2018年中考数学全真模拟试题中考数学模拟试题五

合集下载

2018年中考数学模拟试题(含答案)

2018年中考数学模拟试题(含答案)

2018年中考数学模拟试题(全卷满分为150分,考试时间为120分钟)一、 选择题(1-5 题每题3分,6-15题每题4分,共55分) 1.在-9、π、722、23、3.14、0这六个数中,无理数的个数是( ) A. 4个 B. 3个 C. 2个 D. 1个2.下列运算正确的是( )A.3332a a a =+B.a a a =-23C.6332a a a =⋅D.326a a a =÷3.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是 ( )A.12 B. 13 C. 14D. 164.据测算,我国每天因土地沙漠化造成的经济损失平均为150000000元,若不加治理,一年按365天计,我国一年中因土地沙漠化造成的经济损失(用科学记数法表示)为( ) A.5.475×107 B.5.475×109 C.5.475×1010 D.5.475×1011 5.下列二次根式中,最简二次根式是( )A. 22x B. 12+b C. a 4 D.x1 6.如果直角三角形的三边为2,4,a ,那么a 取值可以有( ) A. 0个 B. 1个 C. 2个 D. 3个 7.如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C ‘ 处,BC ‘交AD 于E ,下列结论不一定成立的是( )A. AD =BC ‘B. ∠EBD =∠EDBC. ΔABE ∽ΔCBDD. sin ∠ABE=EDAE8.关于x 的不等式组⎪⎩⎪⎨⎧>+>-ax x x 23221 无解,则实数a 的取值范围是( )A. a<-2B. a =-2C. a>-2D. a ≥-29.用F 牛顿的力作15焦耳的功,则力F 与物体在力的作用下移动的距离s 之间的函数关系的图象是( )10.把x 2-1+2xy+y 2的分解因式的结果是( )A.(x+1)(x -1)+y(2x+y)B.(x+y+1)(x -y -1)C.(x -y+1)(x -y -1)D.(x+y+1)(x+y -1)11.刚刚喜迁新居的小华同学为估计今年六月份(30天)的家庭用电量,在六月上旬连续7你预计小华同学家六月份用电总量约是( )A. 1080度B. 124度C. 103度D. 120度12.宿迁市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密铺的地砖的形状是( ).A. ①B. ②C. ③D. ④13.某物体的三视图如下,那么该物体形状可能是()A. 长方体B. 圆锥体C. 立方体D. 圆柱体14.如图,在山坡上种树,已知∠A=30°,AC=3米,则相邻两株树的坡面距离AB=( ) A.6米15.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为( )A .4 cmB .6cmC .8cmD .10cmA B C D _( 第 16 题 )_2 _1_O _D _C _B_A正视图左视图俯视图CAB (第14题)二、填空题(每题4分,共36分)16.如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2= . 17.若a =3,b =2且ab <0,则a -b =____18.观察下列等式:9–1=8 16–4=12 25–9=16 36–16=20 ……这些等式反映出自然数间的某种规律。

2018年中考数学模拟试题及答案共五套

2018年中考数学模拟试题及答案共五套

中考模拟试卷数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。

2. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.-的倒数是( )A. 12007-B.C. -D.12007 2. 下列运算正确的是( ) A .23a a ⋅=6aB .33()y y x x=C .55a a a ÷=D .326()a a =3. 下图中几何体的俯视图是 ( )4.在昆明“世博会”期间,为方便游客参观,铁道部门临时加开了南宁至昆明的直达列车.已知南宁至昆明的路程为828km ,普快列车与直快列车由昆明到南宁时,直快列车平均速度是普快的1.5倍,若直快列车比普快列车晚出发2 h 而先到4h ,求两列车的平均速度分别是多少?设普快列车的速度为x km/h ,则直快列车的速度为1.5xkm /h .依题意,所列方程正确的是( )828828.24 1.5A x x ++= 828828.24 1.5B x x +-=; 828828.24 1.5C x x --=; 828828.24 1.5D x x-+=5. 若⊙O 1和⊙O 2相切,且两圆的圆心距为9,则两圆的半径不可能...是( ) A .4和5 B .7和9 C .10和1 D .9和186.菱形的两条对角线长分别为6㎝、8㎝,则它的面积为( )2cm . (A)6 (B)12 (C)24 (D)487、从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是( )A .12B . 14C .18D .1168.如图为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )A .6(3+1)mB . 6 (3—1) mC . 12 (3+1) mD .12(3-1)m9.若二次函数2y ax c =+(0a ≠),当x 分别取x 1、x 2(x 1≠x 2)时,函数值相等;则当x 取x 1+x 2时,函数值为( ). (A)a +c (B)a -c (C)-c (D)c 10. 如图,已知△ABC 中,BC =8,BC 边上的高h=4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为( )二. 认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。

2018中考数学模拟试题含答案(精选5套)

2018中考数学模拟试题含答案(精选5套)

2018年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( ) A. ×10B. ×108C. ×109D. ×10104. 估计8-1的值在( ) A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形B. 矩形C. 正方形D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2+ 2x-1=(x - 1)2B. - x 2 +(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2+ 2x + 1圆弧 角 扇形 菱形 等腰梯形 A. B. C. D.(第9题图)(第7题图)11. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠ C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3)+(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……(第21题图)(第23题图)(参考数值:sin20°≈,cos20°≈,tan20°≈)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案哪种方案的总费用最低26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x (第24题图)轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形若存在,求出所有点P 的坐标;若不存在,请说明理由.2018年初三适应性检测参考答案与评分意见一、选择题说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. (或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =, …………1分∴这组样本数据的平均数是. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是,∴估计全校1200人参加活动次数的总体平均数是,有×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×=, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - = .答:树AB 的高度约为米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分 在Rt △MNP 中,有x 2= 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- B、0 D 、22、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是( )A、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、 C 、 D 、BDE左视图俯视图二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2018中考数学模拟考试含答案

2018中考数学模拟考试含答案

2018年山东省初中学业水平中考模拟考试(时间:120分钟 满分:120分)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 2.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上.3.选择题每小题选出答案后,将正确答案填写在第Ⅱ卷填空题上方的表格里,答在原题上无效.4. 填空题和解答题答案用黑色或蓝黑色墨水钢笔、中性笔或圆珠笔书写.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在第Ⅱ卷的表格里,每小题选对得3分,满分36分. 多选、不选、错选均记零分.) 1.下列运算中,正确的是( )A.623a a a =⨯B.5332n m 8-2mn -=)( C. 3x x -3x 2= D. 3m m 3m 23=÷2.一个圆柱形笔筒如图放置,它的左视图是( )A.B.C.D.3. 2018年第一季度潍坊市市级重大项目完成投资384亿元,占年度投资计划的24.4%,项目建设整体呈现“续建项目进度加快、新建项目开工率高、前期项目有新进展”等特点。

384亿元用科学记数法可表示为( )A. 9103.84⨯元 B. 10103.84⨯元 C. 101038.4⨯元 D. 11103.84⨯元4.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5. 已知21b 1-a 1=,则b-a ab 的值是( ) A.-2 B. 2 C. 21- D.216. 如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A.100B. 150C. 200D. 2507. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可描述为:如图所示,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE=1寸,AB=1尺(注:1尺=10寸)则直径CD 的长为( ) A .12寸 B .24寸 C .26寸 D .28寸8. 将下列多项式分解因式,结果中不含因式x ﹣1的是( ) A. x 2-x-2 B. x 2-2x+(2-x) C.2(x 2+1)-4x D.xy+x 2-x-y9.关于x 的分式方程4x-1a 1-x 2=+的解为非负数且不大于3,则所有满足条件的整数a 的值之和是( )A.-2B.0C.2D.410.用计算器依次按键,则计算器显示结果为( )(注414.12=,732.13=)A.300B. 450C. 600D.75011. 分式1-x 2-x 有意义,则x 的取值范围是( )A. 2x ≥且1x ≠B. 2x ≥C. 2x ≥或x<1D. x<112.我们给出如下定义:在平面直角坐标系xOy 中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如图,抛物线F 2是抛物线F 1的过顶抛物线,设F 1的顶点为A ,F 2的对称轴分别交F 1、F 2于点D 、B ,点C 是点A 关于直线BD 的对称点.若F 1 的表达式为y=x 2,点C 坐标是(2,0),则,F 2的表达式是( ) A. x 2x y 2+= B.x 2-x y 2= C. x 3-x y 2= D. x 3x y 2+=2018年潍坊市初中学业水平中考模拟考试第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分)13. 化简:2-x 1-x 1-x -232÷)(=___________ 14. 若关于x 的一元二次方程02)1(2)1(2=-++++k x k x k 有实数根,则k 的取值范围是___________15. 如图,在平面直角坐标系中,Rt △AOB 的斜边OA 在x 轴的正半轴上,∠OBA=90°,且tan ∠AOB=21,OB= 52,反比例函数y= xk的图象经过点B ,则反比例函数表达式是___________16.若9a 6-a 2+与4-b -a 2互为相反数,则a -b=___________17. 如图,点D 是线段BC 的中点,分别以点B ,C 为圆心,BC 长为半径画弧,两弧相交于点A ,连接AB ,AC ,AD ,点E 为AD 上一点,连接BE ,CE ;以点E 为圆心,ED 长为半径画弧,分别交BE ,CE 于点F ,G.若BC=4,∠EBD=30°,则图中阴影部分的面积是___________18. 我国古代数学家赵爽很早就创制了一幅“勾股圆方图”(也称“弦图”),并对勾股定理的证明进行了详细注释:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。

福建省厦门市2018年中考数学模拟卷

福建省厦门市2018年中考数学模拟卷

2018年福建省厦门市中考数学模拟试卷一.选择题(共10小题,满分40分)1.(4分)“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.某市预计投入31600辆共享单车服务于人们,31600用科学记数法表示为()A.3.16×104B.3.16×105C.3.16×106D.31.6×1052.(4分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(x+y)2=x2+y2B.(﹣xy2)3=﹣x3y6C.(﹣a)3÷a=﹣a2D.x6÷x3=x24.(4分)如图所示,四边形ABCD是平行四边形,已知AB=4,BC=3,则AC2+BD2的值是()A.45 B.50 C.55 D.605.(4分)有一个数值转换器,流程如下,当输入的x为256时,输出的y是()A.B.C.2 D.46.(4分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣47.(4分)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,198.(4分)图象的顶点为(﹣2,﹣2),且经过原点的二次函数的关系式是()A.y=(x+2)2﹣2 B.y=(x﹣2)2﹣2 C.y=2(x+2)2﹣2 D. y=2(x﹣2)2﹣2 9.(4分)身份证号码告诉我们很多信息,某人的身份证号码是××××××199704010012,其中前六位数字是此人所属的省(市、自治区)、市、县(市、区)的编码,1997、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是××××××200306224522的人的生日是()A.5月22日B.6月22日C.8月22日D.2月24日10.(4分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.(4分)计算:|﹣2|+(2018﹣π)0﹣cos60°=.12.(4分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠C OE=34°,则∠BOD= 度.13.(4分)若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N= 度.14.(4分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12S22(填“>”、“=”或“<”).15.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB 为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.16.(4分)如图,点D,E分别为△ABC的边AB,AC上,若△ADE≌△CFE.则下列结论①AD=CF;②AB∥CF;③AC⊥DF;④点E是AC的中点;不一定正确的是(填写序号).三.解答题(共9小题,满分86分)17.(8分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b ﹣1)﹣(a+2b)(﹣2b+a)+2b的值.18.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.19.(8分)“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.20.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点C和点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.21.(8分)已知:如图,在▱ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD 于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求四边形DEBF的周长和面积.22.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.23.如图,平面直角坐标系中,点A是直线y=x(a≠0)上一点,过点A作AB⊥x轴于点B(2,0),(1)若=,求∠AOB的度数;(2)若点C(4﹣a,b),且AC⊥OC,∠AOC=45°,OC与AB交于点D,求AB的长.24.如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.(1)求证:ED是⊙O的切线;(2)若⊙O半径为3,ED=4,求AB长.25.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ 与OQ的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin ∠ODC的值最大时,求点M的坐标.参考答案1.A.2.B.3.C.4.B.5.A.6.D.7.A.8.A.9.B10.A.11..12.56.13.1080°.14.= 15.3+.16.③.17.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.18.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.19.解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90°;(2)“了解”的人数为:60﹣15﹣30﹣10=5;补全条形统计图得:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.20.解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0),此时△MDB的周长为2+6.21.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF 即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2,∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=2,∴四边形DEBF的面积=BE×DG=2×2=4.22.解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+(2500﹣2000)×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.23.解:(1)∵点A是直线y=x(a≠0)上一点,AB⊥x轴于点B(2,0),若=,∴tan∠AOB=,即∠AOB=60°,(2)过点C作CE⊥x轴于点E,CF⊥AB于F.则四边形ECFB是矩形.∵∠ACO=∠FCE,∴∠ACF=∠OCE,∵AC=CO,∠AFC=∠CEO,∴△ACF≌△OCE,∴AF=OE=4﹣a,CF=CE=b,∴四边形ECFB是正方形,∴CF=CE=BE=2﹣a,∴b=2﹣a,∴AB=4﹣a+2﹣a=6﹣2a,令x=2代入y=,∴y=,∴A(2,)∴AB=,24.解:(1)方法一:连接OD,OE,CD,∵∠ADC=90°,∴∠CDB=90°,∵E是BC的中点,∴DE=CE,∴∠EDC=∠ECD,∵OC=OD,∴∠ODC=∠OCD,∴∠ODC+∠EDC=∠OCD+∠ECD=90°,即OD⊥ED,∴ED与⊙O相切.方法二:连接OE,OD,∵E是BC的中点,∠BDC=90°,∴DE=CE,又∵OD=OC,OE=OE,∴△ODE≌△OCE,∴∠ODE=∠OCE=90°,即OD⊥ED,∵D在⊙O上,∴ED与⊙O相切.(2)∵⊙O半径为3,即OC=3,ED=4,∴CE=ED=4,∴OE==5,∵E为BC中点,OC=OA,∴OE为△ACB的中位线,∴OE=AB,∴AB=10.答:AB长为10.25.解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<3,∴当m=2时,y最大值=,∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN==,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).。

