二次型与Hess矩阵
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次型与Hess矩阵
一、二次型是n个变量上的二次齐次多项式。
下面给出一个、两个、和三个变量的二次形式:其中a,...,f是系数。
注意一般的二次函数和二次方程不是二次形式的例子,因为它们不总是齐次的。
任何非零的n维二次形式定义在投影空间中一个(n-2)维的投影空间。
在这种方式下可把3维二次形式可视化为圆锥曲线。
术语二次型也经常用来提及二次空间,它是有序对(V,q),这里的V是在域k上的向量空间,而q:V→k是在V上的二次形式。
例如,在三维欧几里得空间中两个点之间的距离可以采用涉及六个变量的二次形式的平方根来找到,它们是这两个点的各自的三个坐标。
二、二阶偏导数矩阵也就所谓的赫氏矩阵(Hessianmatrix).
一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵。
求向量函数最小值时用的,矩阵正定是最小值存在的充分条件。
经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题尚无一般的求解方法,但判定局部极小值的方法是有的,就是用hessian矩阵,在x0点上,hessian矩阵是负定的,且各分量的一阶偏导数为0,则x0为极大值点。
在x0点上,hessian矩阵是正定的,且各分量的一阶偏导数为0。
则x0为极小值点。
矩阵是负定的充要条件是各个特征值均为负数。
矩阵是正定的充要条件是各个特征值均为正数。