北京市重点中学2019届高三第一次月考练习

合集下载

专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析

专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析

专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为30?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为15,若存在,求出PQ OB 的值;若不存在,说明理由.3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,2PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值. 6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒, 过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED , EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB , 即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x , 由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2. 故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由. 【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为23.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 30E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点. 【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点, 所以EF AB ∥,在矩形ABCD 中,AB CD ∥, 所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点, 所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意. 在等边三角形SAD 中,P 为AD 的中点, 于是SP AD ⊥,又平面SAD ⊥平面ABCD , 平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高, 设AD m =,则SP =,ABCD S m =矩形,所以1133S ABCD ABDD V S SP m -=⋅==矩形 所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()1110n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩, 令3x λ=,则()13,,1n λλ=-,易知平面SAD 的一个法向量()20,1,0n =,所以12122123cos ,721n n n n n n λλλ-⋅==-+30=, 因为01λ≤≤, 所以13λ=, 所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =. 因为当E 为1CC中点时,CE ∥1BB 且112CE BB =, 所以FG ∥CE 且FG = CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1CF AEB ⊄平面,1EG AEB ⊂平面, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系. 则()3,0,0A -,()13,0,2B ,()0,1,E λ,平面ABC 的法向量()0,0,1m =,平面1AEB 的法向量()333,3n λ=--,,()23cos 23991m n m n m nλ⋅===++-,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 【答案】(1)见解析(2)36【解析】 (Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC点是的中点,∴M Q∥CD,1.2MQ CD=又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC=-=-则()()000,,,10,2,1,PQ PC x y zλλ=∴-=-()0,2,1.Qλλ∴-又易证BC⊥平面PBD,()1,1,0.n PBD∴=-是平面的一个法向量设平面QBD的法向量为(),,,m x y z=(),0,0,2210,.0,1x yx ym DBy z z ym DQλλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y mλλ⎛⎫==-⎪-⎝⎭则60Q BD P 二面角为--,21cos,,22221m n m n m nλλ⋅∴===⎛⎫⋅+ ⎪-⎝⎭解得3 6.λ=±Q 在棱PC 上,01,3 6.λλ<<∴=-2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(215【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点, ∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OBOP O =,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE . (2)由(1)可知四边形ABED 为菱形,∴2AD DE ==, 在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形, ∴3OP =3OB =∵6PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP 分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -, 由题意得,各点坐标为()0,0,3P ,()1,0,0A -,()0,3,0B,()2,3,0C ,()1,0,0E ,∴(3,3PB =-,(3,3PC =-,()2,0,0AE =,设()01PQ PB λλ=<<,()1,333AQ AP PQ AP PB λλλ=+=+=, 设平面AEQ 的一个法向量为(),,n x y z =,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即()203330x x y λλ=⎧⎪⎨++=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫= ⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦, 则15sin cos ,5PC nPC n PC nθ⋅===,即2331511011λλλλ+-=⎛⎫+ ⎪-⎝⎭化简得:24410λλ-+=,解得12λ=, ∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155. 3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为2时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒ 【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由m FCm CB⎧⋅=⎨⋅=⎩得2030y azx y-=⎧⎪⎨-=⎪⎩,令1x=,则3y=,23z=,所以取231,3,m⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC的法向量()1,0,0n=,由题意:22cos,41213m na==++,所以3a=.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以PBD∠为直线PB与平面ABCD所成的角,易知在Rt PBD∆中,tan3PDPBD aBD∠===,从而60PBD∠=︒,所以直线PB与平面ABCD所成的角为60︒.4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD-中,底面四边形ABCD为正方形,已知PA⊥平面ABCD,2AB=,2PA=.(1)证明:BD PC⊥;(2)求PC与平面PBD所成角的正弦值;(3)在棱PC上是否存在一点E,使得平面BDE⊥平面BDP?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(210;(3)存在,23PEPC=,理由见解析【解析】(1)如图,连接AC交BD于点O,由于PA⊥平面ABCD,BD⊂平面ABCD所以PA BD⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A =,所以BD ⊥平面PAC又因为PC ⊂平面PAC ,因此BD PC ⊥ (2)由于PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直, 因比,如图建立空间直角坐标系A xyz -(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z =,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩ 取1x =,1y =,z =,则(1,1,2)m =设直线PC 与平面PBD 所成角为θ,10sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ- 则(22,2))BE λλλ=--,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则0n BE n BD ⎧⋅=⎨⋅=⎩,即2(1)2(1)0220a b a bλλλ⎧-+-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈ 因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值. 【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以. 又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为. (ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B , ()1,0,1M , 设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ. 设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-. 平面ADM 的一个法向量为()20,1,0n =. 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-, ∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z = 由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭, 由220{n AC n AP ⋅=⋅=得2222230{230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴613AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为613. 12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。

北京市海淀区重点中学2025届高三第一次模拟考试-数学试题

北京市海淀区重点中学2025届高三第一次模拟考试-数学试题

北京市海淀区重点中学2025届高三第一次模拟考试-数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有一点(3,4)P -,则sin 2α=( ). A .1225-B .2425-C .165D .852.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .3.若复数12biz i-=+(b R,i ∈为虚数单位)的实部与虚部相等,则b 的值为( ) A .3B .3±C .3-D .3±4.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D 535.设12,x x 为()()3sin cos 0f x x x ωωω=->的两个零点,且12x x -的最小值为1,则ω=( ) A .πB .2π C .3π D .4π 6.已知函数()f x 的图象如图所示,则()f x 可以为( )A .3()3x f x x =-B .e e ()x xf x x --= C .2()f x x x =-D .||e ()xf x x=7.已知集合{}22|A x y x ==-,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B .[12]-,C .(12]-,D .2,2⎡⎤-⎣⎦8.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .9.设复数z 满足(1)21z i i ⋅+=+(i 为虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限10.若复数z 满足()134i z i +=+,则z 对应的点位于复平面的( ) A .第一象限B .第二象限C .第三象限D .第四象限11. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件12.已知复数21iz i =-,则z 的虚部为( ) A .-1B .i -C .1D .i二、填空题:本题共4小题,每小题5分,共20分。

黑龙江省哈尔滨2019届高三第一次月考文科数学试卷(含答案)

黑龙江省哈尔滨2019届高三第一次月考文科数学试卷(含答案)

