年高二数学11月月考试题(含解析)数列前项的和为()A. B.C. D.【答案】B【解析】数列前项的和故选B.第 39 题:来源: 2017年河南省焦作市高考数学二模试卷(理科)含答案解析在区间上任选两个数x和y,则y<sinx的概率为()A. B. C. D.【答案】C【考点】几何概型.【分析】该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.【解答】解:在区间上任选两个数x和y,区域的面积为,满足y<sinx的区域的面积为=(﹣cosx)=1,∴所求概率为.故选C.第 40 题:来源:江西省南康中学2018_2019学年高二数学二下学期期中(第二次大考)试题理已知椭圆(a>b>0)的左、右焦点分别为为椭圆上一动点,面积的最大值为,则椭圆的离心率为()A. B.1 C. D.【答案】A。

2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)

2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)

(山东省德州市2019届高三期末联考数学(理科)试题)4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入 {a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)3.等差数列中,,,则数列的前20项和等于()A. -10B. -20C. 10D. 20【答案】D【解析】【分析】本道题结合等差数列性质,计算公差,然后求和,即可。

【详解】,解得,所以,故选D。

【点睛】本道题考查了等差数列的性质,难度中等。

(江西省新余市2019届高三上学期期末考试数学(理)试题)5.在等差数列中,已知是函数的两个零点,则的前10项和等于( )A. -18B. 9C. 18D. 20【答案】D【解析】【分析】由韦达定理得,从而的前10项和,由此能求出结果.【详解】等差数列中,是函数的两个零点,,的前10项和.故选:D.【点睛】本题考查等差数列的前n项和公式,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(湖南省长沙市2019届上学期高三统一检测理科数学试题)13.设等差数列的前项和为,且,则__________.【答案】【解析】分析:设等差数列{a n}的公差为d,由S13=52,可得13a1+d=52,化简再利用通项公式代入a4+a8+a9,即可得出.详解:设等差数列{a n}的公差为d,∵S13=52,∴13a1+d=52,化为:a1+6d=4.则a4+a8+a9=3a1+18d=3(a1+6d)=3×4=12.故填12.点睛:本题主要考查等差数列通项和前n项和,意在考查学生等差数列基础知识的掌握能力和基本的运算能力.(湖南省湘潭市2019届高三上学期第一次模拟检测数学(文)试题)3.已知数列是等比数列,其前项和为,,则()A. B. C. 2 D. 4【答案】A【解析】【分析】由题意,根据等比数列的通项公式和求和公式,求的公比,进而可求解,得到答案。

2020届高三数学第一次月考试题 文(含解析)新 人教

2020届高三数学第一次月考试题 文(含解析)新 人教

2019学年第一学期九月测试卷高三数学(文科)一、选择题(每小题5分,共60分)1. 设集合M={1,2,3,4,5,6},N={1,4,5,7},则M∩N等于( )A. {1,2,4,5,7}B. {1,4,5}C. {1,5}D. {1,4}【答案】B【解析】则2. ( )A. B. C. D. -【答案】A【解析】试题分析:选C.考点:诱导公式.【易错点晴】本题主要考查诱导公式,属于容易题型.本题虽属容易题型,但如果不细心的话容易因判断错象限、或因忘了改变函数名而犯错.解决此类题型的口诀是:奇变偶不变,符号看象限,应用改口诀的注意细节有:1、“奇”、“偶”指的是的奇数倍或偶数倍,2、符号看象限,既要看旧角,又要看旧函数名.要熟练掌握这两个细节才不会“走火入魔”.3. 下列函数中,是偶函数且在上为增函数的是( )A. B. C. D.【答案】A【解析】由选项可看出四个函数中D为奇函数,所以排除D,在ABC三个选项中,A函数为增函数,B函数为减函数,C函数既有增区间又有减区间.故选A.4. 若已知函数f(x)= , 则的值是( )A. B. 3 C. D.【答案】D【解析】由函数f(x)=可知:,+1=故选:D5. 函数y=的定义域是( )A. [1,2]B. [1,2)C.D.【答案】D【解析】即得解得故选D6. 下列说法中,正确的是()A. 命题“若,则”的否命题为“若,则”B. 命题“存在,使得”的否定是:“任意,都有”C. 若命题“非”与命题“或”都是真命题,那么命题一定是真命题D. ""是" "的充分不必要条件【答案】C【解析】对于A,命题“若,则”的否命题为“若a≤b,则”;∴A 不正确;对于B,命题“存在x∈R,使得”的否定是:“任意x∈R,都有”;∴B不正确;对于C,若命题“非p”是真命题则P是假命题,命题“p或q”是真命题,那么命题q一定是真命题,∴C正确;对于D,∴推不出. ∴D不正确故选:C.7. 设a=,,则a,b,c的大小关系是( )A. b>c>aB. a>c>bC. b>a>cD. a>b>c【答案】D【解析】,所以故选D8. 函数f(x)=2x-6+lnx的零点个数为( )A. 1B. 2C. 3D. 4【答案】A【解析】,所以函数在上递增,又,所以函数的零点只有1个故选A点睛:本题是零点存在性定理的考查,先确定函数的单调性,在判断特殊点处的函数值有正负变化即得解.9. 函数y=Asin(ωx+φ)在一个周期内的图象如图所示,则此函数的解析式为( )A. B.C. D.【答案】B【解析】由图知A=2,又,此函数的解析式是故选B.10. 若=,则cos(π-2α)=( )A. -B.C. -D.【答案】C【解析】==,故选C11. 函数y= (0<a<1)的图象的大致形状是( )A. B.C. D.【答案】D【解析】又所以函数在上递减,在上递增,故选D点睛:函数中有绝对值的要去掉绝对值,写成分段函数,根据单调性即可以选出选项.12. 已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)【答案】B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.二、填空题(每小题5分,共20分)13. 已知=2, 则=______【答案】3【解析】,故答案为314. 函数f(x)=的单调递增区间为________.【答案】【解析】根据复合函数的单调性,内外层函数同则增异则减的原则,f(x)=的递增区间为的递减区间,但要注意定义域,所以f(x)=的递增区间为................故答案为点睛:研究复合函数的单调性:先把复合函数分成内外两层,根据内外层函数单调性相同,复合函数增,内外层函数单调性相异,复合函数减,即同则增异则减,做题时还要注意定义域.15. 已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则=________.【答案】-2【解析】由f(x+4)=f(x)得f(x)的周期为4,所以又f(x)在R上是奇函数,所以故答案为-2.点睛:函数奇偶性,周期性结合求函数值的问题,先利用周期性,把变为再利用奇偶性根据已知很容易出结果.16. 若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是________.【答案】(-∞,]【解析】2xlnx≥-x2+ax-3,则a≤2lnx+x+,设h(x)=2lnx+x+(x>0),则h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4,则a≤h(x)min=4,故实数a的取值范围是(-∞,4].故答案为:(-∞,4]点睛:恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.三、解答题(共6小题,共70分,解答应写出必要的文字说明、计算过程或证明步骤)17. (10分) 化简求值:(1) ; (2) .【答案】(1) 4 ; (2)【解析】试题分析:(1)主要是对数运算性质的考查(2)主要是三角恒等变换的二倍角公式,两角和与差的余弦公式的考查.试题解析:(1)原式= (2)原式=18. (12分)(1)已知sinα=- ,且α为第四象限角,求tanα的值;(2)已知cos且都是锐角,求的值【答案】(1)(2)【解析】试题分析:(1)由α为第四象限角,根据同角基本关系的平方关系得的值,商式关系得出.(2) cos,是锐角得出sin,又都是锐角,,得出,根据得出结果.试题解析:(1)为第四象限角,(2) 因为是锐角,所以sin=又都是锐角,,=,则cos=cos19. (12分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)若f(x)在区间[-4,6]上是单调函数.求实数a的取值范围.【答案】(1)35 (2) a≤-6,或a≥4【解析】试题分析:(1) 当a=-2时,f(x)=x2-4x+3=(x-2)2-1,根据二次函数的单调性得出函数的最值(2)二次函数的对称轴为x=-a,根据图像得出[-4,6]在轴的左侧或在轴的右侧,即-a≤-4,或-a≥6得解.试题解析:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增.∴f(x)的最小值是f(2)=-1.又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4,或-a≥6,即a≤-6,或a≥4.20. (12分)已知.f(x)=sin x cos x-cos2x+(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当0≤x≤时,求函数f(x)的值域.【答案】(1)(k∈Z) (2)【解析】试题分析:(1)先对函数f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+化简得f(x)=sin,令sin=0,得=kπ(k∈Z)解得对称中心(2)0≤x≤所以-≤2x-≤,根据正弦函数图像得出值域.试题解析:(1)f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+=sin2x-cos2x=sin,所以f(x)的最小正周期为π.令sin=0,得=kπ(k∈Z),所以x= (k∈Z).故f(x)图象对称中心的坐标为 (k∈Z).(2)因为0≤x≤,所以-≤2x-≤,所以≤sin≤1,即f(x)的值域为.点睛:本题重点考查三角函数式的恒等变换,正弦型函数的最小正周期,正弦型函数的对称中心,及函数在某一定义域下的值域,是高考的常见题型,在求值域时要运用整体的思想.21. (12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线方程为l:y=3x+1,且当x=时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.【答案】(1) a=2,b=-4, c=5 (2) 最大值为13,最小值为【解析】试题分析:(1)对函数进行求导,当x=1时,切线l的斜率为3,可得2a+b=0,当x=时,y=f(x)有极值,则f′=0,联立得出a,b,c的值(2) 由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4. 令f′(x)=0,解得x1=-2,x2=,研究单调性得出最值.试题解析:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0,①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0,②由①②,解得a=2,b=-4.由于切点的横坐标为1,所以f(1)=4. 所以1+a+b+c=4,得c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4.令f′(x)=0,解得x1=-2,x2=.当x变化时,f′(x),f(x)的取值及变化情况如下表所示:所以y=f(x)在[-3,1]上的最大值为13,最小值为.点睛:已知切线方程求参数问题,利用切线斜率,切点在切线上也在曲线上这两点即可求出字母值.函数的极值问题要注意对应的导值为0,且在此点的左右函数有单调性变化.22. (12分)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.【答案】(1)见解析(2) (0,1)【解析】试题分析:(1)先求导数,再根据导函数符号是否变化进行讨论:若,则,在单调递增;若,导函数先正后负,函数先增后减;(2)由(1)知函数有最大值条件为,且最大值为,转化为解不等式,先化简,再利用导数研究函数单调性及零点,确定不等式解集试题解析:解:(Ⅰ)的定义域为若,则,所以在单调递增若,则当时,;当时,。

2019年黑龙江省哈尔滨三中高考数学一模试卷和答案(文科)(内考)

2019年黑龙江省哈尔滨三中高考数学一模试卷和答案(文科)(内考)