初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)

初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)

初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。

在上,顶点C在。

的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。

以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。

2018年中考数学专题复习《全等三角形》模拟演练含答案

2018年中考数学专题复习《全等三角形》模拟演练含答案

中考专题复习模拟演练:全等三角形一、选择题1.如图,某同学将一块三角形玻璃打碎成三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带(1)去B. 带(2)去C. 带(3)去D. 带(1)(2)去2.已知:△ABC≌△DEF,AB=DE,∠A=70°,∠E=30°,则∠F的度数为()A. 80°B. 70°C. 30°D. 100°3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若AC=6 cm,则AE+DE等于( )A. 4 cmB. 5 cmC. 6 cmD. 7 cm4.如图,若△ABE≌△ACF,且AB=5,AE=3,则EC的长为()A. 2B. 3C. 5D. 2.55.如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有()A. 2对B. 3对C. 4对D. 5对6.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE 交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:①CE=BD=2;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有()A. 1个B. 2个C. 3个D. 4个7.如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数()A. 1对B. 2对C. 3对D. 4对8.如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A. 80°B. 70°C. 60°D. 50°9.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°10.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是( )A. B. C. D.二、填空题11.用直尺和圆规作一个角等于已知角得到两个角相等的依据是________12.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有________.(填序号)13.如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计)________ .14.如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于________15.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,得到如下结论:①AC⊥BD;②AO=CO= AC;③△ABD≌△CBD,其中正确的结论有________(填序号).16.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E 离开点A后,运动________秒时,△DEB与△BCA全等.17.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图7,则∠EAB是多少度?请你说出∠EAB= ________度18.如图(1)所示,已知AB=AC,D为∠BAC的角平分线上面的一点,连接BD、CD;如图(2)已知AB=AC,D、E、F为∠BAC的角平分线上面的三点,连接BD、CD、BE、CE、BF、CF;…,依次规律,第N个图形中有全等三角形的对数是________.三、解答题19.已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.20.如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0.5m/s,求这个人走了多长时间?21.如图1,等边△ABC中,D是AB上一点,以CD为边向上作等边△CDE,连结AE.(1)求证:AE∥BC;(2)如图2,若点D在AB的延长线上,其余条件均不变,(1)中结论是否成立?请说明理由.22.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.(1)证明:BE=CF;(2)如果AB=16,AC=10,求AE的长.23.将一块正方形和一块等腰直角三角形如图1摆放.(1)如果把图1中的△BCN绕点B逆时针旋转90°,得到图2,则∠GBM=________;(2)将△BEF绕点B旋转.①当M,N分别在AD,CD上(不与A,D,C重合)时,线段AM,MN,NC之间有一个不变的相等关系式,请你写出这个关系式:________;(不用证明)②当点M在AD的延长线上,点N在DC的延长线时(如图3),①中的关系式是否仍然成立?若成立,写出你的结论,并说明理由;若不成立,写出你认为成立的结论,并说明理由.24.已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.参考答案一、选择题C A C B C CD A B C二、填空题11.SSS12.①③④13.2114.60°或120°15.①②③16.0,2,6,817.3518.n(n+1)三、解答题19.证明:∵AE⊥AB,BC⊥AB,∴∠EAD=∠CBA=90°,在Rt△ADE和中Rt△ABC中,,∴Rt△ADE≌Rt△ABC(HL),∴∠EDA=∠C,又∵在Rt△ABC中,∠B=90°,∴∠CAB+∠C=90°∴∠CAB+∠EDA=90°,∴∠AFD=90°,∴ED⊥AC20.解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠ACM=90°,∴∠ACM=∠DMB,在△ACM和△BMD中,,∴△ACM≌△BMD(AAS),∴AC=BM=3m,∴他到达点M时,运动时间为3÷0.5=6(s),答:这个人从B点到M点运动了6s.21.(1)证明:∵∠BCA=∠DCE=60°,∴∠BCA﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,∵△ABC和△DCE是等边三角形,∴BC=AC,DC=EC,在△BDC与△ACE中,,∴△DBC≌△ACE(SAS),∴∠B=∠CAE,∴∠B=∠CAE=∠BAC=60°,∴∠CAE+∠BAC=∠BAE=120°,∴∠B+∠BAE=180,∴AE∥BC(2)成立,证明如下:∵△DBC≌△ACE,∴∠BDC=∠AEC,在△DMC和△AME中,∵∠BDC=∠AEC(已证),∴∠DMC=∠EMA,∴△DMC∽△EMA,∴∠EAM=∠DCM=60°,∴∠EAC=120°,又∵∠DCA+∠CAE=∠DCE+∠ECA+CEA=180°+∠ECA,∴AE∥BC22.(1)证明:如图,连接BD、CD.∵DG⊥BC,BG=GC,∴DB=DC,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB和Rt△DFC中,,∴△DEB≌△DFC,∴BE=CF.(2)解:在Rt△ADE和rT△ADF中,,∴△ADE≌△ADF,∴AE=AF,∴AB﹣BE=AC+CF,∴2AE=AB﹣AC=16﹣10,∴AE=323.(1)45°(2)MN=AM+CN24.(1)解:全等.∵四边形ABCD是矩形,所以∠A=∠B=∠C=∠ADC=90°,AB=CD,由题意知:∠A=∠A1,∠B=∠A1DF=90°,CD=A1D,所以∠A1=∠C=90°,∠CDF+∠EDF=90°,所以∠A1DE=∠CDF,所以△EDA1≌△FDC(ASA)(2)解:△B1DG和△EA1G全等.与△B1DG相似,设FC= ,则B1F=BF= ,B1C= DC=1,△FCB所以,所以,所以△FCB1与△B1DG相似,相似比为4:3(3)解:△FCB1与△B1DG全等.设,则有,,在直角中,可得,整理得,解得 (另一解舍去),所以,当B1C= 时,△FCB1与△B1DG全等.。

2018年中考数学模拟试卷及答案(共五套)

2018年中考数学模拟试卷及答案(共五套)