2018-2019年度高三学年上学期第一次月考数学试题(文科)考试时间:120分钟试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.5sin3π=1.2A -1.2B .2C-2D 2.已知集合{}1A x x =<,{}31x B x =<,则.A {|0}A B x x =< .B A B =R .C {|1}A B x x => .D A B =∅ 3.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =.11A .5B .11C -.8D -4.下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是.A y x =.2x B y =.lg C y x=.D y =5.已知1sin 23α=,则2cos ()4πα-=1.3A 4.9B 2.3C 8.9D 6.函数2()ln(43)f x x x =-+的单调递增区间是.(,1)A -∞.(,2)B -∞.(2,)C +∞.(3,)D +∞7.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a .12A -.10B -.10C .12D 8.已知03x π=是函数()sin(2)f x x =+ϕ的一个极大值点,则()f x 的一个单调递减区间是2.(,)63A ππ5.(,)36B ππ.(,)2C ππ2.(,)3D ππ9.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=.7A .5B .5C -.7D -10.将函数sin(2)6y x π=-的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是.12A x π=.6B x π=.3C x π=.12D x π=-11.已知函数(),2x x e e f x x R --=∈,若对(0,]2π∀θ∈,都有(sin )(1)0f f m θ+->成立,则实数m 的取值范围是.(0,1)A .(0,2)B .(,1)C -∞.(,1]D -∞12.已知()ln xf x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是1.(0,)A e .(0,)B e 1.(,)C e e.(,)D e -∞二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{}n a 满足111n n a a +=-,112a =,则2019a =_________14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则n a =_________15.ABC 的内角,,A B C 的对边分别为,,abc ,若4cos 5A =,5cos 13C =,1a =,则b =______16.已知函数()2cos sin 2f x x x =+,则()f x 的最小值是________三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知sin sin sin sin c A B b a A C+=-+.(1)求角B 的大小;(2)若b =,3a c +=,求ABC 的面积.18.(本题满分12分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π.(1)求ω的值;(2)求函数()f x 在区间2π03⎡⎤⎢⎣⎦,上的取值范围.19.(本题满分12分)设数列{}n a 的前n 项和为n S ,点(,)n S n n N n *∈均在函数2y x =+的图像上.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m .20.(本题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 经过点221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点.(1)求椭圆C 的方程;(2)已知直线l 与圆3222=+y x 相切,求证:OB OA ⊥(O 为坐标原点).21.(本题满分12分)已知函数()()ln R f x ax x a =-∈.(1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点12,x x ,证明:12112ln ln x x +>.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为312()12x t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=-.(1)求圆C 的圆心到直线l 的距离;(2)已知(1,0)P ,若直线l 与圆C 交于,A B 两点,求11PA PB+的值.23.(本题满分10分)选修4-5:不等式选讲已知函数()22f x x =-+,()()g x m x m R =∈.(1)解关于x 的不等式()5f x >;(2)若不等式()()f x g x ≥对任意x R ∈恒成立,求m 的取值范围.2018-2019年度高三学年上学期第一次月考数学试卷(文科)答案一.选择题1-6CACDCD7-12BBDADA 二.填空题13.1-14.12n --15.211316.三.解答题17.(1)c a b b a a c+=-+ 2222cos a c b ac ac B ∴+-=-=1cos 2B ∴=-120B ∴=︒(2)22222cos ()22cos b a c ac B a c ac ac B =+-=+-- 1ac ∴=1sin 24S ac B ∴==18.(Ⅰ)1cos2()sin 222x f x x ωω-=+11sin 2cos2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>,所以2ππ2ω=,解得1ω=.(Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为2π03x ≤≤,所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.19.2n S n n=+ 22n S n n ∴=+1(1)2,21n n n n a S S n -≥=-=+1(2)1,3n a ==,适合上式21n a n ∴=+1111(2)((21)(23)22123n b n n n n ==-++++11111111111((23557212323236n T n n n ∴=-+-++-=-<+++ 1102063m m ∴≥∴≥m Z ∈ min 4m ∴=20.(1)因为22c e a == ,222a b c =+222a b ∴=∴椭圆方程为222212x y b b∴+=2(1,2在椭圆上221,2b a ∴==∴椭圆方程为2212x y +=(2)因为直线l 与圆2223x y +=3=即223220m k --=由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=.设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412km x x k +=-+,21222212m x x k -=+,()()()2222121212122212m k y y kx m kx m k x x km x x m k -∴⋅=++=+++=+2222212122222223220121212m m k m k OA OB x x y y k k k ----∴⋅=+=+==+++ OA OB∴⊥21.(1)()()110ax f x a x x x-=-=>'当0a ≤时,()0f x '<,所以()f x 在()0,+∞上单调递减;当0a >时,()0f x '=,得1x a =10,x a ⎛⎫∀∈ ⎪⎝⎭都有()0f x '<,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减;1,x a ⎛⎫∀∈+∞ ⎪⎝⎭都有()0f x '>,()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上:当0a ≤时,()f x 在()0,+∞上单调递减,无单调递增区间;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减,()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(2)函数()f x 有两个零点分别为12,x x ,不妨设12x x <则11ln 0x ax -=,22ln 0x ax -=,()2121ln ln x x a x x -=-要证:12112ln ln x x +>只需证:12112a x x +>只需证:12122x x a x x +>只需证:12211221ln ln 2x x x x x x x x +->-只需证:22212121ln 2x x x x x x ->只需证:2211121ln 2x x x x x x ⎛⎫<- ⎪⎝⎭令211x t x =>,即证11ln 2t t t ⎛⎫<- ⎪⎝⎭设()11ln 2t t t t φ⎛⎫=-- ⎪⎝⎭,则()222102t t t t φ'--=<,即函数()t φ在()1,+∞单调递减,则()()10t φφ<=,即得12112ln ln x x +>22.解:(1)由直线l的参数方程为12()12x t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数消去参数t ,可得:10x -=圆C 的极坐标方程为4cos ρθ=-,即24cos ρρθ=-.所以圆C 的普通坐标方程为2240x y x ++=则(2,0)C -.所以圆心(2,0)C -到直线l 的距离21322d --==(2)已知(1,0)P ,点P 在直线l 上,直线l 与圆C 交于,A B 两点,将312()12x t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数代入圆C 的普通坐标方程2240x y x ++=得:250t ++=设,A B 对应参数为12,t t,则12t t +=-,125t t =因为120t t >,12,t t 是同号.所以1212121111335t t PA PB t t t t ++=+==.23.(1)由()5f x >,得23x ->,即23x -<-或23x ->,1x ∴<-或5x >.故原不等式的解集为{}15x x x <->或(2)由()()f x g x ≥,得2+2≥-x m x 对任意x R ∈恒成立,当0x =时,不等式2+2≥-x m x 成立,当0x ≠时,问题等价于22x m x -+≤对任意非零实数恒成立,22221 , 1x x m x x -+-+=∴ ≥≤,即m 的取值范围是( , 1]-∞.。