2019年黑龙江省哈尔滨三中高考数学一模试卷(文科)(内考)一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.(5分)已知全集U=R,集合A={﹣2,﹣1,0,1,2},B={x|x2≥4},则如图中阴影部分所表示的集合为()A.{﹣2,﹣1,0,1}B.{0}C.{﹣1,0}D.{﹣1,0,1}2.(5分)若复数z=,则|z|=()A.8B.2C.2D.3.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2D.4.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b5.(5分)已知数列{a n}的前n项和S n=2+λa n,且a1=1,则S5=()A.27B.C.D.316.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面7.(5分)函数f(x)=a x﹣1(a>0,a≠1)的图象恒过点A,则下列函数中图象不经过点A的是()A.y=B.y=|x﹣2|C.y=2x﹣1D.y=log2(2x)8.(5分)已知函数y=sin(ωx+φ)的最小正周期为,直线是其图象的一条对称轴,则下面各式中符合条件的解析式为()A.B.C.D.9.(5分)阅读如图所示的程序框图,若运行相应的程序输出的结果为0,则判断框中的条件不可能是()A.n≤2014B.n≤2015C.n≤2016D.n≤201810.(5分)已知双曲线C:﹣=1(a>0,b>0)的右焦点F2到渐近线的距离为4,且在双曲线C上到F2的距离为2的点有且仅有1个,则这个点到双曲线C的左焦点F1的距离为()A.2B.4C.6D.811.(5分)已知x2+y2=4,在这两个实数x,y之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为()A.B.C.D.12.(5分)函数,方程[f(x)]2﹣(m+1)f(x)+1﹣m=0有4个不相等实根,则m的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(2,﹣4),=(﹣3,﹣4),则向量与夹角的余弦值为.14.(5分)设x,y满足约束条件,则z=x﹣y的最大值是.15.(5分)学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“A作品获得一等奖”;乙说:“C作品获得一等奖”丙说:“B,D两项作品未获得一等奖”丁说:“是A或D作品获得一等奖”若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.16.(5分)正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为.三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(12分)在△ABC,,BC=2.(1)若AC=3,求AB的长;(2)若点D在边AB上,AD=DC,DE⊥AC,E为垂足,,求角A的值.18.(12分)某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如表:(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为:S=,试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:k2=19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF 是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+﹣1=0相切.(1)求椭圆C的标准方程;(2)已知点N(3,2),和平面内一点P(m,n)(m≠3),过点M任作直线l与椭圆C 相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,k1+k3=3k2,试求m,n满足的关系式.21.(12分)已知函数f(x)=lnx﹣kx+1.(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C1:x+y=和C2:(φ为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1、C2的方程化为极坐标方程(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.[选修4-5:不等式选讲]23.设a,b,c>0,且ab+bc+ca=1,求证:(1)a+b+c≥;(2)++≥(++)2019年黑龙江省哈尔滨三中高考数学一模试卷(文科)(内考)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.(5分)已知全集U=R,集合A={﹣2,﹣1,0,1,2},B={x|x2≥4},则如图中阴影部分所表示的集合为()A.{﹣2,﹣1,0,1}B.{0}C.{﹣1,0}D.{﹣1,0,1}【解答】解:由Venn图可知阴影部分对应的集合为A∩(∁U B),∵B={x|x2≥4}={x|x≥2或x≤﹣2},A={﹣2,﹣1,0,1,2},∴∁U B={x|﹣2<x<2},即A∩(∁U B)={﹣1,0,1}故选:D.2.(5分)若复数z=,则|z|=()A.8B.2C.2D.【解答】解:复数z=,则|z|===.故选:D.3.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2D.【解答】解:由主视图和侧视图可知棱锥的高h=2,结合侧视图和俯视图可知三棱锥的底面ABC为直角三角形,BC=1,AB=2,AB⊥BC,∴三棱锥的体积V==,故选:A.4.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【解答】解:由a==b==根据指数函数的单调性,∴a>b.a==,c=,∴a<c,可得:b<a<c.故选:A.5.(5分)已知数列{a n}的前n项和S n=2+λa n,且a1=1,则S5=()A.27B.C.D.31【解答】解:S n=2+λa n,且a1=1,∴1=a1=S1=2+λ,解得λ=﹣1.∴n≥2时,S n=2﹣a n=2﹣(S n﹣S n﹣1),化为:S n﹣2=(S n﹣1﹣2),S1﹣2=﹣1,∴S n﹣2=﹣,即S n=2﹣,则S5=2﹣=,故选:C.6.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.7.(5分)函数f(x)=a x﹣1(a>0,a≠1)的图象恒过点A,则下列函数中图象不经过点A的是()A.y=B.y=|x﹣2|C.y=2x﹣1D.y=log2(2x)【解答】解:函数f(x)=y=a x﹣1(a>0,a≠1)的图象恒过点A,即x﹣1=0,可得x=1,那么:y=1.∴恒过点A(1,1).把x=1,y=1带入各选项,经考查各选项,只有A没有经过A点.故选:A.8.(5分)已知函数y=sin(ωx+φ)的最小正周期为,直线是其图象的一条对称轴,则下面各式中符合条件的解析式为()A.B.C.D.【解答】解:函数y=sin(ωx+φ)的最小正周期为,故:,解得:ω=4,直线是其图象的一条对称轴,故:,(k∈Z)解得:φ=k(k∈Z),当k=1时,φ=,故选:A.9.(5分)阅读如图所示的程序框图,若运行相应的程序输出的结果为0,则判断框中的条件不可能是()A.n≤2014B.n≤2015C.n≤2016D.n≤2018【解答】解:模拟执行程序,可得前6步的执行结果如下:s=0,n=1;满足条件,执行循环体,s=,n=2;满足条件,执行循环体,s=0,n=3;满足条件,执行循环体,s=0,n=4;满足条件,执行循环体,s=,n=5;满足条件,执行循环体,s=0,n=6…观察可知,s的值以3为周期循环出现,当n的值除以3余1时,可得对应的s的值为,由于:2014=671×3+1所以:判断条件为n≤2014?时,s=符合题意.故选:A.10.(5分)已知双曲线C:﹣=1(a>0,b>0)的右焦点F2到渐近线的距离为4,且在双曲线C上到F2的距离为2的点有且仅有1个,则这个点到双曲线C的左焦点F1的距离为()A.2B.4C.6D.8【解答】解:设渐近线为,∵右焦点F2到渐近线的距离为4,∴,即b=4.∵双曲线C上到F2的距离为2的点有且仅有1个,这个点是右顶点,∴c﹣a=2.∴(c﹣a)2=4=b,⇒(c﹣a)4=b2=(c﹣a)(c+a),∴c+a=(c﹣a)3=8.则这个点到双曲线C的左焦点F1的距离为c+a=8,故选:D.11.(5分)已知x2+y2=4,在这两个实数x,y之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为()A.B.C.D.【解答】解:根据题意,设插入的三个数为a、b、c,即构成等差数列的五个数分别为x,a,b,c,y,则有x+y=a+c=2b,则b=,c===,则这个等差数列后三项和为b+c+y=3b=,又由x2+y2=4,设x=2cosα,y=2sinα,则b+c+y=(x+3y)=(cosα+3sinα)=sin(α+φ)≤,即这个等差数列后三项和的最大值为;故选:D.12.(5分)函数,方程[f(x)]2﹣(m+1)f(x)+1﹣m=0有4个不相等实根,则m的取值范围是()A.B.C.D.【解答】解:函数是连续函数,x=0时,y=0.x>0时,函数的导数为f′(x)=,当0<x<1时,f′(x)>0,f(x)递增;当x>1时,f′(x)<0,f(x)递减,可得f(x)在x=1处取得极大值,f(x)∈(0,]x<0时,f′(x)=﹣<0,函数是减函数,作出y=f(x)的图象,设t=f(x),关于x的方程[f(x)]2﹣(m+1)f(x)+1﹣m=0即为t2﹣(m+1)t+1﹣m=0,有1个大于实根,一个根在(0,);由题意可得:解得m∈.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(2,﹣4),=(﹣3,﹣4),则向量与夹角的余弦值为.【解答】解:根据题意,设向量与夹角为θ,向量,,则||=2,||=5,且•=2×(﹣3)+(﹣4)×(﹣4)=10,cosθ===,故答案为:.14.(5分)设x,y满足约束条件,则z=x﹣y的最大值是2.【解答】解:作出不等式组对应的平面区域如图:由z=x﹣y得y=x﹣z,平移直线y=x﹣z,由图象直线当直线y=x﹣z经过B(2,0)时,直线y=x﹣z的截距最小,此时z最大为z=2﹣0=2,即z=x﹣y的最大值是2,故答案为:2.15.(5分)学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“A作品获得一等奖”;乙说:“C作品获得一等奖”丙说:“B,D两项作品未获得一等奖”丁说:“是A或D作品获得一等奖”若这四位同学中只有两位说的话是对的,则获得一等奖的作品是C.【解答】解:根据题意,A,B,C,D作品进行评奖,只评一项一等奖,假设参赛的作品A为一等奖,则甲、丙,丁的说法都正确,乙错误,不符合题意;假设参赛的作品B为一等奖,则甲、乙、丙、丁的说法都错误,不符合题意;假设参赛的作品C为一等奖,则乙,丙的说法正确,甲、丁的说法错误,符合题意;假设参赛的作品D为一等奖,则甲、乙,丙的说法都错误,丁的说法正确,不符合题意;故获得参赛的作品C为一等奖;故答案为:C.16.(5分)正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为4π.【解答】解:将四面体ABCD放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD的外接球,∵正四面体ABCD的棱长为4,∴正方体的棱长为,可得外接球半径R满足,解得R=E为棱BC的中点,过E作其外接球的截面,当截面到球心O的距离最大时,截面圆的面积达最小值,此时球心O到截面的距离等于正方体棱长的一半,可得截面圆的半径为r==2,得到截面圆的面积最小值为S=πr2=4π.故答案为:4π三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(12分)在△ABC,,BC=2.(1)若AC=3,求AB的长;(2)若点D在边AB上,AD=DC,DE⊥AC,E为垂足,,求角A的值.【解答】解:(1)设AB=x,则由余弦定理有:AC2=AB2+BC2﹣2AB•BC cos B,即32=22+x2﹣2x•2cos60°,解得:,所以;(2)因为,所以.在△BCD中,由正弦定理可得:,因为∠BDC=2∠A,所以.所以,所以.18.(12分)某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如表:(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为:S=,试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:k2=【解答】解:(1)设“在本年内随机抽取一天,该天经济损失S大于200元且不超过600元”为事件A…(1分)由200<S≤600,得150<ω≤250,频数为39,…(3分)∴P(A)=….(4分)(2)根据以上数据得到如表:….(8分)K2的观测值K2=≈4.575>3.841….(10分)所以有95%的把握认为空气重度污染与供暖有关.….(12分)19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF 是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.【解答】(Ⅰ)证明:∵底面ABCD是菱形,∴AD∥BC,∵四边形BDEF是正方形,∴DE∥BF,∵BF∩BC=B,∴平面ADE∥平面BCF,∵CF⊂平面BCF,∴CF∥平面ADE.(Ⅱ)解:连结AC,交BD于O,∵四边形BDEF是正方形且DE⊥平面ABCD.∴DE⊥平面ABCD,又AC⊂平面ABCD,∴AC⊥DE,∵底面ABCD是菱形,∴AC⊥BD,又BD∩DE=D,∴AC⊥平面BDEF,∵AE=,∠BCD=60°,∴AD=DE=BD=1,∴AO=CO=,∴多面体ABCDEF的体积:V=2V A﹣BDEF=2×=2×=.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+﹣1=0相切.(1)求椭圆C的标准方程;(2)已知点N(3,2),和平面内一点P(m,n)(m≠3),过点M任作直线l与椭圆C 相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,k1+k3=3k2,试求m,n满足的关系式.【解答】解:(1)由椭圆C:+=1(a>b>0),焦点在x轴上,则M(1,0)到直线x﹣y+﹣1=0的距离d==1,∴b=d=1,离心率e===,解得:a=,∴椭圆C的标准方程;(2)①当直线斜率不存在时,由,解得x=1,,不妨设,,∵k1+k3=2,∴,∴m,n的关系式为3n=2m.②当直线的斜率存在时,设点A(x1,y1),B(x2,y2),直线l:y=k(x﹣1),联立椭圆整理得:(3k2+1)x2﹣6k2x+3k2﹣3=0,由韦达定理可知:x1+x2=,x1•x2=,∴,=,=.∴,∴m,n的关系式为3n=2m.21.(12分)已知函数f(x)=lnx﹣kx+1.(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:【解答】解:(1)函数f(x)的定义域为,当k≤0时,在(0,+∞)上是增函数,当k>0时,若时,有,若时,有,则f(x)在上是增函数,在上是减函数.(2)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为,要使f(x)≤0恒成立,则即可,即﹣lnk≤0,得k≥1.(3)由(2)知,当k=1时,有f(x)≤0在(0,+∞)恒成立,且f(x)在(1,+∞)上是减函数,f(1)=0,即lnx<x﹣1,在x∈[2,+∞)上恒成立,令x=n2,则lnn2<n2﹣1,即2lnn<(n﹣1)(n+1),从而得证.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C1:x+y=和C2:(φ为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1、C2的方程化为极坐标方程(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.【解答】解:(1)线C1:x+y=和C2:(φ为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,因为x=ρcosθ,y=ρsinθ,所以C1:,即,所以;C2的普通方程为,所以其极坐标方程为,即.(2)由题意M(,0),N(0,1),所以P(),所以射线OP的极坐标方程为:,把代入C1得到ρ1=1,P(1,);把代入C2得到ρ2=2,Q(2,),所以|PQ|=|ρ2﹣ρ1|=1,即P,Q两点间的距离为1.[选修4-5:不等式选讲]23.设a,b,c>0,且ab+bc+ca=1,求证:(1)a+b+c≥;(2)++≥(++)【解答】证明:(1)运用分析法证明.要证a+b+c≥,即证(a+b+c)2≥3,由a,b,c均为正实数,且ab+bc+ca=1,即有a2+b2+c2+2(ab+bc+ca)≥3,即为a2+b2+c2≥1,①由a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,相加可得a2+b2+c2≥zb+bc+ca=1,则①成立.综上可得,原不等式成立.(2)∵++=,而由(1)a+b+c≥,∴≥(++),故只需≥++,即a+b+c≤1,即:a+b+c≤ab+bc+ac,而a=•≤,b≤,c≤,∴a+b+c≤ab+bc+ac=1成立,(当且仅当a=b=c=时).。