2018年中考数学模拟试卷及答案(共五套)2018年中考数学模拟试卷及答案(一)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列四个图形中,是轴对称图形但不是中心对称图形的有( )图M2-12.下列运算正确的是( )A .(x -y)2=x 2-y 2B .x 2·x 4=x 6C.(-3)2=-3 D .(2x 2)3=6x 63.下列二次根式中,与3是同类二次根式的是( ) A.13B.18C.24D.0.3 4.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n ,则n 等于( )A .10B .11C .12D .13图M2-25.如图M2-2,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A.34 B.43 C.35 D.456.把8a 3-8a 2+2a 进行因式分解,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)27.不等式组⎩⎨⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是()图M2-3图M2-48.已知菱形OABC 在平面直角坐标系的位置如图M2-4所示,顶点A(5,0),OB =4 5,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.已知下列命题:①若||a =-a ,则a≤0;②若a>||b ,则a 2>b 2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.若x =-3是关于x 的一元二次方程x 2+2ax +a 2=0的一个根,则a 的值为( ) A .4 B .-3 C .3 D .-4图M2-512.二次函数y =ax 2+bx +c 的图象如图M2-5所示,对称轴是直线x =-1,有以下结论:①abc>0;②4ac<b 2;③2a+b =0;④a-b +c>2.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分)13.计算:2cos45°-()π+10+14+⎝ ⎛⎭⎪⎫12-1=________. 14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别.现从袋中取走若干个白球,并放入相同数量的红球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是58,则取走的白球为________个.15.化简:(a2a-3+93-a)÷a+3a=________.16.如图M2-6,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.图M2-617.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图M2-7表示,当甲车出发________h时,两车相距350 km.图M2-718.若关于x的分式方程x+mx-2+2m2-x=3的解为正实数,则实数m的取值范围是________.19.如图M2-8,点A在双曲线y=5x上,点B在双曲线y=8x上,且AB∥x轴,则△OAB的面积等于________.图M2-820.如图M2-9,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF 交AC于点M,连接DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ︰S△BCM=2︰3.其中所有正确的结论的序号是________.图M2-9三、解答题(共60分)21.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s甲2=0.8、s乙2=0.4、s丙2=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.(8分)如图M2-11所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D 处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)图M2-1123.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?24.(10分)如图M2-12,在△ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 5,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.图M2-1225.(12分)如图M2-13①,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图M2-13②,若点E、F分别是CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请给出判断并予以证明;(3)如图M2-13③,若点E、F分别是BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图M2-1326.(12分)如图M2-14,在平面直角坐标系中,已知抛物线y=32x2+bx+c与x轴交于A(-1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=-x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M′,点H的坐标为(1,0).若四边形OM′NH的面积为53.求点H到OM′的距离d的值.图M2-14参考答案1.B 2.B 3.A 4.B 5.D 6.C 7.A8.D [解析] 如图,连接AD ,交OB 于点P ,P 即为所求的使CP +DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF⊥OA,垂足为F.∵点C 关于OB 的对称点是点A , ∴CP =AP ,∴CP +DP 的最小值即为AD 的长度; ∵四边形OABC 是菱形,OB =4 5, ∴OE =12OB =2 5,AC ⊥OB.又∵A(5,0), ∴在Rt △AEO 中,AE =OA 2-OE 2=52-(2 5)2=5; 易知Rt △OEF ∽Rt △OAE , ∴OE OA =EF AE, ∴EF =OE·AE OA =2 5×55=2,∴OF =OE 2-EF 2=(2 5)2-22=4. ∴E 点坐标为(4,2).设直线OE 的解析式为:y =kx ,将E(4,2)的坐标代入,得y =12x ,设直线AD 的解析式为:y =kx +b ,将A(5,0),D(0,1)的坐标代入,得y =-15x +1,⎩⎪⎨⎪⎧y =12x ,y =-15x +1,解得⎩⎪⎨⎪⎧x =107,y =57.∴点P 的坐标为⎝ ⎛⎭⎪⎫107,57.9.D 10.A 11.C12.C [解析] ①a<0,b<0,c>0,故正确,②Δ=b 2-4ac>0,故正确,③x =-1,即-b2a=-1,b =2a ,故错误.④当x =-1时,a -b +c>2.故正确.13.2+3214.715.a [解析] 先算小括号,再算除法.原式=(a 2a -3-9a -3)÷a +3a =a 2-9a -3÷a +3a =(a +3)·aa +3=a.故答案为a. 16.39217.32[解析] 由题意,得AC =BC =240 km ,甲车的速度为240÷4=60(km/h),乙车的速度为240÷3=80(km/h). 设甲车出发x 小时甲、乙两车相距350 km ,由题意,得 60x +80(x -1)+350=240×2,解得x =32,即甲车出发32h 时,两车相距350 km.故答案为32.18.m<6且m≠219.32 [解析] 设点A 的坐标为(a ,5a ).∵AB ∥x 轴, ∴点B 的纵坐标为5a.将y =5a 代入y =8x ,求得x =8a 5.∴AB =8a 5-a =3a 5.∴S △OAB =12·3a 5·5a =32.故答案为3 2 .20.①③④21.[解析] (1)众数是一组数据中出现次数最多的数,观察表格可以知道甲运动员测试成绩的众数是7分.中位数是一组数据按从大到小或从小到大的顺序排列,最中间的一个或两个数的平均数,观察表格并将数据按从小到大排列得5,6,7,7,7,7,7,8,8,8,可以知道甲运动员测试成绩的中位数是7分.(2)经计算x甲=7分,x乙=7分,x丙=6.3分,根据题意不难判断.(3)画出树状图,即可解决问题.解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)选乙运动员更合适,理由:经计算x甲=7分,x乙=7分,x丙=6.3分,∵x甲=x乙>x丙,s丙2>s甲2>s乙2,∴选乙运动员更合适.(3)画树状图如图所示.由树状图知共有8种等可能的结果,回到甲手中的结果有2种,故P(回到甲手中)=28=14.22.解:过点D作DM⊥EC于点M,DN⊥BC于点N,设BC=h,在直角三角形DMA中,∵AD=6,∠DAE=30°,∴DM=3,AM=3 3,则CN=3,BN=h-3.在直角三角形BDN中,∵∠BDN=30°,∴DN=3BN=3(h-3);在直角三角形ABC中,∵∠BAC=48°,∴AC=htan48°,∵AM+AC=DN,∴3 3+htan48°=3(h-3),解之得h≈13.答:大树的高度约为13米.23.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.24.解:(1)证明:连接AN.∵AC是直径,∴∠ANC=90°.∵AB=AC,∴∠CAB=2∠CAN.∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴直线CP是⊙O的切线.(2)∵BC=2 5,∴CN= 5. 过B点作BD⊥AC交AC于点D.∵sin∠BCP=sin∠CAN=5 5,∴AC=5.∴AN=2 5.∵AC·BD=BC·AN,∴5·BD=2 5·2 5.∴BD=4.故点B到AC的距离为4.(3)∵AB=AC=5,BD=4,∴AD=3.∴C△ADB C△ACP =ADAC=35=12C△ACP,∴C△ACP=20.25.解:(1)相等平行[解析] ∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(2)成立.证明:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(3)仍然成立.[解析] 证明方法同上.26.[解析] (1)由已知点的坐标,利用待定系数法求得抛物线的解析式为y=32x2-32x-3;(2)①利用待定系数法求出直线BC 解析式为y =32x -3,求出E 点坐标,将E 点坐标代入直线解析式y =-x +n中求出n =-2;②利用一次函数与二次函数解析式求出交点D 的坐标,再利用平行线的性质得角相等证明两个三角形全等;(3)先证明四边形OM′NH 是平行四边形,由面积公式,根据点M 、N 关于直线x =12对称,点M 与点M′关于y 轴对称,求解点M 、M′的坐标,最后由勾股定理和平行四边形面积公式求得d =5 4141. 解:(1)∵抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,∴⎩⎨⎧32-b +c =0,6+2b +c =0,解得⎩⎨⎧b =-32,c =-3,∴该抛物线的解析式为y =32x 2-32x -3.(2)①过点E 作EE′⊥x 轴于点E′. ∴EE ′∥OC , ∴BE′OE′=BE CE, ∵BE =4CE , ∴BE ′=4OE′.设点E 坐标为(x ,y),OE ′=x ,BE ′=4x. ∵点B 坐标为(2,0),∴OB =2,∴x +4x =2,∴x =25.∵抛物线y =32x 2-32x -3与y 轴交于点C ,∴当x =0时,y =-3,即C(0,-3).设直线BC 的解析式为y =kx +b 1. ∵B(2,0),C(0,-3), ∴⎩⎨⎧2k +b 1=0,b 1=-3,解得⎩⎨⎧k =32,b 1=-3,∴直线BC 的解析式为y =32x -3.∵当x =25时,y =-125,∴E(25,-125).∵点E 在直线y =-x +n 上, ∴-25+n =-125,得n =-2.②全等;理由如下:∵直线EF 的解析式为y =-x -2, ∴当y =0时,x =-2,即F(-2,0),OF =2. ∵A(-1,0),∴OA =1,AF =1. 由⎩⎨⎧y =32x 2-32x -3,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-23,y 1=-43,和⎩⎨⎧x 2=1,y 2=-3.∵点D 在第四象限,∴D(1,-3). ∵点C(0,-3), ∴CD ∥x 轴,CD =1,∴∠AFG =∠CDG,∠FAG =∠DCG, 又∵CD=AF =1, ∴△AGF ≌△CGD. (3)∵-b 2a =12.∴该抛物线的对称轴是直线x =12.∵直线y =m 与该抛物线交于M 、N 两点, ∴点M 、N 关于直线x =12对称,设N(t ,m),则M(1-t ,m),∵点M 与点M′关于y 轴对称, ∴M ′(t -1,m),∴点M′在直线y =m 上,∴M ′N ∥x 轴,M ′N =t -(t -1)=1,∵H(1,0),∴OH =1, ∴OH =M′N,∴四边形OM′NH 是平行四边形, 设直线y =m 与y 轴交于点P ,∵S ▱OM ′NH =53,即OH·OP=OH·m=53,得m =53,∴当32x 2-32x -3=53时,解得x 1=-43,x 2=73,∴点M 的坐标为(-43,53),M ′(43,53),∴OP =53,PM ′=43,在Rt △OPM ′中,∠OPM ′=90°, ∴OM ′=OP 2+PM′2=413.∵S ▱OM ′NH =53,∴OM ′·d =53,d =5 4141.2018年中考数学模拟试卷及答案(二)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.-2的相反数是( ) A .- 2 B.22 C. 2 D .-222.函数y =x -2x +3中自变量x 的取值范围是( ) A .x ≠-3 B .x≥2 C .x >2 D .x ≠03.统计显示,2016年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106 4.下列运算正确的是( ) A.a2+a3=a5B.(-2a2)3÷(a2)2=-16a4C.3a-1=13aD.(2 3a2-3a)2÷3a2=4a2-4a+1图M1-15.如图M1-1,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8 cm,CD=3 cm,则圆O的半径为( )A.256cm B.5 cmC.4 cm D.196cm6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同的概率是( )A.34B.15C.35D.257.方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠28.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.3 32C.32D.不能确定9.下列命题中,原命题与逆命题均为真命题的个数是( ) ①若a=b,则a2=b2;②若x >0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形. A .1个 B .2个 C .3个 D .4个 10.如图M1-2,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,将Rt △ABC 绕点B 旋转90°至△DBE 的位置,连接EC 交BD 于F ,则CF∶FE 的值是( )图M1-2A .3∶4B .3∶5C .4∶3D .5∶311.定义新运算,a*b =a(1-b),若a 、b 是方程x 2-x +14m =0(m<0)的两根,则b*b -a*a 的值为( )A .0B .1C .2D .与m 有关方程图M1-312.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图M1-3所示,点M 在y =ax 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD⊥y 轴于点D ,交y =2x 的图象于点B ,当点M 在y =ax 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分)13.计算:8-312+2=________.14.不等式组⎩⎨⎧x -1≤2-2x ,2x 3>x -12的解集为________.图M1-415.如图M1-4,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC =3,点P 到OA 的距离为________. 16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5∶2∶3的比例来计算平均成绩,则小亮的平均成绩是________分.图M1-517.如图M1-5,Rt △A ′BC ′是由Rt △ABC 绕B 点顺时针旋转而成的,且点A ,B ,C ′在同一条直线上,在Rt △ABC 中,若∠C=90°,BC =2,AB =4,则斜边AB 旋转到A′B 所扫过的扇形面积为________.18.化简x x 2+2x +1÷(1-1x +1)=________.19.如图M1-6,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值为________.M1-6M1-720.如图M1-7,CB =CA ,∠ACB =90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG⊥CA,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB ∶S四边形CBFG =1∶2;③∠ABC=∠ABF;④AD 2=FQ ·AC ,其中所有正确结论的序号是________.三、解答题(共60分)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如图M1-8两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是________,E组人数占参赛选手的百分比是________;(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.图M1-822.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图M1-9,老师测得升旗台前斜坡FC的坡比为iFC=1∶10(即EF∶CE=1∶10),学生小明站在离升旗台水平距离为35m(即CE=35 m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=37,升旗台高AF=1 m,小明身高CD=1.6 m,请帮小明计算出旗杆AB的高度.23.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),设装运甲种水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24.(10分)如图M1-10,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.图M1-1025.(12分)提出问题:(1)如图M1-11①,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH.类比探究:(2)如图②,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上.若EF⊥HG 于点O.探究线段EF与HG的数量关系,并说明理由.综合运用:(3)在(2)问条件下,HF∥GE,如图③所示,已知BE=EC=2,OE=2OF,求图中阴影部分的面积.图-1126.(12分)如图M1-12,已知抛物线y =ax 2+bx +c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E 使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.图M1-12参考答案1.C 2.B 3.C 4.D 5.A 6.D7.B [解析] 因为方程有两个实数根,所以⎩⎨⎧m -2≠0,(-3-m )2-4×14(m -2)≥0,解得m≤52且m≠2.故选B.8.B [解析] 如图,△ABC是等边三角形,AB=3,点P是△ABC内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于H.则BH=32,AH=AB2-BH2=3 32.连接PA,PB,PC,则S△PAB +S△PBC+S△PCA=S△ABC.∴12AB·PD+12BC·PE+12CA·PF=12BC·AH.∴PD+PE+PF=AH=3 32.故选B.9.A 10.A11.A [解析] b*b-a*a=b(1-b)-a(1-a)=b-b2-a+a2,因为a,b为方程x2-x+14m=0的两根,所以a2-a+14m=0,化简得a2-a=-14m,同理b2-b=-14m,代入上式得原式=-(b2-b)+a2-a=14m+(-14m)=0.12.D13.32214.-3<x≤115.3 [解析] 如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为3.16.8317.16π318.1x+119.320.①②③④ [解析] ∵∠G=∠C =∠FAD=90°, ∴∠CAD =∠AFG. ∵AD =AF ,∴△FGA ≌△ACD. ∴AC =FG , ①正确.∵FG =AC =BC ,FG ∥BC ,∠C =90°, ∴四边形CBFG 为矩形, ∴S △FAB =12FB·FG=12S 四边形CBFG ,②正确.∵CA =CB ,∠C =∠CBF=90°, ∴∠ABC =∠ABF=45°, 故③正确.∵∠FQE =∠DQB=∠ADC,∠E =∠C=90°, ∴△ACD ∽△FEQ ,∴AC ∶AD =FE∶FQ, ∴AD ·FE =AD 2=FQ·AC, ④正确.21.[解析] (1)由A 组或D 组对应频数和百分比可求选手总数为40,进而求出B 组频数;(2)C 组对应的圆心角=1240×360°,E 组人数占参赛选手的百分比是640×100%;(3)用列表或画树状图表示出所有可能的结果,注意选取不放回.解:(1)40,补全频数分布直方图如图;(2)108°,15%;(3)两名男生分别用A 1、A 2表示,两名女生分别用B 1、B 2表示.根据题意可画出如下树状图:或列表如下:的结果有8种.∴选中一名男生和一名女生的概率是812=23.22.解:∵i FC =1∶10,CE =35 m , EF =3510=3.5(m). 过点D 作BE 的垂线交BE 于点G.在Rt △BGD 中 ,∵tan α=37,DG =CE =35 m ,∴BG =15 m.又∵CD=1.6 m ,CD =EG , ∴FG =3.5-1.6=1.9(m). 又∵AF=1 m ,∴AB =BG -AF -FG =15-1-1.9=12.1(m).23.解:(1)设装运乙、丙两种水果的汽车分别为x 辆,y 辆,由题意得 ⎩⎨⎧x +y =8,2x +3y =22,∴⎩⎨⎧x =2,y =6.答:装运乙种水果有2辆车,装运丙种水果有6辆车. (备注:也可列一元一次方程)(2)设装运乙、丙两种水果的车分别为a 辆,b 辆,由题意得 ⎩⎨⎧m +a +b =20,4m +2a +3b =72,∴⎩⎨⎧a =m -12,b =32-2m. (3)设总利润为w 千元,w =4×5m+2×7(m-12)+4×3(32-2m) =10m +216,∵⎩⎨⎧m≥1,m -12≥1,32-2m≥1,∴13≤m ≤15.5. ∵m 为正整数, ∴m =13,14,15.在w=10m+216中,w随m的增大而增大,当m=15时,w最大=366千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.24.解:(1)证明:连接OD.∵BC与⊙O相切于点D,∴OD⊥BC.又∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA.∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH.理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x.∵OH⊥AD,∴AD=2DH=2(1+x).∵∠DFG=∠DA F,∠FDG=∠ADF,∴△DFG∽△DAF,∴DFAD=DGDF,∴1+x2(1+x)=11+x,∴x=1.∴DF=2,AD=4.∵AF为直径,∴∠ADF=90°,∴AF=DF2+AD2=22+42=2 5,∴⊙的半径为 5.25.解:(1)证明:如图①,在正方形ABCD中,AD=AB,∠B=90°,∴∠1+∠3=90°,∵AE⊥DH,∴∠1+∠2=90°.∴∠2=∠3.∴△ADH≌△BAE(AAS).∴AE=DH.(2)相等,理由如下:如图②,过点D作DH′∥GH交AB于H′,过点A作AE′∥FE交BC于E′,AE′分别交DH′,GH于点S,T,DH′交EF于点R.∴四边形ORST为平行四边形.又∵EF⊥HG,∴四边形ORST为矩形,∴∠RST=90°.由(1)可知,DH′=AE′.∵AF∥EE′,∴四边形AE′EF是平行四边形,∴EF=AE′.同理,HG=DH′,∴EF=GH.(3)如图③,延长FH,CB交于点P,过点F作FQ⊥BC于点Q.∵AD∥BC,∴∠AFH=∠P,∵HF∥GE,∴∠GEC=∠P,∴∠AFH =∠GEC.又∵∠A=∠C=90°,∴△AFH ∽△CEG. ∴AF CE =HF EG =OF OE =OF 2OF =12. ∵BE =EC =2,∴AF =1, ∴BQ =AF =1,QE =1.设OF =x ,∴OE =2OF =2x ,∴EF =3x ,∴HG =EF =3x. ∵HF ∥GE ,∴OH OG =OF OE =12,∴OH =OF =x ,OG =OE =2x.在Rt △EFQ 中,∵QF 2+QE 2=EF 2, ∴42+12=(3x)2,解得x =173. ∴S 阴影=S △HOF +S △EOG =12x 2+12(2x)2=52x 2=52×(173)2=8518.26.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y =ax 2+bx +2, 将A(-1,0),B(4,0)代入,得 ⎩⎨⎧a -b +2=0,16a +4b +2=0, 解得⎩⎪⎨⎪⎧a =-12,b =32.∴该抛物线的解析式为y =-12x 2+32x +2.(2)存在.由图可知,以A ,B 为直角顶点的△ABE 不存在,所以△ABE 只可能是以点E 为直角顶点的三角形.在Rt △BOC 中,OC =2,OB =4, ∴BC =22+42=2 5.在Rt △BOC 中,设BC 边上的高为h , 则12BC×h=12×2×4,∴h =455.∵△BEA ∽△COB ,设E 点坐标为(x ,y), ∴AB BC =|y|455,∴y =±2,当y =-2时,不合题意舍去, ∴E 点坐标为(0,2),(3,2).(3)如图,连接AC ,作DE⊥x 轴于点E ,作BF⊥AD 于点F ,∴∠BED =∠BFD=∠AFB=90°. 设BC 的解析式为y =kx +b , 由图像,得⎩⎨⎧2=b ,0=4k +b ,∴⎩⎨⎧k =-12,b =2.∴y BC =-12x +2.由BC∥AD,设AD 的解析式为y =-12x +n ,由图象,得0=-12×(-1)+n ,∴n =-12,y AD =-12x -12,∴-12x 2+32x +2=-12x -12,解得:x 1=-1,x 2=5.∴D(-1,0)与A 重合,舍去, ∴D(5,-3).∵DE ⊥x 轴,∴DE =3,OE =5. 由勾股定理,得BD =10. ∵A(-1,0),B(4,0),C(0,2), ∴OA =1,OB =4,OC =2, ∴AB =5.在Rt△AOC,Rt△BOC中,由勾股定理,得AC=5,BC=2 5,∴AC2=5,BC2=20,AB2=25,∴AB2=AC2+BC2,∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=5,在Rt△BFD中,由勾股定理,得DF=5,∴DF=BF,∴∠ADB=45°.2018年中考数学模拟试卷及答案(三)[满分:120分考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列各实数中最小的是( )A.- 2 B.-12 C.0 D.|-1|2.下列等式一定成立的是( )A.a2·a5=a10 B.a+b=a+ bC.(-a3)4=a12 D.a2=a3.估计7+1的值( )A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间4.3tan30°的值等于( )A. 3 B.3 3 C.33D.325.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A.13B.16C.518D.566.将下列多项式分解,结果中不含有因式a+1的是( ) A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+17.正六边形的边心距为3,则该正六边形的边长是( )A. 3 B .2 C .3 D .2 38.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1)9.化简a 2-b 2ab -ab -b 2ab -a 2等于( )A.b aB.ab C .-b a D .-a b10.如图M3-1,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:图M3-1①DE BC =12;②S △DOE S △COB=12; ③AD AB =OE OB;④S △ODE S △ADE=13. 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 11.已知下列命题:①若a>0,b>0,则a +b>0; ②若a≠b,则a 2≠b 2;③角平分线上的点到角两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个12.如图M3-2是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①c>0;②若点B(-32,y1),C(-52,y2)为函数图象上的两点,则y1<y2;③2a-b=0;④4ac-b24a<0.其中,正确结论的个数是( )图M3-2 A.1 B.2C.3 D.4二、填空题(每小题3分,共24分)13.计算:(-5)0+12cos30°-(13)-1=________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.如图M3-3,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.图M3-316.如图M3-4,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________图M3-417.如图M3-5,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.图M3-518.若关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2满足x1+x2=-x1·x2,则k=________.19.如图M3-6,在平面直角坐标系中,矩形ABCD的边AB∶BC=3∶2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.图M3-620.如图M3-7,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF =2S△ABE.其中正确结论有________.图M3-7三、解答题(共60分)21.(8分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到下面频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24 ℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.图M3-822.(8分)如图M3-9,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E 在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)23.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1=⎩⎨⎧k1x(0≤x<600),k2x+b(600≤x≤1000),其图象如图M3-10所示;栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000 m2空地的绿化总费用为W(元),请写出W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用W的最小值.图M3-1024.(10分)如图M3-11,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC 的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.图M3-1125.(12分)如图M3-12,在△ABC中,AB=AC,AD⊥BC于点D,BC=10 cm,AD=8 cm,点P从点B出发,在线段BC上以每秒3 cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm的速度沿DA方向匀速平移,分别交AB,AC,AD于点E,F,H.当点P到达点C时,点P与直线m同时停止运动,设运动时间为t(t>0)秒.(1)当t=2时,连接DE,DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时t的值,若不存在,请说明理由.图M3-1226.(12分)如图M3-13,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.图M3-13参考答案1.A 2.C 3.C 4.A 5.A6.C [解析] A:原式=(a+1)(a-1),不符合题意;B:原式=a(a+1),不符合题意;C:原式=(a+2)(a-1),符合题意;228.D [解析] ∵△A 1OB 1是将△AOB 绕原点O 顺时针旋转180°后得到的图形, ∴点B 和点B 1关于原点对称, ∵点B 的坐标为(2,1),∴点B 1的坐标为(-2,-1). 故选D.9.B 10.C 11.B 12.B 13.114.4.4 [解析] 这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:15[(3-5)2+(3-5)2+(4-5)2+(7-5)2+(8-5)2]=4.4.15.216.3π [解析] ∵△ABC 是等边三角形, ∴∠C =60°,根据圆周角定理可得∠AOB=2∠C=120°, ∴阴影部分的面积是120π·32360=3π,故答案为:3π. 17.x>3 18.219.(2,7) [解析] 过点D 作DF⊥x 轴于点F ,则∠AOB=∠DFA=90°, ∴∠OAB +∠ABO=90°, ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC , ∴∠OAB +∠DAF=90°, ∴∠ABO =∠DAF, ∴△AOB ∽△DFA ,∴OA ∶DF =OB∶AF=AB∶AD,∵AB ∶BC =3∶2,点A(3,0),B(0,6), ∴AB ∶AD =3∶2,OA =3,OB =6, ∴DF =2,AF =4, ∴OF =OA +AF =7,∴点D 的坐标为(7,2),∴反比例函数的解析式为y =14x .①点C 的坐标为(4,8),设直线BC 的解析式为y =kx +b , 则⎩⎨⎧b =6,4k +b =8,解得:⎩⎨⎧k =12,b =6,联立①②得:⎩⎨⎧x =2,y =7或⎩⎨⎧x =-14,y =-1(舍去),∴点E 的坐标为(2,7).20.①②③⑤21.解:(1)这30天最高气温的平均数=14×8+18×6+22×10+26×2+30×430=20.4 (℃),中位数为22 ℃. (2)1630×90=48(天). 答:估计该地这个季度中最高气温超过(1)中平均数的天数为48天. (3)P =1230=25.22.解:(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°, ∴DE =12DC =2米.(2)过D 作DF⊥AB,交AB 于点F , ∵∠BFD =90°,∠BDF =45°, ∴∠DBF =45°,即△BFD 为等腰直角三角形, 设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米, 在Rt △ABC 中,∠ABC =30°, ∴BC =AB cos30°=x +232=2x +43=3(2x +4)3米,BD =2BF =2x 米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°, 在Rt △BCD 中,根据勾股定理得:BD 2=BC 2+CD 2, 即2x 2=(2x +4)23+16,解得:x =4+4 3或x =4-4 3(舍去), 则AB =(6+4 3)米.23.[解析] (1)利用待定系数法求解;(2)分0≤x<600和600≤x≤1000两种情况求出W 关于x 的函数关系式,分别求出两种情况下的最大值并进行比较;(3)先根据不等关系求出x 的取值范围,再结∵-0.01<0,W =-0.01(x -500)2+32500, ∴当x =500时,W 取最大值为32500元.当600≤x≤1000时,W =20x +6000+(-0.01x 2-20x +30000)=-0.01x 2+36000. ∵-0.01<0,∴当600≤x≤1000时,W 随x 的增大而减小. ∴当x =600时,W 取最大值为32400元. ∵32400<32500,∴W 的最大值为32500元. (3)由题意,1000-x≥100,解得x≤900. 又x≥700,∴700≤x ≤900.∵当700≤x≤900时,W 随x 的增大而减小. ∴当x =900时,W 取最小值为27900元. 24.解:(1)证明:∵∠ABC =90°, ∴∠ABD =90°-∠DBC, 由题意知:DE 是直径, ∴∠DBE =90°,∴∠E =90°-∠BDE, ∵BC =CD ,∴∠DBC =∠BDE, ∴∠ABD =∠E, ∵∠A =∠A, ∴△ABD ∽△AEB. (2)∵AB BC =43, ∴设AB =4k ,则BC =3k , ∴AC =AB 2+BC 2=5k , ∵BC =CD =3k ,∴AD =AC -CD =5k -3k =2k , 由(1)可知:△ABD∽△AEB, ∴AB AE =AD AB =BD BE, ∴AB 2=AD·AE, ∴(4k)2=2kAE , ∴AE =8k , 在Rt △DBE 中, tanE =BD BE =AB AE =4k 8k =12.(3)过点F 作FM⊥AE 于点M ,设AB =4x ,BC =3x ,由(2)可知:AE =8x ,AD =2x , ∴DE =AE -AD =6x , ∵AF 平分∠BAC, 可证BF EF =AB AE ,∴BF EF =4x 8x =12, ∵tanE =12,∴cosE =2 55,sinE =55,∴BE DE =2 55,∴BE =2 55DE =12 55x , ∴EF =23BE =8 55x ,∵sinE =MF EF =55,∴MF =85x ,∵tanE =12,∴ME =2MF =165x ,∴AM =AE -ME =245x , ∵AF 2=AM 2+MF 2, ∴4=(245x)2+(85x)2,解得x =108, ∴⊙C 的半径为3x =3 108. 25.解:(1)证明:当t =2时,DH =AH =4 cm , ∵AD ⊥BC ,AD ⊥EF ,∴EF ∥BC , ∴EH =12BD ,FH =12CD.又∵AB=AC ,AD ⊥BC ,∴BD =CD ,∴EH =FH ,∴EF 与AD 互相垂直平分, ∴四边形AEDF 为菱形.(2)依题意得DH =2t ,AH =8-2t ,BC =10 cm ,AD =8 cm , 由EF∥BC 知△AEF∽△ABC,即8-2t 8=EF10, 解得EF =10-52t ,∴S △PEF =12⎝ ⎛⎭⎪⎫10-52t ·2t=-52t 2+10t =-52(t -2)2+10,即当t =2秒时,△PEF 的面积存在最大值10 cm 2,此时BP =3×2=6(cm). (3)过E ,F 分别作EN⊥BC 于N ,FM ⊥BC 于M ,易知EF =MN =10-52t ,EN =FM ,由AB =AC 可知BN =CM =10-⎝⎛⎭⎪⎫10-52t 2=54t.在Rt △ACD 和Rt △FCM 中,由tanC =AD CD =FM CM ,即FM 54t =85, 解得FM =EN =2t ,又由BP =3t 知CP =10-3t , PN =3t -54t =74t ,PM =10-3t -54t =10-174t ,则EP 2=(2t)2+⎝ ⎛⎭⎪⎫74t 2=11316t 2,FP 2=(2t)2+⎝⎛⎭⎪⎫10-174t 2=353t 216-85t +100,EF 2=⎝⎛⎭⎪⎫10-52t 2=254t 2-50t +100.分三种情况讨论:①若∠EPF =90°,则EP 2+PF 2=EF 2,即11316t 2+35316t 2-85t +100=254t 2-50t +100,解得t 1=280183,t 2=0(舍去).②若∠EFP=90°,则EF 2+FP 2=EP 2,即254t 2-50t +100+35316t 2-85t +100=11316t 2,40。