北京市重点中学2015届高三上学期月考期中考试汇总 语文 7份

北京市重点中学2015届高三上学期月考期中考试汇总 语文 7份

北京市大兴区魏善庄中学2015届高三上学期期中考试语文试题 Word版无答案.doc北京市海淀区2015届高三上学期期中练习语文试题扫描版含答案.doc北京市海淀区2015届高三上学期期中试题语文 Word版含答案.doc北京市第二十四中学2015届高三上学期开学检测语文试题 Word版无答案.doc 北京市重点中学2015届高三8月开学测试语文 Word版无答案.doc北京市重点中学2015届高三上学期第一次月考语文试卷 Word版含答案.doc 北京市大兴区魏善庄中学2015届高三9月月考语文试题 Word版无答案.doc高三9月月考语文试题一、字音字形专项题(共15道题,每小题3分,共45分)1.下列加点的字的读音,全都正确的一组是教室.瑕疵.徜.徉不落窠.曰歌声粗犷.A. shǐzīcháng cháo kuàngB. shìcǐcháng kēguǎngC. shìcǐtáng cháo kuàngD. shǐzītang kēguǎng2.下列词语中加点的字,读音全都正确的一组是A、数落.(shǔ)多财善贾.(gǔ)传.记(zhuàn)杳.无音信(miǎo)B、毗.邻(bì)前后相属.(zhǔ)侍.侯(shì)洁身自好.(hào)C、便笺.(qiān)人才济.济(jǐ)静谧.(mì)博闻强识.(zhì)D、混淆.(xiáo)信手拈.来(niān)徜.徉(cháng)稳操胜券.(quàn)3.下列词语中划线的字,读音全都正确的一组是A.刍.议(chú)条分缕.析(lǚ)圈.养(quān)愀.然不乐(qiǎo)B.倏.忽(shū)越俎代庖.(páo)牛虻.(mánɡ)自惭形秽.(huì)C.靛.蓝(diàn)毁家纾.难(shū)干涸.(hã)白头偕.老(xiã)D.手帕.(pà)相互龃龉.(yǔ)麾.下(huī)探本溯.源(shuî)4.下列词语中划线的字,读音全都正确的一组是A.迸.发(bânɡ)不屈不挠.(ráo)怆.然(chuànɡ)婀.娜多姿(ē)B.跻.身(jī)岿.然不动(kuī)女娲.(wō)谆谆..教导(zhūn)C.恫吓.(xià)病入膏肓.(huānɡ)浣.衣(huàn)神情尴尬.(ɡà)D.粗糙.(cāo)徘徊.观望(huái)糟粕.(pî)锲.而不舍(qiâ)5.下列词语中划线的字,读音完全正确的一组是A.菁.华(qīng)宁.可(nìng)冠.心病(guān)翘.首回望(qiáo)B.吐蕃.(fān)庇.护(bì)歼.击机(jiān)呱.呱坠地(gū)C.请帖.(tiě)梵.文(fán)发横.财(hâng)按捺.不住(nà)D.链.接(liàn)创.口(chuāng)倒.春寒(dào)拈.花惹草(niān)6.下列词语中划线的字的读音,全都正确的一组是A.揩.(kāi)油痉.(jīng)挛笑靥.(yâ) 物阜.(fù)民安B.泥.(ní)古诤.(zhâng)友蹊.(qī)跷羽扇纶.(guān)巾C.滂.(pāng)沱摈.(bìng)弃聒.(guō)噪悄.(qiǎo)然无声D.洞穴.(xuã) 糟粕.(pî) 酝酿.(niàng) 心广体胖.(pán)7.下列词语中划线的字,读音全都正确的一组是A.泊.车(bï) 称.心(chân) 唱主角.(jiǎo) 弹.丸之地(dàn)B.苍穹.(qiïng) 掺.和(cān) 单行.本(xíng) 不偏不倚.(yǐ)C.梦魇.(yǎn) 本埠.(bù)黑魆魆..(xū) 燕颔.虎颈(hàn)D.祝祷.(dǎo) 鞭笞.(chī) 便.利店(biàn) 名噪.一时(cào)8.下列词语中划线的字的读音,全都正确的一组是A.奇葩.(pā)哈.(hǎ)达砧.(zhān)板不胫.(jìng)而走B.坎坷.(kě)勖.(xù)勉棘.(jí)手拾.(shâ)级而上C.着.(zháo)重巷.(hàng)道混.(hùn)沌中规中矩.(jǔ)D.畸(jī)形慰藉.(jiâ)骁.(xiāo)勇扺.(dǐ)掌而谈9.下列词语中加点的字,读音全都正确的一组是A.逾.越(yú)鸟瞰.(kàn)一丘之貉.(luî)栩.栩如生(xǔ)B. 溃.败(kuì)凹.陷(wā)贻.笑大方(yí)兢.兢业业(jīng)C. 咀.嚼(zǔ)桧.柏(guì)罄.竹难书(qìng)饕餮.大餐(tiâ)D. 觊.觎(jì)攻讦.(jiã)光阴荏苒.(rǎn)心怀叵.测(pǒ)10.下列词语中加点的字,读音全都正确的一组是A. 颀.长(qí)悚.然(sù)彰善瘅.恶(dàn)韬光养晦.(huì)B. 人寰.(huán)攫.取(jué)寻瑕伺隙.(xì)啮.臂为盟(niè)C.抵牾.(yǔ)横亘.(gèn)造福桑梓.(zǐ)筋.疲力尽(jīn)D.鞭挞.(tà)骨骼.(gé)辗.转反侧(niǎn)蜚.声中外(fēi)11下列各组词语中,加点的字读音全都相同的一组是A.秩.序井然栉.风沐雨卷帙.浩繁独树一帜.B.一泓.清泉宏.观调控曲肱.而枕鸿.鹄之志C.樯桅毗.连言论精辟.臧否.人物嗜书成癖.D.欣.逢佳节歆.慕不已万马齐喑.馨.香满院12下列各组词语中加点的字,读音全都相同的一组是A.淤.积迂.回愚.昧无知长吁.短叹B.酬.谢绸.缪踌.躇满志平畴.千里C.韧.性烹饪.色厉内荏.万仞.高山D.偏.方骈.文翩.跹起舞一叶扁.舟13.下列词语中加点字的读音全都相同的一组是A.舷.梯娴.熟悬.崖勒马弦.外之音B.按捺.纳.税刚毅木讷.方凿圆枘.C.静谧.猕.猴弥.天盖地所向披靡.D.皎.洁缴.纳狡.兔三窟矫.揉造作14.下列词语中,字形和划线的字的读音全都正确的一项是A.传媒难以起齿自诩.(yǔ)闭目塞.(sâ)听B.芯片钩玄题要豢.(juàn)养车载.(zài)斗量C.转轨众口铄金执拗.(niù)半嗔.(chēn)半喜D.幅射赋于重任补给.(jǐ)便.(biàn)宜行事15.下列词语中,字形和划线的字的读音全部正确的一项是A.诠释出其制胜瞩.(zhǔ)目人才荟.( kuài )萃B.杀戳宁静致远莅.(wâi )临鸢.( yuān )飞鱼跃C.平添励精图治缜.( zhěn )密鹬.( yù )蚌相争D.松弛老奸巨猾揣度.( duï) 深陷囹圄.( wú )二、基础知识综合试题(共18分)(一)阅读下面的文字,完成1—3题。