高三数学上学期第一次月考试题 文扫描 试题

高三数学上学期第一次月考试题 文扫描 试题

HY中学2021届高三数学上学期第一次月考试题文〔扫描版〕创作人:历恰面日期:2020年1月1日一中第一期联考文科数学答案命题、审题组老师 杨昆华 彭力 杨仕华 王佳文 张波 毛孝宗 丁茵 易孝荣 江明 李春宣一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBCDADDCAAB1. 解析:由题意,因为集合{}1>=x x A ,所以=B A {}31<<x x ,选B . 2. 解析:因为2i 12i i i)i)(1(1i)i(1i 1i 2+=-=-+-=+,选C . 3. 解析:18=0.4540,选B . 4. 解析:由得54)cos(-=--αβα,即54cos )cos(-==-ββ,又πβ(∈,)23π,所以0sin <β,且53cos 1sin 2-=--=ββ,选C .5. 解析:在长、宽、高分别为2,1,1的长方体中截得该三棱锥A DBC -,那么最长棱为2222116AB =++=,选D .6. 解析:对于B ,函数的周期是π,不是π4;对于C ,函数在3π=x 时不取最值;对于D ,当∈x 65(π-,)6π时,34(32ππ-∈+x ,)32π,函数不是单调递增,选A . 7. 解析:因为()()11f x f x -=+,所以()f x 的图象关于直线1x =对称,选D .8. 解析:由垂径定理可知直线CM 的斜率为2-,所以直线CM 的方程是)2(21--=+x y ,即032=-+y x ,选D .9. 解析:设外接球的半径为R ,因为PA ⊥平面ABC ,所以BC PA ⊥,又BC AB ⊥,所以BC PB ⊥,设PC 的中点为O ,易知:OA OB OC OP ===,故O 为四面体P ABC -的外接球的球心,又2PA AB BC ===,所以22AC =,23PC =,半径3R =,四面体P ABC -的外接球的外表积为()24312ππ=,选C .10. 解析:由()y f x =,()01f =-排除B ,()f x 是偶函数排除C,()20f =和()40f =排除D ,选A .11. 解析:由题设得3=ab,2)(12=+=a b e ,所以b e a +2362322323322=≥+=+=aa a a ,选A . 12. 解析:由余弦定理及22b ac a -=得,22222cos b a c ac B a ac =+-=+,所以有2cos c a B a =+,因此sin 2sin cos sin C A B A =+,故有()sin 2sin cos sin A B A B A +=+,即()sin sin A B A =-,因为三角形ABC 为锐角三角形,所以A B A =-,即2B A =,所以022A π<<,所以04A π<<,又3B A A +=,所以32A ππ<<,所以63A ππ<<,综上,64A ππ⎛⎫∈ ⎪⎝⎭, 所以()sin sin 22cos 2,3sin sin B At A A A===∈,选B .二、填空题13. 解析:由22a b a b -=+解得0a b ⋅=,所以向量a 与b 夹角为90︒. 14. 解析:N=126+146+96+136=288⨯⨯⨯⨯.15. 解析:由图知,直线4z y x =-过()1,0时,4y x -有最小值1-. 16. 解析:由得()()22log 1933f x x x -=+++,所以()()6f x f x +-=,因为2lg 3⎛⎫ ⎪⎝⎭与3lg 2⎛⎫⎪⎝⎭互为相反数,所以23lg lg 632f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以3lg 22f ⎛⎫=- ⎪⎝⎭. 三、解答题〔一〕必考题17. 解:〔1〕证明:设1122n n nn a a d ---=那么122n n n a a d --= 所以1122n n n a a d ++-=,11122222n n n n n n a a da a d++--==-所以}{12n na a +-是首项为4,公比为2的等比数列. ………6分〔2〕因为{}2n n a 是等差数列,所以1221122=-=a a d ,所以11(1)22n n a a n d =+-⨯ , 所以1()22nn a n =-所以123113531222...()2()222222n n n S n n -=⨯+⨯+⨯++-+-① 2311333222...()2()22222n n n S n n +=⨯+⨯++-+-②由①-②得23111=2+2+2...2()222n n n S n +-⨯++-- 13=(n-)232n n S ++. ………12分18. 解:〔1〕 选派B 同学参加比拟适宜.理由如下:1(7580808385909295)858A x =+++++++=,1(7879818284889395)858B x =+++++++=,22222221[(7885)(7985)(8185)(8285)(8485)(8885)8B S =-+-+-+-+-+-+22(9385)(9585)]35.5-+-=,22222221[(7585)(8085)(8085)(8385)(8585)(9085)8A S =-+-+-+-+-+-+22(9285)(9585)]41-+-=,从A B x x =,22B A S S <可以看出:A ,B 两位同学的平均程度一样而B 的成绩较稳定,所以选派B 参加比拟适宜. ………7分〔2〕任选派两人有(,)A B ,(,)A C ,(,)A D ,(,)A E ,(,)B C ,(,)B D ,(,)B E ,(,)C D ,(,)C E ,(,)D E 一共10种情况;所以A ,B ,C 三人中至多有一人参加英语口语竞赛有7种情况; 所以710P =. ………12分19. 解:〔1〕在直角梯形ABCD 中,2BC AD AB ⋅=,即AB ADBC AB=, 因为90DAB PBC ∠=∠=, 所以tan AB ACB BC ∠=,tan ADABD AB∠=, 所以ABD ACB ∠=∠,又因为90ACB BAC ∠+∠=, 所以90ABD BAC ∠+∠=,即AC BD ⊥图2的四棱锥1P ABCD -中,1P A AB ⊥,由题知1P A AD ⊥,那么1P A ⊥平面ABCD , 所以1BD P A ⊥,又1P AAC A =所以BD ⊥平面1P AC . ………6分(2)在图1中,因为AB =,1AD =,2BC AD AB ⋅=,所以3BC =因为PAD ∆∽PBC ∆,所以13PA AD PA PB BC ==⇒=,即1P A = 由〔1〕知1P A ⊥平面ABCD ,那么1C P BD V -1P CBD V -=1P CBD V -=111111133332324CBD S P A BC AB P A ∆⋅⋅=⨯⋅⋅=⨯⨯=. ………12分20. 解:〔1〕由椭圆定义知,224AF BF AB a ,又222AF BF AB ,得43ABa ,l 的方程为y x c ,其中22c a b .设11(,)A x y ,22(,)B x y ,将y x c 代入22221x y a b 得,2222222()2()0a b x a cx a c b . 那么212222-a c x x a b ,2221222)a cb x x a b (.因为直线AB 的倾斜角为4π,所以212122()4ABx x x x ,由43AB a 得,222443a ab a b ,即222a b .所以C的离心率2222c a b e a a. ………6分 (2) 设AB 的中点为0,0()N x y ,由〔1〕知,2120222--23x x a c c x a b ,003cy x c .由PA PB 得,PN 的斜率为-1,即001-1y x ,解得,3c ,32a ,3b .所以椭圆C 的方程为221189x y . ………12分21. 解:〔1〕()f x 的定义域为(,)-∞+∞,因为()e x f x a '=+,由(0)0f '=,得1a =-, 所以()e 2x f x x =--,由()e 10x f x '=->得0x >,由()e 10x f x '=-<得0x <,所以()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ………6分 (2) 因为0x >,所以()e 1e 1xxm x -<+可化为e 1e 1x x x m +<-,令e 1()e 1x x x F x +=-,那么()2e (e 2)()e 1x x x x F x --'=-, 由〔1〕得()e 2x f x x =--在(0,)+∞上单调递增,而(1)e 30f =-<,2(2)e 40f =->,所以()f x 在(1,2)上存在唯一的0x , 使0()0f x =,所以()F x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增, 所以0()F x 是()F x 00e 20x x --=得00e 2x x =+, 所以00000000e 1(2)1()11e 1x x x x x F x x x +++===++-, 又因为012x <<,所以02()3F x <<,所以[]max 2m =. ………12分 〔二〕选考题:第22、23题中任选一题做答。

建昌县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

建昌县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

建昌县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣12. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .3. 实数a=0.2,b=log 0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a4. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大. 5. 已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )A .2对B .3对C .4对D .5对 6. 已知双曲线的方程为﹣=1,则双曲线的离心率为( ) A .B .C .或 D .或7. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( ) A .B .﹣C .4D .8. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C.D.9.已知f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),当0<x<2时,f(x)=1﹣log2(x+1),则当0<x<4时,不等式(x﹣2)f(x)>0的解集是()A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)10.函数是()A.最小正周期为2π的奇函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数11.已知双曲线(a>0,b>0)的右焦点F,直线x=与其渐近线交于A,B两点,且△ABF为钝角三角形,则双曲线离心率的取值范围是()A.B.C.D.12.已知点P(1,﹣),则它的极坐标是()A.B.C.D.二、填空题13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.14.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:①若m=,则a5=2;②若a3=3,则m可以取3个不同的值;③若m=,则数列{a n}是周期为5的周期数列.其中正确命题的序号是.15.不等式的解集为R,则实数m的范围是.16.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.17.如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN与BE是异面直线;③CN与BM成60 角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).18.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.三、解答题19.已知F 1,F 2分别是椭圆=1(9>m >0)的左右焦点,P 是该椭圆上一定点,若点P 在第一象限,且|PF 1|=4,PF 1⊥PF 2. (Ⅰ)求m 的值; (Ⅱ)求点P 的坐标.20.未来制造业对零件的精度要求越来越高.3D 打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A 高校3D 打印实验团队租用一台3D 打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm ). (Ⅰ) 计算平均值μ与标准差σ;(Ⅱ) 假设这台3D 打印设备打印出品的零件内径Z 服从正态分布N (μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm ):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?参考数据:P (μ﹣2σ<Z <μ+2σ)=0.9544,P (μ﹣3σ<Z <μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.21.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。

高三文科数学10月月考试题(带答案)

高三文科数学10月月考试题(带答案)