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018 年江苏省扬州市江都区中考数学模拟试卷(4 月份)一.选择题(共 8 小题,满分 24 分)1. ﹣3的倒数是()A .3B .C .﹣D .﹣32.下列图形中,既是中心对称,又是轴对称的是()A. B . C . D .3. 下列计算中,正确的是( )A .(2a )3=2a 3B .a 3+a 2=a 5C .a 8÷a 4=a 2D .(a 2)3=a 64. 如图所示几何体的主视图是()A.B .C .D .5. 某小组8名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,众数是4 B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.5 6.如图,⊙O中,弦AB 、CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B等 于()劳动时间(小时)3 3.54 4.5 人数1132A.30°B.35°C.40°D.50°7.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是08.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+3二.填空题(共 10 小题,满分 30 分,每小题 3 分)9..亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.10.在函数中,自变量x的取值范围是.11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.12.若两个关于x,y的二元一次方程组与有相同的解,则mn的值为.13.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.15.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为.16.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k 为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为.17.如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点B的坐标为(﹣,0),M是圆上一点,∠BMO=120°.⊙C圆心C的坐标是.18.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是.三.解答题(共 10 小题,满分 96 分)19.(8分)(1)计算:﹣22+| ﹣4|+()﹣1+2tan60°(2)求不等式组的解集. 20.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0 的解.21.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(10分)在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?24.(10分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点B的坐标;(2)把△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O为位似中心,相似比为2,把△A1B1C1放大为原来的2倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;(4)请在x轴上求作一点P,使△PBB1的周长最小,并写出点P的坐标.25.(10分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.26.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若 B、C 都在抛物线上,求 m 的值;②若点 C 在第四象限,当 AC2 的值最小时,求 m 的值.27.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y 轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE 交 AB 于点 D,交 AC 于点 E,连接 CD,如图 2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段 AD 的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段 DE 的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.3.解:A、(2a)3=8a3,故本选项错误;B、a3+a2 不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.4.解:几何体的主视图为,故选:B.5.解:这组数据中4出现的次数最多,众数为4,∵共有 7 个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.7.解:根据图象可得k>0,b<0,所以kb<0,因为△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb,所以△>0,所以方程有两个不相等的实数根.故选:A.8.解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.二.填空题(共 10 小题,满分 30 分,每小题 3 分)9.解:44000000=4.4×107,故答案为:4.4×107.10.解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1 且x≠﹣2.11.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得 n=8.则这个多边形的边数是八.12.解:联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:6﹣y=6,解得:y=0,则,将x=2、y=0代入,得:,解得:,则 mn=6,故答案为:6.13.解:侧面积=4×4π÷2=8π.故答案为8π.14.解:∵AE∥BD,∠1=1 30°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°15.解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为:12.16.解:∵正方形ADEF的面积为4,∴正方形 ADEF 的边长为 2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.17.解:连接AB,OC,∵∠AOB=90°,∴AB 为⊙C 的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,∵B(﹣,0),∴BD=OD=在Rt△COD中.CD=OD•tan30°=,∴C(﹣,),故答案为:C(﹣,).18.解:设AC=x,BC=4﹣x,∵△CDA,△BCE 均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2= x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:220.解:= =三.解答题(共 10 小题,满分 96 分) 19.解:(1)原式=﹣4+4﹣2+3+2=3;(2)由①得:x <3;由②得:x≥﹣1;所以不等式组的解集是:﹣1≤x<3.= =,由 a 2+a ﹣6=0,得 a=﹣3 或 a=2, ∵a﹣2≠0, ∴a≠2, ∴a=﹣3,当 a=﹣3 时,原式 = = . 21.解:(1)∵总人数为18÷45%=40人,∴C 等级人数为 40﹣(4+18+5)=13 人, 则C 对应的扇形的圆心角是360°×=117°,故答案为:117;(2) 补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21 个数据均落在B 等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.22.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3 种,所以这两个数字之和是3的倍数的概率为=.23.解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.24.解:(1)如图所示,点B的坐标为(﹣4,1);(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);(3)如图,△A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).25.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即 EF 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°, ∴△AEC∽△ACB,26.解:(1)∵抛物线y=﹣x 2﹣4x+c 经过点A (2,0), ∴﹣4﹣8+c=0,即 c=12,∴抛物线解析式为y=﹣x 2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由 B (m ,n )在抛物线上可得:﹣m 2﹣4m+12=n , ∵点 B 关于原点的对称点为 C , ∴C(﹣m ,﹣n ), ∵C 落在抛物线上,∴﹣m 2+4m+12=﹣n ,即 m 2﹣4m ﹣12=n ,解得:﹣m 2+4m+12=m 2﹣4m ﹣12, 解得:m=2或m=﹣2;②∵点 C (﹣m ,﹣n )在第四象限, ∴﹣m >0,﹣n <0,即 m <0,n >0, ∵抛物线顶点坐标为(﹣2,16), ∴0<n≤16,∵ 点 B 在抛物线上, ∴﹣m 2﹣4m+12=n , ∴m 2+4m=﹣n+12,∵A(2,0),C (﹣m ,﹣n ),∴AC 2=(﹣m ﹣2)2+(﹣n )2=m 2+4m+4+n 2=n 2﹣n+16=(n ﹣)2+ ,∴ = , ∴AE== .当 n= 时,AC2 有最小值,∴﹣m2﹣4m+12= ,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.27.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC 是等边三角形,∴PC=CE,∴AP=CE;28.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x 轴,CB⊥y 轴,∠AOC=90°,∴四边形 OABC 是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD =AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD 为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2 或 8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2 ,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点 A,P,C 为顶点的三角形与△ABC 全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图 3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴∴AN= ,∴ ,,过点 N 作 NH⊥OA, ∴NH∥OA, ∴△ANH∽△ACO, ∴, ∴,∴NH=,AH=, ∴OH=, ∴N(,),而点 P 2 与点 O 关于 AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,),即:满足条件的点P 的坐标为:(0,0),(, ),(﹣ , ).。