【名师解析】北京市重点中学2015届高三上学期第一次月考数学(理)试题(解析版)

【名师解析】北京市重点中学2015届高三上学期第一次月考数学(理)试题(解析版)

北京市重点中学2015届高三上学期第一次月考数学(理)试题(解析版)【试卷综析】试题考查的知识涉及到函数、三角函数、数列、导数等几章知识,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,知识点综合与迁移。

试卷的整体水准应该说比较高,综合知识、创新题目的题考的有点少,试题适合阶段性质考试.第I 卷 (选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分. 在每小题列出的的四个选项中,选出符合题目要求的一项) 【题文】1.已知集合{}220M x x x = -<,{}N x x a = <,若M N ⊆,则实数a 的取值范围是A .[)2,+∞B .()2,+∞C .(),0-∞D .(],0-∞ 【知识点】交集及其运算.A1【答案解析】A 解析:由M 中不等式变形得:()20x x -<, 解得:02x <<,即M=()0,2,∵{}N x x a = <,且M N ⊆, ∴a≥2,则a 的范围为[)2,+∞.故选:A .【思路点拨】求出M 中不等式的解集确定出M ,根据N 以及M 为N 的子集,确定出a 的范围即可.【题文】2.下列四个命题:p 1:∃x ∈(0,+∞),⎝⎛⎭⎫12x <⎝⎛⎭⎫13x p 2:∃x ∈(0,1),log 12x>log 13xp 3:∀x ∈(0,+∞),⎝⎛⎭⎫12x>log 12x p 4:∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x<log 13x 其中的真命题是A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 【知识点】全称命题,特称命题。

A2【答案解析】D 解析:对于p 1:在(0,+∞)中,不存在x 的值使⎝⎛⎭⎫12x<⎝⎛⎭⎫13x,故p 1错误;对于p 3:令x= 12,⎝⎛⎭⎫12x>log 12x 不成立;故p 3错误;p 2 ,p 4正确。

北京十一学校2019届高三英语9月月考试题

北京十一学校2019届高三英语9月月考试题

北京十一学校2019届高三英语9月月考试题北京十一学校高三9月月考英语试卷时间:120分钟总分:150分第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. How soon will the watch be ready?A. In two days.B. In at least four days.C. In three days.2. How much was the TV set?A. $80B. $160C. $403. What is Ann doing?A. Buying a giftB. Counting her moneyC. Having a Christmas party4. Where’s the man?A. In the kitchenB. In the supermarketC. In the furniture shop.5. What can we learn from this conversation?A. Helen will go on a picnic tomorrow.B. Helen doesn’t enjoy going on a picnic.C. Helen doesn’t think the weather will be good for a picnic.第二节(共10小题;每题1.5分,满分15分)听下面3段对话或独白。

每段对话或独白后有几个小题,从每题所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有5秒钟的时间阅读每小题。

听完后,每小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6至7题。

西藏拉萨北京实验中学2019届高三英语上学期第一次月考试题

西藏拉萨北京实验中学2019届高三英语上学期第一次月考试题

2018—2019学年高三第一次月考(英语)试卷注意事项:1.本试卷满分150分,考试吋间120分钟。

2.本试卷共8页,如遇缺页、漏页、字迹不清等,考生须及时报告监考老师。

3.命题人:第[卷(105分)第一部分听力(共两节,满分30分,每小题1・5分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题:每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来冋答有关小题和阅读下一小题每段对话仅读一遍。

1.W.hat are the speakers talking about?A.An article in the newspaper.B. A meeting with the president. C・ A speech on television.2.What is the change?A.$0. 50B. $0. 75C. $3. 253.What does the man mean?A.They don, t have to arrive for the Brown, s lunch on time.B.It, s impolite to be late for the Brown, s lunch.C.They don' t have to have manners in Franee.4・ What does the man say about his country?A.It is cold.B. It is hot.C. It is rainy.5. What is the boy going to do today?A・ Watch a footbal 1 game. B. Go to see a doctor. C. Cal 1 his head teacher. 第二节(共15小题;每小题1・5分,满分22.5分)听下面5段材料。

2020届高考数学(理)一轮必刷题 专题48 圆的方程(解析版)

2020届高考数学(理)一轮必刷题 专题48 圆的方程(解析版)