2019届高三文科数学10月月考试题(带答案)2019届高三文科数学10月月考试题(带答案)第I卷(选择题共50分)一、选择题:(本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求)1、集合,,则AB=( )A、B、C、D、2、下列函数中,既是奇函数又是增函数的为( )A、B、C、D、3、设,若,则( A )A. B. C. D.4、给出下列五个命题:①命题使得的否定是:② a R,1是1的必要不充分条件③为真命题是为真命题的必要不充分条件④命题若则x=1的逆否命题为若其中真命题的个数是( )A、1 B、2 C、3 D、45、已知f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x (0,2)时f(x)=2x2,( )A、B、C、D、6、设,则a,b,c的大小关系是A、bB、cC、cbD、b7、函数的零点一定位于下列哪个区间( )A、B、C、D、8、把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数的图像关于直线y=x对称,则f(x)=( )A、B、C、D、9、设函数则不等式的解集是( )A、B、C、D、10、若函数满足:对于区间(1,2)上的任意实数,恒成立,则称为完美函数.在下列四个函数中,完美函数是( )A. B. C. D.第Ⅱ卷(非选择题共100分)二、填空题:(本大题共5小题,每小题5分,满分25分)11、函数的定义域为_______.12、已知则=________.13、函数的单调递减区间为__________14、函数为奇函数,则实数15、定义在(-,+)上的偶函数f(x)满足f(x+1)=-f(x),且f(x)在[-1,0]上是增函数,下面五个关于f(x)的命题中:① f(x)是周期函数② f(x) 的图象关于x=1对称③ f(x)在[0,1]上是增函数,④f(x)在[1,2]上为减函数⑤ f (2)=f(0)正确命题的是__________三、解答题:(本大题共6小题,共75分。

哈三中2020届高三学年第一次调研考试文科数学试卷答案

哈三中2020届高三学年第一次调研考试文科数学试卷答案

2020届高三学年第一次调研考试数学科(文史类)参考答案1. A .2. D .3. A . 4.D 5. A . 6. C .7. B . 8. D . 9. C 10. B 11. C .12.C .13. 250x y +-= 14.92 15. 2 16.32a 17.解:(1)在ABC ∆中,,,解得2BC =,∴.(2)Q,∴,∴在ABC ∆中,,∴,,∴13CD =.18:解:(1)因为在长方体中,平面, 平面,所以, 又,,且平面,平面, 所以平面.(2)设长方体侧棱长为,则,由(1)可得,所以,即,又,所以,即,解得,取中点,连结,因为,则,所以平面,所以四棱锥的体积为.19.解:(1)通过系统抽抽取的样本编号为:4,8,12,16,20,24,28,32,36,40 则样本的评分数据为:92,84,86,78,89,74,83,78,77,89. (2)由(1)中的样本评分数据可得1(92848678897483787789)8310x =+++++++++=,则有22222222221[(9283)(8483)(8683)2(7883)(8983)(7483)(8383)(7783)(8983)]3310s =-+-+-+⨯-+-+-+-+-+-=所以均值83x =,方差233s =.1111ABCD A B C D -11B C ⊥11AA B B BE ⊂11AA B B 11B C BE ⊥1BE EC ⊥1111B C EC C =I 1EC ⊂11EB C 11B C ⊂11EB C BE ⊥11EB C 2a 1AE A E a==1EB BE ⊥22211EB BE BB +=2212BE BB =3AB =222122AE AB BB +=222184a a +=3a =1BBF EF 1AE A E =EF AB ∥EF ⊥11BB C C 11E BB C C -1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形(3)由题意知评分在(83即(77.26,88.74)之间满意度等级为“A级”, 由(1)中容量为10的样本评分在(77.26,88.74)之间有5人, 从5人中选2人共有10种情况,而80-分以上有3人, 从这3人选2人共有3种情况,故310P =.20. 解(1)设),(y x P ,因为)0,(),0,(a B a A -,则点P 关于x 轴的对称点H ),(y x -。

2019届高三数学备考冲刺140分问题32与圆有关的最值问题含答案解析

2019届高三数学备考冲刺140分问题32与圆有关的最值问题含答案解析

问题32 与圆有关的最值问题一、考情分析通过对近几年的高考试题的分析比较发现,高考对直线与圆的考查,呈现逐年加重的趋势,与圆有关的最值问题,更是高考的热点问题.由于圆既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活,故与圆相关的最值问题备受命题者的青睐. 二、经验分享1. 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.2.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化 三、知识拓展1.圆外一点P 到圆C 上点的距离距离的最大值等于,最小值等于PC r -.2.圆C 上的动点P 到直线l 距离的最大值等于点C 到直线l 距离的最大值加上半径,最小值等于点C 到直线l 距离的最小值减去半径.3.设点M 是圆C 内一点,过点M 作圆C 的弦,则弦长的最大值为直径,最小的弦长为.四、题型分析(一) 与圆相关的最值问题的联系点 1.1 与直线的倾斜角或斜率的最值问题利用公式k =tan α(α≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值.处理方法:直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0). 【例1】坐标平面内有相异两点,经过两点的直线的的倾斜角的取值范围是( ). A .,44ππ⎡⎤-⎢⎥⎣⎦ B . C .D .3,44ππ⎡⎤⎢⎥⎣⎦ 【答案】C 【解析】,且0AB k ≠.设直线的倾斜角为α,当01AB k <≤时,则,所以倾斜角α的范围为04πα≤≤.当时,则,所以倾斜角α的范围为34παπ≤<. 【点评】由斜率取值范围确定直线倾斜角的范围要利用正切函数y =tan x 的图象,特别要注意倾斜角取值范围的限制;求解直线的倾斜角与斜率问题要善于利用数形结合的思想,要注意直线的倾斜角由锐角变到直角及由直角变到钝角时,需依据正切函数y =tan x 的单调性求k 的范围. 【小试牛刀】若过点的直线与圆224x y +=有公共点,则该直线的倾斜角的取值范围是( )A .0 6π⎛⎫ ⎪⎝⎭,B .0 3π⎡⎤⎢⎥⎣⎦, C. 0 6π⎡⎤⎢⎥⎣⎦, D .0 3π⎛⎤ ⎥⎝⎦, 【答案】B【解析】当过点的直线与圆224x y += 相切时,设斜率为k ,则此直线方程为,即.由圆心到直线的距离等于半径可得,求得0k =或3k =故直线的倾斜角的取值范围是[0,]3π,所以B 选项是正确的.1.2 与距离有关的最值问题在运动变化中,动点到直线、圆的距离会发生变化,在变化过程中,就会出现一些最值问题,如距离最小,最大等.这些问题常常联系到平面几何知识,利用数形结合思想可直接得到相关结论,解题时便可利用这些结论直接确定最值问题. 【例2】 过点()1,2M 的直线l 与圆C :交于,A B 两点,C 为圆心,当ACB∠最小时,直线l 的方程是 . 答案:解析:要使ACB ∠最小,由余弦定理可知,需弦长AB 最短.要使得弦长最短,借助结论可知当()1,2M 为弦的中点时最短.因圆心和()1,2M 所在直线的,则所求的直线斜率为1-,由点斜式可得.【点评】与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.此题通过两次转化,最终转化为求过定点的弦长最短的问题. 【例3】若圆C :关于直线对称,则由点(,)a b 向圆C 所作的切线长的最小值是( )A .2B .3C .4D .6 【答案】C 【解析】圆C :化为(x+1)2+(y-2)2=2,圆的圆心坐标为(-1,2)半径. 圆C :关于直线2ax+by+6=0对称,所以(-1,2)在直线上,可得-2a+2b+6=0,即a=b+3.点(a,b )与圆心的距离,,所以点(a,b )向圆C 所作切线长:当且仅当b=-1时弦长最小,为4【点评】与切线长有关的问题及与切线有关的夹角问题,解题时应注意圆心与切点连线与切线垂直,从而得出一个直角三角形.【小试牛刀】【安徽省合肥一中、马鞍山二中等六校教育研究会2019届高三第二次联考】已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为( )A .B .C .D .【答案】D 【解析】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.1.3 与面积相关的最值问题与圆的面积的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解. 【例4】 在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线相切,则圆C 面积的最小值为( )A.45πB.34πC.(65)π-D.54π 【答案】A 【解析】设直线l :.因为,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线.圆C 半径最小值为,圆C 面积的最小值为选A. 【例5】动圆C 经过点(1,0)F ,并且与直线1x =-相切,若动圆C 与直线总有公共点,则圆C 的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π 【答案】D【解析】设圆心为(,)a b ,半径为r ,,即,即214a b =,∴圆心为21(,)4b b ,2114r b =+,圆心到直线的距离为,∴或2b ≥,当2b =时,,∴.【小试牛刀】【山东省恒台第一中学2019届高三上学期诊断】已知O 为坐标原点,直线.若直线l 与圆C 交于A ,B 两点,则△OAB 面积的最大值为( ) A .4 B . C .2 D .【答案】C 【解析】由圆的方程可知圆心坐标,半径为2,又由直线,可知,即点D 为OC 的中点, 所以,设,又由,所以,又由当,此时直线,使得的最小角为,即当时,此时的最大值为2,故选C 。

考点02 异面直线的夹角(人教A版2019)(含答案解析)

考点02 异面直线的夹角(人教A版2019)(含答案解析)