苏州市中考数学模拟试题及答案

苏州市中考数学模拟试题及答案

苏州市中考数学模拟试题及答案2018年苏州市中考数学模拟试题及答案在中考的复习备考过程中,模拟试题的积累是十分重要的,我们平时就要充分利用好,才能真正有效提高。

以下是店铺给你带来的最新模拟试题,希望能帮到你哈。

2018年苏州市中考数学模拟试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.2的相反数是A.2B.C.-2D.-【难度】★【考点分析】本题考查相反数的概念,中考第一题的常考题型,难度很小。

【解析】给2 添上一个负号即可,故选C。

2.有一组数据:3,5,5,6,7,这组数据的众数为A.3B.5C.6D.7【难度】★【考点分析】考查众数的概念,是中考必考题型,难度很小。

【解析】众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,故选B。

3.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×105【难度】★【考点分析】考查科学记数法,是中考必考题型,难度很小。

【解析】科学记数法的表示结果应满足:a⨯10n(1≤ a <10)的要求,C,D 形式不满足,排除,通过数值大小(移小数点位置)可得A 正确,故选A。

4.若,则有A.0【难度】★☆【考点分析】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。

【解析】化简得:m = - 2 ,因为- 4 < - 2 < - 1(A+提示:注意负数比较大小不要弄错不等号方向),所以-2 < - 2 < -1。

故选C。

5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0频数(通话次数) 20 16 9 5则通话时间不超过15min的频率为A.0.1B.0.4C.0.5D.0.9【难度】★【考点分析】考察概率,是中考必考题型,难度很小。

人教版2018年中考数学全真模拟试题含答案

人教版2018年中考数学全真模拟试题含答案

2018中考数学模拟试题九一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.在数﹣3,2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.2 C.0 D.32.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3D.2x33.的算术平方根是()A.2 B.±2 C.D.±4.下面四个几何体中,俯视图为四边形的是()A. B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B. C.D.6.为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是()A.抽取的10台电视机B.这一批电视机的使用寿命C.10D.抽取的10台电视机的使用寿命7.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为( D )A.=B.=C.=D.=8.(3分)用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是( B )A.2B.4 C.2 D.29.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为( B )A.正十二边形B.正六边形 C.正四边形 D.正三角形10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( D )A.60 B.80 C.30 D.40二.填空题11.若x,y为实数,且满足(x+2y)2+=0,则x y的值是.12.某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是___________。