考点48 圆的方程1.(广东省2019届高考适应性考试理)若向量a ,b ,c 满足a b ≠,0c ≠,且()()0c a c b -⋅-=,则a b a bc++-的最小值是()AB .C .2D .32【答案】C 【解析】设向量a OA =,b OB =,c OC =,则由()()0c a c b -⋅-=得0AC BC ⋅=,即C 的轨迹为以AB 为直径的圆,圆心为AB 中点M ,半径为1||2AB , 因此11||||||(||)||22c OC OM r OA OB AB =≤+=++ 1111(||)(||)(||)(||)2222OA OB OA OB a b a b =++-=++- 从而2a b a bc++-≥,选 C.2.(河南省重点高中2019届高三4月联合质量检测数学理)设是圆 上的点,直线与双曲线:的一条斜率为负的渐近线平行,若点到直线距离的最大值为8,则()A .9B .C .9或D .9或【答案】C 【解析】 因为双曲线的一条斜率为负的渐近线的斜率为,所以,解得. 圆的圆心坐标是,半径为,因为圆心到直线距离为, 所以点到直线距离的最大值为,解得或.当时,;当时,.综上,或.故选.3.(广西桂林市、崇左市2019届高三下学期二模联考数学理)过双曲线的右支上一点分别向圆:和圆:作切线,切点分别为,则的最小值为()A.5 B.4 C.3 D.2【答案】A【解析】圆的圆心为,半径为;圆的圆心为,半径为,设双曲线的左右焦点为,,连接,,,,可得.当且仅当为右顶点时,取得等号,即最小值5.故选:.4.(福建省龙岩市2019届高三5月月考数学理)已知点A 在圆22(2)1x y -+=上,点B 在抛物线28y x=上,则||AB 的最小值为( ) A .1 B .2 C .3 D .4【答案】A 【解析】由题得圆()2221x y -+=的圆心为(2,0),半径为1. 设抛物线的焦点为F(2,0),刚好是圆()2221x y -+=的圆心, 由题得|AB|≥|BF|-|AF|=|BF|-1, 设点B 的坐标为(x,y),所以|AB|≥x -(-2)-1=x+1,因为x≥0, 所以|AB|≥1,所以|AB|的最小值为1. 故选:A5.(新疆2019届高三第三次诊断性测试数学理)若直线1ax by +=与圆221x y +=有两个公共点,则点(),P a b 与圆221x y +=的位置关系是( )A .在圆上B .在圆外C .在圆内D .以上都有可能【答案】B 【解析】解:因为直线1ax by +=与圆221x y +=有两个公共点,1<,即1<因为点P 1, 所以点P 在圆外,故选B .6.(河南省焦作市2018-2019学年高三年级第三次模拟考试数学理)已知抛物线E :y 2=2px (p >0)的准线为l ,圆C :(x ﹣2p )2+y 2=4,l 与圆C 交于A ,B ,圆C 与E 交于M ,N .若A ,B ,M ,N 为同一个矩形的四个顶点,则E 的方程为( )A .y 2=xB .y 2C .y 2=2xD .y 2=x【答案】C 【解析】 【分析】 如图,圆C :(x ﹣2p )2+y 2=4的圆心C (2p ,0)是抛物线E :y 2=2px (p >0)的焦点, ∵圆C :(x ﹣2p )2+y 2=4的半径为2, ∴|NC|=2,根据抛物线定义可得:|NA|=|NC|=2. ∵A ,B ,M ,N 为同一个矩形的四个顶点, ∴点A ,N 关于直线x =2p 对称,即22N A P x x P +=⨯=,∴32N x p =, ∴|NA|=322p p ⎛⎫-- ⎪⎝⎭=2,∴2p =2,则E 的方程为y 2=2x . 故选:C .7.(闽粤赣三省十校2019届高三下学期联考数学理)过抛物线24y x =的焦点F 的直线交抛物线于A B 、两点,分别过A B 、作准线的垂线,垂足分别为A B ''、两点,以线段A B ''为直径的圆C 过点(2,3)-,则圆C 的方程为( )A .22(1)(1)5x y ++-=B .22(1)(1)17x y +++=C .22(1)(2)26x y +++=D .22(1)(2)2x y ++-=【答案】A 【解析】由抛物线方程可知:()1,0F ,准线方程为:1x =-设直线AB 方程为:1x my =+,代入抛物线方程得:2440y my --= 设()11,A x y ,()22,B x y ,则124y y m +=,124y y = 又()11,A y '-,()21,B y '-,C 在圆上 0A C B C ''∴⋅=即()()()()1211330y y -⨯-+--= ()12121030y y y y ⇒-++= 即101240m -+= 12m ⇒=∴圆心坐标为:()1,2m -,即()1,1-=∴圆的方程为:()()22115x y ++-=本题正确选项:A .8.(东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟数学理)Rt ABC ∆中,090ABC ∠=,AB =4BC =,ABD ∆中,0120ADB ∠=,则CD 的取值范围是( ) A.2,2] B.(4,2] C.2,2]+ D.2,2]【答案】C 【解析】由题,以点B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y轴建立直角坐标系;(0,0);(0,4)B A C设点(,)D x y ,因为0120ADB ∠=,所以由题易知点D 可能在直线AB 的上方,也可能在AB 的下方; 当点D 可能在直线AB 的上方;直线BD 的斜率1yk x=;直线AD的斜率2k =由两直线的夹角公式可得:2121tan12011k k k k x-=⇒=+⋅化简整理的22((1)4x y ++=可得点D的轨迹是以点1)M -为圆心,半径2r =的圆,且点D 在AB 的上方,所以是圆在AB 上方的劣弧部分;此时CD的最短距离为:22CM r -== 当当点D 可能在直线AB 的下方;同理可得点D的轨迹方程:22((1)4x y +-=此时点D的轨迹是以点N 为圆心,半径2r =的圆,且点D 在AB 的下方,所以是圆在AB 下方的劣弧部分;此时CD的最大距离为:22CN r +==所以CD的取值范围为2⎡⎤⎣⎦.9.(湖北省黄冈市2019届高三上学期元月调研理)已知圆关于对称,则的值为A .B.1 C.D.0【答案】A【解析】化圆为.则圆心坐标为,圆关于对称,所以直线经过圆心,,得.当时,,不合题意,.故选A.10.(北京市朝阳区2018-2019学年度高三期末)在平面直角坐标系xOy中,过A(4,4),B(4,0),C (0,4)三点的圆被x轴截得的弦长为()A.2 B.C.4 D.【答案】C【解析】根据题意,设过三点的圆为圆,其方程为,又由,则由,解得,即圆,令,得,解得,即圆M与轴的交点坐标分别为,所以圆M被轴截得的弦长为4,故选C.11.(江西省名校学术联盟2019届高三年级教学质量检测考试12月联考)数学理)已知点,,则以线段为直径的圆的方程为A .B .C .D .【答案】D 【解析】 圆心为的中点,半径为,则以线段为直径的圆的方程为.故选D.12.(四川省南充市2018-2019学年上学期高2019届高三年级第一次高考适应性考试)点,是圆上的不同两点,且点,关于直线对称,则该圆的半径等于A .B .C .1D .3【答案】D 【解析】圆x 2+y 2+kx+2y-4=0的圆心坐标为(,因为点M ,N 在圆x 2+y 2+kx+2y-4=0上,且点M ,N 关于直线l :x-y+1=0对称, 所以直线l :x-y+1=0经过圆心, 所以.所以圆的方程为:x 2+y 2+4x+2y-4=0,圆的半径为:故选:C .13.(2017届四川省成都市石室中学高三二诊模拟考试数学理)在直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上,若圆C 上存在唯一一点M ,使2M A M O =,则圆心C 的非零横坐标是__________. 【答案】125【解析】圆心在l 上,设(),24C a a -,点(),M x y ,因为2MA MO ==,化简得:()2214x y ++=,所以点(),M x y 在以()0,1D -为圆心,以2为半径的圆上,又点(),M x y 在圆C 上,所以圆C 与圆D 有唯一公共点,即两圆相切,211CD =-=,或者213CD =+=,即251280a a -+=或25120a a -=,解得0a =(舍)或125,故填125. 14.(广东省肇庆市2019届高中毕业班第三次统一检测数学理)已知椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,则过点A ,B 且与直线m :43x =相切的圆的方程为______. 【答案】2211639x y ⎛⎫+-= ⎪⎝⎭. 【解析】解:椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,联立可得:22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 可得,2225848y xy x xy x +--+,解得0x =或43x =,可得(0,1)A -,41(,)33B , 过点A ,B 且与直线m :43x =相切的圆切点为B ,圆的圆心1(0,)3,半径为:43.所求圆的方程为:2211639x y ⎛⎫+-= ⎪⎝⎭.故答案为:2211639x y ⎛⎫+-= ⎪⎝⎭. 15.(宁夏石嘴山市第三中学2019届高三四模考试数学理)点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 【答案】1 【解析】曲线C 可整理为:()22225x y -+= 则曲线C 表示圆心为()2,0,半径为5的圆()()2222+121215066222t x y x y a x y a =+---=++---设d =d 表示圆上的点到()6,6-的距离则max 515d ==2max 15222t a b ∴=--=,整理得:14a b ++=()111111*********b a a b a b a b a b +⎛⎫⎛⎫∴+=+++=⨯+++ ⎪ ⎪+++⎝⎭⎝⎭又121b a a b ++≥=+(当且仅当11b a a b +=+,即1a =,2b =时取等号) 1114114a b ∴+≥⨯=+,即111a b ++的最小值为1 本题正确结果:116.