考点02 异面直线的夹角一、单选题1.已知斜三棱柱111ABC A B C -中,底面ABC 是等腰直角三角形,2AB AC ==,12CC =,1AA 与AB 、AC 都成60角,则异面直线1AB 与1BC 所成角的余弦值为A .14 B.5C.5D .162.在三棱柱111ABC A B C -中,若ABC ∆是等边三角形,1AA ⊥底面ABC ,且1AB =,则1AB 与1C B 所成角的大小为 A .60︒ B .90︒ C .105︒D .75︒3.设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,11D PD Bλ=,当APC ∠为锐角时,λ的取值范围是A .10,3⎡⎫⎪⎢⎣⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭4.已知正三棱柱ABC A B C '''-的所有棱长均相等,D 、E 在BB '上,且BD DE EB '==,则异面直线AD 与EC '所成角的正弦值为 A .720 B.20 CD5.《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为A .6π B .4π C .3πD .2π6.已知在直三棱柱111ABC A B C -中,底面是边长为2的正三角形,1AA AB =,则异面直线1A B 与1AC 所成角的余弦值为 A .14-B .14C .4-D .47.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA =,底面ABCD 为边长为2的正方形,E 为BC 的中点,则异面直线BD 与PE 所成的角的余弦值为A .6 B .6CD8.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是A . BC .6-D9.已知正四棱柱1111ABCD A B C D -中,1AB =,12CC =,点E 为1CC 的中点,则异面直线1AC 与BE 所成的角等于 A .30 B .45︒ C .60︒D .90︒10.已知直三棱柱111ABC A B C -中,12,2,13ABC AB BC CC π∠====,则异面直线1AB 与1BC 所成角的余弦值为A B .15CD .5-11.直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,1BC BB =,则直线1AB 与1BC 所成角的余弦值为A .6 B .23CD .1212.正方体1111ABCD A B C D -中,E 、F 分别是1AA 与1CC 的中点,则直线ED 与1D F 所成角的余弦值是 A .15B .13C .12D 13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为A .12BC .10D .1014.直三棱柱111ABC A B C -中,1AB AC AA ==,60BAC ∠=︒,则异面直线1BA 和1AC 所成角的余弦值为A B .34C .14D .1315.如图,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,则PA 与BD 所成角的度数为A .30B .45︒C .60︒D .90︒16.在长方体1111ABCD A B C D -中,AB BC a ==,1AA =,则异面直线1AC 与1CD 所成角的余弦值为A .15BCD .217.在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,设AC 交BD 于点O ,则异面直线1A O 与1BD 所成角的余弦值为A . BC .D 18.已知两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),则这两条异面直线所成的角θ满足 A .9sin 14θ=B .1sin 4θ= C .9cos 14θ=D .1cos 4θ=19.如图所示,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,1AB BC AA ==,90ABC ∠=,点E 、F 分别是棱AB 、1BB 的中点,则直线EF 和1BC 所成的角为A .120°B .150°C .30°D .60°20.在正四棱锥P ABCD -中,2PA =,直线PA 与平面ABCD 所成的角为60,E 为PC 的中点,则异面直线PA 与BE 所成角为 A .90 B .60 C .45D .3021.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为A .16+8πB .32+16πC .32+8πD .16+16π22.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为A BCD23.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C 的中点,则异面直线MB 与1AA 所成角的余弦值为 A .13 B .22C .324D .1224.如图,四棱锥中,底面ABCD 是矩形,PA ⊥ 平面ABCD ,1AD =,2AB =,PAB △是等腰三角形,点E 是棱PB 的中点,则异面直线EC 与PD 所成角的余弦值是A 3B 6C 6D .2225.在棱长为2的正方体1111—ABCD A B C D 中,O 是底面ABCD 的中点,E ,F 分别是1CC ,AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于A .427 B 15 C 3D 6二、多选题1.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是棱BC 的中点,点Q 是底面A 1B 1C 1D 1上的动点,且AP ⊥D 1Q ,则下列说法正确的有 A .DP 与D 1Q 所成角的最大值为4π B .四面体ABPQ 的体积不变C .△AA 1QD .平面D 1PQ 截正方体所得截面面积不变2.如图,在边长为1的正方体ABCD -A B C D ''''中,M 为BC 边的中点,下列结论正确的有A .AM 与DB ''B .过三点A 、M 、D 的正方体ABCD -A BCD '''' C .四面体A C ''BD 的内切球的表面积为3π D .正方体ABCD -A B C D ''''中,点P 在底面A B C D ''''(所在的平面)上运动并且使∠MA C '=∠P A C ',那么点P 的轨迹是椭圆3.如图,已知在棱长为1的正方体1111—ABCD A B C D 中,点E ,F ,H 分别是AB ,1DD ,1BC 的中点,下列结论中正确的是A .11//C D 平面CHDB .1AC ⊥平面1BDAC .三棱锥11—D BAC 的体积为56D .直线EF 与1BC 所成的角为30°4.如图,在三棱柱111ABC A B C -中,底面ABC 是等边三角形,侧棱1AA ⊥底面ABC ,D为AB 的中点,若2AB =,1AA =,则A .1CD A D ⊥B .异面直线1A D 与1AC 所成角的余弦值为14C .异面直线1AD 与1AC D .//CD 平面11AB C5.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒三、填空题1.已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,则异面直线1BC 与DC 所成角的余弦值为________.2.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为________.3.如图所示的三棱锥P ABC -中,PA ⊥平面ABC ,D 是棱PB 的中点,若2PA BC ==,4AB =, CB AB ⊥,则PC 与AD 所成角的余弦值为________.4.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1B B 与1C C 的中点,设DM 与1A N 所成的角为θ,则sin θ=________.5.已知点P 在正方体1111ABCD A B C D -的对角线1BD 上,H 在11B D 上,,,D P H 共线,60HDA ∠=︒,则DP 与1CC 所成角的大小为________.6.已知三棱柱111ABC A B C -的所有棱长均为2,侧棱1AA ⊥底面ABC ,若,E F 分别是线段1BB ,11A C 的中点,则异面直线AE 与CF 所成角的余弦值是________.7.在直三棱柱111ABC A B C -中,13,3,2AC BC AB AA ====,则异面直线1A C 与1BC 所成角的余弦值为________.8.在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,3PA =,AB =2BC =,若E ,F 是PC 的三等分点,则异面直线AE 与BF 所成角的余弦值________.9.在正方体1111ABCD A B C D -中,点E 为棱11A B 的中点,则异面直线AE 与BD 所成角的余弦值为________.10.四棱锥P -ABCD 的底面是一个正方形,P A ⊥平面ABCD ,4PA AB ==,E 是棱P A 的中点,则异面直线BE 与AC 所成角的余弦值是________.11.如图,在三棱锥V ABC -中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x ,y ,z 轴上,D 是线段AB 的中点,且2AC BC ==,当60VDC ∠=︒时,异面直线AC 与VD 所成角的余弦值为________.12.如图,已知正三棱柱111ABC A B C -的侧棱长为底面边长的2倍,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角的余弦值为________.13.已知(0,1,2)AM =,(1,0,2)CN =,则直线AM 和CN 所成角的余弦值是__________.14.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是________.15.在三棱锥O ABC -中,已知OA 、OB 、OC 两两垂直且相等,点P 、Q 分别是线段BC 和OA 上的动点,且满足12BP BC ≤,12AQ AO ≥,则PQ 和OB 所成角的余弦的取值范围是________.四、双空题1.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则该棱柱的体积为________;异面直线1AB 与1BC 所成角的余弦值为________.2.在正四面体ABCD 中,M ,N 分别为棱BC 、AB 的中点,设AB a =,AC b =,AD c =,用a ,b ,c 表示向量DM =________,异面直线DM 与CN 所成角的余弦值为________. 3.在直四棱柱1111ABCD A B C D -中,侧棱长为6,底面是边长为8的菱形,且120ABC ∠=,点E 在边BC 上,且满足3BE EC =,动点M 在该四棱柱的表面上运动,并且总保持1ME BD ⊥,则动点M 的轨迹围成的图形的面积为________;当MC 与平面ABCD 所成角最大时,异面直线1MC 与AC 所成角的余弦值为________.4.如图,P 为△ABC 所在平面外一点,P A =PB =PC =1,∠APB =∠BPC =60°,∠APC =90°,若G 为△ABC 的重心,则|PG |长为________,异面直线P A 与BC 所成角的余弦值为________.5.如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC ==,则此三棱锥四个面中直角三角形的个数为________,异面直线PB 与AC 所成角的正切值等于________.五、解答题1.如图,在三棱锥D -ABC 中,DA ⊥平面ABC ,AB BC ⊥且2BC =,3AB =,4=AD .(1)证明:BCD △为直角三角形;(2)以A 为圆心,在平面DAB 中作四分之一个圆,如图所示,E 为圆弧上一点,且2AE =,45EAD ∠=︒,求异面直线AE 与CD 所成角的余弦值.2.如图在三棱锥P ABC -中,棱AB 、AC 、AP 两两垂直,3AB AC AP ===,点M 在AP 上,且1AM =.(1)求异面直线BM 和PC 所成的角的大小; (2)求三棱锥P BMC -的体积.考点02 异面直线的夹角一、单选题1.已知斜三棱柱111ABC A B C -中,底面ABC 是等腰直角三角形,2AB AC ==,12CC =,1AA 与AB 、AC 都成60角,则异面直线1AB 与1BC 所成角的余弦值为A .14 BCD .16【试题来源】A 佳教育湖湘名校2019-2020学年高二下学期3月线上自主联合检测【答案】D【解析】设AB a =,AC b =,1AA c =,则0a b ⋅=,2a c ⋅=,2b c ⋅=,从而1AB a c =+, 1BC b c a =+-,22112AB BC a b b c c a ⋅=⋅+⋅+-=,22124AB a c a c =++⋅=+=22212224BC a b c b c a b a c =+++⋅-⋅-⋅=+=所以1111111cos ,6||||AB BC AB BC AB BC ⋅==.故选D .2.在三棱柱111ABC A B C -中,若ABC ∆是等边三角形,1AA ⊥底面ABC ,且1AB =,则1AB 与1C B 所成角的大小为 A .60︒ B .90︒ C .105︒D .75︒【试题来源】四川省自贡市2019-2020学年高二年级上学期期末(理) 【答案】B【解析】如图,根据条件,1AB =,令AB =,11B B =;又1111()AB B A B B =-+,1111C B B C B B =-+;2211111111111111211102AB C B B A B C B A B B B B B C B B ∴=-+-=⨯-=-=;∴11AB C B ⊥;1AB ∴和1C B 所成的角的大小为90︒.故选B .3.设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,11D PD Bλ=,当APC ∠为锐角时,λ的取值范围是A .10,3⎡⎫⎪⎢⎣⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【试题来源】湖北省鄂东南省级示范高中2020-2021学年高二上学期期中联考 【答案】A【解析】如图建立空间直角坐标系:则()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D ,()11,1,1D B =-,()()111,1,1,,D P D B λλλλλ==-=-, ()11,01D A =-,()10,1,1D C =-,所以()()()111,01,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---, 由APC ∠为锐角得cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,所以()()22110λλλ--+->,即()()1310λλ-->,解得103λ<<, 当0λ=时,点P 位于点1D 处,此时1APC AD C ∠=∠显然是锐角,符合题意, 所以103λ≤<,故选A. 4.