13.如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是18﹣9π____________.14.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,…,试猜想,32016的个位数字是15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.16.如图所示,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是_10_____.三.解答题(72分)17.(5分)先化简,再求值:(a﹣)÷,其中a满足a2+3a﹣1=0.18.(6分)如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF(1)求证:BF=DC;(2)求证:四边形ABFD是平行四边形.19.(6分)(某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?20.(7分)九(3)班“2016年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,则小芳获奖的概率是;(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回洗匀后再翻一张;小明同时翻开两张纸牌.他们各自翻开的两张纸牌中只要出现笑脸就获奖.他们获奖的机会相等吗?分析说明理由.21.(9分)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)22.(8分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)23.(9分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上A B(1)如图是y B与x之间函数关系的图象,请根据图象填空:m= 10 ;n= 50(2)写出y A与x之间的函数关系式.(3)选择哪种方式上网学习合算,为什么?24.(10分)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC 于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.25.(12分)如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x 轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.答案17.解:∵a2+3a﹣1=0,∴a2+3a=1原式=×=(a+1)(a+2)=a2+3a+2=3.19.解:(1)由表中数据得:xy=6000,∴y=,∴y是x的反比例函数,故所求函数关系式为y=;(2)由题意得:(x﹣120)y=3000,把y=代入得:(x﹣120)•=3000,解得:x=240;经检验,x=240是原方程的根;答:若商场计划每天的销售利润为3000元,则其单价应定为240元.20.解:(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,∴获奖的概率是;故答案为:;(2)他们获奖机会不相等,理由如下:∴P(小芳获奖)==;∴P(小明获奖)==,∵P(小芳获奖)≠P(小明获奖),∴他们获奖的机会不相等.21.解:设AH=x米,在RT△EHG中,∵∠EGH=45°,∴GH=EH=AE+AH=x+12,∵GF=CD=288米,∴HF=GH+GF=x+12+288=x+300,在Rt△AHF中,∵∠AFH=30°,∴AH=HF•tan∠AFH,即x=(x+300)•,解得x=150(+1).∴AB=AH+BH≈409.8+1.5≈411(米)答:凤凰山与中心广场的相对高度AB大约是411米.22.(1)证明:如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CAO=∠CDO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠DBO=60°,∵∠DBO=∠F+∠FDB,∴∠FDB=∠EDC=30°,∵EC∥OB,∴∠E=180°﹣∠OBD=120°,∴∠ECD=180°﹣∠E﹣∠EDC=30°,∴EC=ED=BO=DB,∵EB=4,∴OB=OD═OA=2,在RT△AOC中,∵∠OAC=90°,OA=2,∠AOC=60°,∴AC=OA•tan60°=2,∴S阴=2•S△AOC﹣S扇形OAD=2××2×2﹣=2﹣.23.解:(1)由图象知:m=10,n=50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.24.(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴==,同理, =,∴MN=AC;(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=DG2=3,解得,DG=2,则cos∠EDG==,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.25.解:(1)∵抛物线的对称轴为x=1,∴﹣=1,解得:m=.将点A(2,3)代入y=﹣x2+x+n中,3=﹣1+1+n,解得:n=3,∴抛物线的解析式为y=﹣x2+x+3.(2)∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,∴y A﹣y P=3y B﹣y P,又∵点P为x轴上的点,点A(2,3),∴y B=1.11当y=1时,有﹣x2+x+3=1,解得:x1=﹣2,x2=4,∴点B的坐标为(﹣2,1)或(4,1).将点A(2,3)、B(﹣2,1)代入y=kx+b中,,解得:;将点A(2,3)、B(4,1)代入y=kx+b中,,解得:.∴一次函数的解析式y=x+2或y=﹣x+5.(3)假设存在,设点C的坐标为(1,r).∵k>0,∴直线AP的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣4,∴点P的坐标为(﹣4,0),当x=1时,y=,∴点D的坐标为(1,).令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,∴∠DCF=∠EPF.在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,∴CD=CF=|r|=﹣r,解得:r=5﹣10或r=﹣5﹣10.故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).1213。

2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析

2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析

2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DC O=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA 证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴OB⊥AE,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|,EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15|①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0,解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0,解得:m=或m=.由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2|∴|﹣m 2+m+2|=|m|.①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣;②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣.由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时, 此时P 点横坐标为0,E ,C ,E'三点重合与y 轴上,也符合题意,∴P (0,5)综上所述,存在满足条件的点P ,可求得点P 坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3) 方法二:(1)略.(2)略.(3)若E (不与C 重合时)关于直线PC 的对称点E′在y 轴上,则直线CD 与直线CE′关于PC 轴对称.∴点D 关于直线PC 的对称点D′也在y 轴上,∴DD′⊥CP ,∵y=﹣x+3,∴D (4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt △AHB 中,AB=6,∠B=60°,∴AH=AB •sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD 为矩形,∴CD=AH=,∵, ∴∠CAD=30°,∵EF ∥AC ,∴∠1=∠CAD=30°;(2)若点G 恰好在BC 上,如图2,由对折的对称性可知Rt △FGE ≌Rt △FDE ,∴GE=DE=x ,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG 是直角三角形,∴∠EGC=30°,∴在Rt △CEG 中,EC=EG=x ,由DE+EC=CD 得,∴x=; (3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=,∴DF=x ÷=x ,∴y=S △EGF =S △EDF ===,∵>0,对称轴为y 轴,∴当,y 随x 的增大而增大,∴当x=时,y 最大值=×=;第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2,∴NG=GE ﹣NE==,又∵∠MNG=∠ENC=30°,∠G=90°,∴MG=NG •tan30°=,∴=∴y=S △EGF ﹣S △MNG ==∵,对称轴为直线,∴当<x ≤时,y 有最大值,且y 随x 的增大而增大,∴当时, =,综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。