(贵州省贵阳市2019年高三5月适应性考试二理)圆与曲线相交于,,,四点,为坐标原点,则__________.【答案】.【解析】 ∵圆的圆心为M (-3,2), ∴圆关于M (-3,2)中心对称,又曲线,关于(-3,2)中心对称, ∴圆与曲线的交点关于(-3,2)中心对称,不妨设与,与关于(-3,2)中心对称,则,,∴,故答案为.17.(北京市房山区2019年高考第一次模拟测试数学理)已知点A (-2,0),B (0,2),若点P 在圆(x-3)2+(y+1)2=2上运动,则面积的最小值为______.【答案】4 【解析】∵点A (-2,0),B (0,2),∴AB 的直线方程为=1,即x-y+2=0.圆心C (3,-1)到直线AB 的距离为d=,因为点P 在圆(x-3)2+(y+1)2=2上运动,所以点P到直线AB距离的最小值为:=,且.则ABP面积的最小值为.故答案为:4.18.(湖南省长沙市第一中学2018届高三下学期高考模拟卷三数学理)已知直线过定点,线段是圆的直径,则________.【答案】7.【解析】直线可化为,联立,解得点,∵线段是圆的直径,∴19.(广西桂林市、崇左市2019届高三下学期二模联考数学理)以抛物线:的顶点为圆心的圆交于两点,交的准线于两点.已知,,则等于__________.【答案】.【解析】如图:,,,,,,,,解得:,故答案为:.20.(北京市大兴区2019届高三4月一模数学理)在极坐标系下,点π(1,)2P 与曲线2cos ρθ=上的动点Q距离的最小值为_________.1 【解析】由题得点P 的直角坐标为(0,1),222222cos 2cos +201)1x y x x y ρθρρθ=∴=∴-=∴-+=,,,(,所以曲线是以点(1,0)为圆心,以1为半径的圆,所以点P 11-=.1.21.(江苏省南京市、盐城市2019届高三第二次模拟考试)在平面直角坐标系xOy 中,已知点()1,0A -,()5,0B .若圆()()22:44M x y m -+-=上存在唯一点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为______.【答案】【解析】根据题意,设P 的坐标为(,)a b ,直线PA 的方程为(1)1by x a =++,其在y 轴上的截距为1b a +, 直线PB 的方程为(5)5b y x a =--,其在y 轴上的截距为55b a --,若点P 满足使得直线PA ,PB 在y 轴上的截距之积为5,则有5()()515b b a a ⨯-=+-, 变形可得22(2)9b a +-=,则点P 在圆22(2)9x y -+=上,若圆22:(4)()4M x y m -+-=上存在唯一点P ,则圆M 与22(2)9x y -+=有且只有一个公共点,即两圆内切或外切,2,则两圆只能外切, 则有2425m +=,解可得:m =故答案为:22.(湖北省十堰市2019届高三年级元月调研考试理)已知圆22:(6)(6)16M x y -+-=,点(8,4)A ,过点A 的动直线与圆M 交于P ,Q 两点,线段PQ 的中点为N ,O 为坐标原点,则OMN ∆面积的最大值为______. 【答案】12 【解析】由题可知MN PQ ⊥,所以点N 在以线段AM 为直径的圆上,OMN ∆的边OM =N 到直线OM 的距离最大时,OMN ∆的面积最大,以线段AM 为直径的圆的圆心为()7,5,直线OM的方程为0x y -=,点()7,5到直线OM=所以N 到直线OM 的距离的最大值为故OMN ∆的面积的最大值为1122⨯=. 故答案为:1223.(江西省名校学术联盟2019届高三年级教学质量检测考试12月联考数学理)已知圆与轴相切于点,与轴正半轴交于点,,且,设点是圆上的动点,则的取值范围是__________. 【答案】【解析】由题意,可设圆C 的方程为,则,,所以, 则圆C 的方程为,即,可得,设,则== =,由题意可知,,所以.故答案为:. 24.(江苏省苏州市2018届高三调研测试理)在平面直角坐标系中,已知过点的圆和直线相切,且圆心在直线上,则圆的标准方程为__________. 【答案】【解析】根据题意,设圆C 的圆心为(m ,n ),半径为r ,则圆C 的标准方程为(x ﹣m )2+(y ﹣n )2=r 2,则有, 解可得:m =1,n =﹣2,r,则圆C 的方程为:(x ﹣1)2+(y +2)2=2, 故答案为:(x ﹣1)2+(y +2)2=225.(东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟数学理)已知椭圆1C :2214x y +=的左、右两个顶点分别为,A B ,点P 为椭圆1C 上异于,A B 的一个动点,设直线,PA PB 的斜率分别为12,k k ,若动点Q 与,A B 的连线斜率分别为34,k k ,且3412(0)kk kk λλ=≠,记动点Q的轨迹为曲线2C .(1)当4λ=时,求曲线2C 的方程;(2)已知点1(1,)2M ,直线AM 与BM 分别与曲线2C 交于,E F 两点,设AMF ∆的面积为1S ,BME ∆的面积为2S ,若[1,3]λ∈,求12S S 的取值范围. 【答案】(1) 224(2)x y x +=≠± (2) []5,7【解析】(1)设()00,P x y ()02x ≠±,则220014x y +=,因为()()2,0,2,0A B -,则2020001222000011422444x y y y k k x x x x -=⋅===-+---(),Q x y 设 ()2x ≠±所以2341222244y y y k k k k x x x λλ=⋅===-+--,整理得 2214x y λ+= ()2x ≠±.所以,当4λ=时,曲线2C 的方程为 ()2242x y x +=≠±.(2)设()()1122,,,E x y F x y . 由题意知,直线AM 的方程为:62x y =-,直线BM 的方程为:22x y =-+.由(Ⅰ)知,曲线2C 的方程为2214x y λ+= ()2x ≠±,联立 ()2262244x y x x y λλ=-⎧≠±⎨+=⎩,消去x ,得()29160y y λλ+-=,得 1691y λλ=+ 联立()2222244x y x x y λλ=-+⎧≠±⎨+=⎩,消去x ,得()2120y y λλ+-=,得 221y λλ=+2212111111sin 91222211111sin 2222MA MF AMF y y MA MF S S MB ME MB ME BME y y λλ∠--+=====+∠-- 设()918911g ,λλλλ+==-++ 则()g λ在[]1,3上递增 又()()15,37g g ==,12S S ∴的取值范围为[]5,7 26.(四川省成都市高新区2019届高三上学期“一诊”模拟考试数学理)已知抛物线,过点的直线与抛物线相切,设第一象限的切点为. (Ⅰ)证明:点在轴上的射影为焦点; (Ⅱ)若过点的直线与抛物线相交于两点,圆是以线段为直径的圆且过点,求直线与圆的方程.【答案】(I )详见解析;(II )详见解析. 【解析】(Ⅰ)由题意知可设过点的直线方程为,由消去整理得,又因为直线与抛物线相切, 所以,解得.当时,直线方程为,可得点坐标为,又因为焦点,所以点在轴上的射影为焦点. (Ⅱ)设直线的方程为,由,其中恒成立.设,,则,所以,.由于圆是以线段为直径的圆过点,则,所以所以,解得或.当时,直线的方程为,圆的方程为;当时,直线的方程为,圆的方程为.27.(江西省抚州市七校2019届高三10月联考数学理)已知圆与直线相切于点,圆心在轴上.(1)求圆的方程;(2)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积分别是.求的取值范围.【答案】(1);(2).【解析】(1)由题可知,设圆的方程为,,解得,,所以圆的方程为.(2)由题意知,,设直线的斜率为,则直线的方程为,由,得,解得或,则点的坐标为.又直线的斜率为,同理可得点的坐标为.由题可知,,.因此,又,同理,所以,当且仅当时取等号.又,所以的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市重点中学2019届高三第一次月考练习高三化学2019.09(测试时间90分钟,共100分)第1卷(20分)可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 S-32 CI-35.5一、选择题(每小题只有一个选项符合题意,每题2分,共10个小题,共20分)1. 下列叙述正确的是①久置于空气中的氢氧化钠溶液,加硫酸时有气体产生②浓硫酸可用于干燥氢气、氯化氢、碘化氢等气体,但不能干燥氨气、二氧化氮气体③SiO2和CQ都是酸性氧化物,都能与强碱溶液反应,但不能与任何酸反应④玻璃、水泥、水晶项链都是硅酸盐制品⑤蔗糖炭化的演示实验中,浓硫酸既体现了其强氧化性又体现了其脱水性⑥氢氧化铁胶体与氯化铁溶液分别蒸干灼烧得相同的物质A.①④⑤B. ①⑤⑥ C . ②③④ D .④⑤⑥2. 用氯气消毒的自来水配制下列溶液时,会使配得的溶液变质的是① NaQH ② AgNQ ③ Na^CQ ④ NaBr ⑤ FeC2A.只有②④ B •只有④⑤ C.只有②④⑤ D •全部3. 室温时,两个容积相同的烧瓶中分别盛有M和N 两种气体(同温同压),取下弹簧夹A, 使两烧瓶内的气体接触(如图),容器内的压强由大到小的顺序是编号①②③④气体M 气体NSO:比4HC1NO6A.①②③④ B .②④①③ C .④①②③D4. 碳跟浓硫酸共热产生的气体X和铜跟浓硝酸反应产生的气体Y同时通入盛有足量氯化钡溶液的洗气瓶中(如图装置),下列有关说法正确的是A .洗气瓶中产生的沉淀中有碳酸钡B .在Z导管出来的气体中无二氧化碳.①④③②D .洗气瓶中无沉淀产生5. 某温度下,将Cl2通入KOH溶液中得KCl、KCIQ和KClO的混合溶液。