已知正三棱柱ABC A B C '''-的所有棱长均相等,D 、E 在BB '上,且BD DE EB '==,则异面直线AD 与EC '所成角的正弦值为A .720B .20C.20D.20【试题来源】第八单元 立体几何 (A 卷 基础过关检测)-2021年高考数学(理)一轮复习单元滚动双测卷 【答案】C【解析】如下图所示,设3AD =,取BC 的中点O ,B C ''的中点M ,连接OA 、OM ,在正三棱柱ABC A B C '''-中,//BB CC ''且BB CC ''=, 则四边形BB C C ''为平行四边形,//BC B C ''∴且BC B C ''=, 由于O 、M 分别为BC 、B C ''的中点,则//OB MB '且OB MB '=, 所以,四边形OBB M '为平行四边形,则//OM BB '且OM BB '=,BB '⊥平面ABC ,则OM ⊥平面ABC ,ABC 为等边三角形,且O 为BC 的中点,则OA BC ⊥,以点O 为坐标原点,OA 、OB 、OM 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则2A ⎛⎫ ⎪ ⎪⎝⎭、30,,12D ⎛⎫ ⎪⎝⎭、30,,22E ⎛⎫ ⎪⎝⎭、30,,32C ⎛⎫'- ⎪⎝⎭,3,12AD ⎛⎫= ⎪ ⎪⎝⎭,()0,3,1EC '=-,77cos ,2010AD EC AD EC AD EC -'⋅'<>===-'⋅,2sin ,1cos ,120AD EC ADEC ''<>=-<>==, 因此,异面直线AD 与EC '所成角的正弦值为20.故选C .5.《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为A .6πB .4π C .3πD .2π【试题来源】2021年高考数学(理)一轮复习单元滚动双测卷 【答案】D【解析】解法一:如图,在平面ABFE 中,过F 作//FG AE 交AB 于G ,连接CG ,则CFG ∠或其补角为异面直线AE 与CF 所成的角.设1EF =,则3AB =,2AD =.因为//EF AB ,//AE FG ,所以四边形AEFG 为平行四边形,所以2FG AE AD ===,1AG =,2BG =,又AB BC ⊥,所以GC =,又2CF BC ==,所以222CG GF CF =+,所以2CFG π∠=.解法二:如图,以矩形ABCD 的中心O 为原点,CB 的方向为x 轴正方向建立空间直角坐标系,因为四边形ABCD 为矩形,//EF AB ,ADE 和BCF △都是正三角形,所以EF ⊂平面yOz ,且Oz 是线段EF 的垂直平分线.设3AB =,则1EF =,2AD =,31,,02A ⎛⎫-⎪⎝⎭,10,2E ⎛- ⎝,31,,02C ⎛⎫- ⎪⎝⎭,10,2F ⎛ ⎝,所以(AE =-,(1,CF =-,所以111(1)AE CF ⋅=-⨯+⨯-0=,所以AE CF ⊥,所以异面直线AE 与CF所成的角为2π.故选D .6.已知在直三棱柱111ABC A B C -中,底面是边长为2的正三角形,1AA AB =,则异面直线1A B 与1AC 所成角的余弦值为 A .14-B .14 C.4-D.4【试题来源】山东省德州市夏津第一中学2020-2021学年高二上学期9月月考数试题 【答案】B【解析】以A 为原点,在平面ABC 内,过点A 作AC 的垂线为x 轴,以AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,由题得(0A ,0,0),1(0,0,2)A,B ,1(0C ,2,2),1(3,1,2)A B =-,1(0,2,2)AC =,设异面直线1A B 与1AC 所成角为θ,则1111111cos |cos ,|||||4||||88A B AC A B AC A B AC θ=<>===. ∴异面直线1A B 与1AC 所成角的余弦值为14.故选B .7.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA =,底面ABCD 为边长为2的正方形,E 为BC 的中点,则异面直线BD 与PE 所成的角的余弦值为A .6 BC .3D .3【试题来源】河北省深州市中学2020-2021学年高二上学期期中【答案】A【解析】因为PA ⊥底面ABCD ,所以,PA AB PA AD ⊥⊥,又AB AD ⊥, 所以以A 为原点,,,AB AD AP 分别为,,x y z 轴建立如图所示的空间直角坐标系:则(0,0,2)P ,(2,0,0)B ,(2,1,0)E ,(0,2,0)D ,(2,1,2)PE =-,(2,2,0)BD =-, 设异面直线BD 与PE 所成的角为θ,(0,]2πθ∈,则||cos||||PE BD PE BD θ⋅==6=.所以异面直线BD 与PE 所成的角的余弦值为6.故选A . 8.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是A .18-BC .6-D 【试题来源】河南省新乡市新乡县第一中学2019-2020学年高二下学期期末考试(理) 【答案】B【解析】根据题意建立如图空间直角坐标系所以()()()()0,0,2,2,0,0,2,4,0,0,2,1P B C E ,所以()()2,2,1,2,4,2=-=-BE PC , 则异面直线BE 与PC 所成角的余弦值为6⋅=BE PC BE PCB . 9.已知正四棱柱1111ABCD A BCD -中,1AB =,12CC =,点E 为1CC 的中点,则异面直线1AC 与BE 所成的角等于 A .30 B .45︒ C .60︒D .90︒【试题来源】人教A 版(2019)选择性必修第一册 第一章 空间向量与立体几何 单元测试 【答案】A【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,然后利用向量求出答案即可.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则(1,0,0)A ,1 (0,1,2)C ,(1,1,0)B ,(0,1,1)E ,1(1,1,2)AC =-,(1,0,1)BE =-, 设1AC 与BE 所成角为θ,则11cos 6||AC BE AC BE θ⋅===⋅,所以30θ=︒. 所以异面直线1AC 与BE 所成的角为30.故选A . 10.已知直三棱柱111ABC A B C -中,12,2,13ABC ABBC CC π∠====,则异面直线1AB 与1BC 所成角的余弦值为 A.5B.15 CD . 【试题来源】黑龙江省哈尔滨师范大学附属中学2020-2021学年高二10月月考(理) 【答案】A【解析】如图:以垂直于BC 的方向为x 轴,BC 为y 轴,1BB 为z 轴建立空间直角坐标系,则()0,00B ,()10,1,1C ,()10,1,1BC =, 因为120ABC ∠=,则cos1201A y AB ==-,sin1203A xAB == 即)1,0A-,()1AB =-,设异面直线1AB 与1BC 所成角为θ,1111cos 5AB BC AB BC θ⋅===A .11.直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,1BC BB =,则直线1AB 与1BC 所成角的余弦值为A.6B .23C .2D .12【试题来源】福建省南安市侨光中学2020-2021学年高二上学期第一次阶段考试【答案】A【解析】因为直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,故以AB 为x 轴,AC 为y 轴,1AA 为z 轴建立空间直角坐标系,如图, 设1AB =,则1BB =(1,0,0)B ,(0,1,0)C,1(1,0,2)B ,1(0,1,C ,1(1AB =,1(1,1BC =-,111111cos ,63AB BC AB BC AB BC ⋅<>===. 所以直线1AB 与1BC 所成角的余弦值为6.故选A .12.正方体1111ABCD A B C D -中,E 、F 分别是1AA 与1CC 的中点,则直线ED 与1D F 所成角的余弦值是 A .15B .13 C .12D 【试题来源】河北省沧州市第三中学2019-2020学年高一下学期期末【答案】A【解析】如图,以A 为原点建立空间直角坐标系,设正方体的边长为2,则()0,0,1E ,()2,2,1F ,()0,2,0D,()10,2,0D ,∴ ()0,2,1ED =-,()12,0,1D F =,∴直线ED 与1D F 所成角θ的余弦值为111c 5os 0ED D ED D F Fθ⋅===⋅.故选A .13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为 A .12B .2 CD .10【试题来源】山西省阳泉市盂县第三中学2021届高三上学期第一次月考(文) 【答案】C【解析】如图所示,建立空间直角坐标系.不妨设棱长AB =2.A (0,0,0),C (2,2,0).因为E 、F 分别是A 1D 1,A 1C 1的中点,所以E (0,1,2),F (1,1,2),所以()()0,1,2,1,1,2AE CF ==--,所以cos ,1AE CF AE CF AE CF⋅===. 所以异面直线AE 与CF .故选C . 14.直三棱柱111ABC A B C -中,1ABAC AA ==,60BAC ∠=︒,则异面直线1BA 和1AC 所成角的余弦值为A B .34 C .14D .13【试题来源】福建省莆田第一中学2020-2021学年高二上学期期中考试【答案】C【解析】因为AB AC =,60BAC ∠=︒,所以三角形ABC 是等边三角形,取AC 的中点D ,以点D 为原点,建立空间直角坐标系如图:设2AB =,则B ,(0,1,0)A -,1(0,1,2)A -,1(0,1,2)C , 所以1(1,2)BA =--,1(0,2,2)AC ,122BA =,122AC =112BA AC ⋅=,所以异面直线1BA 和1AC所成角的余弦值为11111cos 42BA AC BA AC θ⋅===⋅,故选C .15.如图,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,则PA 与BD 所成角的度数为A .30B .45︒C .60︒D .90︒【试题来源】浙江省衢州五校2020-2021学年高二上学期期中联考 【答案】C【解析】如图,以D 为坐标原点,DA 所在直线为x 轴,DC 所在线为y 轴,DP 所在线为z 轴,建立空间坐标系,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,令1PD AD ==,(1A ∴,0,0),(0P ,0,1),(1B ,1,0),(0D ,0,0)∴(1PA =,0,1)-,(1BD =-,1-,0),·1cos 22PA BD PA BDθ∴===-⨯,故两向量夹角的余弦值为12,即两直线PA 与BD 所成角的度数为60︒.故选C .16.在长方体1111ABCD A B C D -中,AB BC a ==,1AA =,则异面直线1AC 与1CD 所成角的余弦值为A .15BCD .2【试题来源】广东省广州市海珠区2019-2020学年高二上学期期末联考 【答案】C【解析】以D 为原点建立空间直角坐标系,如图所示,依题意()()()()11,0,0,0,,0,0,,A a C a C a D , 所以()()11,,3,0,AC a a a CD a =-=-,设异面直线1AC 与1CD 所成角为θ,则1111cos AC CD a AC CD θ⋅-===⋅.故选C. 17.在长方体1111ABCD A B C D -中,1ABAD ==,12AA =,设AC 交BD 于点O,则异面直线1A O 与1BD 所成角的余弦值为 A. BC .D 【试题来源】2021年高考数学(理)一轮复习单元滚动双测卷 【答案】D【解析】以D 为原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,因为1AB AD ==,12AA =,所以()11,0,2A ,()1,1,0B ,11,,022O ⎛⎫ ⎪⎝⎭,()10,0,2D , 111,,222A O ⎛⎫=-- ⎪⎝⎭,()11,1,2BD =--,则11cos ,9A O BD ==.故选D .18.已知两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),则这两条异面直线所成的角θ满足 A .9sin 14θ=B .1sin 4θ= C .9cos 14θ=D .1cos 4θ=【试题来源】天津市第五十五中学2020-2021学年高二(上)第一次月考 【答案】C 【解析】两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),∴·3312(2)19u v =⨯+⨯+-⨯=,231u =+=,232v =+=,又两条异面直线所成的角为(0,]2πθ∈,∴·9cos cos ,14·14u v v u vθ====⋅,sin 14θ=.故选C .19.如图所示,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,1AB BC AA ==,90ABC ∠=,点E 、F 分别是棱AB 、1BB 的中点,则直线EF 和1BC 所成的角为A .120°B .150°C .30°D .60°【试题来源】河北省承德第一中学2020-2021学年高二上学期第二次月考【答案】D【解析】以B 为原点.1,,BC BA BB 分别为..x y z 轴建立空间直角坐标系: 令12AB BC AA ===,则(0,0,0)B ,(0,1,0)E ,(0,0,1)F ,1(2,0,2)C , 所以(0,1,1)EF =-,1(2,0,2)BC =, 所以111cos ,||||EF BC EF BC EF BC ⋅<>=12==,所以直线EF 和1BC 所成的角为60.故选D .20.在正四棱锥P ABCD -中,2PA =,直线PA 与平面ABCD 所成的角为60,E 为PC 的中点,则异面直线PA 与BE 所成角为 A .90 B .60 C .45D .30【试题来源】山东省青岛市第十七中学2019-2020学年高一下学期期中考试 【答案】C【解析】连接AC BD ,交于点O ,连接OE OP ,.因为E 为PC 中点,所以OE PA ,所以OEB ∠即为异面直线PA 与BE 所成的角.因为四棱锥CD P -AB 为正四棱锥,所以PO ABCD ⊥平面,所以AO 为PA 在面ABCD 内的射影,所以PAO ∠即为PA 与面ABCD 所成的角,即60PAO ∠=︒,因为2PA =,所以11OA OB OE ===,.所以在直角三角形EOB 中45OEB ∠=︒,即面直线PA 与BE 所成的角为45,故选C .21.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为A .16+8πB .32+16πC .32+8πD .16+16π【试题来源】辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考 【答案】A【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23, 所以11238BD AB BD AB ⋅==⋅,即2222,16,483h h h h ===+.所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+.故选A.22.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为A .3 BCD【试题来源】辽宁省辽河油田第二高级中学2020-2021学年高二10月月考【答案】C【解析】四面体A BCD -是由正方体的四个顶点构成的,如下图所示 建立如下图所示的空间直角坐标系,设正方体的棱长为2,(0,0,0),(2,0,0),(2,2,0),(1,1,1)B C D M ,(1,1,1),(0,2,0)BM CD ==,cos ,3||BM CD BM CD BM CD⋅〈〉===⋅0,2π⎛⎤ ⎥⎝⎦,所以异面直线BM 与CD C .23.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C 的中点,则异面直线MB 与1AA 所成角的余弦值为A .13 B.3 CD .12【试题来源】天津市第二十中2020-2021学年高二(上)期中 【答案】B【解析】在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C ,∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,设11111222AA A B B C ===,则11,1,22M ⎛⎫⎪⎝⎭,(0,00B ,),(1,00A ,),1(1,02A ,), 11,1,22MB ⎛⎫=--- ⎪⎝⎭,1(0,02AA ,)=,设异面直线MB 与1AA 所成角为θ,则11cos 318MB AA MB AA θ⋅===⋅,∴异面直线MB 与1AA ,故选B .24.