临沂中考数学模拟试题含答案

临沂中考数学模拟试题含答案

临沂中考数学模拟试题含答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#临沂市2018年中考数学模拟试题一.选择题(每小题3分,共42分)1.223-的倒数是()A.223B.132- C.38-D.382.下列运算正确的是()A.222(2)4x y x y+=+B.326(2)4a a-= C.252366a b ab ab-+=-D.236236a a a= 3.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°4.从正面观察如图的两个立体图形,得到的平面图形是()A.B.C.D.5.不等式组103412xxx-⎧⎪⎨-≤-⎪⎩的解集在数轴上应表示为()A.B.C.D.6.定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为()A.12B.25C.35D.7187.把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9 B.10 C.11 D.以上都有可能8.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x,则根据题意可列方程为()A.22000(1)4500x+=B.2000(12)4500x+= C.22000(1)4500x-=D.220004500x=9.若数据12,,,n x x x 的众数为a ,方差为b ,则数据1x +2,2x +2,…,n x +2的众数,方差分别是( ) A .a ,bB .a ,b+2C .a+2,bD .a+2,b+210.如图,在半径为3,圆心角为90°的扇形ACB 内,以BC 为直径作半圆交AB 于点D ,连接CD ,则阴影部分的面积是( ) A .5392π- B .9944π- C .9944π+ D .9984π-第10题 第11题 第12题 11.将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为( ) A .64 B .76 C .89 D .9312.如图,在任意四边形ABCD 中,AC ,BD 是对角线,E 、F 、G 、H 分别是线段BD 、BC 、AC 、AD 上的点,对于四边形EFGH 的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各条线段的中点时,四边形EFGH 为平行四边形B .当E ,F ,G ,H 是各条线段的中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 是各条线段的中点,且AB=CD 时,四边形EFGH 为菱形 D .当E ,F ,G ,H 不是各条线段的中点时,四边形EFGH 可以为平行四边形 13.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表所示:x… ﹣2 ﹣1 0 1 2 … y…4664…从上表可知,下列说法中,错误的是( )A .抛物线于x 轴的一个交点坐标为(﹣2,0)B .抛物线与y 轴的交点坐标为(0,6)C .抛物线的对称轴是直线x =0D .抛物线在对称轴左侧部分是上升的 14.已知点A (﹣2,0),B 为直线x =﹣1上一个动点,P 为直线AB 与双曲线1y x=的交点,且AP=2AB ,则满足条件的点P 的个数是( )A .0个B .1个C .2个D .3个二.填空题(每小题3分,共15分)15.分解因式:2114x x -+= .16.化简211()(1)x x x x--÷-的结果是 .17.如下图,在平行四边形ABCD 中,E 为边BC 上一点,AC 与DE 相交于点F ,若CE=2EB ,9AFDS=,则EFCS= .18.如右上图,在Rt △ABC 中,∠ACB=90°,AB=5,AC=4,E 、F 分别为AB 、AC 上的点,沿直线EF 将B ∠折叠,使点恰好落在AC 上的D 处,当△ADE 恰好为直角三角形时,BE 的长为 .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac+bd ,ad+bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 . 三.解答题(本大题共7小题,共63分)20.计算: 011(4)()32tan 602π--+-++︒21.某中学现有在校学生2150人,为了解本校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查共抽取了多少名学生(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数; (3)请你估计该中学在课余时间参加阅读和其它活动的学生一共有多少名22.如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡脚为45°的上坡向上走到C 处,这时,202PC m =,点C 与点A 在同一水平线上,A 、B 、P 、C 在同一平面内. (1)求居民楼AB 的高度;(2)求C 、A 之间的距离.(结果保留根号)23.如图,△ABC 中,AB=AC ,点D 为BC 上一点,且AD=DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连结DE .(1)求证:AC 是⊙O 的切线; (2)若4sin 5C =,AC=6,求⊙O 的直径.24.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP 会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP 会员的收费方式是:缴纳VIP 会员费50元,所购商品给予8折优惠,并免除30元的快递费.⑴请分别写出按普通会员、VIP 会员购买商品应付的金额y (元) 与所购商品x (元)之间的函数关系式;⑵某网民是该网店的VIP 会员,计划“双十一”期间在该网店购买x (x >300)元的商品,则他应该选择哪种购买方式比较合算25.【感知】如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG . 【拓展】如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .【应用】如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,则菱形CEFG 的面积为 .26.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0).C (0,3),点M 是抛物线的顶点. (1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD m,△PCD的面积为S,试判断S有最大值或最小值并说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共14小题)1.﹣2的倒数是()A.2B.﹣3C.﹣D.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:C.【点评】考查了倒数、关键是熟悉正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.2.下列运算正确的是()A.(x+2y)2=x2+4y2B.(﹣2a3)2=4a6C.﹣6a2b5+ab2=﹣6ab3D.2a23a3=6a6【分析】直接利用完全平方公式和单项式乘以单项式的性质、积的乘方运算法则,分别化简得出答案.【解答】解:A、(x+2y)2=x2+4xy+4y2,故此选项错误;B、(﹣2a3)2=4a6,正确;C、﹣6a2b5+ab2,无法计算,故此选项错误,D、2a23a3=6a5,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式和单项式乘以单项式的性质、积的乘方运算,正确掌握运算法则是解题关键.3.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.【解答】解:由图可知∠1+∠2=180°﹣90°=90°,所以∠2=90°﹣∠1,又因为∠1﹣∠2=∠1﹣(90°﹣∠1)=50°,解得∠1=70°.故选:A.【点评】本题考查了余角和补角,准确识图,用∠1表示出∠2,然后列出方程是解题的关键.4.从正面观察如图的两个立体图形,得到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看左边是一个矩形,右边是一个正方形,故选:A.【点评】本题考查了认识立体图形,从正面看得到的图形是主视图.5.不等式组的解集在数轴上应表示为()A.B.C.D.【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,再在数轴上吧不等式组的解集表示出来,即可选项答案.【解答】解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示不等式组的解集为故选:C.【点评】本题考查了不等式的性质,解一元一次不等式(组),在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用黑点,不包括该点时用圆圈.6.定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.【解答】解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为=.故选:A.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9 B.10 C.11 D.以上都有可能【分析】先根据多边形的内角和公式(n﹣2)180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【解答】解:设多边形截去一个角的边数为n,则(n﹣2)180°=1440°,解得n=10,∵截去一个角后边上可以增加1,不变,减少1, ∴原多边形的边数是9或10或11. 故选:D .【点评】本题考查了多边形的内角和公式,关键是理解多边形截去一个角后边数有增加1,不变,减少1三种情况.8.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x ,则根据题意可列方程为( ) A .2000(1+x )2=4500 B .2000(1+2x )=4500 C .2000(1﹣x )2=4500D .2000x 2=4500【分析】一般用增长后的量=增长前的量×(1+增长率),如果设商场利润的月平均增长率为x ,然后根据已知条件可得出方程.【解答】解:依题意得3月份该型号汽车的销量为:2000(1+x )2, 则2000(1+x )2=4500. 故选:A .【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.9.若数据x 1,x 2,…,x n 的众数为a ,方差为b ,则数据x 1+2,x 2+2,…,x n +2的众数,方差分别是( ) A .a ,bB .a ,b+2C .a+2,bD .a+2,b+2【分析】根据数据x 1,x 2,…,x n 的众数为a ,方差为b ,可知数据x 1+2,x 2+2,…,x n +2与原来数据相比都增加2,则众数相应的加2,平均数都加2,则方差不变. 【解答】解:∵数据x 1,x 2,…,x n 的众数为a ,方差为b , ∴数据x 1+2,x 2+2,…,x n +2的众数为a+2,这组数据的方差是b , 故选:C .【点评】本题考查方差和众数,解答本题的关键是明确题意,利用众数和方差的定义解答.10.如图,在半径为3,圆心角为90°的扇形ACB 内,以BC 为直径作半圆交AB 于点D ,连接CD ,则阴影部分的面积是( )A.B.C.D.【分析】首先根据圆周角定理以及等腰直角三角形的性质得出S阴影=S弓形ACB+S△BCD=S扇形ACB﹣S△ACD =S扇形ACB﹣S△ABC进而得出即可.【解答】解:∵∠ACB=90°,AC=CB,∴∠CBD=45°,又∵BC是直径,∴∠CDB=90°,∴∠DCB=45°,∴DC=DB,∴S弓形CD =S弓形BD,∴S阴影=S弓形ACB+S△BCD=S扇形ACB ﹣S△ACD=S扇形ACB ﹣S△ABC=π×32﹣××3×3=π﹣.故选:B.【点评】此题主要考查了扇形面积公式以及阴影部分面积求法,正确转化阴影图形的形状是解题关键.11.将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为()A.64 B.76 C.89 D.93【分析】图①中有1+2+3+2=8个小圆,图②中有1+2+3+4+3=13个小圆,图③中有1+2+3+4+5+4=19个小圆,按此规律第9个图形中小圆的个数为1+2+3+4+5+6+7+8+9+10+11+10=76个小圆.【解答】解:图①中有1+2+3+2=8个小圆,图②中有1+2+3+4+3=13个小圆,图③中有1+2+3+4+5+4=19个小圆,…第9个图形中小圆的个数为1+2+3+4+5+6+7+8+9+10+11+10=76个.故选:B.【点评】此题考查图形的变化规律,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律,利用穷举法解答此题是一种很好的方法.12.如图,在任意四边形ABCD中,AC,BD是对角线,E、F、G、H分别是线段BD、BC、AC、AD上的点,对于四边形EFGH的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各条线段的中点时,四边形EFGH为平行四边形B.当E,F,G,H是各条线段的中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H是各条线段的中点,且AB=CD时,四边形EFGH为菱形D.当E,F,G,H不是各条线段的中点时,四边形EFGH可以为平行四边形【分析】根据平行四边形、矩形、菱形的判定判断即可.【解答】解:∵E,F,G,H是BD,BC,AC,AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∴EF=GH,FG=HE,∴四边形EFGH为平行四边形,故A正确;∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故C正确;当AC⊥BD时,∠BOC=90°,∵∠BOC>∠EHG,∴四边形EHGF不可能是矩形,故B错误;当E,F,G,H是相应线段的三等分点时,四边形EFGH是平行四边形,∵E,F,G,H是相应线段的三等分点,∴△EHD∽△BAD,△CFG∽△CBA,∴,∴EH=FG,∵EH∥AB,FG∥AB,∴EH∥FG,∴四边形EFGH是平行四边形,故D正确;故选:B.【点评】此题考查矩形的判定和性质,关键是根据平行四边形、矩形、菱形的判定判断.13.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的图象与坐标轴的交点及对称轴的求法是解题的关键.14.已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()A.0个B.1个C.2个D.3个【分析】如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,有A(﹣2,0),得到OA=2,OC=1,AC=1,BC∥y轴,推出,于是得到这样的点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,求得满足条件的点P(﹣4,﹣),于是得到满足条件的点P的个数是1,【解答】解:如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,∵A(﹣2,0),∴OA=2,OC=1,∴AC=1,BC∥y轴,∴,∴P1,P3在y轴上,这样的点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,∴P2Q∥B1C,∴=,∴=,∴m=﹣4,∴P(﹣4,﹣),∴满足条件的点P的个数是1,故选:B.【点评】本题考查了一次函数与反比例函数的焦点问题,平行线分线段成比例,注意数形结合思想的应用.二.填空题(共5小题)15.分解因式:x2﹣x+1= =(x﹣1)2.【分析】直接利用完全平方公式a2﹣2ab+b2=(a﹣b)2把多项式分解即可.【解答】解:原式=(x﹣1)2.故答案为:(x﹣1)2.【点评】此题主要考查了公式法分解因式,关键是掌握完全平方公式a2﹣2ab+b2=(a﹣b)2.16.化简(x﹣)÷(1﹣)的结果是x﹣1 .【分析】首先把括号内的分式进行通分相减,然后把除法转化为乘法,最后进行分式的乘法运算即可.【解答】解:原式=(﹣)÷==x﹣1.故答案是:x﹣1.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.17.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD =9,则S△EFC等于 4 .【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它们的相似比为2:1,∴S△AFD :S△EFC=()2,而S△AFD=9,∴S△EFC=4.故答案为:4.【点评】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.18.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点恰好落在AC上的D处,当△ADE恰好为直角三角形时,BE的长为或.【分析】先在Rt△ABC中利用勾股定理求出AC=6cm,再根据折叠的性质得到BE=DE,直线EF 将∠B折叠,使点B恰好落在BC上的D处,△ADE恰好为直角三角形,有两种可能:①∠ADE=90°,②∠AED=90°,设BE=x,运用三角形相似列比例式解方程即可得解.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,AC=4,∴BC=3.直线EF将∠B折叠,使点B恰好落在BC上的D处,当△ADE恰好为直角三角形时,根据折叠的性质:BE=DE设BE=x,则DE=x,AE=10﹣x①当∠ADE=90°时,则DE∥BC,∴=∴=解得:x=②当∠AED=90°时,则△AED∽△ACB∴=∴=解得:x=故所求BE的长度为:或.故答案为:或.【点评】本题考查了折叠的性质,勾股定理以及相似三角形的判定与性质,能够全面的思考问题进行分类讨论是本题的关键.19.对于任意实数a、b、c、d,定义有序实数对(a,b)与(c,d)之间的运算“△”为:(a,b)△(c,d)=(ac+bd,ad+bc).如果对于任意实数u、v,都有(u,v)△(x,y)=(u,v),那么(x,y)为x=1,y=0 .【分析】首先由(a,b)△(c,d)=(ac+bd,ad+bc)类似得到uvxy之间的等量关系式,再根据对于任意实数u、v,方程组都成立,据此得到x和y的值.【解答】解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.【点评】本题主要考查了有理数无理数的概念与运算的知识,解答本题的关键是熟练理解题干,此题难度较大.三.解答题(共9小题)20.计算:(π﹣4)0+(﹣)﹣1+|﹣2|+tan60°【分析】直接利用特殊角的三角函数值和绝对值的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2+2﹣+=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.某中学现有在校学生2150人,为了解本校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查共抽取了多少名学生(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数;(3)请你估计该中学在课余时间参加阅读和其它活动的学生一共有多少名【分析】(1)根据运动的人数和所占的百分比即可求出调查的总人数;(2)用调查的总人数减去阅读、运动和其它的人数,求出娱乐的人数,从而补全统计图;用360°乘以阅读部分所占的百分比,即可求出阅读部分的扇形圆心角的度数;(3)用全校的总人数乘以阅读和其它活动的学生所占的百分比即可得出答案.【解答】解:(1)根据题意得:20÷20%=100(名),答:一共调查的学生数是100人;(2)娱乐的人数是:100﹣30﹣20﹣10=40(名),补图如下:阅读部分的扇形圆心角的度数是360°×=108°;(3)根据题意得:2150×=860(名),答:该中学在课余时间参加阅读和其它活动的学生一共有860名.【点评】本题主要考查了条形统计图和扇形统计图,正确读图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡脚为45°的上坡向上走到C处,这时,PC=20m,点C与点A 在同一水平线上,A、B、P、C在同一平面内.(1)求居民楼AB的高度;(2)求C、A之间的距离.(结果保留根号)【分析】(1)首先分析图形:根据题意构造直角三角形,利用在Rt△CPE中,由sin45°=,得出EC的长度,进而可求出答案;(2)在Rt△CPE中,tan60°=,得出BP的长,进而得出PE的长,即可得出答案.【解答】解:(1)过点C作CE⊥BP于点E,在Rt△CPE中,∵PC=20m,∠CPE=45°,∴sin45°=,∴CE=PCsin45°=20×=20m,∵点C与点A在同一水平线上,∴AB=CE=20m,答:居民楼AB的高度约为20m;(2)在Rt△ABP中,∵∠APB=60°,∴tan60°=,∴BP==m,∵PE=CE=20m,∴AC=BE=(+20)m,答:C、A之间的距离为(+20)m.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助仰角、坡角关系构造直角三角形,并结合图形利用三角函数求解.23.如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.【分析】(1)根据等腰三角形的性质,由AB=AC,AD=DC得∠C=∠B,∠1=∠C,则∠1=∠B,根据圆周角定理得∠E=∠B,∠ADE=90°,所以∠1+∠EAD=90°,然后根据切线的判定定理即可得到AC是⊙O的切线;(2)过点D作DF⊥AC于点F,如图,根据等腰三角形的性质得CF=AC=3,在Rt△CDF中,利用正弦定义得sinC==,则设DF=4x,DC=5x,利用勾股定理得CF=3x,所以3x=3,解得x=1,于是得到DC=AD=5,然后证明△ADE∽△DFC,再利用相似比可计算AE即可.【解答】(1)证明:∵AB=AC,AD=DC,∴∠C=∠B,∠1=∠C,∴∠1=∠B,又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∴AC是⊙O的切线;(2)解:过点D作DF⊥AC于点F,如图,∵DA=DC,∴CF=AC=3,在Rt△CDF中,∵sinC==,设DF=4x,DC=5x,∴CF==3x,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C,∴△ADE∽△DFC,∴=,即=,解得AE=,即⊙O的直径为.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质和相似三角形的判定与性质.24.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算【分析】(1)根据题意列出普通会员、VIP会员购买商品应付的金额y(元)与所购商品x (元)之间的函数关系式即可;(2)根据题意列出不等式,进而解答即可.【解答】解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=+50;(2)当<+50时,解得:x<500;当=+50时,x=500;当>+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.【点评】本题考查了一次函数的运用,运用一元一次不等式解实际问题的运用,解答时求出函数的解析式是关键.25.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.【分析】拓展:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=2ED ,可求得△CDE 的面积,继而求得答案.【解答】解:拓展:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD ﹣∠ECD=∠ECG ﹣∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中, ,∴△BCE ≌△DCG (SAS ),∴BE=DG .(6分)应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=2ED ,∴S △CDE =×8=,∴S △ECG =S △CDE +S △CDG =, ∴S 菱形CEFG =2S △ECG =. 故答案为:.(9分)【点评】此题考查了菱形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.26.如图,抛物线y=﹣x 2+bx+c 与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0).C (0,3),点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD ⊥x 轴于点D .若OD=m ,△PCD 的面积为S ,试判断S 有最大值或最小值并说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【分析】(1)把B点和C点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)把(1)中的一般式配成顶点式可得到M(1,4),设直线BM的解析式为y=kx+n,再利用待定系数法求出直线BM的解析式,则P(m,﹣2m+6)(1≤m<3),于是根据三角形面积公式得到S=﹣m2+3m,然后根据二次函数的性质解决问题;(3)讨论:∠PDC不可能为90°;当∠DPC=90°时,易得﹣2m+6=3,解方程求出m即可得到此时P点坐标;当∠PCD=90°时,利用勾股定理得到和两点间的距离公式得到m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,然后解方程求出满足条件的m的值即可得到此时P点坐标.【解答】解:(1)把B(3,0),C(0,3)代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)S有最大值.理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4),设直线BM的解析式为y=kx+n,把B(3,0),M(1,4)代入得,解得,∴直线BM的解析式为y=﹣2x+6,∵OD=m,∴P(m,﹣2m+6)(1≤m<3),∴S=m(﹣2m+6)=﹣m2+3m=﹣(m﹣)2+,∵1≤m<3,∴当m=时,S有最大值,最大值为;(3)存在.∠PDC不可能为90°;当∠DPC=90°时,则PD=OC=3,即﹣2m+6=3,解得m=,此时P点坐标为(,3),当∠PCD=90°时,则PC2+CD2=PD2,即m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,整理得m2+6m﹣9=0,解得m1=﹣3﹣3(舍去),m2=﹣3+3,当m=﹣3+3时,y=﹣2m+6=6﹣6+6=12﹣6,此时P点坐标为(﹣3+3,12﹣6),综上所述,当P点坐标为(,3)或(﹣3+3,12﹣6)时,△PCD为直角三角形.【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数图象上点的坐标特征;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式和三角形面积公式;会运用分类讨论的思想解决数学问题.。