经测定ClOf和CIO- 物质的量之比为2:1,则反应中被还原的C l2与被氧化Cl2的A. 2:3 B . 3:46. 下列有机物命名正确的是11:3 D . 10:3CH3- CH-C^CHA. 2-甲基-3- 丁炔◎C:OH8. 邻甲基苯甲酸(CH3)有多种同分异构体,其中属于酯类,且分子结构中有甲基和苯环的异构体有A. 3种B . 4种C . 5种D . 6种9. 可用于鉴别以下三种化合物的一组试剂是CHji * H^C-CICH3 7.下列关于甲基-2-氯丙烷2-甲基-1-丙醇A.所有原子有可能都在同一平面上C. 8个碳原子可能都在同一直线上B .最多可能有10个碳原子在同一平面上D .最多只可能有6个碳原子在同一直线上H S C1 , 3, 4-三甲苯C.2-H 3C - C 三C3的说法正确的是乙酰水杨酸丁香酚肉桂酸①银氨溶液②溴的四氯化碳溶液③氯化铁溶液④氢氧化钠溶液A.②与③ B .③与④ C .①与④ D . ①与②10. 迷迭香酸是从蜂花属植物中提取得到的酸性物质,其结构如图。

下列叙述正确的是A .迷迭香酸属于芳香烃B . 1mol迷迭香酸最多能和9mol氢气发生加成反应C .迷迭香酸可以发生水解反应、取代反应和酯化反应D. 1mol迷迭香酸最多能和含5mol NaOH的水溶液完全反应第n卷(80分)、非选择题(本题包括4个题,共计80分)11. (6分)氧化还原反应中实际上包含氧化和还原两个过程。