如图,四棱锥中,底面ABCD 是矩形,PA ⊥ 平面ABCD ,1AD =,AB =,PAB △是等腰三角形,点E 是棱PB 的中点,则异面直线EC与PD 所成角的余弦值是ABCD【试题来源】安徽省宿州市泗县第一中学2020-2021学年高二上学期第二次月考(理) 【答案】B【解析】因为底面ABCD 是矩形,且PA ⊥ 平面ABCD ,所以,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 分别为x ,y ,z 轴建立空间直角坐标系,因为1AD =,AB =,PAB △是等腰三角形, 所以()))()(0,0,0,,,0,1,0,A BCD P ,因为点E 是棱PB的中点,22E ⎛⎫⎪⎪⎝⎭ ,所以(22,1,,0,1,EC PD⎛⎫=-= ⎪⎝⎭, 所以11cos ,31PD EC PD ECPD EC⋅===⋅,所以异面直线EC 与PD .故选B. 25.在棱长为2的正方体1111—ABCD A BC D 中,O 是底面ABCD 的中点,E ,F 分别是1CC ,AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于A.7 BCD【试题来源】天津市静海区大邱庄中学2020-2021学年高二上学期第一次月考【答案】B【解析】建立空间直角坐标系如图所示:所以()()11,1,1,1,0,2F OE D =-=-,所以111cos ,53FD OE OE OE FDFD ⋅<>===,所以异面直线OE 和1FD ,故选B . 二、多选题1.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是棱BC 的中点,点Q 是底面A 1B 1C 1D 1上的动点,且AP ⊥D 1Q ,则下列说法正确的有 A .DP 与D 1Q 所成角的最大值为4π B .四面体ABPQ 的体积不变C .△AA 1QD .平面D 1PQ 截正方体所得截面面积不变【试题来源】江苏省泰州市2020-2021学年高三上学期期中 【答案】BCD【解析】对于选项A ,由题意以A 1为坐标原点,A 1B 1、A 1A 、A 1D 1为x 、y 、z 轴建立空间直角坐标系,如图所示:则A 1(0,0,0),D (0,2,2),D 1(0,2,0),A (0,0,2),B (2,0,2),C (2,2,2),则P (2,1,2),设Q (x 0,y 0,0),则AP =(2,1,0),1D Q =(x 0,y 0-2,0),由AP ⊥1D Q ,可得10AP DQ ⋅=,即2x 0+y 0-2=0,对于选项A ,由DP =(2,-1,0),可得1cos DP DQ =,,45===,为定值,所以选项A 错误;对于选项B ,四面体ABPQ 的体积111122123323A BPQ Q ABP ABP V V S AA --∆==⨯⨯=⨯⨯⨯⨯=,为定值,即体积不变 ,所以选项B 正确;对于选项C ,因为AA 1⊥A 1Q ,且A 1Q=11111222AA QS AA AQ ∆=⨯⨯=⨯===,因为[]002x ∈,,所以15AA Q S ∆≥=,所以选项C 正确;对于选项D ,如图,因为点Q 满足2x 0+y 0-2=0,即点Q 在直线2x 0+y 0-2=0上运动,取A 1B 1的中点为E ,即点Q 在D 1E 上,因为点P 到D 1E 的距离为2,E (1,0,0),1D E =(1,-2,0),11D E =+=,11122PD EE SD ∴⨯⨯== 则平面D 1PQ 截正方体所得截面为1FED G ,其中12CG GD =,112BF FB =, 所以,1EFGD 且1EF GD =,又由P 为中点,,BF CG PB PC ==,90B C ∠=∠=︒,所以,PEF 和1PGD 全等,所以,PF PG =,由平行四边形的面积的性质,所以,截面面积为四边形1FED G ,该四边形的面积为2△D 1PE ,则截面面积为 2△D 1PE =115122222PD ESD E ⨯⨯⨯==,则截面面积为定值,所以选项D正确.故选BCD .2.如图,在边长为1的正方体ABCD -A B C D ''''中,M 为BC 边的中点,下列结论正确的有A .AM 与DB ''所成角的余弦值为10B .过三点A 、M 、D 的正方体ABCD -A BCD ''''的截面面积为4C .四面体A C ''BD 的内切球的表面积为3π D .正方体ABCD -A B C D ''''中,点P 在底面A B C D ''''(所在的平面)上运动并且使∠MA C '=∠P A C ',那么点P 的轨迹是椭圆【试题来源】湖北省武汉外国语学校2020-2021学年高二上学期期中 【答案】AC【解析】以A '为坐标原点,以A D '',A B '',A A '为坐标轴建立空间直角坐标系A xyz '-,则(0A ,0,1),1(2M ,1,1),(1D ',0,0),(0B ',1,0),∴1(2AM =,1,0),(1D B ''=-,1,0),cos AM ∴<,·10AM D B D B AM D B ''''>=='',AM ∴与D B ''所成角的余弦值为10,故A 正确; 取CC '的中点N ,则////MN BC AD '',故梯形MND A '为过A 、M 、D '的正方体的截面,2MN =,AD '=,AM D N ='=,∴梯形MND A '的高为=,∴梯形MND A '的面积为19)228⨯=,故B 错误; 四面体A C BD ''的体积为111414111323D A C D V V -'''-=-⨯⨯⨯⨯⨯=正方体,又四面体A C BD ''的所有棱长均为,∴四面体A C BD ''的表面积为244⨯⨯=A C BD ''的内切球半径为r ,则123⨯13r =,解得r =,∴四面体A C BD ''的内切球的表面积为243r ππ=,故C 正确;MAC PAC ∠'=∠',P ∴点在以AC '为轴,以AM 为母线的圆锥的侧面上, (1AC '=,1,1)-,1(2AM =,1,0),故·15cos AM AC MAC AM AC '∠'=='设AC '与平面A B C D ''''的夹角为α,则2cos cos 353A C AC A AC α''=∠''===>', MAC α∴<∠',P ∴点在平面A B C D ''''上的轨迹是双曲线,故D 错误.故选AC .3.如图,已知在棱长为1的正方体1111—ABCD A B C D 中,点E ,F ,H 分别是AB ,1DD ,1BC 的中点,下列结论中正确的是A .11//C D 平面CHDB .1AC ⊥平面1BDAC .三棱锥11—D BAC 的体积为56D .直线EF 与1BC 所成的角为30°【试题来源】2021年新高考数学一轮复习学与练 【答案】ABD【解析】如图1所示,由题意,11//C D CD ,11C D ⊂/平面CHD ,CD ⊂平面CHD ,所以11//D C 平面CHD ,所以A 正确;建立空间直角坐标系,如图2所示;由1AB =,则1(1AC =-,1,1),(1BD =-,1-,0),1(1DA =,0,1); 所以11100AC BD =-+=,111010AC DA =-++=,所以1AC BD ⊥,11AC DA ⊥,所以1AC ⊥平面1BDA ,所以B 正确;三棱锥11D BA C -的体积为1111114D BA C ABCD A B C D V V --=-三棱锥正方体11114111323=-⨯⨯⨯⨯⨯=, 所以C 错误;(1E ,12,0),(0F ,0,1)2,所以(1EF =-,12-,1)2,1(1BC =-,0,1),所以cos EF <,111110||||3EF BC BC EF BC ++>===⨯ 所以EF 与1BC 所成的角是30,所以D 正确.故选ABD .4.如图,在三棱柱111ABCA BC -中,底面ABC 是等边三角形,侧棱1AA ⊥底面ABC ,D 为AB 的中点,若2AB =,1AA =,则A .1CD A D ⊥B .异面直线1A D 与1AC所成角的余弦值为14C .异面直线1AD 与1ACD .//CD 平面11AB C【试题来源】2021年新高考数学一轮复习讲练测 【答案】AC【解析】A :因为侧棱1AA ⊥底面ABC ,所以1AA CD ⊥,因为ABC 是等边三角形,AD BD =,所以CD AB ⊥,因为1AB AA A =,所以CD ⊥平面1AA D ,则1CD A D ⊥,A 正确;以D为原点,如图建立空间直角坐标系,则(1A -,()1,0,0A -,(1C,(1B,所以(11,0,A D =,(11,AC=,所以111111cos ,7A D ACA D AC A D AC ⋅===,所以异面直线1A D 与1AC所成角的余弦值为14,B 不正确,C 正确; 因为(1AB =,(11,AC=,设平面11AB C 法向量为(),,n x y z =,则1120n AB xn AC x ⎧⋅=+=⎪⎨⋅=++=⎪⎩,即2x z y z ⎧=⎪⎪⎨⎪=-⎪⎩,取2z =,则()6,2n =-,因为()0,CD =,且60CD n ⋅=≠,所以若//CD 平面11AB C 不成立,D 不正确;故选AC .5.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒【试题来源】山东省新泰市第一中学(新泰中学)2020-2021学年高二上学期第一次月考 【答案】ABD【解析】如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫⎪⎝⎭E ,()1B C 0,1,1=-,()11,1,1BD =-,()1,1,0BD =-,()11,0,1BA =-所以()111011110B C BD =-⨯+⨯+-⨯=,即11BC BD ⊥,所以11B C BD ⊥,故B 正确; ()11011101B C BD =-⨯+⨯+-⨯=,12B C =,2BD =,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BDθ==,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =,则1·0·0n BA n BD ⎧=⎨=⎩,即00x y x z -+=⎧⎨-+=⎩,取()1,1,1n =,则()10111110n B C =⨯+⨯+⨯-=,即1C n B ⊥,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选ABD.三、填空题1.已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,则异面直线1BC 与DC 所成角的余弦值为________.【试题来源】河北省尚义县第一中学2020-2021学年高二上学期期中【解析】因为四棱柱1111ABCD A B C D -使直四棱柱,A ∠为直角,//AB CD ,所以可以以D 为坐标原点,以DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则()0,0,0D ,()2,4,0B ,()0,1,0C ,()10,1,2C ,故()0,1,0DC =,()12,3,2BC =--,因为1DC =,212BC ==,所以1113cos ,17DC BC DC BC D BC C ⋅-===⋅故异面直线DC 与1BC 所成的角的余弦值为17,故答案为17. 2.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为________.【试题来源】天津市滨海新区塘沽一中2020-2021学年高二上学期期中【解析】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,0,4A 、()12,2,4B 、()0,2,2E 、()1,1,0F ,()12,2,2A E =--,()11,1,4B F =---,111111cos ,2A E BF A E B F A E B F⋅<>===⋅,因此,直线1A E 与直线1B F . 3.如图所示的三棱锥P ABC -中,PA ⊥平面ABC ,D 是棱PB 的中点,若2PA BC ==,4AB =, CB AB ⊥,则PC 与AD 所成角的余弦值为________.【试题来源】2021年高考一轮数学单元复习一遍过(新高考地区专用) 【解析】因为PA ⊥平面ABC ,所以PA AB ⊥、PA BC⊥, 过点A 作//AE CB ,又CB AB ⊥,则AP 、AB 、AE 两两垂直,如图,以A 为坐标原点,直线AB 、AE 、AP 为x 轴、y 轴、z 轴建立空间直角坐标系,则()000A ,,、()002P ,,、(400)B ,,、(420)C -,,, 又D 为PB 中点,则(201)D ,,,故(422)PC =--,,,(201)AD =,,,所以cos 102PC AD PC AD PC AD⋅===⋅,,故答案为104.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1B B 与1C C 的中点,设DM 与1A N 所成的角为θ,则sin θ=________.【试题来源】北京市平谷区第五中学2020-2021学年高二上学期期中考试 【答案】19【分析】建立空间直角坐标系,利用公式11sin DM A N DM A Nθ⋅=⋅,进行求解即可【解析】如图,设正方体的边长为a ,以CD 为x 轴,CB 为y 轴,1CC 为z 轴,建立坐标系得,(,0,0)D a ,(0,,)2a M a ,1(,,)A a a a ,(0,0,)2a N ,所以,(,,)2a DM a a =-,1(,,)2a A N a a =--,所以,11sin 9a DM A N DM A N θ⋅==⋅19=,故答案为19. 5.已知点P 在正方体1111ABCD A B C D -的对角线1BD 上,H 在11B D 上,,,D P H 共线,60HDA ∠=︒,则DP 与1CC 所成角的大小为________.【试题来源】2021年新高考数学一轮复习考点扫描 【答案】45【分析】以DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,得出(,,1)DH m m =,()1001CC =,,,进而根据向量的乘积公式求解【解析】如图,以D 点为原点,以DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系:()()()1000100001D DA CC ==,,,,,,,,,连接11BD B D ,,在平面11BB D D 中,延长DP 交11B D 于点H ,设(,,1)DH m m =,(0)m >,DP 与1CC 所成角为θ 由已知60HDA ∠=︒,根据cos DA DH DA DH HDA ⋅=∠,可得221m m =+,解得21m DH⎛⎫== ⎪ ⎪⎝⎭,所以,1112cos 2C DH D C co C H DH s CC C θ⋅===⋅,, ∴45θ=︒,故答案为456.已知三棱柱111ABC A B C -的所有棱长均为2,侧棱1AA ⊥底面ABC ,若,E F 分别是线段1BB ,11A C 的中点,则异面直线AE 与CF 所成角的余弦值是________.【试题来源】【新东方】【2020】【高三上】【期中】【HD -LP359】【数学】 【答案】15【解析】建立如图所示空间直角坐标系:则())()()0,0,0,,0,2,0,0,1,2A EC F ,所以()()3,1,1,0,1,2AE CF ==-,所以1cos ,55AE CF AE CFAE CF⋅===⋅,故答案为15.7.在直三棱柱111ABC A B C -中,13,3,2AC BC AB AA ====,则异面直线1A C 与1BC 所成角的余弦值为________.。