教育最新K122018届中考数学5月模拟考试试题

教育最新K122018届中考数学5月模拟考试试题

2018年中考模拟考试试卷数学请将答案写在答题卡相应的位置上 总分120分 时间100分钟一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的倒数是( ▲ )A .-5B .15C .15- D . 不存在2. 去年汕头市经济发展成绩斐然,全市投资总额首次突破200 000 000 000元,其中200 000 000 000用科学记数法表示为( ▲ )A .2×1012B .0.2×1012C .2×1011D .20×10113. 如图是由五个相同的小正方块搭成的几何体,其左视图是( ▲)4. a ,b ,c 三个数在数轴上的位置如图所示,则这三个数中绝对值最大的是( ▲ ) A .aB .bC .cD .无法确定5. 点()-2,5A 在反比例函数()0ky k x=≠的图象上,则k 的值是( ▲ ) A .-10B .5C .-5D .106. 某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( ▲ )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定 7. 圆心角为120,弧长为12π的扇形半径为( ▲ )A .6B .9C .18D .368.下列运算正确的是( ▲ )A 2=±B .236x x x ⋅=C =D .236()x x =9.已知2230a a +=-,则代数式2243a a +-的值是( ▲ )4题图10题图15题图A .-3B .0C .3D .6 10.如图,四边形ABCD 是正方形,点P ,Q 分别在边AB ,BC BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E AE ,下列结论:①AQ ⊥DP ;②△OAE∽△OPA ;③当正方形的边长为3,BP =1时,cos ∠DFO=35,其中正确结论的个数是( ▲ )A .0B .1C . 2D .3二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.)11.在函数13-=x y 中,自变量x 的取值范围是 ▲ . 12.计算:)3)(3(+-m m = ▲ .13.分式方程xx 412=-的解为 ▲ . 14.已知一个正多边形的每个外角都等于45°,则这个正多边形的边数是 ▲ .15.如图,C 为弧AB 的中点,CN ⊥OB 于N ,CD ⊥OA 于M ,CD =4cm ,则CN = ▲ cm .16.如图,将矩形ABCD 绕点A 旋转至矩形AB C D '''位置,此时AC 的中点恰好与D 点重合,AB '交CD 于点E . 若DE =1,则矩形ABCD 的面积为 ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算题:()11122-⎛⎫-- ⎪⎝⎭18.先化简,再求值:22444()2x x x x x x-+÷--,其中x =-319.某镇枇杷园的枇杷除了运往市区销售外,还可以让市民亲自去园内采摘购买,已知今年3月份该枇杷在市区、园内的销售价格分别为6元/千克、4元/千克,一共销售了3000千克,总销售额为16000元,3月份该枇杷在市区、园内各销售了多少千克?四、解答题(二)(本大题3小题,每小题7分,共21分) 20.如图,在△ABC 中,∠A=40°,∠C=60°.(1)用直尺和圆规作∠ABC 的平分线,交AC 于D(保留作图痕迹, 不要求写作法);(2)在(1)的条件下,求∠BDC 的度数.21.如图,某商场为方便顾客使用购物车,准备将滚动电梯的坡面的倾斜角由45°降为30°,如果改动前电梯的坡面AB 长为12在同一水平地面上.求改动后电梯水平宽度增加部分BC (结果精确到0.1 1.41≈21题图22.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班共有学生 人,并把条形统计图补充完整; (2)扇形统计图中m= , 表示“足球”的扇形的圆心角是 度;(3)排球兴趣小组4名学生中有3男1打算从中随机选出2用列表或画树状图的方法求选出的2是1男1女的概率. 图① 图②22题图五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,抛物线y 1=ax 2+2ax +1与x 轴有且仅有一个公共点A , BAC20题图经过点A 的直线y 2=kx +b 交该抛物线于点B ,交y 轴于点C , 且点C 是线段AB 的中点. (1)求a 的值;(2)求直线AB 对应的函数解析式;(3)直接写出当y 1 ≥y 2 时,x 的取值范围.23题图24.如图,在△ABC 中,AB=AC ,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是圆O 的切线; (2)若32FD EF ,求证:A 为EH 的中点. (3)若EA=EF=1,求圆O 的半径.24题图25.如图,正方形OABC 的顶点O 在坐标原点,顶点A 的坐标为(4,3).(1)顶点C 的坐标为( , );(2)现有动点P 、Q 分别从C 、A 同时出发,点P 沿线段CB 向终点B 运动,速度为每秒1个单位,点Q 沿折线A →O →C 向终点C 运动,速度为每秒k 个单位,当运动时间为2秒时,以P 、Q 、C 为顶点的三角形是等腰三角形,求此时k 的值.(3)若正方形OABC 以每秒53个单位的速度沿射线AO 下滑,直至顶点C 落到x 轴上时停止下滑.设正方形OABC 在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围.25题图 (备用图)20题图B ACD2018年中考模拟考试数学参考答案及评分标准一、选择题(本大题共10小题, 每小题3分, 共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A .5B .-5C .- 1 :中考数学模拟试题五一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只 有一项是符合题目要求的.)1.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A .B .C .D .2.|-5|的相反数是()1D .5 53.已知一个正多边形的一个外角为 36°,则这个正多边形的边数是()A .8B .9C .10D .114.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156 米,则这 个数用科学记数法表示为( )A .0.156×10-5B .0.156×105C .1.56×10-6D .1.56×1065.若不等式组恰有两个整数解,则 m 的取值范围是()A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <06.如果一组数据 a 1,a 2,…,a n 的方差是 2,那么一组新数据 2a 1,2a 2,…,2a n 的方差是 ()A .2B .4C .8D .167.如图,在△ABC 中,AB=AC=5,BC=8,⊙O 经过 B 、C 两点,且 AO=4,则⊙O 的半径长是( )A . 17 或 65B .4 或 65C .4 或 17D .4 或 17 或 658.银泰购物中心一月份的营业额为 400 万元,第一季度营业总额为 1600 万元,若平均每 月增长率为 x ,则可列方程为( )A .400(1+x )2=1600B .400[1+(1+x )+(1+x )2]=1600C .400+400x+400x 2=1600D .400(1+x+2x )=16009.程大位《直指算法统宗》 一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有 100 个和尚分 100 个馒头,如果大和尚 1 人分 3 个,小和尚 3 人分 1个,正好分完.试问大、小和尚各多少人?设大和尚有 x 人,依题意列方程得( )A.+3(100﹣x)=100B.﹣3(100﹣x)=100C.3x+=100D.3x﹣=10010.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=2.其中正确的结论有(B)A.4个B.3个C.2个D.1个A E DBF第10题图C二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:20-5a2=.△12.如图,在ABC中,D为AC边上的点,∠DBC=∠A,BC=6,AC=3,则CD的长为_________.13.已知:平面直角坐标系xOy中,圆心在x轴上的⊙M与y轴交于点D(0,4)、点H,过H作⊙O的切线交x轴于点A,若点M(-3,0),则sin∠HAO的值为.14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是5.15.如图,已知正方形ABCD的边长为2,将正方形ABCD沿直线EF折叠,则图中折成的4个阴影三角形的周长之和为.△16.如图,在等边ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是6≤MN≤4.三、解答下列各题(共72分)17、(5分)计算:(1)2-20170+|2-23|-tan60°318.(6分)如右图,矩形ABCD,E是AB上一点,且DE=AB,过C作CF⊥DE于F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,随州市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D粽的人数?(4)若有外型完全相同的A、B、C、D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率?20.(7分)已知:如图,一次函数y=x+b的图象与反比例函数y=kx(k<0)的图象交于A、B两点,3A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC的面积为.2(1)求k的值;(2)求这个一次函数的解析式.21.(7分)如图,中国海监船在钓鱼岛附近海域沿正西方向航行执行巡航任务,在A处望见钓鱼岛在南偏西45°方向,海监船航行到B处时望见钓鱼岛在南偏45°方向,又航行了15分钟到达C处,望见钓鱼岛在南偏60°方向,若海监船的速度为36海里/小时,求中国海监船在此次航行过程中离钓鱼岛的最近距离为多少海里?(3≈1.732,结果精确到0.1海里).22.(8分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使CD=BC,连接AD与CM交于点E,若⊙O的半径为2,ED=1,求AC的长.23.(9分)实验中学九年级学生小凡、小文和小宇到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小凡:如果以9元/千克的价格销售,那么每天可售出350千克.小文:如果每千克的利润为2元,那么每天可售出300千克.小宇:如果以11元/千克的价格销售,那么每天可获取利润750元.物价部门规定:该水果的加价不得超过进价的45﹪.【利润=(销售价-进价)×销售量】(1)请根据他们的对话填写下表:(3分)销售单价x(元/kg)91011销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3分)(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3分)24.(10分)如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N是分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(△1)AMN是什么特殊的三角形?说明理由.(△2)求AMN面积的最小值;(3)求点P到直线CD距离的最大值;25.(12分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MAMC|的值最大?若存在,请求出点M的坐标;若不存在,请说明理由.答案:21.22.(1)证明:连接OC.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵CM是⊙O的切线,∴OC⊥CM.∴∠ACM+∠ACO=90°.∵CO=AO,∴∠BAC=∠ACO.∴∠ACM=∠ABC.(2)解:∵BC=CD,OB=OA,∴OC∥AD.又∵OC⊥CE,∴CE⊥AD,∵∠ACD=∠ACB=90°,∴∠AEC=∠ACD.∴△ADC∽△ACE.∴.∵⊙O的半径为2,∴AD=4.∴∴AC=2..△S AMN=(2)2=324.解:(1)如图1中,∵ABCD是菱形,∠ABC=60°,∴△ABC为等边三角形在△AMB和△ANC中,AB=AC∠B=∠ACN=60°BM=NC∴△AMB≌△ANC∴AM=AN,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN为等边三角形,当AM⊥BC时,△AMN的边长最小,面积最小,此时AM=MN=AN=2(2)如图2中,,当AM⊥BC时,点P到CD距离最大.作PE⊥CD于E.理由:由(△1)可知AMN是等边三角形,当AM⊥BC时,△AMN的边长最小,此时PA长最小,PC的长最大,点P到直线CD距离的最大,∵BM=MC=2,∠CMP=30°,∠MPC=90°,∴ ⎨⎧9 + 3b + c = 01 +b + c = 0 ⎩c = 3 由⎧解得 ⎨ b = 3∴PC= MC=1,在 △Rt PCE 中,∵∠CPE=30°,PC=1,∴EC= PC= ,∴PE= = .∴点 P 到直线 CD 距离的最大值为;25.解:(1)∵抛物线 y =x 2+bx +c 过点 A (3,0),B (1,0),,⎩⎧b = -4解得 ⎨,∴抛物线的解析式为 y =x 2-4x +3. (2)令 x =0,则 y =3, ∴点 C (0,3), 又∵点 A (3,0),∴直线 AC 的解析式为 y = -x +3, 设点 P (x ,x 2-4x +3),∵PD ∥y 轴,且点 D 在 AC 上, ∴点 D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x∵a =-1<0,3 9)2+ 2 4,∴当 x = 3 9时,线段 PD 的长度有最大值,最大值为 .2 4(3)存在.由抛物线的对称性可知,对称轴垂直平分 AB , 可得:MA =MB ,由三角形的三边关系,|MA -MC |<BC ,可得:当 M 、B 、C 三点共线时,|MA -MC |最大,即为 BC 的长度,设直线 BC 的解析式为 y =kx +b (k ≠0), B 、C 两点的坐标分别为(1,0)、(0,3),则 ⎨k + b = 0⎩b = 3,⎧k = -3⎩,∴直线 BC 的解析式为 y = -3x +3,∵抛物线 y =x 2-4x +3 的对称轴为直线 x =2, ∴当 x =2 时,y=-3×2+3=-3, ∴点 M (2,-3),即抛物线对称轴上存在点M(2,-3),使|MA-MC|最大.。

相关文档
最新文档