下面是一个还原过程的反应式:NO + 4H++ 3 e = N0+ 2f0KMnO N Q CO、FeO AI(OH)令四种物质中的一种物质(甲)能使上述还原过程发生。

(1 )写出并配平该氧化还原反应的方程式,并标出电子转移的方向和数目。

(2)____________________________________________________________________ 如反应转移了0.6mol e-,则产生的气体在标准状况下体积为________________________________ L。

(3)若1mol甲与某浓度硝酸反应时,被还原硝酸的物质的量增加,原因是:12. (24分)化学是一门以实验为基础的自然科学,化学实验在化学学习中具有极其重要的作用。

(一)某研究性学习小组用如下图装置进行铜与浓硫酸反应的实验研究。

(1)____________________________________________________________________ 装置A中发生反应的化学方程式__________________________________________________________ 。

(2)若要使B中收集满干燥的SQ气体(并证实B中已收集满),则上述装置的连接顺序为:接接接接(用子母表示)(3 ) 是C中盛放的试剂是。

,证明B中已收集满SO的现象(4)待烧瓶中充分反应后,同学们发现铜有剩余,经检测发现硫酸也有剩余。

检验硫酸有剩余的方法是 _______________________________________________________________________(5)在不补充浓硫酸的前提下,为使铜进一步溶解,可向烧瓶中加入__________ (填序号)。

① 盐酸②FeSO4 ③Fe 2Q ④KNQ(二)某化学实验小组同学为了证明、比较SO和氯水的漂白性,设计了如下图所示的实验装置。

(1)实验室常选用制CO的发生装置制SO;实验室用MnO跟浓盐酸反应制备Cl 2时,应选用上图A、E两发生装置中装置(填装置序号)制C12,通过____________(填写仪器名称)向烧瓶中加入适量的浓盐酸,反应方程式为(2)反应开始后,发现 B D两个试管中的品红溶液都褪去,停止通气后,给B、D两个试管加热,两个试管中的现象分别为D: ________________________________________________ 。

(3)甲乙两名同学分别利用下图所示装置探究两种气体按不同比例混合后的漂白性。

试分析:①在气体进入品红溶液之前,先将SO和C12通过盛有浓硫酸装置的目的是:②甲同学在实验过程中发现:通气一段时间后,品红溶液几乎不褪色,其原因是:____________________________________ (结合反应方程式)(三)某小组同学设计右图装置测量SO、2、C2混合气体中SO含量;反应管中装有碘的淀粉溶液。

SC和|2能反应,2、C不与I普2反应。

(1)气体进入反应管后,量气管内增加的水的体积等于________________________ 的体积(填写气体的分子式)。

(2)反应管内的碘的淀粉溶液也可以用____________ 。

C.双氧水、稀硫酸•氨水、酚酞试液(3)若碘溶液体积为V a mL,浓度为c mol jT, N2与02的体积为V b mL (已折算为标准状况下的体积)。

用c、Vs、Vb表示SQ的体积百分含量为。

13•无机推断(24分)(一)下图所示反应I、反应II和反应III均是工业生产中常见的反应。

其中A、B为化合物,C是温室气体之一,D和K均可用做干燥剂,H常温下为液态化合物,J是一种具有漂白作用的盐,反应山和E与G反应的原理相同。

(1)C的电子式是__________________ 。

(2)_______________________________________________________ 反应II 的离子方程式是 _________________________________________________________________ 。

(3)J久置后,即便不接触水、空气,本身也逐渐分解生成K,并放出气体,该反应的化学方程式是 _________________________________ 。

(4)工业上测定反应III产品的有效成分J的含量,先将一定量产品的溶液中加入过量的KI溶液和稀硫酸,使之反应生成12,然后用标准Na2$Q溶液滴定12,计算出结果。

①用NaaSQ标准溶液滴定I 2时选用的指示剂是________________ 。

②生成I2的反应的离子方程式是____________________________________________ 。

(5)__________________________________________________________________________ 已知:2Fe + Br 2= 2Fe +2Br。

若将0.1 mol E 通入100 mL FeBr 2溶液中,溶液中有三分之一的Br 一被氧化成Br2,则此反应离子方程式是______________________________________________________ _____________________________________ , 原FeBr2溶液的物质的量浓度为mol/L 。

(二)下图中A〜K分别代表有关反应的一种反应物或生成物,其中A、C F、K是固体,且A是一种不含金属元素的盐,受热分解能得到三种物质的量的产物,A加热后生成的气体混合物若通过碱石灰,只剩余气体B( B为无色有刺激性气味的气体),若通过浓硫酸则只剩余气体D( D 为无色无味气体);C 为淡黄色固体。

各物质间的转化关系如下图所示:请回答下列问题:(1) ____________________________ 写出C 的电子式 。

(2 )写出固体A 的溶液与足量NaOH 溶液反应的离子方程式(3) 写出实验室制取 B 的化学方程式(4) 写出N 与K 反应方程式(5)火星探测车在火星大气中检测到了气体 M 资料显示,M 分子是三原子分子,其相对分子质量为60,在地球环境下 M 易分解。

粉末状的 KSCN 与浓硫酸在一定条件下可得到气 体M 和两种硫酸氢盐,生成物的物质的量之比是1 : 1 :1。

则气体M 的结构式14.有机题(26 分)(一) 根据下面的反应路线及所给信息填空。

(1) A 的结构简式是 __________________ , B 的名称是 __________________ 。

(2 [①的反应类型是 _____________ ,③的反应类型是 __________________ 。

(3 )反应④的化学方程式是 _____________________________________________________(二) 碳碳双键有如下的断裂方式:高分子单体A (GHwQ )可进行如下反应(反应框图)RrH=CR,*(l)KMriO 4/OHr A(2>酸化R'CO.HR ,CH=CH :(I) KVInO^ 10H7 AB「2的CCl 4溶液.—③ ④对框图中某些化合物性质说明:室温下A 不与NaHCO 溶液反应,但可与 Na 反应放出Hz ; B 可与NaHCO 溶液反应放出CO ;C 可与Na 作用放出H z 而D 不能;G 在室温下既不与 NaHCO 溶液反应,也不与 Na 作 用放出H 2O(1) 写出A D 、E 的结构简式。

相关文档
最新文档