2019届黑龙江省哈尔滨市高三12月月考文科数学试卷【含答案及解析】

2019届黑龙江省哈尔滨市高三12月月考文科数学试卷【含答案及解析】

2019届黑龙江省哈尔滨市高三12月月考文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若复数满足,则的共轭复数的虚部是()A .____________________________B .____________________________________ C ._______________________________ D .2. 设,,若,则实数的取值范围是()A ._____________________________________B .______________C .____________________________D .3. 下列四种说法中,正确的个数有()① 命题“ 均有” 的否定是:“ 使得” ;② “命题为真”是“命题为真”的必要不充分条件;③ ,使是幂函数,且在上是单调递增;④ 不过原点( 0,0 )的直线方程都可以表示成;A . 3个_______________________B . 2个_________________________________C . 1个___________________________________D . 0个4. 如图是底面积为,体积为的正三棱锥的主视图(等腰三角形)和左视图,此正三棱锥的左视图的面积为()A ._______________________________________B . 3__________________________________________C .____________________________________ D .5. 设,其中实数,满足,若的最大值为,则的最小值为()A .__________________________________________B .______________________________________ C ._______________________________________ D .6. 将函数的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位,所得函数图象的一个对称中心是()A .________ _________B .____________________________C ._______________________D .7. 若数列,,,…,是首项为1,公比为的等比数列,则等于()A .____________________________B .____________________________ C .____________________________D .8. 数列满足,对任意的都有,则()A .____________________________B ._______________________C .____________________________D .9. 定义在R上的奇函数满足,当时,,则在区间内是()A .减函数且__________________________________________B .减函数且C .增函数且__________________________________________D .增函数且10. 若函数的最小值为,则实数a的取值范围是()A ._______________________B .______________________C ._______________________D .11. 在中,分别为角的对边,若,则的形状为()A .正三角形___________________________________B .直角三角形C .等腰三角形_________________________________D .等腰三角形或直角三角形12. 给出以下命题,其中正确的命题的个数是()① 存在两个不等实数,使得等式成立;② 若数列是等差数列,且,则;③ 若是等比数列的前n项和,则成等比数列;④ 若是等比数列的前n项和,且,则;⑤ 已知的三个内角所对的边分别为,若,则一定是锐角三角形;A . 1个_____________________________B . 2个__________________________________ C . 3个________________________________ D . 4个二、填空题13. 对某同学的6次物理测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学物理成绩的以下说法:① 中位数为84;② 众数为85;③ 平均数为85;④ 极差为12 ;其中,正确说法的序号是____________ .14. 某程序框图如图所示,该程序运行后输出的的值是__________ .15. 的外接圆圆心为,半径为,,则在方向上的投影为___________ .16. 已知正三角形的三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过点作球的截面,则截面面积的最小值是_________ .三、解答题17. 已知向量且A、B、C分别为△ ABC的三边a、b、c所对的角.(1)求角C的大小;(2)若成等差数列,且,求c边的长.18. 甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:p19. ly:宋体; font-size:10.5pt">分组 [70,80) [80,90) [90,100) [100,110)频数 3 4 8 15 分组 [110,120) [120,130) [130,140) [140,150] 频数 15 x 3 2乙校:p20. ly:宋体; font-size:10.5pt">分组 [70,80 ) [80,90 ) [90,100 ) [100,110 )频数 1 2 8 9 分组 [110,120 ) [120,130 ) [130,140 ) [140,150] 频数 10 10 y 3 ( 1 )计算x,y的值.( 2 )若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;( 3 )由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两个学校的数学成绩有差异.p21. ly:Calibri; font-size:10.5pt"> 甲校乙校总计优秀非优秀总计参考公式:临界值表p22. ly:宋体; font-size:10.5pt">P (K≥k 0 ) 0 . 10 0 . 05 0 . 010 k 0 2 . 706 3 . 841 6 . 63523. 如图,已知棱柱的底面是菱形,且面ABCD,为棱的中点,为线段的中点.(1)求证:平面平面;(2)求三棱锥的体积.24. 已知椭圆()的离心率为,且短轴长为2 .(1)求椭圆的方程;(2)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,,求直线的方程.25. 已知函数的图像在点处的切线为.(1)求函数的解析式;(2)当时,求证:;(3)若对任意的恒成立,求实数的取值范围;26. 选修4一1:几何证明选讲如图,在中,,以为直径的圆交于,过点作圆的切线交于,交圆于点.(1)证明:是的中点;(2)证明:.27. 选修4一4:坐标系与参数方程已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同;曲线的方程是,直线的参数方程为(为参数,),设,直线与曲线交于两点.(1)当时,求的长度;(2)求的取值范围.28. 选修4一5:不等式选讲已知函数,.(1)解关于的不等式();(2)若函数的图象恒在函数图象的上方,求的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第22题【答案】第23题【答案】第24题【答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019年度高三学年上学期第一次月考数学试题(文科)考试时间:120分钟 试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 5sin 3π= 1.2A - 1.2B.2C -2D 2.已知集合{}1A x x =<,{}31x B x =<,则 .A {|0}A B x x =< .B A B =R .C {|1}A B x x =>.D A B =∅ 3.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = .11A .5B .11C - .8D -4.下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是.A y x = .2x B y = .lg C y x =.D y =5.已知1sin 23α=,则2cos ()4πα-= 1.3A 4.9B 2.3C 8.9D 6.函数2()ln(43)f x x x =-+的单调递增区间是.(,1)A -∞ .(,2)B -∞ .(2,)C +∞ .(3,)D +∞7.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a.12A - .10B -.10C .12D 8.已知03x π=是函数()sin(2)f x x =+ϕ的一个极大值点,则()f x 的一个单调递减区间是 2.(,)63A ππ 5.(,)36B ππ .(,)2C ππ 2.(,)3D ππ9.已知{}n a 为等比数列,472a a +=, 568a a =-,则110a a +=.7A .5B .5C - .7D -10.将函数sin(2)6y x π=-的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是 .12A x π= .6B x π= .3C x π= .12D x π=- 11.已知函数(),2x x e e f x x R --=∈,若对(0,]2π∀θ∈,都有(sin )(1)0f f m θ+->成立,则实数m 的取值范围是.(0,1)A .(0,2)B .(,1)C -∞ .(,1]D -∞12.已知()ln xf x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是 1.(0,)A e .(0,)B e 1.(,)C e e.(,)D e -∞二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{}n a 满足111n na a +=-,112a =,则2019a =_________ 14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则n a =_________15.ABC 的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b =______ 16.已知函数()2cos sin 2f x x x =+,则()f x 的最小值是________三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知sin sin sin sin c A B b a A C +=-+. (1)求角B 的大小;(2)若b =3a c +=,求ABC 的面积.18.(本题满分12分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(1)求ω的值;(2)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.19.(本题满分12分)设数列{}n a 的前n 项和为n S ,点(,)()n S n n N n *∈均在函数2y x =+的图像上. (1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m .20. (本题满分12分) 已知椭圆)0(1:2222>>=+b a b y a x C 经过点)221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点.(1)求椭圆C 的方程;(2)已知直线l 与圆3222=+y x 相切,求证:OB OA ⊥(O 为坐标原点).21.(本题满分12分)已知函数()()ln R f x ax x a =-∈.(1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点12,x x ,证明:12112ln ln x x +>.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22. (本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为1()12x t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=- .(1)求圆C 的圆心到直线l 的距离;(2)已知(1,0)P ,若直线l 与圆C 交于,A B 两点,求11PA PB +的值. 23.(本题满分10分)选修4-5:不等式选讲 已知函数()22f x x =-+,()()g x m x m R =∈.(1)解关于x 的不等式()5f x >;(2)若不等式()()f x g x ≥对任意x R ∈恒成立,求m 的取值范围.2018-2019年度高三学年上学期第一次月考数学试卷(文科)答案一. 选择题1-6 CACDCD 7-12BBDADA二.填空题13. 1- 14.12n -- 15. 211316. -三.解答题17.(1)c a b b a a c+=-+ 2222cos a c b ac ac B ∴+-=-=1cos 2B ∴=- 120B ∴=︒ (2)22222cos ()22cos b a c ac B a c ac ac B =+-=+-- 1ac ∴=1sin 24S ac B ∴==18.(Ⅰ)1cos2()22x f x x ωω-=112cos222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>,所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤,所以ππ7π2666x --≤≤, 所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤, 即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.19. 2n S n n=+ 22n S n n ∴=+ 1(1)2,21n n n n a S S n -≥=-=+1(2)1,3n a ==,适合上式21n a n ∴=+1111(2)()(21)(23)22123n b n n n n ==-++++ 11111111111()()23557212323236n T n n n ∴=-+-++-=-<+++ 1102063m m ∴≥∴≥m Z ∈min 4m ∴=20.(1)因为2c e a ==,222a b c =+ 222a b ∴= ∴椭圆方程为222212x y b b∴+=2(1,)2在椭圆上221,2b a ∴== ∴椭圆方程为2212x y +=(2)因为直线l 与圆2223x y +=相切,=即223220m k --=由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=. 设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412km x x k +=-+,21222212m x x k -=+, ()()()2222121212122212m k y y kx m kx m k x x km x x m k -∴⋅=++=+++=+ 2222212122222223220121212m m k m k OA OB x x y y k k k----∴⋅=+=+==+++ OA OB ∴⊥21.(1)()()110ax f x a x x x-=-=>' 当0a ≤时, ()0f x '<,所以()f x 在()0,+∞上单调递减; 当0a >时, ()0f x '=,得1x a= 10,x a ⎛⎫∀∈ ⎪⎝⎭都有()0f x '<, ()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减; 1,x a ⎛⎫∀∈+∞ ⎪⎝⎭都有()0f x '>, ()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上:当0a ≤时, ()f x 在()0,+∞上单调递减,无单调递增区间;当0a >时, ()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减, ()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)函数()f x 有两个零点分别为12,x x ,不妨设12x x <则11ln 0x ax -=, 22ln 0x ax -=,()2121ln ln x x a x x -=-要证: 12112ln ln x x +> 只需证: 12112a x x +>只需证: 12122x x a x x +> 只需证:12211221ln ln 2x x x x x x x x +->- 只需证: 22212121ln 2x x x x x x -> 只需证: 2211121ln 2x x x x x x ⎛⎫<- ⎪⎝⎭令211x t x =>,即证11ln 2t t t ⎛⎫<- ⎪⎝⎭设()11ln 2t t t t φ⎛⎫=-- ⎪⎝⎭,则()222102t t t t φ'--=<, 即函数()t φ在()1,+∞单调递减,则()()10t φφ<=,即得12112ln ln x x +> 22.解:(1)由直线l的参数方程为1()12x t y t ⎧=⎪⎪⎨⎪=⎪⎩为参数 消去参数t ,可得:10x -= 圆C 的极坐标方程为4cos ρθ=-,即24cos ρρθ=-.所以圆C 的普通坐标方程为2240x y x ++=则(2,0)C -.所以圆心(2,0)C -到直线l 的距离21322d --== (2)已知(1,0)P ,点P 在直线l 上,直线l 与圆C 交于,A B 两点,将1()12x t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数代入圆C 的普通坐标方程2240x y x ++=得:250t ++=设,A B 对应参数为12,t t ,则12t t +=-125t t = 因为120t t >,12,t t 是同号.所以12121211115t t PA PB t t t t ++=+==. 23.(1)由()5f x >,得23x ->, 即23x -<-或23x ->, 1x ∴<-或5x >.故原不等式的解集为{}15x x x <->或 (2)由()()f x g x ≥,得2+2≥-x m x 对任意x R ∈恒成立, 当0x =时,不等式2+2≥-x m x 成立, 当0x ≠时,问题等价于22x m x -+≤对任意非零实数恒成立, 22221 , 1x x m x x -+-+=∴≥≤,即m 的取值范围是( , 1]-∞.。

相关文档
最新文档